1
|
Archambault MJ, Tshibwabwa LM, Côté-Cyr M, Moffet S, Shiao TC, Bourgault S. Nanoparticles as Delivery Systems for Antigenic Saccharides: From Conjugation Chemistry to Vaccine Design. Vaccines (Basel) 2024; 12:1290. [PMID: 39591192 PMCID: PMC11598982 DOI: 10.3390/vaccines12111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response by stimulating T-cell-dependent mechanisms. Nonetheless, the conjugation of purified polysaccharides to carrier proteins complexifies vaccine production, and immunization with protein glycoconjugates can lead to the undesirable immunogenic interference of the carrier. Recently, the use of nanoparticles and nanoassemblies for the delivery of antigenic saccharides has gathered attention from the scientific community. Nanoparticles can be easily functionalized with a diversity of functionalities, including T-cell epitope, immunomodulator and synthetic saccharides, allowing for the modulation and polarization of the glycoantigen-specific immune response. Notably, the conjugation of glycan to nanoparticles protects the antigens from degradation and enhances their uptake by immune cells. Different types of nanoparticles, such as liposomes assembled from lipids, inorganic nanoparticles, virus-like particles and dendrimers, have been explored for glycovaccine design. The versatility of nanoparticles and their ability to induce robust immune responses make them attractive delivery platforms for antigenic saccharides. The present review aims at summarizing recent advancements in the use of nano-scaled systems for the delivery of synthetic glycoantigens. After briefly presenting the immunological mechanisms required to promote a robust immune response against antigenic saccharides, this review will offer an overview of the current trends in the nanoparticle-based delivery of glycoantigens.
Collapse
Affiliation(s)
- Marie-Jeanne Archambault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Laetitia Mwadi Tshibwabwa
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Serge Moffet
- Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada; (S.M.); (T.C.S.)
| | - Tze Chieh Shiao
- Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada; (S.M.); (T.C.S.)
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Wroblewski E, Patel N, Javed A, Mata CP, Chandler-Bostock R, Lekshmi BG, Ulamec SM, Clark S, Phillips SEV, Ranson NA, Twarock R, Stockley PG. Visualizing Viral RNA Packaging Signals in Action. J Mol Biol 2024; 436:168765. [PMID: 39214281 DOI: 10.1016/j.jmb.2024.168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Here we confirm, using genome-scale RNA fragments in assembly competition assays, that multiple sub-sites (Packaging Signals, PSs) across the 5' two-thirds of the gRNA of Satellite Tobacco Necrosis Virus-1 make sequence-specific contacts to the viral CPs helping to nucleate formation of its T = 1 virus-like particle (VLP). These contacts explain why natural virions only package their positive-sense genomes. Asymmetric cryo-EM reconstructions of these VLPs suggest that interactions occur between amino acid residues in the N-terminal ends of the CP subunits and the gRNA PS loop sequences. The base-paired stems of PSs also act non-sequence-specifically by electrostatically promoting the assembly of CP trimers. Importantly, alterations in PS-CP affinity result in an asymmetric distribution of bound PSs inside VLPs, with fuller occupation of the higher affinity 5' PS RNAs around one vertex, decreasing to an RNA-free opposite vertex within the VLP shell. This distribution suggests that gRNA folding regulates cytoplasmic genome extrusion so that the weakly bound 3' end of the gRNA, containing the RNA polymerase binding site, extrudes first. This probably occurs after cation-loss induced swelling of the CP-shell, weakening contacts between CP subunits. These data reveal for the first time in any virus how differential PS folding propensity and CP affinities support the multiple roles genomes play in virion assembly and infection. The high degree of conservation between the CP fold of STNV-1 and those of the CPs of many other viruses suggests that these aspects of genome function will be widely shared.
Collapse
Affiliation(s)
- Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca Chandler-Bostock
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B G Lekshmi
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sam Clark
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Simon E V Phillips
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Reidun Twarock
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
3
|
Bukina V, Božič A. Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA. Biophys J 2024; 123:3397-3407. [PMID: 39118324 PMCID: PMC11480767 DOI: 10.1016/j.bpj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.
Collapse
Affiliation(s)
- Veronika Bukina
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
4
|
May ER. Inside the capsid: Revealing viral genome organization through multiscale simulations. Structure 2024; 32:652-653. [PMID: 38848682 DOI: 10.1016/j.str.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
In a recent issue of Nature, Coshic et al. employ a computational multiscale approach to package the complete HK97 viral genome into its capsid. They find both good agreement with experimental observations and shed new light on the heterogeneity of genome structures and the mechanism by which they package.
Collapse
Affiliation(s)
- Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
5
|
Thongchol J, Yu Z, Harb L, Lin Y, Koch M, Theodore M, Narsaria U, Shaevitz J, Gitai Z, Wu Y, Zhang J, Zeng L. Removal of Pseudomonas type IV pili by a small RNA virus. Science 2024; 384:eadl0635. [PMID: 38574145 PMCID: PMC11126211 DOI: 10.1126/science.adl0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.
Collapse
Affiliation(s)
- Jirapat Thongchol
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Zihao Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Laith Harb
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yiruo Lin
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Matthias Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Matthew Theodore
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Utkarsh Narsaria
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Joshua Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, NY 10461, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Meng R, Xing Z, Chang JY, Yu Z, Thongchol J, Xiao W, Wang Y, Chamakura K, Zeng Z, Wang F, Young R, Zeng L, Zhang J. Structural basis of Acinetobacter type IV pili targeting by an RNA virus. Nat Commun 2024; 15:2746. [PMID: 38553443 PMCID: PMC10980823 DOI: 10.1038/s41467-024-47119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.
Collapse
Affiliation(s)
- Ran Meng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Yale University, New Haven, CT, 06520, USA
| | - Zhongliang Xing
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jeng-Yih Chang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- UMass Chan Medical School, Worcester, MA, 01655, USA
| | - Zihao Yu
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jirapat Thongchol
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Xiao
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yuhang Wang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Karthik Chamakura
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Armata Pharmaceuticals, Inc., Marina del Rey, CA, 90292, USA
| | - Zhiqi Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ry Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Lanying Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Thongchol J, Zhang J. Purification of Single-Stranded RNA Bacteriophages and Host Receptors for Structural Determination Using Cryo-Electron Microscopy. Methods Mol Biol 2024; 2793:185-204. [PMID: 38526732 DOI: 10.1007/978-1-0716-3798-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Single-stranded RNA bacteriophages (ssRNA phages) are small viruses with a compact genome (~3-4 kb) that infect gram-negative bacteria via retractile pili. These phages have been applied in various fields since their discovery approximately 60 years ago. To understand their biology, it is crucial to analyze the structure of mature virions. Cryo-electron microscopy (cryo-EM) has been employed to determine the structures of two ssRNA phages, MS2 and Qβ. This chapter presents a method for purifying these two phages and their receptor, the F-pilus, to allow examination using cryo-EM.
Collapse
Affiliation(s)
- Jirapat Thongchol
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Thongchol J, Lill Z, Hoover Z, Zhang J. Recent Advances in Structural Studies of Single-Stranded RNA Bacteriophages. Viruses 2023; 15:1985. [PMID: 37896763 PMCID: PMC10610835 DOI: 10.3390/v15101985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Positive-sense single-stranded RNA (ssRNA) bacteriophages (phages) were first isolated six decades ago. Since then, extensive research has been conducted on these ssRNA phages, particularly those infecting E. coli. With small genomes of typically 3-4 kb that usually encode four essential proteins, ssRNA phages employ a straightforward infectious cycle involving host adsorption, genome entry, genome replication, phage assembly, and host lysis. Recent advancements in metagenomics and transcriptomics have led to the identification of ~65,000 sequences from ssRNA phages, expanding our understanding of their prevalence and potential hosts. This review article illuminates significant investigations into ssRNA phages, with a focal point on their structural aspects, providing insights into the various stages of their infectious cycle.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (J.T.); (Z.L.); (Z.H.)
| |
Collapse
|
10
|
Laguna-Castro M, Rodríguez-Moreno A, Llorente E, Lázaro E. The balance between fitness advantages and costs drives adaptation of bacteriophage Qβ to changes in host density at different temperatures. Front Microbiol 2023; 14:1197085. [PMID: 37303783 PMCID: PMC10248866 DOI: 10.3389/fmicb.2023.1197085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Host density is one of the main factors affecting the infective capacity of viruses. When host density is low, it is more difficult for the virus to find a susceptible cell, which increases its probability of being damaged by the physicochemical agents of the environment. Nevertheless, viruses can adapt to variations in host density through different strategies that depend on the particular characteristics of the life cycle of each virus. In a previous work, using the bacteriophage Qβ as an experimental model, we found that when bacterial density was lower than optimal the virus increased its capacity to penetrate into the bacteria through a mutation in the minor capsid protein (A1) that is not described to interact with the cell receptor. Results Here we show that the adaptive pathway followed by Qβ in the face of similar variations in host density depends on environmental temperature. When the value for this parameter is lower than optimal (30°C), the mutation selected is the same as at the optimal temperature (37°C). However, when temperature increases to 43°C, the mutation selected is located in a different protein (A2), which is involved both in the interaction with the cell receptor and in the process of viral progeny release. The new mutation increases the entry of the phage into the bacteria at the three temperatures assayed. However, it also considerably increases the latent period at 30 and 37°C, which is probably the reason why it is not selected at these temperatures. Conclusion The conclusion is that the adaptive strategies followed by bacteriophage Qβ, and probably other viruses, in the face of variations in host density depend not only on their advantages at this selective pressure, but also on the fitness costs that particular mutations may present in function of the rest of environmental parameters that influence viral replication and stability.
Collapse
|
11
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Burley SK, Berman HM, Chiu W, Dai W, Flatt JW, Hudson BP, Kaelber JT, Khare SD, Kulczyk AW, Lawson CL, Pintilie GD, Sali A, Vallat B, Westbrook JD, Young JY, Zardecki C. Electron microscopy holdings of the Protein Data Bank: the impact of the resolution revolution, new validation tools, and implications for the future. Biophys Rev 2022; 14:1281-1301. [PMID: 36474933 PMCID: PMC9715422 DOI: 10.1007/s12551-022-01013-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 12/04/2022] Open
Abstract
As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093 USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Helen M. Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA USA
| | - Wei Dai
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sagar D. Khare
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901 USA
| | - Catherine L. Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | | | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158 USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
13
|
Zhu P, Liu G, Liu C, Yang L, Liu M, Xie K, Shi S, Shi M, Jiang J. Novel RNA viruses in oysters revealed by virome. IMETA 2022; 1:e65. [PMID: 38867911 PMCID: PMC10989897 DOI: 10.1002/imt2.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 06/14/2024]
Abstract
Eighteen novel RNA viruses were found in Crassostrea hongkongensis. Phylogenic analysis shows evidence of recombination between major genes of viruses. Picobirnaviruses are ubiquitous and abundant in oysters.
Collapse
Affiliation(s)
- Peng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghaiChina
| | - Guang‐Feng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
| | - Li‐Ling Yang
- One Health Biotechnology (Suzhou) Co., Ltd.JiangsuChina
| | - Min Liu
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghaiChina
| | - Ke‐Ming Xie
- College of Life Science and BiopharmacyGuangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| | - Shao‐Kun Shi
- Ministry of Fisheries TechnologyShenzhen Fisheries Development Research CenterShenzhenGuangdongChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jing‐Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghaiChina
- College of Life Science and BiopharmacyGuangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| |
Collapse
|
14
|
Single-particle studies of the effects of RNA-protein interactions on the self-assembly of RNA virus particles. Proc Natl Acad Sci U S A 2022; 119:e2206292119. [PMID: 36122222 PMCID: PMC9522328 DOI: 10.1073/pnas.2206292119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA-protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)-for which RNA-protein interactions can be controlled by varying the ionic strength of the buffer. We find that when RNA-protein interactions are weak, BMV assembles by a nucleation-and-growth pathway in which a small cluster of RNA-bound proteins must exceed a critical size before additional proteins can bind. As the strength of RNA-protein interactions increases, the nucleation time becomes shorter and more narrowly distributed, but the time to grow a capsid after nucleation is largely unaffected. These results suggest that the nucleation rate is controlled by RNA-protein interactions, while the growth process is driven less by RNA-protein interactions and more by protein-protein interactions and intraprotein forces. The nucleated pathway observed with the plant virus BMV is strikingly similar to that previously observed with bacteriophage MS2, a phylogenetically distinct virus with a different host kingdom. These results raise the possibility that nucleated assembly pathways might be common to other RNA viruses.
Collapse
|
15
|
Munke A, Kimura K, Tomaru Y, Wang H, Yoshida K, Mito S, Hongo Y, Okamoto K. Primordial Capsid and Spooled ssDNA Genome Structures Unravel Ancestral Events of Eukaryotic Viruses. mBio 2022; 13:e0015622. [PMID: 35856561 PMCID: PMC9426455 DOI: 10.1128/mbio.00156-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
Marine algae viruses are important for controlling microorganism communities in the marine ecosystem and played fundamental roles during the early events of viral evolution. Here, we have focused on one major group of marine algae viruses, the single-stranded DNA (ssDNA) viruses from the Bacilladnaviridae family. We present the capsid structure of the bacilladnavirus Chaetoceros tenuissimus DNA virus type II (CtenDNAV-II), determined at 2.4-Å resolution. A structure-based phylogenetic analysis supported the previous theory that bacilladnaviruses have acquired their capsid protein via horizontal gene transfer from a ssRNA virus. The capsid protein contains the widespread virus jelly-roll fold but has additional unique features; a third β-sheet and a long C-terminal tail. Furthermore, a low-resolution reconstruction of the CtenDNAV-II genome revealed a partially spooled structure, an arrangement previously only described for dsRNA and dsDNA viruses. Together, these results exemplify the importance of genetic recombination for the emergence and evolution of ssDNA viruses and provide important insights into the underlying mechanisms that dictate genome organization. IMPORTANCE Single-stranded DNA (ssDNA) viruses are an extremely widespread group of viruses that infect diverse hosts from all three domains of life, consequently having great economic, medical, and ecological importance. In particular, bacilladnaviruses are highly abundant in marine sediments and greatly influence the dynamic appearance and disappearance of certain algae species. Despite the importance of ssDNA viruses and the last couple of years' advancements in cryo-electron microscopy, structural information on the genomes of ssDNA viruses remains limited. This paper describes two important achievements: (i) the first atomic structure of a bacilladnavirus capsid, which revealed that the capsid protein gene presumably was acquired from a ssRNA virus in early evolutionary events; and (ii) the structural organization of a ssDNA genome, which retains a spooled arrangement that previously only been observed for double-stranded viruses.
Collapse
Affiliation(s)
- Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kei Kimura
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
| | - Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Seiya Mito
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yuki Hongo
- Bioinformatics and Biosciences Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
17
|
Chang JY, Gorzelnik KV, Thongchol J, Zhang J. Structural Assembly of Qβ Virion and Its Diverse Forms of Virus-like Particles. Viruses 2022; 14:225. [PMID: 35215818 PMCID: PMC8880383 DOI: 10.3390/v14020225] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
The coat proteins (CPs) of single-stranded RNA bacteriophages (ssRNA phages) directly assemble around the genomic RNA (gRNA) to form a near-icosahedral capsid with a single maturation protein (Mat) that binds the gRNA and interacts with the retractile pilus during infection of the host. Understanding the assembly of ssRNA phages is essential for their use in biotechnology, such as RNA protection and delivery. Here, we present the complete gRNA model of the ssRNA phage Qβ, revealing that the 3' untranslated region binds to the Mat and the 4127 nucleotides fold domain-by-domain, and is connected through long-range RNA-RNA interactions, such as kissing loops. Thirty-three operator-like RNA stem-loops are located and primarily interact with the asymmetric A/B CP-dimers, suggesting a pathway for the assembly of the virions. Additionally, we have discovered various forms of the virus-like particles (VLPs), including the canonical T = 3 icosahedral, larger T = 4 icosahedral, prolate, oblate forms, and a small prolate form elongated along the 3-fold axis. These particles are all produced during a normal infection, as well as when overexpressing the CPs. When overexpressing the shorter RNA fragments encoding only the CPs, we observed an increased percentage of the smaller VLPs, which may be sufficient to encapsidate a shorter RNA.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (J.-Y.C.); (K.V.G.); (J.T.)
| |
Collapse
|
18
|
Knobler CM, Gelbart WM. How and why RNA genomes are (partially) ordered in viral capsids. Curr Opin Virol 2021; 52:203-210. [PMID: 34959081 DOI: 10.1016/j.coviro.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
There is a long and productive progression of X-ray crystallographic and electron microscopy studies establishing the structures of the spherical/icosahedral and cylindrical/helical capsids of a wide range of virus particles. This is because of the high degree of order - down to the Angstrom scale - in the secondary/tertiary/quaternary structure of the proteins making up the capsids. In stark contradistinction, very little is known about the structure of DNA or RNA genomes inside these capsids. This is because of the relatively large extent of disorder in the confined DNA or RNA, due to several fundamental reasons: topological defects in the DNA case, and secondary/tertiary structural disorder in the RNA case. In this article we discuss the range of partial order associated with the encapsidated genomes of single-stranded RNA viruses, focusing on the contrast between mono-partite and multi-partite viruses and on the effects of sequence-specific and non-specific interactions between RNA and capsid proteins.
Collapse
Affiliation(s)
- Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, UCLA, United States; California NanoSystems Institute, UCLA, United States.
| |
Collapse
|
19
|
Bacteriophage Technology and Modern Medicine. Antibiotics (Basel) 2021; 10:antibiotics10080999. [PMID: 34439049 PMCID: PMC8388951 DOI: 10.3390/antibiotics10080999] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The bacteriophage (or phage for short) has been used as an antibacterial agent for over a century but was abandoned in most countries after the discovery and broad use of antibiotics. The worldwide emergence and high prevalence of antimicrobial-resistant (AMR) bacteria have led to a revival of interest in the long-forgotten antibacterial therapy with phages (phage therapy) as an alternative approach to combatting AMR bacteria. The rapid progress recently made in molecular biology and genetic engineering has accelerated the generation of phage-related products with superior therapeutic potentials against bacterial infection. Nowadays, phage-based technology has been developed for many purposes, including those beyond the framework of antibacterial treatment, such as to suppress viruses by phages, gene therapy, vaccine development, etc. Here, we highlighted the current progress in phage engineering technology and its application in modern medicine.
Collapse
|
20
|
Watts S, Maniura-Weber K, Siqueira G, Salentinig S. Virus pH-Dependent Interactions with Cationically Modified Cellulose and Their Application in Water Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100307. [PMID: 34146389 DOI: 10.1002/smll.202100307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Norovirus and Rotavirus are among the pathogens causing a large number of disease outbreaks due to contaminated water. These viruses are nanoscale particles that are difficult to remove by common filtration approaches which are based on physical size exclusion, and require adsorption-based filtration methods. This study reports the pH-responsive interactions of viruses with cationic-modified nanocellulose and demonstrates a filter material that adsorbs nanoscale viruses and can be regenerated by changing the solution's pH. The bacteria viruses Qbeta and MS2, with diameters below 30 nm but different surface properties, are used to evaluate the pH-dependency of the interactions and the filtration process. Small angle X-ray scattering, cryogenic transmission electron microscopy, and ζ-potential measurements are used to study the interactions and analyze changes in their nanostructure and surface properties of the virus upon adsorption. The virus removal capacity of the cationic cellulose-based aerogel filter is 99.9% for MS2 and 93.6% for Qbeta, at pH = 7.0; and desorption of mostly intact viruses occurs at pH = 3.0. The results contribute to the fundamental understanding of pH-triggered virus-nanocellulose self-assembly and can guide the design of sustainable and environmentally friendly adsorption-based virus filter materials as well as phage and virus-based materials.
Collapse
Affiliation(s)
- Samuel Watts
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Gilberto Siqueira
- Cellulose and Wood Material Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
21
|
Nchinda GW, Al-Atoom N, Coats MT, Cameron JM, Waffo AB. Uniqueness of RNA Coliphage Qβ Display System in Directed Evolutionary Biotechnology. Viruses 2021; 13:v13040568. [PMID: 33801772 PMCID: PMC8067240 DOI: 10.3390/v13040568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide’s functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts.
Collapse
Affiliation(s)
- Godwin W. Nchinda
- Laboratory of Vaccinology and Biobanking, International Reference Centre CIRCB), BP 3077 Yaoundé, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Nnamdi Azikiwe University, 420110 Awka, Nigeria
| | - Nadia Al-Atoom
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Mamie T. Coats
- Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jacqueline M. Cameron
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Alain B. Waffo
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9640
| |
Collapse
|
22
|
Jana AK, May ER. Structural and dynamic asymmetry in icosahedrally symmetric virus capsids. Curr Opin Virol 2020; 45:8-16. [PMID: 32615360 PMCID: PMC7746594 DOI: 10.1016/j.coviro.2020.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
A common characteristic of virus capsids is icosahedral symmetry, yet these highly symmetric structures can display asymmetric features within their virions and undergo asymmetric dynamics. The fields of structural and computational biology have entered a new realm in the investigation of virus infection mechanisms, with the ability to observe symmetry-breaking features. This review will cover important studies on icosahedral virus structure and dynamics, covering both symmetric and asymmetric conformational changes. However, the main emphasis of the review will be towards recent studies employing cryo-electron microscopy or molecular dynamics simulations, which can uncover asymmetric aspects of these systems relevant to understanding viral physical-chemical properties and their biological impact.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
23
|
Chang JY, Cui Z, Yang K, Huang J, Minary P, Zhang J. Hierarchical natural move Monte Carlo refines flexible RNA structures into cryo-EM densities. RNA (NEW YORK, N.Y.) 2020; 26:1755-1766. [PMID: 32826323 PMCID: PMC7668250 DOI: 10.1261/rna.071100.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Ribonucleic acids (RNAs) play essential roles in living cells. Many of them fold into defined three-dimensional (3D) structures to perform functions. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have enabled structure determinations of RNA to atomic resolutions. However, most RNA molecules are structurally flexible, limiting the resolution of their structures solved by cryo-EM. In modeling these molecules, several computational methods are limited by the requirement of massive computational resources and/or the low efficiency in exploring large-scale structural variations. Here we use hierarchical natural move Monte Carlo (HNMMC), which takes advantage of collective motions for groups of nucleic acid residues, to refine RNA structures into their cryo-EM maps, preserving atomic details in the models. After validating the method on a simulated density map of tRNA, we applied it to objectively obtain the model of the folding intermediate for the specificity domain of ribonuclease P from Bacillus subtilis and refine a flexible ribosomal RNA (rRNA) expansion segment from the Mycobacterium tuberculosis (Mtb) ribosome in different conformational states. Finally, we used HNMMC to model atomic details and flexibility for two distinct conformations of the complete genomic RNA (gRNA) inside MS2, a single-stranded RNA virus, revealing multiple pathways for its capsid assembly.
Collapse
Affiliation(s)
- Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| | - Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| | - Jianhua Huang
- Department of Statistics, Texas A&M University, College Station, Texas 77843, USA
| | - Peter Minary
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, College Station, Texas 77843, USA
| |
Collapse
|
24
|
Chandler-Bostock R, Mata CP, Bingham RJ, Dykeman EC, Meng B, Tuthill TJ, Rowlands DJ, Ranson NA, Twarock R, Stockley PG. Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLoS Pathog 2020; 16:e1009146. [PMID: 33370422 PMCID: PMC7793301 DOI: 10.1371/journal.ppat.1009146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.
Collapse
Affiliation(s)
- Rebecca Chandler-Bostock
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Carlos P. Mata
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard J. Bingham
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| | - Eric C. Dykeman
- Department of Mathematics, University of York, York, United Kingdom
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| | - Bo Meng
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tobias J. Tuthill
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| | - Reidun Twarock
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| |
Collapse
|
25
|
Chamakura KR, Tran JS, O'Leary C, Lisciandro HG, Antillon SF, Garza KD, Tran E, Min L, Young R. Rapid de novo evolution of lysis genes in single-stranded RNA phages. Nat Commun 2020; 11:6009. [PMID: 33243984 PMCID: PMC7693330 DOI: 10.1038/s41467-020-19860-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
Leviviruses are bacteriophages with small single-stranded RNA genomes consisting of 3-4 genes, one of which (sgl) encodes a protein that induces the host to undergo autolysis and liberate progeny virions. Recent meta-transcriptomic studies have uncovered thousands of leviviral genomes, but most of these lack an annotated sgl, mainly due to the small size, lack of sequence similarity, and embedded nature of these genes. Here, we identify sgl genes in 244 leviviral genomes and functionally characterize them in Escherichia coli. We show that leviviruses readily evolve sgl genes and sometimes have more than one per genome. Moreover, these genes share little to no similarity with each other or to previously known sgl genes, thus representing a rich source for potential protein antibiotics.
Collapse
Affiliation(s)
- Karthik R Chamakura
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Jennifer S Tran
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chandler O'Leary
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- University of North Texas Health Science Center, Fort Worth, TX, 43210, USA
| | - Hannah G Lisciandro
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Sophia F Antillon
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Kameron D Garza
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Elizabeth Tran
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 43210, USA
| | - Lorna Min
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ry Young
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
26
|
Single-gene lysis in the metagenomic era. Curr Opin Microbiol 2020; 56:109-117. [PMID: 33075663 DOI: 10.1016/j.mib.2020.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/20/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022]
Abstract
The small lytic phages (Microviridae and Leviviridae), effect bacterial lysis with the product of a single gene. The three well-studied single-gene lysis (Sgl) proteins (E of φX174, A2 of Qβ, and LysM of phage M) lack direct muralytic activity, and have been shown to function as 'protein antibiotics' by acting as noncompetitive inhibitors of conserved peptidoglycan (PG) biosynthesis enzymes, MurA, MraY, and MurJ respectively. The fourth, protein L of MS2, does not inhibit PG biosynthesis but instead is hypothesized to trigger host autolytic response through an unknown mechanism. Recent advances in meta-omics approaches have led to an explosion in the available genomes of small lytic phages. Of the thousands of new genomes, only one annotated Sgl shared some sequence similarity with a known Sgl (L of MS2), highlighting the diversity in Sgls. The newly available genomic space serves as an untapped resource for discovering novel Sgls.
Collapse
|
27
|
Abstract
Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.
Collapse
|
28
|
Rūmnieks J, Liekniņa I, Kalniņš G, Šišovs M, Akopjana I, Bogans J, Tārs K. Three-dimensional structure of 22 uncultured ssRNA bacteriophages: Flexibility of the coat protein fold and variations in particle shapes. SCIENCE ADVANCES 2020; 6:6/36/eabc0023. [PMID: 32917600 PMCID: PMC7467689 DOI: 10.1126/sciadv.abc0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The single-stranded RNA (ssRNA) bacteriophages are among the simplest known viruses with small genomes and exceptionally high mutation rates. The number of ssRNA phage isolates has remained very low, but recent metagenomic studies have uncovered an immense variety of distinct uncultured ssRNA phages. The coat proteins (CPs) in these genomes are particularly diverse, with notable variation in length and often no recognizable similarity to previously known viruses. We recombinantly expressed metagenome-derived ssRNA phage CPs to produce virus-like particles and determined the three-dimensional structure of 22 previously uncharacterized ssRNA phage capsids covering nine distinct CP types. The structures revealed substantial deviations from the previously known ssRNA phage CP fold, uncovered an unusual prolate particle shape, and revealed a previously unseen dsRNA binding mode. These data expand our knowledge of the evolution of viral structural proteins and are of relevance for applications such as ssRNA phage-based vaccine design.
Collapse
Affiliation(s)
- Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Mihails Šišovs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Ināra Akopjana
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Jānis Bogans
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia.
| |
Collapse
|
29
|
A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure 2020; 28:1249-1258.e2. [PMID: 32857966 DOI: 10.1016/j.str.2020.08.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Ramachandran plots report the distribution of the (ϕ, ψ) torsion angles of the protein backbone and are one of the best quality metrics of experimental structure models. Typically, validation software reports the number of residues belonging to "outlier," "allowed," and "favored" regions. While "zero unexplained outliers" can be considered the current "gold standard," this can be misleading if deviations from expected distributions are not considered. We revisited the Ramachandran Z score (Rama-Z), a quality metric introduced more than two decades ago but underutilized. We describe a reimplementation of the Rama-Z score in the Computational Crystallography Toolbox along with an algorithm to estimate its uncertainty for individual models; final implementations are available in Phenix and PDB-REDO. We discuss the interpretation of the Rama-Z score and advocate including it in the validation reports provided by the Protein Data Bank. We also advocate reporting it alongside the outlier/allowed/favored counts in structural publications.
Collapse
|
30
|
Gorzelnik KV, Zhang J. Cryo-EM reveals infection steps of single-stranded RNA bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:79-86. [PMID: 32841651 DOI: 10.1016/j.pbiomolbio.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Single-stranded RNA bacteriophages (ssRNA phages) are small spherical RNA viruses that infect bacteria with retractile pili. The single positive-sense genomic RNA of ssRNA phages, which is protected by a capsid shell, is delivered into the host via the retraction of the host pili. Structures involved in ssRNA phage infection cycle are essential for understanding the underlying mechanisms that can be used to engineer them for therapeutic applications. This review summarizes the recent breakthroughs in high-resolution structural studies of two ssRNA phages, MS2 and Qβ, and their interaction with the host, E. coli, by cryo-electron microscopy (cryo-EM). These studies revealed new cryo-EM structures, which provide insights into how MS2 and Qβ package the RNA, lyse E. coli, and adsorb to the receptor F-pili, responsible for conjugation. Methodologies described here can be expanded to study other ssRNA phages that target pathogenic bacteria.
Collapse
Affiliation(s)
- Karl Victor Gorzelnik
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Hossain MT, Yokono T, Kashiwagi A. The Single-Stranded RNA Bacteriophage Qβ Adapts Rapidly to High Temperatures: An Evolution Experiment. Viruses 2020; 12:v12060638. [PMID: 32545482 PMCID: PMC7354602 DOI: 10.3390/v12060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022] Open
Abstract
Single-stranded (ss)RNA viruses are thought to evolve rapidly due to an inherently high mutation rate. However, it remains unclear how ssRNA viruses adapt to novel environments and/or how many and what types of substitutions are needed to facilitate this evolution. In this study, we followed the adaptation of the ssRNA bacteriophage Qβ using thermally adapted Escherichia coli as a host, which can efficiently grow at temperatures between 37.2 and 45.3 °C. This made it possible to evaluate Qβ adaptation to the highest known temperature that supports growth, 45.3 °C. We found that Qβ was capable of replication at this temperature; within 114 days (~1260 generations), we detected more than 34 novel point mutations in the genome of the thermally adapted Qβ population, representing 0.8% of the total Qβ genome. In addition, we returned the 45.3 °C-adapted Qβ populations to 37.2 °C and passaged them for 8 days (~124 generations). We found that the reverse-adapted Qβ population showed little to no decrease in fitness. These results indicate that Qβ can evolve in response to increasing temperatures in a short period of time with the accumulation of point mutations.
Collapse
Affiliation(s)
- Md. Tanvir Hossain
- The United Graduate School of Agricultural Science, Iwate University, Morioka 020-8550, Japan;
| | - Toma Yokono
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Akiko Kashiwagi
- The United Graduate School of Agricultural Science, Iwate University, Morioka 020-8550, Japan;
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
- Correspondence: ; Tel.: +81-172-39-3789
| |
Collapse
|
32
|
McPhillie MJ, Zhou Y, Hickman MR, Gordon JA, Weber CR, Li Q, Lee PJ, Amporndanai K, Johnson RM, Darby H, Woods S, Li ZH, Priestley RS, Ristroph KD, Biering SB, El Bissati K, Hwang S, Hakim FE, Dovgin SM, Lykins JD, Roberts L, Hargrave K, Cong H, Sinai AP, Muench SP, Dubey JP, Prud'homme RK, Lorenzi HA, Biagini GA, Moreno SN, Roberts CW, Antonyuk SV, Fishwick CWG, McLeod R. Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites. Front Cell Infect Microbiol 2020; 10:203. [PMID: 32626661 PMCID: PMC7311950 DOI: 10.3389/fcimb.2020.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.
Collapse
Affiliation(s)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Mark R. Hickman
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James A. Gordon
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | | | - Qigui Li
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Patty J. Lee
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kangsa Amporndanai
- Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, United Kingdom
| | - Heather Darby
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Zhu-hong Li
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Richard S. Priestley
- Department of Tropical Disease Biology, Research Center for Drugs and Diagnostics, The Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kurt D. Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Scott B. Biering
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Farida Esaa Hakim
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Sarah M. Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Joseph D. Lykins
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Lucy Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Kerrie Hargrave
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Hua Cong
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | - Anthony P. Sinai
- Microbiology, Immunology and Molecular Genetics, The University of Kentucky College of Medicine, Lexington, KY, United States
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, United Kingdom
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory (APDL), USDA-ARS, Beltsville, MD, United States
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, J Craig Venter Institute, Rockville, MD, United States
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Research Center for Drugs and Diagnostics, The Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Silvia N. Moreno
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Svetlana V. Antonyuk
- Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | | | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Bastin G, Loison P, Vernex-Loset L, Dupire F, Challant J, Majou D, Boudaud N, Krier G, Gantzer C. Structural Organizations of Qβ and MS2 Phages Affect Capsid Protein Modifications by Oxidants Hypochlorous Acid and Peroxynitrite. Front Microbiol 2020; 11:1157. [PMID: 32582098 PMCID: PMC7283501 DOI: 10.3389/fmicb.2020.01157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Pathogenic enteric viruses and bacteriophages such as Qβ and MS2 are transmitted through the fecal-oral route. However, oxidants such as peroxynitrite (ONOOH) and hypochlorous acid (HClO) can prevent new infection by inactivating infectious viruses. Their virucidal effect is well recognized, and yet predicting the effects of oxidants on viruses is currently impossible because the detailed mechanisms of viral inactivation remain unclear. Our data show that ONOOH and HClO cross-linked the capsid proteins and RNA genomes of Qβ and MS2 phages. Consistently, the capsids appeared intact by transmission electron microscopy (TEM) even when 99% of the phages were inactivated by oxidation. Moreover, a precise molecular study of the capsid proteins shows that ONOOH and HClO preferentially targeted capsid protein regions containing the oxidant-sensitive amino acid C, Y, or W. Interestingly, the interaction of these amino acids was a crucial parameter defining whether they would be modified by the addition of O, Cl, or NO2 or whether it induced the loss of the protein region detected by mass spectrometry, together suggesting potential sites for cross-link formation. Together, these data show that HClO and ONOOH consistently target oxidant-sensitive amino acids regardless of the structural organization of Qβ and MS2, even though the phenotypes change as a function of the interaction with adjacent proteins/RNA. These data also indicate a potential novel mechanism of viral inactivation in which cross-linking may impair infectivity.
Collapse
Affiliation(s)
- Guillaume Bastin
- Université de Lorraine, CNRS, LCPME, Nancy, France.,ACTALIA, Food Safety Department, Saint-Lô, France
| | | | | | | | | | | | | | - Gabriel Krier
- Université de Lorraine, LCP-A2MC, EA 4632, Metz, France
| | | |
Collapse
|
34
|
Beren C, Cui Y, Chakravarty A, Yang X, Rao ALN, Knobler CM, Zhou ZH, Gelbart WM. Genome organization and interaction with capsid protein in a multipartite RNA virus. Proc Natl Acad Sci U S A 2020; 117:10673-10680. [PMID: 32358197 PMCID: PMC7245085 DOI: 10.1073/pnas.1915078117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content-specifically, RNAs 3 and 4-assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qβ for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific "packaging signals" throughout the viral RNA to package their monopartite genomes.
Collapse
Affiliation(s)
- Christian Beren
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Antara Chakravarty
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Xue Yang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521;
| | - Charles M Knobler
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - William M Gelbart
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095;
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
35
|
Zhou Y, Routh A. Mapping RNA-capsid interactions and RNA secondary structure within virus particles using next-generation sequencing. Nucleic Acids Res 2020; 48:e12. [PMID: 31799606 PMCID: PMC6954446 DOI: 10.1093/nar/gkz1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 01/24/2023] Open
Abstract
To characterize RNA-capsid binding sites genome-wide within mature RNA virus particles, we have developed a Next-Generation Sequencing (NGS) platform: viral Photo-Activatable Ribonucleoside CrossLinking (vPAR-CL). In vPAR-CL, 4-thiouridine is incorporated into the encapsidated genomes of virus particles and subsequently UV-crosslinked to adjacent capsid proteins. We demonstrate that vPAR-CL can readily and reliably identify capsid binding sites in genomic viral RNA by detecting crosslink-specific uridine to cytidine transitions in NGS data. Using Flock House virus (FHV) as a model system, we identified highly consistent and significant vPAR-CL signals across virus RNA genome, indicating a clear tropism of the encapsidated RNA genome. Certain interaction sites coincide with previously identified functional RNA motifs. We additionally performed dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to generate a high-resolution profile of single-stranded genomic RNA inside viral particles. Combining vPAR-CL and DMS-MaPseq reveals that the predominant RNA-capsid interaction sites favored double-stranded RNA regions. We disrupted secondary structures associated with vPAR-CL sites using synonymous mutations, resulting in varied effects to virus replication, propagation and packaging. Certain mutations showed substantial deficiency in virus replication, suggesting these RNA-capsid sites are multifunctional. These provide further evidence to support that FHV packaging and replication are highly coordinated and inter-dependent events.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
- To whom correspondence should be address. Tel: +1 409 772 3663;
| |
Collapse
|
36
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. Expansion of known ssRNA phage genomes: From tens to over a thousand. SCIENCE ADVANCES 2020; 6:eaay5981. [PMID: 32083183 PMCID: PMC7007245 DOI: 10.1126/sciadv.aay5981] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 05/27/2023]
Abstract
The first sequenced genome was that of the 3569-nucleotide single-stranded RNA (ssRNA) bacteriophage MS2. Despite the recent accumulation of vast amounts of DNA and RNA sequence data, only 12 representative ssRNA phage genome sequences are available from the NCBI Genome database (June 2019). The difficulty in detecting RNA phages in metagenomic datasets raises questions as to their abundance, taxonomic structure, and ecological importance. In this study, we iteratively applied profile hidden Markov models to detect conserved ssRNA phage proteins in 82 publicly available metatranscriptomic datasets generated from activated sludge and aquatic environments. We identified 15,611 nonredundant ssRNA phage sequences, including 1015 near-complete genomes. This expansion in the number of known sequences enabled us to complete a phylogenetic assessment of both sequences identified in this study and known ssRNA phage genomes. Our expansion of these viruses from two environments suggests that they have been overlooked within microbiome studies.
Collapse
Affiliation(s)
- J. Callanan
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
| | - S. R. Stockdale
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - A. Shkoporov
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - L. A. Draper
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - R. P. Ross
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
- Teagasc Agricultural and Food Development Authority, Moorepark, Fermoy, County Cork, Ireland
| | - C. Hill
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
| |
Collapse
|
37
|
Abstract
ssRNA phages belonging to the family Leviviridae are among the tiniest viruses, infecting various Gram-negative bacteria by adsorption to their pilus structures. Due to their simplicity, they have been intensively studied as models for understanding various problems in molecular biology and virology. Several of the studied ssRNA characteristics, such as coat protein–RNA interactions and the ability to readily form virus-like particles in recombinant expression systems, have fueled many practical applications such as RNA labeling and tracking systems and vaccine development. In this chapter, we review the life cycle, structure and applications of these small yet fascinating viruses.
Collapse
|
38
|
Goetschius DJ, Lee H, Hafenstein S. CryoEM reconstruction approaches to resolve asymmetric features. Adv Virus Res 2019; 105:73-91. [PMID: 31522709 DOI: 10.1016/bs.aivir.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although icosahedral viruses have highly symmetrical capsid features, asymmetric structural elements are also present since the genome and minor structural proteins are usually incorporated without adhering to icosahedral symmetry. Besides this inherent asymmetry, interactions with the host during the virus life cycle are also asymmetric. However, until recently it was impossible to resolve high resolution asymmetric features during single-particle cryoEM image processing. This review summarizes the current approaches that can be used to visualize asymmetric structural features. We have included examples of advanced structural strategies developed to reveal unique features and asymmetry in icosahedral viruses.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
39
|
Park C, Kehrl JH. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. eLife 2019; 8:47776. [PMID: 31793433 PMCID: PMC6901335 DOI: 10.7554/elife.47776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/08/2019] [Indexed: 12/03/2022] Open
Abstract
During human immunodeficiency virus-1 (HIV-1) infection lymphoid organ follicular dendritic cells (FDCs) serve as a reservoir for infectious virus and an obstacle to curative therapies. Here, we identify a subset of lymphoid organ sinus lining macrophage (SMs) that provide a cell-cell contact portal, which facilitates the uptake of HIV-1 viral-like particles (VLPs) by FDCs and B cells in mouse lymph node. Central for portal function is the bridging glycoprotein MFG-E8. Using a phosphatidylserine binding domain and an RGD motif, MFG-E8 helps target HIV-1 VLPs to αv integrin bearing SMs. Lack of MFG-E8 or integrin blockade severely limits HIV-1 VLP spread onto FDC networks. Direct SM-FDC virion transfer also depends upon short-lived FDC network abutment, likely triggered by SCSM antigen uptake. This provides a mechanism for rapid FDC loading broadening the opportunity for rare, antigen reactive follicular B cells to acquire antigen, and a means for HIV virions to accumulate on the FDC network.
Collapse
Affiliation(s)
- Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
40
|
de Martín Garrido N, Crone MA, Ramlaul K, Simpson PA, Freemont PS, Aylett CHS. Bacteriophage MS2 displays unreported capsid variability assembling T = 4 and mixed capsids. Mol Microbiol 2019; 113:143-152. [PMID: 31618483 PMCID: PMC7027807 DOI: 10.1111/mmi.14406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
Bacteriophage MS2 is a positive-sense, single-stranded RNA virus encapsulated in an asymmetric T = 3 pseudo-icosahedral capsid. It infects Escherichia coli through the F-pilus, in which it binds through a maturation protein incorporated into its capsid. Cryogenic electron microscopy has previously shown that its genome is highly ordered within virions, and that it regulates the assembly process of the capsid. In this study, we have assembled recombinant MS2 capsids with non-genomic RNA containing the capsid incorporation sequence, and investigated the structures formed, revealing that T = 3, T = 4 and mixed capsids between these two triangulation numbers are generated, and resolving structures of T = 3 and T = 4 capsids to 4 Å and 6 Å respectively. We conclude that the basic MS2 capsid can form a mix of T = 3 and T = 4 structures, supporting a role for the ordered genome in favouring the formation of functional T = 3 virions.
Collapse
Affiliation(s)
- Natàlia de Martín Garrido
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Michael A Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK.,UK DRI Care Research and Technology Centre, Imperial College London, London, UK
| | - Kailash Ramlaul
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Paul A Simpson
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK.,UK DRI Care Research and Technology Centre, Imperial College London, London, UK.,London BioFoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London, W12 0BZ, UK
| | - Christopher H S Aylett
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
41
|
Abstract
Cryo-electron microscopy and single-particle image analysis are frequently used methods for macromolecular structure determination. Conventional single-particle analysis, however, usually takes advantage of inherent sample symmetries which assist in the calculation of the structure of interest (such as viruses). Many viruses assemble an icosahedral capsid and often icosahedral symmetry is applied during structure determination. Symmetry imposition, however, results in the loss of asymmetric features of the virus. Here, we provide a brief overview of the methods used to investigate non-symmetric capsid features. These include the recently developed focussed classification as well as more conventional methods which simply do not impose any symmetry. Asymmetric single-particle image analysis can reveal novel aspects of virus structure. For example, the VP4 capsid spike of rotavirus is only present at partial occupancy, the bacteriophage MS2 capsid contains a single copy of a maturation protein and some viruses also encode portals or portal-like assemblies for the packaging and/or release of their genome upon infection. Advances in single-particle image reconstruction methods now permit novel discoveries from previous single-particle data sets which are expanding our understanding of fundamental aspects of virus biology such as viral entry and egress.
Collapse
|
42
|
Meng R, Jiang M, Cui Z, Chang JY, Yang K, Jakana J, Yu X, Wang Z, Hu B, Zhang J. Structural basis for the adsorption of a single-stranded RNA bacteriophage. Nat Commun 2019; 10:3130. [PMID: 31311931 PMCID: PMC6635492 DOI: 10.1038/s41467-019-11126-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Single-stranded RNA bacteriophages (ssRNA phages) infect Gram-negative bacteria via a single maturation protein (Mat), which attaches to a retractile pilus of the host. Here we present structures of the ssRNA phage MS2 in complex with the Escherichia coli F-pilus, showing a network of hydrophobic and electrostatic interactions at the Mat-pilus interface. Moreover, binding of the pilus induces slight orientational variations of the Mat relative to the rest of the phage capsid, priming the Mat-connected genomic RNA (gRNA) for its release from the virions. The exposed tip of the attached Mat points opposite to the direction of the pilus retraction, which may facilitate the translocation of the gRNA from the capsid into the host cytosol. In addition, our structures determine the orientation of the assembled F-pilin subunits relative to the cell envelope, providing insights into the F-like type IV secretion systems.
Collapse
Affiliation(s)
- Ran Meng
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Mengqiu Jiang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Zhicheng Cui
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinzhe Yu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
43
|
Goetschius DJ, Parrish CR, Hafenstein S. Asymmetry in icosahedral viruses. Curr Opin Virol 2019; 36:67-73. [PMID: 31255982 DOI: 10.1016/j.coviro.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 01/27/2023]
Abstract
Although icosahedral viruses have obvious and highly symmetrical features, asymmetric structural elements are also present. Asymmetric features may be inherent since the genome and location of minor capsid proteins are typically incorporated without adhering to icosahedral symmetry. Asymmetry also develops during the virus life cycle in order to accomplish key functions such as genome packaging, release, and organization. However, resolving asymmetric features complicates image processing during single-particle cryoEM analysis. This review summarizes the current state of knowledge regarding asymmetric structural features with specific examples drawn from members of picornaviridae, parvoviradae, microviradae, and leviviridae.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Penn State University, W231 Millennium Science Complex, University Park, PA 16802, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, W231 Millennium Science Complex, University Park, PA 16802, USA; Department of Medicine, Penn State University College of Medicine, Hershey, PA 17033 USA.
| |
Collapse
|
44
|
Liekniņa I, Kalniņš G, Akopjana I, Bogans J, Šišovs M, Jansons J, Rūmnieks J, Tārs K. Production and characterization of novel ssRNA bacteriophage virus-like particles from metagenomic sequencing data. J Nanobiotechnology 2019; 17:61. [PMID: 31084612 PMCID: PMC6513524 DOI: 10.1186/s12951-019-0497-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022] Open
Abstract
Background Protein shells assembled from viral coat proteins are an attractive platform for development of new vaccines and other tools such as targeted bioimaging and drug delivery agents. Virus-like particles (VLPs) derived from the single-stranded RNA (ssRNA) bacteriophage coat proteins (CPs) have been important and successful contenders in the area due to their simplicity and robustness. However, only a few different VLP types are available that put certain limitations on continued developments and expanded adaptation of ssRNA phage VLP technology. Metagenomic studies have been a rich source for discovering novel viral sequences, and in recent years have unraveled numerous ssRNA phage genomes significantly different from those known before. Here, we describe the use of ssRNA CP sequences found in metagenomic data to experimentally produce and characterize novel VLPs. Results Approximately 150 ssRNA phage CP sequences were sourced from metagenomic sequence data and grouped into 14 different clusters based on CP sequence similarity analysis. 110 CP-encoding sequences were obtained by gene synthesis and expressed in bacteria which in 80 cases resulted in VLP assembly. Production and purification of the VLPs was straightforward and compatible with established protocols, with the only exception that a considerable proportion of the CPs had to be produced at a lower temperature to ensure VLP assembly. The VLP morphology was similar to that of the previously studied phages, although a few deviations such as elongated or smaller particles were noted in certain cases. In addition, stabilizing inter-subunit disulfide bonds were detected in six VLPs and several possible candidate RNA structures in the phage genomes were identified that might bind to the coat protein and ensure specific RNA packaging. Conclusions Compared to the few types of ssRNA phage VLPs that were used before, several dozens of new particles representing ten distinct similarity groups are now available with a notable potential for biotechnological applications. It is believed that the novel VLPs described in this paper will provide the groundwork for future development of new vaccines and other applications based on ssRNA bacteriophage VLPs. Electronic supplementary material The online version of this article (10.1186/s12951-019-0497-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilva Liekniņa
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Ināra Akopjana
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Jānis Bogans
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Mihails Šišovs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia.
| |
Collapse
|
45
|
Twarock R, Stockley PG. RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy. Annu Rev Biophys 2019; 48:495-514. [PMID: 30951648 PMCID: PMC7612295 DOI: 10.1146/annurev-biophys-052118-115611] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision-a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, and York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, United Kingdom;
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
46
|
Majiya H, Adeyemi OO, Herod M, Stonehouse NJ, Millner P. Photodynamic inactivation of non-enveloped RNA viruses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:87-94. [DOI: 10.1016/j.jphotobiol.2018.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
47
|
Abstract
Flaviviruses assemble initially in an immature, noninfectious state and undergo extensive conformational rearrangements to generate mature virus. Previous cryo-electron microscopy (cryo-EM) structural studies of flaviviruses assumed icosahedral symmetry and showed the concentric organization of the external glycoprotein shell, the lipid membrane, and the internal nucleocapsid core. We show here that when icosahedral symmetry constraints were excluded in calculating the cryo-EM reconstruction of an immature flavivirus, the nucleocapsid core was positioned asymmetrically with respect to the glycoprotein shell. The core was positioned closer to the lipid membrane at the proximal pole, and at the distal pole, the outer glycoprotein spikes and inner membrane leaflet were either perturbed or missing. In contrast, in the asymmetric reconstruction of a mature flavivirus, the core was positioned concentric with the glycoprotein shell. The deviations from icosahedral symmetry demonstrated that the core and glycoproteins have varied interactions, which likely promotes viral assembly and budding.
Collapse
|
48
|
Stass R, Ilca SL, Huiskonen JT. Beyond structures of highly symmetric purified viral capsids by cryo-EM. Curr Opin Struct Biol 2018; 52:25-31. [PMID: 30096461 DOI: 10.1016/j.sbi.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Cryogenic transmission electron microscopy (cryo-EM) is widely used to determine high-resolution structures of symmetric virus capsids. The method holds promise for extending studies beyond purified capsids and their symmetric protein shells. The non-symmetric genome component has been addressed in dsRNA cypoviruses and ssRNA bacteriophages Qβ and MS2. The structure of human herpes simplex virus type 1 capsids has been determined within intact virions to resolve capsid-tegument interactions. Electron tomography under cryogenic conditions (cryo-ET), has allowed resolving an early membrane fusion intermediate of Rift Valley fever virus. Antibody-affinity based sample grids allow capturing of virions directly from cell cultures or even clinical samples. These and other emerging methods will support studies to address viral entry, assembly and neutralization processes at increasingly high resolutions and native conditions.
Collapse
Affiliation(s)
- Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, OX3 7BN Oxford, UK
| | - Serban L Ilca
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, OX3 7BN Oxford, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, OX3 7BN Oxford, UK; Helsinki Institute of Life Science HiLIFE and Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, Viikinkaari 1, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
49
|
Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ. Arch Virol 2018; 163:2655-2662. [PMID: 29869034 DOI: 10.1007/s00705-018-3895-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/05/2018] [Indexed: 10/14/2022]
Abstract
A population's growth rate is determined by multiple 'life history traits'. To quantitatively determine which life history traits should be improved to allow a living organism to adapt to an inhibitory environment is an important issue. Previously, we conducted thermal adaptation experiments on the RNA bacteriophage Qβ using three independent replicates and reported that all three end-point populations could grow at a temperature (43.6°C) that inhibited the growth of the ancestral strain. Even though the fitness values of the endpoint populations were almost the same, their genome sequence was not, indicating that the three thermally adapted populations may have different life history traits. In this study, we introduced each mutation observed in these three end-point populations into the cDNA of the Qβ genome and prepared three different mutants. Quantitative analysis showed that they tended to increase their fitness by increasing the adsorption rate to their host, shortening their latent period (i.e., the duration between phage infection and progeny release), and increasing the burst size (i.e., the number of progeny phages per infected cell), but all three mutants decreased their thermal stability. However, the degree to which these traits changed differed. The mutant with the least mutations showed a smaller decrease in thermal stability, the largest adsorption rate to the host, and the shortest latent period. These results indicated that several different adaptive routes exist by which Qβ can adapt to higher temperatures, even though Qβ is a simple RNA bacteriophage with a small genome size, encoding only four genes.
Collapse
|
50
|
Function of the RNA Coliphage Qβ Proteins in Medical In Vitro Evolution. Methods Protoc 2018; 1:mps1020018. [PMID: 31164561 PMCID: PMC6526423 DOI: 10.3390/mps1020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Qβ is a positive (+) single-stranded RNA bacteriophage covered by a 25 nm icosahedral shell. Qβ belongs to the family of Leviviridae and is found throughout the world (bacterial isolates and sewage). The genome of Qβ is about 4.2 kb, coding for four proteins. This genome is surrounded by 180 copies of coat proteins (capsomers) each comprised of 132 residues of amino acids. The other proteins, the subunit II (β) of a replicase, the maturation protein (A2) and the read-through or minor coat protein (A1), play a key role in phage infection. With the replicase protein, which lacks proofreading activity, as well as its short replication time, and high population size, Qβ phage has attractive features for in vitro evolution. The A1 protein gene shares the same initiation codon with the coat protein gene and is produced during translation when the coat protein’s UGA stop codon triplet (about 400 nucleotides from the initiation) is suppressed by a low level of ribosome misincorporation of tryptophan. Thus, A1 is termed the read-through protein. This RNA phage platform technology not only serves to display foreign peptides but is also exceptionally suited to address questions about in vitro evolution. The C-terminus of A1 protein confers to this RNA phage platform an exceptional feature of not only a linker for foreign peptide to be displayed also a model for evolution. This platform was used to present a peptide library of the G-H loop of the capsid region P1 of the foot-and-mouth disease virus (FMDV) called VP1 protein. The library was exposed on the exterior surface of Qβ phages, evolved and selected with the monoclonal antibodies (mAbs) SD6 of the FMDV. These hybrid phages could principally be good candidates for FMDV vaccine development. Separately, the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) epitopes was fused with the A1 proteins and exposed on the Qβ phage exterior surface. The engineered phages with MPER epitopes were recognized by anti-MPER specific antibodies. This system could be used to overcome the challenge of effective presentation of MPER to the immune system. A key portion of this linear epitope could be randomized and evolved with the Qβ system. Overall, antigens and epitopes of RNA viruses relevant to public health can be randomized, evolved and selected in pools using the proposed Qβ model to overcome their plasticity and the challenge of vaccine development. Major epitopes of a particular virus can be engineered or displayed on the Qβ phage surface and used for vaccine efficacy evaluation, thus avoiding the use of live viruses.
Collapse
|