1
|
Alegre ML, Atkinson C, Issa F, Valujskikh A, Zhang ZJ. BEST PRACTICES OF HEART TRANSPLANTATION IN MICE. Am J Transplant 2025:S1600-6135(25)00217-5. [PMID: 40252924 DOI: 10.1016/j.ajt.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Heart transplantation in mice has served as a reliable in vivo model in transplant research worldwide for more than half a century. It is not only useful for addressing cardiac graft-specific questions but also provides mechanistic insights and therapeutic strategies that have broad impact across all solid organ transplants. Compared to other mouse models of solid organ transplantation, such as kidney, lung, or small intestine transplants, the surgical techniques to perform mouse heart transplantation (mHT) are relatively easy to master, and the graft heartbeat offers a simple means to evaluate transplant viability. However, as with other in vivo mouse models, mHT has distinct strengths and limitations. Multiple factors can influence the accuracy and reproducibility of the results, including microsurgical techniques and microsurgeons' skills, post-op monitoring methodologies, mouse strain combinations, sex/age. As innovative biotechnologies continue to emerge, the future holds many opportunities for preclinical research utilizing the mHT model. It is therefore imperative to provide the field with optimized mHT protocols and maintain standard reporting requirements. This minireview provides a concise summary and recommendations for standardized practices to ensure the accuracy, reproducibility, and translational value of findings generated from mHT model.
Collapse
Affiliation(s)
- Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL, USA
| | - Carl Atkinson
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
2
|
Sarangi AK, Salem MA, Younus MD, El-Haroun H, Mahal A, Tripathy L, Mishra R, Shabil M, Alhumaydhi FA, Khatib MN, Bushi G, Rustagi S, Dey D, Satapathy P, Ballal S, Bansal P, Bhopte K, Tomar BS, Mishra S, Alissa M, Mohapatra RK, El-Bahy ZM. Advanced biomaterials for regenerative medicine and their possible therapeutic significance in treating COVID-19: a critical overview. Int J Surg 2024; 110:7508-7527. [PMID: 39411890 PMCID: PMC11634172 DOI: 10.1097/js9.0000000000002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
The potential of biomaterials in medical sciences has attracted much interest, especially in promoting tissue regeneration and controlling immune responses. As the COVID-19 pandemic broke out, there was an increased interest in understanding more about how biomaterials could be employed to fight this dreaded disease, especially in the context of regenerative medicine. Out of the numerous regenerative medicine possibilities, stem cells and scaffolding (grafting) technology are two major areas in modern medicine and surgery. Mesenchymal stem cells are useful in tissue repair, tailored therapy and the treatment of COVID-19. Using biomaterials in COVID-19 treatment is intricate and needs multidisciplinary and cross-disciplinary research. Cell-based therapy and organ transplants pose immunological rejection challenges. Immunomodulation enhanced, tumorigenicity decreased, inflammation addressed and tissue damage restricted; bioengineered stem cells need clinical insights and validation. Advanced stem cell-based therapies should ideally be effective, safe and scalable. Cost and scalability shall dictate the dawn of techno-economically feasible regenerative medicine. A globally standard and uniform approval process could accelerate translational regenerative medicine. Researchers, patient advocacy organisations, regulators and biopharmaceutical stakeholders need to join hands for easy navigation of regulatory measures and expeditious market entry of regenerative medicine. This article summarises advances in biomaterials for regenerative medicine and their possible therapeutic benefits in managing infectious diseases like COVID-19. It highlights the significant recent developments in biomaterial design, scaffold construction, and stem cell-based therapies to treat tissue damage and COVID-19-linked immunological dysregulation. It also highlights the potential contribution of biomaterials towards creating novel treatment strategies to manage COVID-19.
Collapse
Affiliation(s)
- Ashish K. Sarangi
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Mohamed A. Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Mustafa D. Younus
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Hala El-Haroun
- Basic Medical Science Department, Faculty of Dentistry, Al Ryada University for Science and Technology, Sadat City, Egypt
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Lizaranee Tripathy
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Rajashree Mishra
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mahalaqua N. Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Debankur Dey
- Medical College and Hospital Kolkata, Kolkata, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Medical Laboratories Techniques Department, Al-Mustaqbal University, Hillah, Babil, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Kiran Bhopte
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Balvir S. Tomar
- Institute of Pediatric Gastroenterology and Hepatology, NIMS University, Jaipur, India
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Sidlik Muskatel R, Nathansohn-Levi B, Reich-Zeliger S, Mark M, Stoler-Barak L, Rosen C, Milman-Krentsis I, Bachar Lustig E, Pete Gale R, Friedman N, Reisner Y. Correction of T-Cell Repertoire and Autoimmune Diabetes in NOD Mice by Non-myeloablative T-Cell Depleted Allogeneic HSCT. Stem Cells Transl Med 2023; 12:281-292. [PMID: 37184893 PMCID: PMC10184699 DOI: 10.1093/stcltm/szad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/03/2023] [Indexed: 05/16/2023] Open
Abstract
The induction of partial tolerance toward pancreatic autoantigens in the treatment of type 1 diabetes mellitus (T1DM) can be attained by autologous hematopoietic stem cell transplantation (HSCT). However, most patients treated by autologous HSCT eventually relapse. Furthermore, allogeneic HSCT which could potentially provide a durable non-autoimmune T-cell receptor (TCR) repertoire is associated with a substantial risk for transplant-related mortality. We have previously demonstrated an effective approach for attaining engraftment without graft versus host disease (GVHD) of allogeneic T-cell depleted HSCT, following non-myeloablative conditioning, using donor-derived anti-3rd party central memory CD8 veto T cells (Tcm). In the present study, we investigated the ability of this relatively safe transplant modality to eliminate autoimmune T-cell clones in the NOD mouse model which spontaneously develop T1DM. Our results demonstrate that using this approach, marked durable chimerism is attained, without any transplant-related mortality, and with a very high rate of diabetes prevention. TCR sequencing of transplanted mice showed profound changes in the T-cell repertoire and decrease in the prevalence of specific autoimmune T-cell clones directed against pancreatic antigens. This approach could be considered as strategy to treat people destined to develop T1DM but with residual beta cell function, or as a platform for prevention of beta cell destruction after transplantation of allogenic beta cells.
Collapse
Affiliation(s)
- Rakefet Sidlik Muskatel
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Michal Mark
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chava Rosen
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irit Milman-Krentsis
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Esther Bachar Lustig
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Pete Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Reisner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CPRIT Scholar in Cancer Research, Austin, TX, USA
| |
Collapse
|
4
|
George BM, Kao KS, Kwon HS, Velasco BJ, Poyser J, Chen A, Le AC, Chhabra A, Burnett CE, Cajuste D, Hoover M, Loh KM, Shizuru JA, Weissman IL. Antibody Conditioning Enables MHC-Mismatched Hematopoietic Stem Cell Transplants and Organ Graft Tolerance. Cell Stem Cell 2019; 25:185-192.e3. [PMID: 31204177 PMCID: PMC6679784 DOI: 10.1016/j.stem.2019.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic cell transplantation can correct hematological and immunological disorders by replacing a diseased blood system with a healthy one, but this currently requires depleting a patient's existing hematopoietic system with toxic and non-specific chemotherapy, radiation, or both. Here we report an antibody-based conditioning protocol with reduced toxicity and enhanced specificity for robust hematopoietic stem cell (HSC) transplantation and engraftment in recipient mice. Host pre-treatment with six monoclonal antibodies targeting CD47, T cells, NK cells, and HSCs followed by donor HSC transplantation enabled stable hematopoietic system reconstitution in recipients with mismatches at half (haploidentical) or all major histocompatibility complex (MHC) genes. This approach allowed tolerance to heart tissue from HSC donor strains in haploidentical recipients, showing potential applications for solid organ transplantation without immune suppression. Fully mismatched chimeric mice developed antibody responses to nominal antigens, showing preserved functional immunity. These findings suggest approaches for transplanting immunologically mismatched HSCs and solid organs with limited toxicity.
Collapse
Affiliation(s)
- Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye-Sook Kwon
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brenda J Velasco
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica Poyser
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology and the Stanford-UC Berkeley Stem Cell Institute, Stanford, CA 94305, USA
| | - Alan C Le
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akanksha Chhabra
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cassandra E Burnett
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Devon Cajuste
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malachia Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology and the Stanford-UC Berkeley Stem Cell Institute, Stanford, CA 94305, USA
| | - Judith A Shizuru
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology and the Stanford-UC Berkeley Stem Cell Institute, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Pang WW, Czechowicz A, Logan AC, Bhardwaj R, Poyser J, Park CY, Weissman IL, Shizuru JA. Anti-CD117 antibody depletes normal and myelodysplastic syndrome human hematopoietic stem cells in xenografted mice. Blood 2019; 133:2069-2078. [PMID: 30745302 PMCID: PMC6509544 DOI: 10.1182/blood-2018-06-858159] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
The myelodysplastic syndromes (MDS) represent a group of clonal disorders that result in ineffective hematopoiesis and are associated with an increased risk of transformation into acute leukemia. MDS arises from hematopoietic stem cells (HSCs); therefore, successful elimination of MDS HSCs is an important part of any curative therapy. However, current treatment options, including allogeneic hematopoietic cell transplantation (HCT), often fail to ablate disease-initiating MDS HSCs, and thus have low curative potential and high relapse rates. Here, we demonstrate that human HSCs can be targeted and eliminated by monoclonal antibodies (mAbs) that bind cell-surface CD117 (c-Kit). We show that an anti-human CD117 mAb, SR-1, inhibits normal cord blood and bone marrow HSCs in vitro. Furthermore, SR-1 and clinical-grade humanized anti-human CD117 mAb, AMG 191, deplete normal and MDS HSCs in vivo in xenograft mouse models. Anti-CD117 mAbs also facilitate the engraftment of normal donor human HSCs in MDS xenograft mouse models, restoring normal human hematopoiesis and eradicating aggressive pathologic MDS cells. This study is the first to demonstrate that anti-human CD117 mAbs have potential as novel therapeutics to eradicate MDS HSCs and augment the curative effect of allogeneic HCT for this disease. Moreover, we establish the foundation for use of these antibody agents not only in the treatment of MDS but also for the multitude of other HSC-driven blood and immune disorders for which transplant can be disease-altering.
Collapse
Affiliation(s)
- Wendy W Pang
- Division of Hematology, Department of Medicine
- Division of Blood and Marrow Transplantation, Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Stanford Cancer Institute, and
| | - Agnieszka Czechowicz
- Institute for Stem Cell and Regenerative Medicine
- Stanford Cancer Institute, and
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA
- Department of Pathology
- Department of Clinical Laboratories, and
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA
- Department of Pathology, Stanford University Medical Center, Stanford, CA
| | - Aaron C Logan
- Division of Hematology and Blood and Marrow Transplantation, Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, CA
| | - Rashmi Bhardwaj
- Department of Pathology
- Department of Clinical Laboratories, and
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jessica Poyser
- Division of Blood and Marrow Transplantation, Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Stanford Cancer Institute, and
| | - Christopher Y Park
- Department of Pathology, School of Medicine, New York University, New York, NY; and
| | - Irving L Weissman
- Institute for Stem Cell and Regenerative Medicine
- Stanford Cancer Institute, and
- Department of Pathology, Stanford University Medical Center, Stanford, CA
- Ludwig Center for Cancer Cell Research, School of Medicine, Stanford University, Stanford, CA
| | - Judith A Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Stanford Cancer Institute, and
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
6
|
Isolation of Murine Hematopoietic Stem Cells. Methods Mol Biol 2019. [PMID: 30649762 DOI: 10.1007/978-1-4939-8938-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bone marrow resident hematopoietic stem cells (HSCs) are responsible for the lifetime generation of the wide profusion of blood and immune cell types found in the body. In addition, therapeutically, in the context of bone marrow transplantation, HSCs have been successfully deployed to restore normal blood-forming capacity in patients being treated with high-dose chemotherapy for hematologic malignancies. The known ability of bone marrow transplantation to either restore or reset the immune system and to engender immune tolerance has suggested that HSCs may be applied therapeutically for a wider range of clinical conditions, including immunological/autoimmune disorders and allogeneic organ transplantation. Herein, we describe a flow-cytometry-based method to isolate mouse HSCs for continued experimental investigation into such therapeutic uses.
Collapse
|
7
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
8
|
Migliaccio AR. To condition or not to condition-That is the question: The evolution of nonmyeloablative conditions for transplantation. Exp Hematol 2016; 44:706-12. [PMID: 27157594 DOI: 10.1016/j.exphem.2016.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023]
Abstract
In 1985, Eugene Cronkite and his colleagues published, in Experimental Hematology, data indicating that five consecutive "transfusions" of large numbers of marrow cells significantly increase the number of donor-derived cells detected by day 10 of a spleen colony-forming assay, the most primitive hematopoietic cells detectable at that time, present in the host for as long as 2 months posttransfusion (Cronkite EP, Bullis JE, Brecher G. Marrow transfusions increase pluripotent stem cells in normal hosts. Exp Hematol 1985;13:802-805). These data provided the first evidence that donor hematopoietic stem cells (HSCs) may persist in vivo for some time in recipients when transfused and not transplanted, that is, not subjected to treatments that deplete their marrow niches of endogenous HSCs. The limited technology available at the time prevented Dr. Cronkite from pursuing this observation into the development of nonmyeloablated transplantation procedures, and his experiment, as well as the term bone marrow transfusion, has since been long forgotten. In recent years, the scientific need to clarify HSC functions in nonstressed hosts and the clinical need to develop transplantation procedures with levels of morbidity/mortality acceptable for curing inherited hematologic disorders have inspired the search for nonmyeloablative transplantation procedures, including methods that "outcompete" endogenous host HSCs such as those pioneered by Dr. Cronkite's experiments using high transfusion doses. This review describes the technical progress made since Dr. Cronkite's insightful work, which has finally found its path to the clinic.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
9
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
10
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
11
|
Abstract
In this issue of Blood, Dertschnig et al describe the development of autoreactive T cells from the thymus in mice that had previously developed acute graft-versus-host-disease (aGVHD).
Collapse
|
12
|
Abstract
The development of the adaptive immune system has been studied in the mouse primarily because it is easier to access fetal tissues and because there exists a rich array of probes for analysis of various components of the immune system. While much has been learned from this exercise, it is also clear that different species show substantial temporal variation in the development of the immune system during early life. In mice, for instance, mature α/β T cells first appear in the periphery during the final stages of fetal gestation and only increase in number after birth (Friedberg and Weissman, 1974); in humans, on the other hand, the first mature α/β T cells are seen in peripheral tissues at 10-12 gestational weeks (g.w.) and are circulating in significant numbers by the end of the second trimester (Ceppellini et al., 1971; Haynes et al., 1988; Hayward and Ezer, 1974; Kay et al., 1970). Although the functional implications of these differences remain unclear, it is likely that there are significant biological consequences associated with the relatively early development of the peripheral adaptive immune system in humans, for example, with respect to the development of peripheral tolerance as well as to the response to antigens that might cross the placenta from the mother (e.g., cells bearing noninherited maternal alloantigens, infectious agents, food antigens, and the like). Here, we will review studies of immune system ontogeny in the mouse and in humans, and then focus on the possible functional roles of fetal T cell populations during development and later in life in humans.
Collapse
Affiliation(s)
- Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
13
|
Czechowicz A, Weissman IL. Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Hematol Oncol Clin North Am 2011; 25:75-87. [PMID: 21236391 DOI: 10.1016/j.hoc.2010.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Replacement of disease-causing stem cells with healthy ones has been achieved clinically via hematopoietic cell transplantation (HCT) for the last 40 years, as a treatment modality for a variety of cancers and immunodeficiencies with moderate, but increasing, success. This procedure has traditionally included transplantation of mixed hematopoietic populations that include hematopoietic stem cells (HSC) and other cells, such as T cells. This article explores and delineates the potential expansion of this technique to treat a variety of inherited diseases of immune function, the current barriers in HCT and pure HSC transplantation, and the up-and-coming strategies to combat these obstacles.
Collapse
Affiliation(s)
- Agnieszka Czechowicz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305-5323, USA
| | | |
Collapse
|
14
|
Linderman JA, Shizuru JA. Rapid reconstitution of antibody responses following transplantation of purified allogeneic hematopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4191-9. [PMID: 21357265 DOI: 10.4049/jimmunol.1003674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Allogeneic hematopoietic cell transplantation has broad clinical applications extending from the treatment of malignancies to induction of immunologic tolerance. However, adaptive cellular and humoral immunity frequently remain impaired posttransplantation. Here, recovery of T-dependent and T-independent Ab responses was evaluated in mice transplanted with purified hematopoietic stem cells (HSCs) devoid of the mature immune cells believed to hasten immune recovery. Mixed and full donor chimeras were created by conditioning recipients with sublethal or lethal irradiation, respectively, across different donor/host genetic disparities. By 6 wk posttransplantation, all animals demonstrated robust T-independent Ab responses, and all mixed chimeras and recipients of MHC-matched or haploidentical HSCs with a shared MHC haplotype had T-dependent Ab responses equivalent to those of untransplanted controls. Full chimeras that received fully MHC-disparate HSCs showed delayed T-dependent Ab responses that recovered by 12 wk. This delay occurred despite early reconstitution and proper migration to germinal centers of donor-derived T(follicular helper) (T(FH)) cells. Congenic transplants into T(FH)-deficient CD4(-/-) mice revealed restoration of T-dependent Ab responses by 6 wk, leading us to conclude that MHC disparity caused delay in humoral recovery. These findings, together with our previous studies, show that, contrary to the view that depletion of graft lymphocytes results in poor posttransplant immunity, elimination of immune-suppressing graft-versus-host reactions permits superior immune reconstitution. This study also provides insight into the regeneration of T(FH) cells and humoral immunity after allogeneic HSC transplantation.
Collapse
Affiliation(s)
- Jessica A Linderman
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
15
|
Czechowicz A, Weissman IL. Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Immunol Allergy Clin North Am 2010; 30:159-71. [PMID: 20493393 DOI: 10.1016/j.iac.2010.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Replacement of disease-causing stem cells with healthy ones has been achieved clinically via hematopoietic cell transplantation (HCT) for the last 40 years, as a treatment modality for a variety of cancers and immunodeficiencies with moderate, but increasing, success. This procedure has traditionally included transplantation of mixed hematopoietic populations that include hematopoietic stem cells (HSC) and other cells, such as T cells. This article explores and delineates the potential expansion of this technique to treat a variety of inherited diseases of immune function, the current barriers in HCT and pure HSC transplantation, and the up-and-coming strategies to combat these obstacles.
Collapse
Affiliation(s)
- Agnieszka Czechowicz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
16
|
Spitalieri P, Cortese G, Pietropolli A, Filareto A, Dolci S, Klinger FG, Giardina E, Di Cesare S, Bernardini L, Lauro D, Scaldaferri ML, Scaldaferri HL, Citro G, Novelli G, De Felici M, Sangiuolo F. Identification of multipotent cytotrophoblast cells from human first trimester chorionic villi. CLONING AND STEM CELLS 2010; 11:535-56. [PMID: 20025524 DOI: 10.1089/clo.2009.0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article we used immunohistochemistry and FACS analyses to show that cells expressing markers typical of human stem cells such as SSEA4, OCT-4, ALP, and CD117 are present within the cytotrophoblastic tissue of human fetal chorionic villus samples (CVSs). After immunoselection of CV cells for SSEA4, FACS analyses showed an increased number of cells positive for OCT-4 and ALP and a small percentage (around 4%) of side population (SP) cells. In the same cell population, RT-PCR indicated the presence of OCT-4, NANOG, and SOX2 transcripts, also typical of stem cells. Depending on the in vitro conditions, a subset of SSEA4+ cells formed colonies resembling hESCs, with limited self renewal ability. At the same time, these cells were able to differentiate in vitro into derivatives of all three germ layers. When inoculated into immunocompromised mice, SSEA4+ cells did not form teratomas but were able to populate depleted hematopoietic tissues. Moreover, after injection into mouse blastocysts, they were incorporated into the inner cell mass and could be traced into several tissues of the adult chimeric mice. Finally, we show that SSEA4+ cells isolated from fetuses affected by Spinal Muscular Atrophy (SMA) can be genetically corrected with high efficiency in culture by Small Fragment Homologous Recombination (SFHR), a gene targeting approach. Taken together, our results indicate that SSEA4+ cells obtained from human CVSs contain a subpopulation of multipotent cells that we propose to name Human Cytotrophoblastic-derived Multipotent Cells (hCTMCs). These cells may be a safe and convenient source of cells for cell-based therapy, as well as an ideal target for in utero fetal gene therapy.
Collapse
Affiliation(s)
- Paola Spitalieri
- Department of Biopathology, Genetics Unit, Tor Vergata University of Rome, via Montpellier, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A chromosome 16 quantitative trait locus regulates allogeneic bone marrow engraftment in nonmyeloablated mice. Blood 2009; 114:202-10. [PMID: 19417206 DOI: 10.1182/blood-2009-03-208801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identifying genes that regulate bone marrow (BM) engraftment may reveal molecular targets for overcoming engraftment barriers. To achieve this aim, we applied a forward genetic approach in a mouse model of nonmyeloablative BM transplantation. We evaluated engraftment of allogeneic and syngeneic BM in BALB.K and B10.BR recipients. This allowed us to partition engraftment resistance into its intermediate phenotypes, which are firstly the immune-mediated resistance and secondly the nonimmune rejection of donor BM cells. We observed that BALB.K and B10.BR mice differed with regard to each of these resistance mechanisms, thereby providing evidence that both are under genetic control. We then generated a segregating backcross (n = 200) between the BALB.K and B10.BR strains to analyze for genetic linkage to the allogeneic BM engraftment phenotype using a 127-marker genome scan. This analysis identified a novel quantitative trait locus (QTL) on chromosome 16, termed Bmgr5 (logarithm of odds 6.4, at 11.1 cM). The QTL encodes susceptibility alleles, from the BALB.K strain, that are permissive for allogeneic BM engraftment. Further identification of Bmgr5 genes by positional cloning may reveal new and effective approaches for overcoming BM engraftment obstacles.
Collapse
|
18
|
Purified hematopoietic stem cell allografts reconstitute immunity superior to bone marrow. Proc Natl Acad Sci U S A 2009; 106:3288-93. [PMID: 19223585 DOI: 10.1073/pnas.0813335106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antigen-specific immune responses are impaired after allogeneic hematopoietic cell transplantation (HCT). The events contributing to this impairment include host hematolymphoid ablation and donor cell regeneration, which is altered by pharmacologic immune suppression to prevent graft-versus-host disease (GVHD). A generally accepted concept is that graft T cell depletion performed to avoid GVHD yields poorer immune recovery because mature donor T cells are thought to be the major mediators of protective immunity early post-HCT. Our findings contradict the idea that removal of mature donor cells worsens immune recovery post-HCT. By transplantation of purified hematopoietic stem cells (HSC) compared with bone marrow (BM) across donor and recipient pairs of increasing genetic disparity, we show that grafts composed of the purified progenitor population give uniformly superior lymphoid reconstitution, both qualitatively and quantitatively. Subclinical GVHD by T cells in donor BM likely caused this lympho-depleting GVHD. We further determined in the major histocompatibility complex (MHC)-mismatched pairs, that T cell restricted proliferative responses were dictated by donor rather than host elements. We interpret these latter findings to show the importance of peripheral antigen presentation in the selection and maintenance of the T cell repertoire.
Collapse
|
19
|
Priddle H, Jones DRE, Burridge PW, Patient R. Hematopoiesis from Human Embryonic Stem Cells: Overcoming the Immune Barrier in Stem Cell Therapies. Stem Cells 2009; 24:815-24. [PMID: 16306149 DOI: 10.1634/stemcells.2005-0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multipotency and proliferative capacity of human embryonic stem cells (hESCs) make them a promising source of stem cells for transplant therapies and of vital importance given the shortage in organ donation. Recent studies suggest some immune privilege associated with hESC-derived tissues. However, the adaptability of the immune system makes it unlikely that fully differentiated tissues will permanently evade immune rejection. One promising solution is to induce a state of immune tolerance to a hESC line using tolerogenic hematopoietic cells derived from it. This could provide acceptance of other differentiated tissues from the same line. However, this approach will require efficient multilineage hematopoiesis from hESCs. This review proposes that more efficient differentiation of hESCs to the tolerogenic cell types required is most likely to occur through applying knowledge gained of the ontogeny of complex regulatory signals used by the embryo for definitive hematopoietic development in vivo. Stepwise formation of mesoderm, induction of definitive hematopoietic stem cells, and the application of factors key to their self-renewal may improve in vitro production both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Helen Priddle
- Department of Obstetrics and Gynaecology, School of Human Development, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | | | |
Collapse
|
20
|
The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112:3543-53. [PMID: 18948588 DOI: 10.1182/blood-2008-08-078220] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Advances in the understanding of the cells of the hematopoietic system have provided a rich basis for improving clinical hematopoietic cell transplants; finding and using proteins and molecules to amplify or suppress particular blood cell types; understanding the stepwise progression of preleukemic stages leading first to chronic myeloid disorders, then the emergence of acute blastic leukemias; and treating malignant and nonmalignant diseases with cell subsets. As a result of intense scientific investigation, hematopoietic stem cells (HSCs) have been isolated and their key functional characteristics revealed-self-renewal and multilineage differentiation. These characteristics are now found to be present in all tissue/organ stem cell studies, and even in the analysis of pluripotent embryonic, nuclear transfer, and induced pluripotent stem cells. Studies on HSC have identified hematopoiesis as one of the best systems for studying developmental cell lineages and as the best for understanding molecular changes in cell fate decision-making and for finding preclinical and clinical platforms for tissue and organ replacement, regeneration, and oncogenesis. Here we review the steps, from our viewpoint, that led to HSC isolation and its importance in self-nonself immune recognition.
Collapse
|
21
|
Weissman IL. The E. Donnall Thomas lecture: normal and neoplastic stem cells. Biol Blood Marrow Transplant 2008; 14:849-58. [PMID: 18640567 DOI: 10.1016/j.bbmt.2008.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 02/07/2023]
Abstract
Dr. Irving Weissman was the honored E. Donnall Thomas lecturer at the Tandem BMT Meetings, held on February 10, 2007, at Keystone, Colorado. Dr. Weissman has been a major player, and has provided us with enormous insight into many areas of biology, dating back to his high school days in Montana. He led an enormously productive career at Stanford University where he has taught us many lessons involving our understanding of lymphocyte homing, stem cell biology, both of the hematopoietic system and other types of stem cells, and also now, about cancer stem cells. Dr. Weissman has made enormous contributions to this burgeoning field that has provided us new insights and new opportunities for treatment strategies. In addition to a very productive laboratory career, he is also currently the director of both the Stem Cell Institute, as well as the Cancer Center at Stanford University. The following text is a modified transcribed version of the presentation made by Dr. Weissman.
Collapse
Affiliation(s)
- Irving L Weissman
- Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
22
|
Mariotti J, Foley J, Jung U, Borenstein T, Kantardzic N, Han S, Hanson JT, Wong E, Buxhoeveden N, Trepel JB, Fojo AT, Telford W, Fowler DH. Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection. THE JOURNAL OF IMMUNOLOGY 2008; 180:89-105. [PMID: 18097008 DOI: 10.4049/jimmunol.180.1.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Because ex vivo rapamycin generates murine Th2 cells that prevent Graft-versus-host disease more potently than control Th2 cells, we hypothesized that rapamycin would generate Th2/Tc2 cells (Th2/Tc2.R cells) that abrogate fully MHC-disparate hemopoietic stem cell rejection more effectively than control Th2/Tc2 cells. In a B6-into-BALB/c graft rejection model, donor Th2/Tc2.R cells were indeed enriched in their capacity to prevent rejection; importantly, highly purified CD4+ Th2.R cells were also highly efficacious for preventing rejection. Rapamycin-generated Th2/Tc2 cells were less likely to die after adoptive transfer, accumulated in vivo at advanced proliferative cycles, and were present in 10-fold higher numbers than control Th2/Tc2 cells. Th2.R cells had a multifaceted, apoptosis-resistant phenotype, including: 1) reduced apoptosis after staurosporine addition, serum starvation, or CD3/CD28 costimulation; 2) reduced activation of caspases 3 and 9; and 3) increased anti-apoptotic Bcl-xL expression and reduced proapoptotic Bim and Bid expression. Using host-versus-graft reactivity as an immune correlate of graft rejection, we found that the in vivo efficacy of Th2/Tc2.R cells 1) did not require Th2/Tc2.R cell expression of IL-4, IL-10, perforin, or Fas ligand; 2) could not be reversed by IL-2, IL-7, or IL-15 posttransplant therapy; and 3) was intact after therapy with Th2.R cells relatively devoid of Foxp3 expression. We conclude that ex vivo rapamycin generates Th2 cells that are resistant to apoptosis, persist in vivo, and effectively prevent rejection by a mechanism that may be distinct from previously described graft-facilitating T cells.
Collapse
Affiliation(s)
- Jacopo Mariotti
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baenziger S, Ziegler P, Mazzucchelli L, Bronz L, Speck RF, Manz MG. Human T cell development and HIV infection in human hemato-lymphoid system mice. Curr Top Microbiol Immunol 2008; 324:125-31. [PMID: 18481457 DOI: 10.1007/978-3-540-75647-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in generation of mice that on human hematopoietic stem and progenitor cell transplantation develop and maintain human hemato-lymphoid cells have fueled an already thriving field of research. We focus here on human T cell development and HIV infection in Rag2 -/- gamma(c) -/- mice transplanted as newborns with human CD34+ cord blood hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- S Baenziger
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Smith-Berdan S, Gille D, Weissman IL, Christensen JL. Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood 2007; 110:1370-8. [PMID: 17435112 DOI: 10.1182/blood-2007-03-081497] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Patients with severe systemic lupus erythematosus (SLE) refractory to conventional treatment are candidates for autologous hematopoietic stem cell (HSC) transplantation if the intent is to reset the immunologic clock. These patients might be candidates for allotransplantation with (SLE)-resistant major histocompatibility complex (MHC) haplotype-matched HSC if partial or complete replacement of an autoimmune-prone system is the intent. Using lupus-prone New Zealand black x New Zealand white (NZBW) mice, we investigated the use of highly enriched, haplomismatched, allogeneic HSC to prevent development of or to treat established autoimmune pathology. Young NZBW mice receiving purified allogeneic HSC transplants had improved survival, decreased proteinuria, circulating immune complexes, and autoantibodies to nuclear antigens than did untreated mice or mice given NZBW HSCs. NZBW mice with established lupus-like disease that received nonmyeloablative conditioning and transplants of (MHC) haplomismatched allogeneic HSCs also had greatly increased overall survival. Mice that received transplants exhibited stabilization or reversal of their lupus symptoms; stabilized or decreased proteinuria, and a lower frequency of elevated circulating immune complexes or autoantibodies than did control mice. Induction of durable mixed chimerism by transplantation of purified allogeneic HSCs after nonmyeloablative conditioning has the potential to reverse symptoms of established NZBW lupus.
Collapse
|
25
|
Abstract
Regenerative medicine focuses on new therapies to replace or restore lost, damaged, or aging cells in the human body to restore function. This goal is being realized by collaborative efforts in nonmammalian and human development, stem cell biology, genetics, materials science, bioengineering, and tissue engineering. At present, understanding existing reparative processes in humans and exploring the latent ability to regenerate tissue remains the focus in this field. This review covers recent work in limb regeneration, fetal wound healing, stem cell biology, somatic nuclear transfer, and tissue engineering as a foundation for developing new clinical therapies to augment and stimulate human regeneration.
Collapse
Affiliation(s)
- Geoffrey C Gurtner
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
26
|
Paessens LC, Fluitsma DM, van Kooyk Y. Haematopoietic antigen-presenting cells in the human thymic cortex: evidence for a role in selection and removal of apoptotic thymocytes. J Pathol 2007; 214:96-103. [DOI: 10.1002/path.2260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Chicha L, Tussiwand R, Traggiai E, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG. Human adaptive immune system Rag2-/-gamma(c)-/- mice. Ann N Y Acad Sci 2006; 1044:236-43. [PMID: 15958717 DOI: 10.1196/annals.1349.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.
Collapse
Affiliation(s)
- Laurie Chicha
- Department of Medicine II, Eberhard-Karls-University Medical School, Otfried-Mueller Str. 10, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Regenerative medicine is the promised paradigm of replacement and repair of damaged or senescent tissues. As the building blocks for organ development and tissue repair, stem cells have unique and wide-ranging capabilities, thus delineating their potential application to regenerative medicine. The recognition that consistent patterns of molecular mechanisms drive organ development and postnatal tissue regeneration has significant implications for a variety of pediatric diseases beyond replacement biology. The observation that organ-specific stem cells derive all of the differentiated cells within a given tissue has led to the acceptance of a stem cell hierarchy model for tissue development, maintenance, and repair. Extending the tissue stem cell hierarchical model to tissue carcinogenesis may revolutionize the manner in which we conceptualize cancer therapeutics. In this review, the clinical promise of these technologies and the emerging concept of "cancer stem cells" are examined. A basic understanding of stem cell biology is paramount to stay informed of this emerging technology and the accompanying research in this area with the potential for clinical application.
Collapse
Affiliation(s)
- Monika Tataria
- Department of Surgery, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, California 94305, USA
| | | | | |
Collapse
|
29
|
Ghen MJ, Roshan R, Roshan RO, Blyweiss DJ, Corso N, Khalili B, Zenga WT. Potential clinical applications using stem cells derived from human umbilical cord blood. Reprod Biomed Online 2006; 13:562-72. [PMID: 17007681 DOI: 10.1016/s1472-6483(10)60646-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an abundance of clinical applications using human umbilical cord blood (HUCB) as a source for stem cell populations. Other than haematopoietic progenitors, there are mesenchymal, endothelial stem cells and neuronal precursors, in varying quantities, that are found in human umbilical cord blood. These may be useful in diseases such as immune deficiency and autoimmune disorders. Considering issues of safety, availability, transplant methodology, rejection and side effects, it is contended that a therapeutic stem cell transplant, utilizing stem cells from HUCB, provides a reliable repository of early precursor cells that can be useful in a great number of diverse conditions. Drawbacks of relatively smaller quantities of mononucleated cells in one unit of cord blood can be mitigated by in-vitro expansion procedures, improved in-vivo signalling, and augmentation of the cellular milieu, while simultaneously choosing the appropriate transplantation site and technique for introduction of the stem cell graft.
Collapse
Affiliation(s)
- M J Ghen
- Eden Laboratories Ltd, Frederick House, Frederick Street, PO Box SS-19392, Nassau, The Bahamas.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang L, Menendez P, Cerdan C, Bhatia M. Hematopoietic development from human embryonic stem cell lines. Exp Hematol 2005; 33:987-96. [PMID: 16140146 DOI: 10.1016/j.exphem.2005.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common human cell-based therapy applied today is hematopoietic stem cell (HSC) transplantation. Currently, human bone marrow, mobilized peripheral blood, and umbilical cord blood represent the major sources of transplantable HSCs, but their availability for use is limited by both compatibility between donor and recipient and required quantity. Although increasing evidence suggests that somatic HSCs can be expanded to meet current needs, their in vivo potential is concomitantly compromised after ex vivo culture. In contrast, human embryonic stem cells (hESC) possess indefinite proliferative capacity in vitro and have been shown to differentiate into the hematopoietic cell fate, giving rise to erythroid, myeloid, and lymphoid lineages using a variety of differentiation procedures. Human ESC-derived hematopoietic cells emerge from a subset of embryonic endothelium expressing PECAM-1, Flk-1, and VE-Cadherin, but lacking CD45 (CD45negPFV). These CD45negPFV precursors are exclusively responsible for hematopoietic potential of differentiated hESCs. hESC-derived hematopoietic cells show similar clonogenic capacity and primitive phenotype to somatic sources of hematopoietic progenitors and possess limited in vivo repopulating capacity in immunodeficient mice, suggestive of HSC function. Here, we will review current progress in studies of hESC-derived hematopoietic cells and discuss the potential precincts and applications.
Collapse
Affiliation(s)
- Lisheng Wang
- Krembil Center for Stem Cell Biology and Regenerative Medicine, Robarts Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Roche E, Reig JA, Campos A, Paredes B, Isaac JR, Lim S, Calne RY, Soria B. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transpl Immunol 2005; 15:113-29. [PMID: 16412956 DOI: 10.1016/j.trim.2005.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 09/09/2005] [Indexed: 01/10/2023]
Abstract
Diabetes is a degenerative disease that results from the selective destruction of pancreatic beta-cells. These cells are responsible for insulin production and secretion in response to increases in circulating concentrations of nutrients, such as glucose, fatty acids and amino acids. This degenerative disease can be treated by the transplantation of differentiated islets obtained from cadaveric donors, according to a new surgical intervention developed as Edmonton protocol. Compared to the classical double transplant kidney-pancreas, this new protocol presents several advantages, concerning to the nature of the implant, immunosuppressive drug regime and the surgical procedure itself. However, the main problem to face in any islet transplantation program is the scarcity of donor pancreases and the low yield of islets isolated (very often around 50%) from each pancreas. Nevertheless, transplanted patients presented no adverse effects and no progression of diabetic complications. In the search of new cell sources for replacement trials, stem cells from embryonic and adult origins represent a key alternative. In order to become a realistic clinical issue transplantation of insulin-producing cells derived from stem cells, it needs to overcome multiple experimental obstacles. The first one is to develop a protocol that may allow obtaining a pure population of functional insulin-secreting cells as close as possible to the pancreatic beta-cell. The second problem should concern to the transplantation itself, considering issues related to immune rejection, tumour formation, site for implant, implant survival, and biosafety mechanisms. Although transplantation of bioengineered cells is still far in time, experience accumulated in islet transplantation protocols and in experiments with appropriate animal models will give more likely the clues to address this question in the future.
Collapse
Affiliation(s)
- Enrique Roche
- Institute of Bioengineering, University Miguel Hernández, San Juan, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kyba M. Genesis of hematopoietic stem cells in vitro and in vivo: new insights into developmental maturation. Int J Hematol 2005; 81:275-80. [PMID: 16010731 DOI: 10.1532/ijh97.04192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cells first arise in the mammalian embryo in a primitive state, not capable of reconstituting hematopoiesis in irradiated adult recipients. As development proceeds, these cells eventually mature to acquire definitive, adult characteristics, including adult reconstitution ability. Mouse embryonic stem cells induced to undergo hematopoiesis in vitro readily generate primitive hematopoietic stem cells but rarely generate the definitive type. Recent work has stimulated a new appreciation of the events involved in the developmental maturation of hematopoietic stem cells. Application of this knowledge to in vitro differentiation systems will be critical to the successful development of hematopoietic therapies from embryonic stem cells.
Collapse
Affiliation(s)
- Michael Kyba
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA.
| |
Collapse
|
33
|
Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005; 56:509-38. [PMID: 15660525 DOI: 10.1146/annurev.med.54.101601.152334] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A vast literature exists on the biology of blood formation and regeneration under experimental and clinical conditions. The field of hematopoiesis was recently advanced by the capacity to purify to homogeneity primitive hematopoietic stem and progenitor cells. Isolation of cells at defined maturational stages has enhanced the understanding of the fundamental nature of stem cells, including how cell fate decisions are made, and this understanding is relevant to the development of other normal as well as malignant tissues. This review updates the basic biology of hematopoietic stem cells (HSC) and progenitors, the evolving use of purified HSC as grafts for clinical hematopoietic cell transplantation (HCT) including immune tolerance induction, and the application of HSC biology to other stem cell fields.
Collapse
Affiliation(s)
- Judith A Shizuru
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, California 94305, USA.
| | | | | |
Collapse
|
34
|
Beilhack GF, Landa RR, Masek MA, Shizuru JA. Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes 2005; 54:1770-9. [PMID: 15919799 DOI: 10.2337/diabetes.54.6.1770] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Progression to hyperglycemia in young nonobese diabetic (NOD) mice is blocked by the transplantation of hematopoietic cells mismatched at the major histocompatibility complex (MHC). Because the NOD MHC class II allele, I-A(g7), is the primary disease susceptibility gene, it is logical to conclude that MHC-mismatched hematopoietic grafts prevent diabetes by replacement of this susceptibility allele on critical hematolymphoid populations. In this report, transplantation of MHC-matched purified hematopoietic stem cells (HSCs) pre-vented diabetes development in NOD mice, demonstrating that alleles of non-MHC background genes expressed on hematopoietic cells are sufficient to disrupt the autoaggressive process. Nonmarrow ablative conditioning was 100% protective, further showing that elimination of NOD hematopoiesis, including T-cells, was not required for the graft to block diabetes pathogenesis. The current standard clinical practice of hematopoietic cell transplantation uses donor/recipient pairs that are matched at the MHC. In our view, the principles established here using an MHC-matched engineered hematopoietic graft in conjunction with nonmarrow ablative conditioning to successfully block autoimmune diabetes sufficiently reduces the morbidity of the allogeneic transplantation procedure such that a similar approach can be translated to the treatment of human autoimmune disorders.
Collapse
Affiliation(s)
- Georg F Beilhack
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, Stanford, CA 94305-5623, USA
| | | | | | | |
Collapse
|
35
|
Abstract
In the last years stem cells (SC) have generated huge expectations and have become a new hope for the development of novel cell therapies in the context of regenerative medicine. So far, the hypothetic therapeutic effects of SC, both of embryonic and adult origin, have been demonstrated only in a very few cases. Embryonic SC are pluripotential and have, in theory, more plasticity to differentiate into a wide range of cell or tissue types. However, the society still has to decide on the ethics of its use. Regarding adult SC, they are readily available and are fully matched. However, whether their potential will translate into therapeutic benefits in humans needs to be determined as yet. This article is intended to give a general overview on this field, based on the current scientific knowledge.
Collapse
Affiliation(s)
- Jordi Barquinero
- Unitat de Diagnòstic i Teràpia Molecular, Centre de Transfusió i Banc de Teixits, Barcelona, Spain.
| | | | | |
Collapse
|
36
|
Prigozhina TB, Elkin G, Khitrin S, Slavin S. Depletion of donor-reactive cells as a new concept for improvement of mismatched bone marrow engraftment using reduced-intensity conditioning. Exp Hematol 2005; 32:1110-7. [PMID: 15539090 DOI: 10.1016/j.exphem.2004.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/26/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE New nonmyeloablative strategies to improve acceptance of mismatched bone marrow (BM) may compensate for the inadequate supply of compatible grafts. Recently we proposed to facilitate engraftment of mismatched BM by selective depletion of activated donor-reactive host cells with cyclophosphamide (CY). Here we have compared engraftment of allogeneic BM after depletion of antigen-activated host lymphocytes by CY, with BM engraftment following general immunosuppression by the same CY dose. MATERIALS AND METHODS Naive or mildly irradiated BALB/c mice were primed with C57BL/6 BM cells (day 0), treated with CY in order to deplete activated T cells (day 1), and transplanted with a second C57BL/6 BM inoculum (day 2) in order to achieve BM engraftment. Alternatively, mice received an equal dose of donor BM cells in a single injection one day after the same CY dose. Treated animals were repeatedly tested for persistence of donor cells in the blood. RESULTS Depletion of alloantigen-primed lymphocytes by 200 mg/kg CY provided stable GVHD-free engraftment of allogeneic BM in nonirradiated mice, while immunosuppressive treatment with the same CY dose alone resulted in BM rejection. Low-dose irradiation before priming with donor BM allowed the tolerance-inducing CY dose to be reduced to 100 mg/kg. Alloantigen-primed lymphocyte depletion (APLD) by a reduced CY dose resulted in engraftment of donor BM after a significantly lower irradiation dose than treatment with irradiation and CY alone. CONCLUSION Our results demonstrate that conditioning that focuses on APLD has a definite advantage over general immunosuppression with CY and radiation therapy.
Collapse
Affiliation(s)
- Tatyana B Prigozhina
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
37
|
Cannarile MA, Decanis N, van Meerwijk JPM, Brocker T. The Role of Dendritic Cells in Selection of Classical and Nonclassical CD8+T Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2004; 173:4799-805. [PMID: 15470019 DOI: 10.4049/jimmunol.173.8.4799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell development is determined by positive and negative selection events. An intriguing question is how signals through the TCR can induce thymocyte survival and maturation in some and programmed cell death in other thymocytes. This paradox can be explained by the hypothesis that different thymic cell types expressing self-MHC/peptide ligands mediate either positive or negative selection events. Using transgenic mice that express MHC class I (MHC-I) selectively on DC, we demonstrate a compartmentalization of thymic functions and reveal that DC induce CTL tolerance to MHC-I-positive hemopoietic targets in vivo. However, in normal and bone marrow chimeric mice, MHC-I+ DC are sufficient to positively select neither MHC-Ib (H2-M3)- nor MHC-Ia (H2-K)-restricted CD8+ T cells. Thus, thymic DC are specialized in tolerance induction, but cannot positively select the vast majority of MHC-I-restricted CD8+ T cells.
Collapse
|
38
|
Prigozhina T, Slavin S. Transplantation of hematopoietic stem cells for induction of unresponsiveness to organ allografts. ACTA ACUST UNITED AC 2004; 26:169-85. [PMID: 15368079 DOI: 10.1007/s00281-004-0171-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although it has been recognized since the early days of Owen and Medawar that engraftment of donor stem cells, induced in utero spontaneously or intentionally neonatally, results in life-long unresponsiveness to donor alloantigens. However, successful induction of transplantation tolerance in adult life still represents an unsolved problem. Engraftment of donor stem cells using conventional modalities involves intensive myeloablative or lymphoablative immunosuppression, which is associated with toxicity and mortality and such methods are not suitable for organ allograft recipients. In this chapter, we present an innovative approach for induction of donor-specific unresponsiveness to bone marrow and organ allografts without myeloablative conditioning. Our methods is based on cyclophosphamide-induced, alloantigen-primed lymphocyte depletion. Cyclophosphamide is administered 1 day following infusion of donor hematopoietic cells, thus eliminating predominantly host T lymphocytes reacting against donor cell challenge, and resulting in relative unresponsiveness to donor alloantigens. Subsequently, life-long tolerance to fully mismatched donor skin allografts can be accomplished by a second infusion of stem cells from the same donor, with donor T cells displacing residual alloreactive host cells that may have escaped deletion. Taken together, we believe that induction of true permanent and specific tolerance to organ allografts using donor hematopoietic cells could become a clinical reality in the foreseeable future.
Collapse
Affiliation(s)
- Tatyana Prigozhina
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, P.O.B. 12000, 91120 Jerusalem, Israel
| | | |
Collapse
|
39
|
Abraham EJ, Kodama S, Lin JC, Ubeda M, Faustman DL, Habener JF. Human pancreatic islet-derived progenitor cell engraftment in immunocompetent mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:817-30. [PMID: 14982836 PMCID: PMC1613272 DOI: 10.1016/s0002-9440(10)63170-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The potential for the use of stem/progenitor cells for the restoration of injured or diseased tissues has garnered much interest recently, establishing a new field of research called regenerative medicine. Attention has been focused on embryonic stem cells derived from human fetal tissues. However, the use of human fetal tissue for research and transplantation is controversial. An alternative is the isolation and utilization of multipotent stem/progenitor cells derived from adult donor tissues. We have previously reported on the isolation, propagation, and partial characterization of a population of stem/progenitor cells isolated from the pancreatic islets of Langerhans of adult human donor pancreata. Here we show that these human adult tissue-derived cells, nestin-positive islet-derived stem/progenitor cells, prepared from human adult pancreata survive engraftment and produce tissue chimerism when transplanted into immunocompetent mice either under the kidney capsule or by systemic injection. These xenografts seem to induce immune tolerance by establishing a mixed chimerism in the mice. We propose that a population of stem/progenitor cells isolated from the islets of the pancreas can cross xenogeneic transplantation immune barriers, induce tissue tolerance, and grow.
Collapse
Affiliation(s)
- Elizabeth J Abraham
- Laboratory of Molecular Endocrinology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
40
|
Theodoro A, Barreto CB, Gusmão PM, Von Held J, Cruz ADD, Montalvão F, Bozza M, Fucs R. Influence of first-wave derived T lymphocytes in the long term functional reconstitution of allogeneic T cell deficient hosts. Immunobiology 2004; 207:207-15. [PMID: 12777062 DOI: 10.1078/0171-2985-00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional immunological reconstitution and the patterns of cytokine secretion were comparatively studied in BALB/c nu/nu mice grafted with allogeneic B6.Thy-1.1+ E14 or E18 embryonic thymus. In spite of equivalent proliferative responses to both mitogen or MLR stimuli, the two groups presented different cytokine patterns. B6 E18-thymus grafted BALB/c nu/nu mice showed a predominant IL-2/IFN-gamma secretion in response to mitogen or to CBA haplotype, with insignificant secretion of either cytokine to the tolerated BALB/c or donor B6 haplotype. In contrast, E14 grafted mice showed a significant IL-10 secretion, both in response to mitogens or to the tolerated haplotypes, even in the absence of a detectable proliferative response. A significant IFN-gamma secretion appeared only accompanying high responses to CBA. The preferential Th2 profile associated to the E14 chimeras was coincident with a longer lifespan of the nude host kept in a conventional environment, higher CD3+ cells frequency in the blood and functional restoration of allogeneic skin graft rejection, not seen on the E18 chimeras. The meaning of these results is discussed in relation to the previously described longer persistence of the first-wave donor derived lymphocytes in the allogeneic BALB/c periphery, also exclusive of the E14 grafted group.
Collapse
Affiliation(s)
- Adriano Theodoro
- Department of Immunobiology, Federal Fluminense University, Niterói, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Oh IH. Current Trends and Prospect of Cell Therapy using Hematopoietic Stem Cells. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2004. [DOI: 10.5124/jkma.2004.47.10.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Il-Hoan Oh
- Catholic High Performance Cell Therapy Center, The Catholic University of Korea College of Medicine, Korea.
| |
Collapse
|
42
|
Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH. Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 2003; 103:1941-8. [PMID: 14592834 DOI: 10.1182/blood-2003-05-1601] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the infusion of umbilical cord blood (UCB) from multiple donors can be a strategy to overcome the cell dose limitation frequently encountered in UCB transplantation, clinical trials have revealed that cells from one donor dominate engraftment. To investigate the origin of and the factors influencing this inequality, we performed mixed transplantation of 2 UCB units with varying degrees of HLA disparities into NOD/SCID mice and determined donor origins by polymerase chain reaction-sequence-specific oligonucleotide probe (PCR-SSOP) or real-time quantitative (RQ)-PCR for human short tandem repeats (STRs). When total mononuclear cells from 2 units were transplanted as a mixture, cells from one donor predominated (ratio, 81:19), despite comparable overall engraftment when infused as single units, and no augmentation in overall engraftment was observed when compared with the single-unit controls. However, lineage depletion or cotransplantation of mesenchymal stromal cells (MSCs) expanded from third-party bone marrow resulted in more balanced coengraftment. Direct comparison of double UCB transplantation in the presence or absence of MSCs showed that the reduced deviation in the donor ratio (1.8:1 vs. 2.8:1) correlated with a higher overall level of engraftment with MSC cotransplantation. These results indicate that third-party MSCs can be used to alleviate donor deviation and to facilitate engraftment of multidonor UCB.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Cell and Gene Therapy Institute and the Department of Cellular Medicine and Biology, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
43
|
Cao TM, Lo B, Ranheim EA, Grumet FC, Shizuru JA. Variable hematopoietic graft rejection and graft-versus-host disease in MHC-matched strains of mice. Proc Natl Acad Sci U S A 2003; 100:11571-6. [PMID: 14504392 PMCID: PMC208799 DOI: 10.1073/pnas.2035077100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC typing for human hematopoietic cell transplantation (HCT) from unrelated donors is currently performed by using a combination of serologic and molecular techniques. It has been determined that allelic differences in human MHC molecules, revealed by nucleotide sequencing but not by serologic typing, substantially influence graft rejection and graft-versus-host disease, two serious complications of clinical HCT. We studied transplantation of purified hematopoietic stem cells in a series of mouse strains that were matched at the MHC but had different background genes, and we observed striking differences in engraftment resistance and graft-versus-host disease severity, both factors depending on the donor-recipient strain combination. The individual mouse lines studied here were established nearly a century ago, and their MHC types were determined exclusively by serologic techniques. We considered the possibility that serologically silent MHC polymorphisms could account for our observations and, therefore, we performed DNA sequencing of the class I and II MHC alleles of our mouse strains. At each locus, exact homology was found between serologically MHC-matched strains. Our results likely extend to all serologically MHC-matched mouse strains used in modern research and highlight the profound and variable influence that non-MHC genetic determinants can have in dictating outcome after HCT.
Collapse
Affiliation(s)
- Thai M Cao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
44
|
Down JD, White-Scharf ME. Reprogramming immune responses: enabling cellular therapies and regenerative medicine. Stem Cells 2003; 21:21-32. [PMID: 12529548 DOI: 10.1634/stemcells.21-1-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent advances in cellular therapies have led to the emergence of a multidisciplinary scientific approach to developing therapeutics for a wide variety of diseases and genetic disorders. Although most cell-based therapies currently consist of heterogeneous cell populations, it is anticipated that the standard of care will eventually be well-characterized stem cell lines that can be modified to meet the individual needs of the patient. Many challenges have to be overcome, however, before such "designer cells" can become a clinical reality. One of the major hurdles will be to prevent immune rejection of the therapeutic cells. A patient's immune system may react to genetically modified or allogeneic cells as foreign, leading to their destruction. We propose that specific reprogramming of the immune system to accept cellular therapies can be accomplished by establishing hematopoietic chimerism. Successful engraftment of hematopoietic stem cells (HSCs), which have the same origin as those cells intended for therapeutic use, should lead to a re-education of the immune system so that the donor cells are recognized as self and will not be rejected. Developing safe, nontoxic protocols for reprogramming the immune system is critical to the success of this approach. Two major requirements exist for achieving stable HSC engraftment: (A) depletion or displacement of host stem cells, and (B) adequate immune suppression. Available data indicate that an agent such as busulfan is effective in depleting stem cells and that immune suppression can be accomplished with monoclonal antibodies that specifically target immune-reactive cells in the periphery.
Collapse
Affiliation(s)
- Julian D Down
- BioTransplant Incorporated, Charlestown, Massachusetts, USA
| | | |
Collapse
|
45
|
Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21:759-806. [PMID: 12615892 DOI: 10.1146/annurev.immunol.21.120601.141007] [Citation(s) in RCA: 674] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases.
Collapse
Affiliation(s)
- Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Arber C, BitMansour A, Sparer TE, Higgins JP, Mocarski ES, Weissman IL, Shizuru JA, Brown JMY. Common lymphoid progenitors rapidly engraft and protect against lethal murine cytomegalovirus infection after hematopoietic stem cell transplantation. Blood 2003; 102:421-8. [PMID: 12663447 DOI: 10.1182/blood-2002-12-3834] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lymphoid deficiency after allogeneic hematopoietic cell transplantation (HCT) results in increased susceptibility to infection; however, transplantation of mature lymphocytes frequently results in a serious complication known as graft-versus-host disease (GVHD). Here we demonstrate in mice that both congenic as well as allogeneic transplantation of low numbers of highly purified common lymphoid progenitors (CLPs)-a rare population of lymphoid-lineage-committed bone marrow cells-accelerates immune reconstitution after lethal irradiation and rescue with hematopoietic stem cells (HSCs). After congenic transplantation, 3 x 10(3) CLPs protected against murine cytomegalovirus (MCMV) infection at a level roughly equivalent to 107 unfractionated lymph node cells. In the allogeneic model of matched unrelated donor HSC transplantation, cotransplantation of 3 x 10(3) CLPs protected thymus-bearing as well as thymectomized hosts from MCMV infection and attenuated disease severity. Immunohistochemistry in combination with antibody depletion of T and natural killer (NK) cells confirmed that CLP-derived as well as residual host lymphocytes contribute to antiviral protection. Importantly, transplantation of allogeneic CLPs provided a durable antiviral immunity without inducing GVHD. These data support the potential for composing grafts with committed progenitors to reduce susceptibility to viral infection following HCT.
Collapse
Affiliation(s)
- Caroline Arber
- Department of Medicine, Division of Bone Marrow Transplantation, Stanford University Medical Center, Stanford, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Differentiation of embryonic stem (ES) cells in vitro yields abundant hematopoietic progenitors, but achieving stable hematopoietic engraftment of irradiated mice has proven difficult, begging the question of whether ES cells give rise to hematopoietic stem cells in vitro, and limiting the application of ES cells as experimental and therapeutic models. We have employed a number of hematopoietic regulatory genes to probe the nature and developmental potential of ES-derived blood precursors. The chronic myeloid leukemia-associated BCR/ABL oncoprotein transforms a novel class of ES-derived embryonic hematopoietic stem cell that represents a common progenitor of primitive erythropoiesis and definitive lymphoid-myeloid blood development. Expression of the homeobox gene HoxB4 generated normal, non-leukemic hematopoietic progenitors that enabled long-term, multilineage hematopoietic engraftment in primary and secondary mouse recipients. We have used these repopulating hematopoietic stem cells to model therapeutic transplantation from ES cells. We treated an immunodeficient Rag2(-/-) mouse by therapeutic cloning, that is, isogenic ES cell generation by somatic cell nuclear transfer, gene correction, and cell replacement therapy. Comparable approaches with human ES cells are being developed to lay the foundation for cellular therapies in patients with a variety of bone marrow diseases.
Collapse
Affiliation(s)
- George Q Daley
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
48
|
Jorgensen C, Djouad F, Apparailly F, Noël D. Engineering mesenchymal stem cells for immunotherapy. Gene Ther 2003; 10:928-31. [PMID: 12732877 DOI: 10.1038/sj.gt.3302019] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation, after sublethal irradiation of recipient animals, is capable of inducing donor-specific tolerance facilitating subsequent organ transplantation. This approach could reintroduce tolerance in autoimmune diseases and it has been applied to treat autoimmune diseases with, however, a great susceptibility of recurrence. Mesenchymal stem cells (MSCs) present within the bone marrow could be critical to the immunosuppressive effect of the treatment. This tolerance induction may be useful in allogeneic transplantations, where low incidence of graft-versus-host disease was observed when the hematopoietic graft was coinjected with MSCs. In this paper, we discuss the use of MSCs in different therapeutic strategies either as immunosuppressive agents or genetically engineered to express molecules acting against the autoimmune process.
Collapse
Affiliation(s)
- C Jorgensen
- Service d'Immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, France
| | | | | | | |
Collapse
|
49
|
Williams MA, Adams AB, Walsh MB, Shirasugi N, Onami TM, Pearson TC, Ahmed R, Larsen CP. Primary and secondary immunocompetence in mixed allogeneic chimeras. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2382-9. [PMID: 12594261 DOI: 10.4049/jimmunol.170.5.2382] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted disruption of T cell costimulatory pathways, particularly CD28 and CD40, has allowed for the development of minimally myeloablative strategies for the induction of mixed allogeneic chimerism and donor-specific tolerance across full MHC barriers. In this study we analyze in depth the ability of mixed allogeneic chimeras in two strain combinations to mount effective host-restricted and donor-restricted antiviral CD4 and CD8 responses, as well as the impact of development of mixed chimerism on the maintenance of pre-existing memory populations. While antiviral CD8 responses in mixed chimeras following acute viral infection with lymphocytic choriomeningitis virus Armstrong or vaccinia virus are largely host-restricted, donor-restricted CD8 responses as well as host- and donor-restricted CD4 responses are also readily detected, and virus is promptly cleared. We further demonstrate that selection of donor-restricted T cells in mixed chimeras is principally mediated by bone marrow-derived cells in the thymus. Conversely, we find that mixed chimeras exhibit a deficit in their ability to deal with a chronic lymphocytic choriomeningitis virus clone 13 infection. Encouragingly, pre-existing memory populations are largely unaffected by the development of high level mixed chimerism and maintain the ability to control viral rechallenge. Our results suggest that while pre-existing T cell memory and primary immunocompetence to acute infection are preserved in mixed allogeneic chimeras, MHC class I and/or class II tissue matching may be required to fully preserve immunocompetence in dealing with chronic viral infections.
Collapse
Affiliation(s)
- Matthew A Williams
- Emory Transplant Center and Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lechner A, Habener JF. Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. Am J Physiol Endocrinol Metab 2003; 284:E259-66. [PMID: 12531740 DOI: 10.1152/ajpendo.00393.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In view of the recent success in pancreatic islet transplantation, interest in treating diabetes by the delivery of insulin-producing beta-cells has been renewed. Because differentiated pancreatic beta-cells cannot be expanded significantly in vitro, beta-cell stem or progenitor cells are seen as a potential source for the preparation of transplantable insulin-producing tissue. In addition to embryonic stem (ES) cells, several potential adult islet/beta-cell progenitors, derived from pancreas, liver, and bone marrow, are being studied. To date, none of the candidate cells has been fully characterized or is clinically applicable, but pancreatic physiology makes the existence of one or more types of adult islet stem cells very likely. It also seems possible that pluripotential stem cells, derived from the bone marrow, contribute to adult islet neogenesis. In future studies, more stringent criteria should be met to clonally define adult islet/beta-cell progenitor cells. If this can be achieved, the utilization of these cells for the generation of insulin-producing beta-cells in vitro seems to be feasible in the near future.
Collapse
Affiliation(s)
- Andreas Lechner
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|