1
|
Lalande A, Canus L, Bourgeais A, Mathieu C, Ogire E. The liver as a potential gate to the brain for encephalitic viruses. Curr Opin Virol 2025; 71:101463. [PMID: 40347828 DOI: 10.1016/j.coviro.2025.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
To model infection of viruses targeting the liver and the central nervous system, two-dimensional in vitro cultures rapidly show their limitations. Conversely, in vivo models do not easily allow the investigation of early events of the infection process. In between, ex vivo models, comprising mainly organoids and organotypic cultures, mimic or retain the cytoarchitecture of the organ while being relatively simple to handle and analyze. Here, we summarize the main features of brain and liver ex vivo models and pinpoint examples of their utilization for studying encephalitogenic and hepatotropic viruses. We highlight a gap of development and application of liver compared to ex vivo models in virology. Many hepatotropic viruses can also infect and/or have impacts on the central nervous system. In this sense, we sought to present these ex vivo models while providing a conceptual framework for the modeling of the hepatocerebral axis in the context of viral infections.
Collapse
Affiliation(s)
- Alexandre Lalande
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Lola Canus
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Amélie Bourgeais
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France.
| |
Collapse
|
2
|
Calderón-Peláez MA, Maradei Anaya SJ, Bedoya-Rodríguez IJ, González-Ipuz KG, Vera-Palacios D, Buitrago IV, Castellanos JE, Velandia-Romero ML. Zika Virus: A Neurotropic Warrior against High-Grade Gliomas-Unveiling Its Potential for Oncolytic Virotherapy. Viruses 2024; 16:561. [PMID: 38675903 PMCID: PMC11055012 DOI: 10.3390/v16040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.
Collapse
Affiliation(s)
- María-Angélica Calderón-Peláez
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Silvia Juliana Maradei Anaya
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | | | - Karol Gabriela González-Ipuz
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Daniela Vera-Palacios
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Isabella Victoria Buitrago
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Jaime E. Castellanos
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Myriam L. Velandia-Romero
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| |
Collapse
|
3
|
He MJ, Wang HJ, Yan XL, Lou YN, Song GY, Li RT, Zhu Z, Zhang RR, Qin CF, Li XF. Key Residue in the Precursor Region of M Protein Contributes to the Neurovirulence and Neuroinvasiveness of the African Lineage of Zika Virus. J Virol 2023; 97:e0180122. [PMID: 36840584 PMCID: PMC10062131 DOI: 10.1128/jvi.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/β) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.
Collapse
Affiliation(s)
- Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong-Jiang Wang
- Department of Research, The Chinese People’s Liberation Army Strategic Support Force Medical Center, Beijing, China
| | - Xiu-Li Yan
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guang-Yuan Song
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhu Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Gilbert RK, Petersen LR, Honein MA, Moore CA, Rasmussen SA. Zika virus as a cause of birth defects: Were the teratogenic effects of Zika virus missed for decades? Birth Defects Res 2023; 115:265-274. [PMID: 36513609 PMCID: PMC10552063 DOI: 10.1002/bdr2.2134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) was identified as a teratogen in 2016 when an increase in severe microcephaly and other brain defects was observed in fetuses and newborns following outbreaks in French Polynesia (2013-2014) and Brazil (2015-2016) and among travelers to other countries experiencing outbreaks. Some have questioned why ZIKV was not recognized as a teratogen before these outbreaks: whether novel genetic changes in ZIKV had increased its teratogenicity or whether its association with birth defects had previously been undetected. Here we examine the evidence for these two possibilities. We describe evidence for specific mutations that arose before the French Polynesia outbreak that might have increased ZIKV teratogenicity. We also present information on children born with findings consistent with congenital Zika syndrome (CZS) as early as 2009 and epidemiological evidence that suggests increases in CZS-type birth defects before 2013. We also explore reasons why a link between ZIKV and birth defects might have been missed, including issues with surveillance of ZIKV infections and of birth defects, challenges to ZIKV diagnostic testing, and the susceptibility of different populations to ZIKV infection at the time of pregnancy. Although it is not possible to prove definitively that ZIKV had teratogenic properties before 2013, several pieces of evidence support the hypothesis that its teratogenicity had been missed in the past. These findings emphasize the need for further investments in global surveillance for emerging infections and for birth defects so that infectious teratogens can be identified more expeditiously in the future.
Collapse
Affiliation(s)
- Rachel K. Gilbert
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle R. Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Margaret A. Honein
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt Professional Services, LLC, Chesapeake, Virginia, USA
| | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Polanco C, Uversky VN, Huberman A, Vargas-Alarcón G, Castañón González JA, Buhse T, Hernández Lemus E, Rios Castro M, López Oliva EJ, Solís Nájera SE. Bioinformatics-based Characterization of the Sequence Variability of
Zika Virus Polyprotein and Envelope Protein (E). Evol Bioinform Online 2022; 18:11769343221130730. [PMCID: PMC9623037 DOI: 10.1177/11769343221130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Zika virus, which is widely spread and infects humans through the bites of
Aedes albopictus and Aedes aegypti
female mosquitoes, represents a serious global health issue. Objective: The objective of the present study is to computationally characterize Zika
virus polyproteins (UniProt Name: PRO_0000443018 [residues 1-3423],
PRO_0000445659 [residues 1-3423] and PRO_0000435828 [residues 1-3419]) and
their envelope proteins using their physico-chemical properties. Methods: To achieve this, the Polarity Index Method (PIM) profile and the Protein
Intrinsic Disorder Predisposition (PIDP) profile of 3 main groups of
proteins were evaluated: structural proteins extracted from specific
Databases, Zika virus polyproteins, and their envelope proteins (E)
extracted from UniProt Database. Once the PIM profile of the Zika virus
envelope proteins (E) was obtained and since the Zika virus polyproteins
were also identified with this profile, the proteins defined as “reviewed
proteins” extracted from the UniProt Database were searched
for the similar PIM profile. Finally, the difference between the PIM
profiles of the Zika virus polyproteins and their envelope proteins (E) was
tested using 2 non-parametric statistical tests. Results: It was found and tested that the PIM profile is an efficient discriminant
that allows obtaining a “computational fingerprint” of each Zika virus
polyprotein from its envelope protein (E). Conclusion: PIM profile represents a computational tool, which can be used to effectively
discover Zika virus polyproteins from Databases, from their envelope
proteins (E) sequences.
Collapse
Affiliation(s)
- Carlos Polanco
- Department of Electromechanical
Instrumentation, Instituto Nacional de Cardiología “Ignacio Chávez,” México City,
México,Department of Mathematics, Faculty of
Sciences, Universidad Nacional Autónoma de México, México City, México,Carlos Polanco, Department of
Electromechanical Instrumentation, Instituto Nacional de Cardiología “Ignacio
Chávez,” Juan Badiano 1 Tlalpan, México City 14800, México.
| | - Vladimir N Uversky
- Department of Molecular Medicine and
USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine,
University of South Florida, Tampa, FL, USA,Protein Research Group, Institute for
Biological Instrumentation of the Russian Academy of Sciences, Federal Research
Center “Pushchino Scientific Center for Biological Research of the Russian Academy
of Sciences,” Pushchino, Moscow Region, Russia
| | - Alberto Huberman
- Department of Biochemistry, Instituto
Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, México City,
México
| | | | | | - Thomas Buhse
- Chemical Research Center, Universidad
Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Enrique Hernández Lemus
- Department of Computational Genomics,
Instituto Nacional de Medicina Genómica, México City, México
| | - Martha Rios Castro
- Department of Electromechanical
Instrumentation, Instituto Nacional de Cardiología “Ignacio Chávez,” México City,
México
| | - Erika Jeannette López Oliva
- Department of Electromechanical
Instrumentation, Instituto Nacional de Cardiología “Ignacio Chávez,” México City,
México
| | | |
Collapse
|
6
|
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.
Collapse
Affiliation(s)
- Kaleigh A Connors
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
7
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
8
|
Winkler CW, Clancy CS, Rosenke R, Peterson KE. Zika virus vertical transmission in interferon receptor1-antagonized Rag1 -/- mice results in postnatal brain abnormalities and clinical disease. Acta Neuropathol Commun 2022; 10:46. [PMID: 35379362 PMCID: PMC8981715 DOI: 10.1186/s40478-022-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The mechanisms by which vertically transmitted Zika virus (ZIKV) causes postnatal brain development abnormalities and congenital disease remain poorly understood. Here, we optimized the established anti-IFNAR1 treated, Rag1-/- (AIR) mouse model of ZIKV infection to examine the consequence of vertical transmission on neonate survival and postnatal brain development. We found that modulating the infectious dose and the frequency of anti-IFNAR1 treatment of pregnant mice (termed AIRlow mice) prolonged neonatal survival allowing for pathogenesis studies of brain tissues at critical postnatal time points. Postnatal AIRlow mice all had chronic ZIKV infection in the brain that was associated with decreased cortical thickness and cerebellar volume, increased gliosis, and higher levels of cell death in many brain areas including cortex, hippocampus and cerebellum when compared to controls. Interestingly, despite active infection and brain abnormalities, the neurodevelopmental program remained active in AIRlow mice as indicated by elevated mRNA expression of critical neurodevelopmental genes in the brain and enlargement of neural-progenitor rich regions of the cerebellum at a developmental time point analogous to birth in humans. Nevertheless, around the developmental time point when the brain is fully populated by neurons, AIRlow mice developed neurologic disease associated with persistent ZIKV infection in the brain, gliosis, and increased cell death. Together, these data show that vertically transmitted ZIKV infection in the brain of postnatal AIRlow mice strongly influences brain development resulting in structural abnormalities and cell death in multiple regions of the brain.
Collapse
|
9
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome? Viruses 2022; 14:v14020386. [PMID: 35215978 PMCID: PMC8874935 DOI: 10.3390/v14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.
Collapse
|
11
|
Abstract
Long-term effective use of antiretroviral therapy (ART) among people with HIV (PWH) has significantly reduced the burden of disease, yet a cure for HIV has not been universally achieved, likely due to the persistence of an HIV reservoir. The central nervous system (CNS) is an understudied HIV sanctuary. Importantly, due to viral persistence in the brain, cognitive disturbances persist to various degrees at high rates in PWH despite suppressive ART. Given the complexity and accessibility of the CNS compartment and that it is a physiologically and anatomically unique immune site, human studies to reveal molecular mechanisms of viral entry, reservoir establishment, and the cellular and structural interactions leading to viral persistence and brain injury to advance a cure and either prevent or limit cognitive impairments in PWH remain challenging. Recent advances in human brain organoids show that they can mimic the intercellular dynamics of the human brain and may recapitulate many of the events involved in HIV infection of the brain (neuroHIV). Human brain organoids can be produced, spontaneously or with addition of growth factors and at immature or mature states, and have become stronger models to study neurovirulent viral infections of the CNS. While organoids provide opportunities to study neuroHIV, obstacles such as the need to incorporate microglia need to be overcome to fully utilize this model. Here, we review the current achievements in brain organoid biology and their relevance to neuroHIV research efforts.
Collapse
|
12
|
Lambrechts L. Did Zika virus attenuation or increased virulence lead to the emergence of congenital Zika syndrome? J Travel Med 2021; 28:6183327. [PMID: 33758931 DOI: 10.1093/jtm/taab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023]
Abstract
The global emergence of Zika revealed the unprecedented ability of a mosquito-borne virus to cause severe congenital abnormalities. Recent studies indicate that the ability to harm fetuses is not a novel feature of Zika virus. Counter-intuitively, it may have in fact recently ‘attenuated’ from killing embryos to causing birth defects.
Collapse
Affiliation(s)
- Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, CNRS UMR2000, Paris, France
| |
Collapse
|
13
|
López-Medina E, Rojas CA, Calle-Giraldo JP, Alexander N, Hurtado IC, Dávalos DM, López P, Barco C, Libreros D, Arias A, Lesmes MC, Pinzón E, Ortiz VA. Risks of Adverse Childhood Outcomes According to Prenatal Time of Exposure to Zika Virus: Assessment in a Cohort Exposed to Zika During an Outbreak in Colombia. J Pediatric Infect Dis Soc 2021; 10:337-340. [PMID: 32415777 DOI: 10.1093/jpids/piaa042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Late gestational exposure to Zika increases the odds of delay in the Bayley-II mental developmental index (MDI) in children with normal baseline neurologic assessments; 9-fold when comparing third and first trimester exposure. Risk of MDI developmental delay increases by 8% for each week of gestational age at time of exposure.
Collapse
Affiliation(s)
- Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Cali, Colombia.,Department of Pediatrics, Universidad del Valle, Cali, Colombia.,Centro Médico Imbanaco, Cali, Colombia
| | | | | | - Neal Alexander
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia
| | - Isabel C Hurtado
- Department of Pediatrics, Universidad del Valle, Cali, Colombia.,Hospital Universitario del Valle, Cali, Colombia.,Department of Health, Valle del Cauca, Cali, Colombia
| | - Diana M Dávalos
- Department of Public Health, Universidad Icesi, Cali, Colombia
| | - Pio López
- Centro de Estudios en Infectología Pediátrica, Cali, Colombia.,Department of Pediatrics, Universidad del Valle, Cali, Colombia
| | - Carolina Barco
- Department of Pediatrics, Universidad del Valle, Cali, Colombia
| | - Diana Libreros
- Centro Médico Imbanaco, Cali, Colombia.,Department of Ophthalmology, Universidad del Valle, Cali, Colombia
| | | | | | - Elisa Pinzón
- Department of Health, Valle del Cauca, Cali, Colombia
| | | |
Collapse
|
14
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
15
|
Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult. Cell Rep 2021; 34:108587. [PMID: 33406432 DOI: 10.1016/j.celrep.2020.108587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.
Collapse
|
16
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
17
|
Haddow AD, Perez-Sautu U, Wiley MR, Miller LJ, Kimmel AE, Principe LM, Wollen-Roberts SE, Shamblin JD, Valdez SM, Cazares LH, Pratt WD, Rossi FD, Lugo-Roman L, Bavari S, Palacios GF, Nalca A, Nasar F, Pitt MLM. Modeling mosquito-borne and sexual transmission of Zika virus in an enzootic host, the African green monkey. PLoS Negl Trop Dis 2020; 14:e0008107. [PMID: 32569276 PMCID: PMC7343349 DOI: 10.1371/journal.pntd.0008107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/08/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023] Open
Abstract
Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.
Collapse
Affiliation(s)
- Andrew D. Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Unai Perez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Michael R. Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lynn J. Miller
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Adrienne E. Kimmel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lucia M. Principe
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Suzanne E. Wollen-Roberts
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Joshua D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Stephanie M. Valdez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lisa H. Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - William D. Pratt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Franco D. Rossi
- Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Luis Lugo-Roman
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo F. Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Aysegul Nalca
- Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - M. Louise M. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| |
Collapse
|
18
|
Valdespino-Vázquez MY, Sevilla-Reyes EE, Lira R, Yocupicio-Monroy M, Piten-Isidro E, Boukadida C, Hernández-Pando R, Soriano-Jimenez JD, Herrera-Salazar A, Figueroa-Damián R, Reyes-Terán G, Zamora-Escudero R, Cardona-Pérez JA, Maldonado-Rodríguez A, Moreno-Verduzco ER, Torres-Flores JM. Congenital Zika Syndrome and Extra-Central Nervous System Detection of Zika Virus in a Pre-term Newborn in Mexico. Clin Infect Dis 2020; 68:903-912. [PMID: 30188990 PMCID: PMC6399440 DOI: 10.1093/cid/ciy616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND During pregnancy, the Zika virus (ZIKV) replicates in the placenta and central nervous system (CNS) of infected fetuses; nevertheless, the ability of ZIKV to replicate in other fetal tissues has not been extensively characterized. METHODS We researched whether dissemination of congenitally-acquired ZIKV outside the CNS exists by searching for the accumulation of the viral envelope protein, ZIKV ribonucleic acid (RNA), and infectious viral particles in different organs of a deceased newborn with Congenital Zika Syndrome. A real-time qualitative polymerase chain reaction (qPCR) was used to detect ZIKV RNA in the brain, thymus, lungs, kidneys, adrenal glands, spleen, liver, and small intestine. The same tissues were analyzed by indirect immunofluorescence and immunoperoxidase assays using the monoclonal antibody 4G2 to detect ZIKV envelope antigens. Isolation of infectious ZIKV in a cell culture was carried out using brain and kidney samples. RESULTS A postmortem, virological analysis of multiple organs, such as the kidneys (epithelial cells in the renal tubules), lungs (bronchial epithelia), thymus (epithelial cells inside the Hassall's corpuscles), and brain (neurons, ependymal cells, and macrophages) revealed the presence of ZIKV RNA and envelope antigens. Other tissues of the deceased newborn tested positive by qPCR for Epstein-Barr virus and human herpesvirus 6, including the brain cortex (Epstein-Barr) and the thymus, kidneys, and adrenal glands (human herpesvirus 6). The kidneys were identified as a significant niche for viral replication, given that infectious particles were successfully isolated from renal tissues. CONCLUSIONS Our findings demonstrate the ability of congenitally-acquired ZIKV to produce disseminated infections and the viral tropism towards epithelial cells.
Collapse
Affiliation(s)
| | - Edgar E Sevilla-Reyes
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de Mexico, México
| | - Rosalia Lira
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Martha Yocupicio-Monroy
- Universidad Autónoma de la Ciudad de México, Posgrado en Ciencias Genómicas, Ciudad de Mexico, México
| | - Elvira Piten-Isidro
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de Mexico, México
| | - Celia Boukadida
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de Mexico, México
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, México
| | | | | | | | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de Mexico, México
| | | | | | - Angélica Maldonado-Rodríguez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Elsa Romelia Moreno-Verduzco
- Subdirección de Servicios Auxiliares de Diagnóstico, Instituto Nacional de Perinatología, Ciudad de Mexico, México
| | - Jesús Miguel Torres-Flores
- Laboratorio de Virología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, México
| |
Collapse
|
19
|
Genetic Diversity of Collaborative Cross Mice Controls Viral Replication, Clinical Severity, and Brain Pathology Induced by Zika Virus Infection, Independently of Oas1b. J Virol 2020; 94:JVI.01034-19. [PMID: 31694939 DOI: 10.1128/jvi.01034-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
The explosive spread of Zika virus (ZIKV) has been associated with major variations in severe disease and congenital afflictions among infected populations, suggesting an influence of host genes. We investigated how genome-wide variants could impact susceptibility to ZIKV infection in mice. We first describe that the susceptibility of Ifnar1-knockout mice is largely influenced by their genetic background. We then show that Collaborative Cross (CC) mice, which exhibit a broad genetic diversity, in which the type I interferon receptor (IFNAR) was blocked by an anti-IFNAR antibody expressed phenotypes ranging from complete resistance to severe symptoms and death, with large variations in the peak and the rate of decrease in the plasma viral load, in the brain viral load, in brain histopathology, and in the viral replication rate in infected cells. The differences in susceptibility to ZIKV between CC strains correlated with the differences in susceptibility to dengue and West Nile viruses between the strains. We identified highly susceptible and resistant mouse strains as new models to investigate the mechanisms of human ZIKV disease and other flavivirus infections. Genetic analyses revealed that phenotypic variations are driven by multiple genes with small effects, reflecting the complexity of ZIKV disease susceptibility in the human population. Notably, our results rule out the possibility of a role of the Oas1b gene in the susceptibility to ZIKV. Altogether, the findings of this study emphasize the role of host genes in the pathogeny of ZIKV infection and lay the foundation for further genetic and mechanistic studies.IMPORTANCE In recent outbreaks, ZIKV has infected millions of people and induced rare but potentially severe complications, including Guillain-Barré syndrome and encephalitis in adults. While several viral sequence variants were proposed to enhance the pathogenicity of ZIKV, the influence of host genetic variants in mediating the clinical heterogeneity remains mostly unexplored. We addressed this question using a mouse panel which models the genetic diversity of the human population and a ZIKV strain from a recent clinical isolate. Through a combination of in vitro and in vivo approaches, we demonstrate that multiple host genetic variants determine viral replication in infected cells and the clinical severity, the kinetics of blood viral load, and brain pathology in mice. We describe new mouse models expressing high degrees of susceptibility or resistance to ZIKV and to other flaviviruses. These models will facilitate the identification and mechanistic characterization of host genes that influence ZIKV pathogenesis.
Collapse
|
20
|
Forster D, Schwarz JH, Brosinski K, Kalinke U, Sutter G, Volz A. Obstetric Ultrasonography to Detect Fetal Abnormalities in a Mouse Model for Zika Virus Infection. Viruses 2020; 12:v12010072. [PMID: 31936159 PMCID: PMC7019633 DOI: 10.3390/v12010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023] Open
Abstract
In 2015 Zika virus (ZIKV) emerged for the first time in South America. The following ZIKV epidemic resulted in the appearance of a clinical phenotype with microcephaly and other severe malformations in newborns. So far, mechanisms of ZIKV induced damage to the fetus are not completely understood. Previous data suggest that ZIKV may bypass the placenta to reach the fetus. Thus, animal models for ZIKV infection are important to facilitate studies about ZIKV infection during pregnancy. Here, we used ultrasound based imaging (USI) to characterize ZIKV induced pathogenesis in the pregnant Type I interferon receptor-deficient (IFNAR-/-) mouse model. Based on USI we suggest the placenta to be a primary target organ of ZIKV infection enabling ZIKV spreading to the fetus. Moreover, in addition to direct infection of the fetus, the placental ZIKV infection may cause an indirect damage to the fetus through reduced uteroplacental perfusion leading to intrauterine growth retardation (IUGR) and fetal complications as early as embryonic day (ED) 12.5. Our data confirmed the capability of USI to characterize ZIKV induced modifications in mouse fetuses. Data from further studies using USI to monitor ZIKV infections will contribute to a better understanding of ZIKV infection in pregnant IFNAR-/- mice.
Collapse
Affiliation(s)
- Dominik Forster
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Jan Hendrik Schwarz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Katrin Brosinski
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research Braunschweig and the Hannover Medical School, 30625 Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany; (D.F.); (J.H.S.); (K.B.); (G.S.)
- German Center for Infection Research (DZIF), partner site Munich, 80539 Munich, Germany
- Correspondence: ; Tel.: +49-89-2180-2612
| |
Collapse
|
21
|
Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication. J Virol 2019; 93:JVI.01047-19. [PMID: 31534046 DOI: 10.1128/jvi.01047-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.
Collapse
|
22
|
Neurotropism of Enterovirus D68 Isolates Is Independent of Sialic Acid and Is Not a Recently Acquired Phenotype. mBio 2019; 10:mBio.02370-19. [PMID: 31641090 PMCID: PMC6805996 DOI: 10.1128/mbio.02370-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since 2014, numerous outbreaks of childhood infections with enterovirus D68 (EV-D68) have occurred worldwide. Most infections are associated with flu-like symptoms, but paralysis may develop in young children. It has been suggested that infection only with recent viral isolates can cause paralysis. To address the hypothesis that EV-D68 has recently acquired neurotropism, murine organotypic brain slice cultures, induced human motor neurons and astrocytes, and mice lacking the alpha/beta interferon receptor were infected with multiple virus isolates. All EV-D68 isolates, from 1962 to the present, can infect neural cells, astrocytes, and neurons. Furthermore, our results show that sialic acid binding does not play a role in EV-D68 neuropathogenesis. The study of EV-D68 infection in organotypic brain slice cultures, induced motor neurons, and astrocytes will allow for the elucidation of the mechanism by which the virus infection causes disease. Acute flaccid myelitis (AFM) is a rare but serious illness of the nervous system, specifically affecting the gray matter of the spinal cord, motor-controlling regions of the brain, and cranial nerves. Most cases of AFM are pathogen associated, typically with poliovirus and enterovirus infections, and occur in children under the age of 6 years. Enterovirus D68 (EV-D68) was first isolated from children with pneumonia in 1962, but an association with AFM was not observed until the 2014 outbreak. Organotypic mouse brain slice cultures generated from postnatal day 1 to 10 mice and adult ifnar knockout mice were used to determine if neurotropism of EV-D68 is shared among virus isolates. All isolates replicated in organotypic mouse brain slice cultures, and three isolates replicated in primary murine astrocyte cultures. All four EV-D68 isolates examined caused paralysis and death in adult ifnar knockout mice. In contrast, no viral disease was observed after intracranial inoculation of wild-type mice. Six of the seven EV-D68 isolates, including two from 1962 and four from the 2014 outbreak, replicated in induced human neurons, and all of the isolates replicated in induced human astrocytes. Furthermore, a putative viral receptor, sialic acid, is not required for neurotropism of EV-D68, as viruses replicated within neurons and astrocytes independent of binding to sialic acid. These observations demonstrate that EV-D68 is neurotropic independent of its genetic lineage and can infect both neurons and astrocytes and that neurotropism is not a recently acquired characteristic as has been suggested. Furthermore, the results show that in mice the innate immune response is critical for restricting EV-D68 disease.
Collapse
|
23
|
Abstract
Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. Although most cases are mild or go undetected, rare severe neurologic effects, including congenital ZIKV syndrome (CZS) and Guillain-Barré syndrome, have been identified. The serious neurologic complications associated with ZIKV prompted the declaration of the public health emergency of international concern by the World Health Organization. Overall, transmission occurred throughout South and Central America as well as the Caribbean, affecting 48 countries and territories from March 2015 to March 2017. Long-term management of CZS requires a comprehensive combination of supportive services throughout early development.
Collapse
Affiliation(s)
- Savina Reid
- Department of Neurology, Columbia University Medical Center, Milstein Hospital, 177 Fort Washington Avenue, 8GS-300, New York, NY 10032, USA
| | - Kathryn Rimmer
- Department of Neurology, Columbia University Medical Center, Milstein Hospital, 177 Fort Washington Avenue, 8GS-300, New York, NY 10032, USA
| | - Kiran Thakur
- Division of Critical Care and Hospitalist Neurology, Department of Neurology, Columbia University Medical Center, Milstein Hospital, 177 Fort Washington Avenue, 8GS-300, New York, NY 10032, USA.
| |
Collapse
|
24
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
25
|
Abstract
In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
26
|
Xu D, Li C, Qin CF, Xu Z. Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annu Rev Virol 2019; 6:459-479. [PMID: 31206355 DOI: 10.1146/annurev-virology-092818-015740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The circulation of Zika virus (ZIKV) in nearly 80 countries and territories poses a significant global threat to public health. ZIKV is causally linked to severe developmental defects in the brain, recognized as congenital Zika syndrome (CZS), which includes microcephaly and other serious congenital neurological complications. Since the World Health Organization declared the ZIKV outbreak a public health emergency of international concern, remarkable progress has been made in the generation of different ZIKV infection animal models to gain insight into cellular targets and pathogenesis and to explore the associated underlying mechanisms. Here we focus on summarizing our current understanding of the effects of ZIKV on mammalian brain development in different developmental stages and discuss the potential underlying mechanisms of ZIKV-induced CZS, as well as future perspectives.
Collapse
Affiliation(s)
- Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China;
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
27
|
Thaker SK, Chapa T, Garcia G, Gong D, Schmid EW, Arumugaswami V, Sun R, Christofk HR. Differential Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells. Cell Metab 2019; 29:1206-1216.e4. [PMID: 30827860 PMCID: PMC6818653 DOI: 10.1016/j.cmet.2019.01.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/04/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Zika virus is a pathogen that poses serious consequences, including congenital microcephaly. Although many viruses reprogram host cell metabolism, whether Zika virus alters cellular metabolism and the functional consequences of Zika-induced metabolic changes remain unknown. Here, we show that Zika virus infection differentially reprograms glucose metabolism in human versus C6/36 mosquito cells by increasing glucose use in the tricarboxylic acid cycle in human cells versus increasing glucose use in the pentose phosphate pathway in mosquito cells. Infection of human cells selectively depletes nucleotide triphosphate levels, leading to elevated AMP/ATP ratios, AMP-activated protein kinase (AMPK) phosphorylation, and caspase-mediated cell death. AMPK is also phosphorylated in Zika virus-infected mouse brain. Inhibiting AMPK in human cells decreases Zika virus-mediated cell death, whereas activating AMPK in mosquito cells promotes Zika virus-mediated cell death. These findings suggest that the differential metabolic reprogramming during Zika virus infection of human versus mosquito cells determines whether cell death occurs.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Travis Chapa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ernst W Schmid
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90098, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Grubaugh ND, Ishtiaq F, Setoh YX, Ko AI. Misperceived Risks of Zika-related Microcephaly in India. Trends Microbiol 2019; 27:381-383. [PMID: 30826180 DOI: 10.1016/j.tim.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
After the discovery that Zika virus (ZIKV) could cause microcephaly and other birth defects, we have scrambled to understand how. Now, spreading along with the virus is misinformation that a ZIKV mutation is responsible for microcephaly. Putting too much onus on a single mutation could enhance a crisis in India.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Farah Ishtiaq
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Sáude, Salvador, Bahia, Brazil
| |
Collapse
|
29
|
Yadav PD, Malhotra B, Sapkal G, Nyayanit DA, Deshpande G, Gupta N, Padinjaremattathil UT, Sharma H, Sahay RR, Sharma P, Mourya DT. Zika virus outbreak in Rajasthan, India in 2018 was caused by a virus endemic to Asia. INFECTION GENETICS AND EVOLUTION 2019; 69:199-202. [DOI: 10.1016/j.meegid.2019.01.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
|
30
|
Integrated MicroRNA and mRNA Profiling in Zika Virus-Infected Neurons. Viruses 2019; 11:v11020162. [PMID: 30781519 PMCID: PMC6410042 DOI: 10.3390/v11020162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a group of small RNAs involved in the regulation of a wide variety of cellular and physiological processes. In this study, we analyzed digital miRNA and mRNA profiles in ZIKV-infected primary mouse neurons using the nCounter technology. A total of 599 miRNAs and 770 mRNAs were examined. We demonstrate that ZIKV infection causes global downregulation of miRNAs with only few upregulated miRNAs. ZIKV-modulated miRNAs including miR-155, miR-203, miR-29a, and miR-124-3p are known to play critical role in flavivirus infection, anti-viral immunity and brain injury. ZIKV infection also results in downregulation of miRNA processing enzymes. In contrast, ZIKV infection induces dramatic upregulation of anti-viral, inflammatory and apoptotic genes. Furthermore, our data demonstrate an inverse correlation between ZIKV-modulated miRNAs and target host mRNAs induced by ZIKV. Biofunctional analysis revealed that ZIKV-modulated miRNAs and mRNAs regulate the pathways related to neurological development and neuroinflammatory responses. Functional studies targeting specific miRNA are warranted to develop therapeutics for the management of ZIKV neurological disease.
Collapse
|
31
|
Abstract
How virulence evolves after a virus jumps to a new host species is central to disease emergence. Our current understanding of virulence evolution is based on insights drawn from two perspectives that have developed largely independently: long-standing evolutionary theory based on limited real data examples that often lack a genomic basis, and experimental studies of virulence-determining mutations using cell culture or animal models. A more comprehensive understanding of virulence mutations and their evolution can be achieved by bridging the gap between these two research pathways through the phylogenomic analysis of virus genome sequence data as a guide to experimental study.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
32
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
33
|
Goodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA. Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses 2018; 10:v10100550. [PMID: 30304805 PMCID: PMC6212967 DOI: 10.3390/v10100550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
Maternal infection with Zika virus (ZIKV) during pregnancy can result in neonatal abnormalities, including neurological dysfunction and microcephaly. Experimental models of congenital Zika syndrome identified neural progenitor cells as a target of viral infection. Neural progenitor cells are responsible for populating the developing central nervous system with neurons and glia. Neural progenitor dysfunction can lead to severe birth defects, namely, lissencephaly, microcephaly, and cognitive deficits. For this study, the consequences of ZIKV infection in human pluripotent stem cell-derived neural progenitor (hNP) cells and neurons were evaluated. ZIKV isolates from Asian and African lineages displayed lineage-specific replication kinetics, cytopathic effects, and impacts on hNP function and neuronal differentiation. The currently circulating ZIKV isolates exhibit a unique profile of virulence, cytopathic effect, and impaired cellular functions that likely contribute to the pathological mechanism of congenital Zika syndrome. The authors found that infection with Asian-lineage ZIKV isolates impaired the proliferation and migration of hNP cells, and neuron maturation. In contrast, the African-lineage infections resulted in abrupt and extensive cell death. This work furthers the understanding of ZIKV-induced brain pathology.
Collapse
Affiliation(s)
- Forrest T Goodfellow
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Katherine A Willard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Xian Wu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | | | - Steven L Stice
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
34
|
Setoh YX, Peng NY, Nakayama E, Amarilla AA, Prow NA, Suhrbier A, Khromykh AA. Fetal Brain Infection Is Not a Unique Characteristic of Brazilian Zika Viruses. Viruses 2018; 10:v10100541. [PMID: 30282919 PMCID: PMC6213914 DOI: 10.3390/v10100541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/β receptor 1 knockout (IFNAR1−/−) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR−/− mouse embryonic fibroblasts. Viremias in IFNAR1−/− dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.
Collapse
Affiliation(s)
- Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| | - Nias Y Peng
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| | - Natalie A Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
35
|
Kräter M, Sapudom J, Bilz NC, Pompe T, Guck J, Claus C. Alterations in Cell Mechanics by Actin Cytoskeletal Changes Correlate with Strain-Specific Rubella Virus Phenotypes for Cell Migration and Induction of Apoptosis. Cells 2018; 7:E136. [PMID: 30217036 PMCID: PMC6162683 DOI: 10.3390/cells7090136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
The cellular cytoskeleton is central for key cellular functions, and as such is a marker for diseased and infected cell states. Here we analyzed infection with rubella virus (RV) strains with respect to phenotypes in cellular mechanical properties, cell movement, and viral cytopathogenicity. Real-time deformability cytometry (RT-DC), as a high-throughput platform for the assessment of cell mechanics, revealed a correlation of an increase in cortical filamentous-actin (F-actin) with a higher cellular stiffness. The additional reduction of stress fibers noted for only some RV strains as the most severe actin rearrangement lowered cell stiffness. Furthermore, a reduced collective and single cell migration speed in a wound healing assay was detected in addition to severe changes in cell morphology. The latter was followed by activation of caspase 3/7 as a sign for induction of apoptosis. Our study emphasizes RT-DC technology as a sensitive means to characterize viral cell populations and to implicate alterations of cell mechanical properties with cell functions. These interdependent events are not only promising options to elucidate viral spread and to understand viral pathologies within the infected host. They also contribute to any diseased cell state, as exemplified by RV as a representative agent for cytoskeletal alterations involved in a cytopathological outcome.
Collapse
Affiliation(s)
- Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Jiranuwat Sapudom
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
- Department of Dermatology, Venerology and Allergology, University Clinic of Leipzig, 04103 Leipzig, Germany.
| | | | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Claudia Claus
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
36
|
Rabelo K, Souza LJ, Salomão NG, Oliveira ERA, Sentinelli LDP, Lacerda MS, Saraquino PB, Rosman FC, Basílio-de-Oliveira R, Carvalho JJ, Paes MV. Placental Inflammation and Fetal Injury in a Rare Zika Case Associated With Guillain-Barré Syndrome and Abortion. Front Microbiol 2018; 9:1018. [PMID: 29867903 PMCID: PMC5964188 DOI: 10.3389/fmicb.2018.01018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is an emerging virus involved in recent outbreaks in Brazil. The association between the virus and Guillain-Barré syndrome (GBS) or congenital disorders has raised a worldwide concern. In this work, we investigated a rare Zika case, which was associated with GBS and spontaneous retained abortion. Using specific anti-ZIKV staining, the virus was identified in placenta (mainly in Hofbauer cells) and in several fetal tissues, such as brain, lungs, kidneys, skin and liver. Histological analyses of the placenta and fetal organs revealed different types of tissue abnormalities, which included inflammation, hemorrhage, edema and necrosis in placenta, as well as tissue disorganization in the fetus. Increased cellularity (Hofbauer cells and TCD8+ lymphocytes), expression of local pro-inflammatory cytokines such as IFN-γ and TNF-α, and other markers, such as RANTES/CCL5 and VEGFR2, supported placental inflammation and dysfunction. The commitment of the maternal-fetal link in association with fetal damage gave rise to a discussion regarding the influence of the maternal immunity toward the fetal development. Findings presented in this work may help understanding the ZIKV immunopathogenesis under the rare contexts of spontaneous abortions in association with GBS.
Collapse
Affiliation(s)
- Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz J Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Natália G Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edson R A Oliveira
- Laboratório de Modelagem Molecular, Instituto de Química Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcelle S Lacerda
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Pedro B Saraquino
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fernando C Rosman
- Anatomia Patológica, Hospital Municipal Jesus, Rio de Janeiro, Brazil
| | | | - Jorge J Carvalho
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Grabowski JM, Offerdahl DK, Bloom ME. The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infect Dis 2018; 4:247-256. [PMID: 29473735 DOI: 10.1021/acsinfecdis.7b00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.
Collapse
Affiliation(s)
- Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| |
Collapse
|
38
|
Chiu CY, Sánchez-San Martín C, Bouquet J, Li T, Yagi S, Tamhankar M, Hodara VL, Parodi LM, Somasekar S, Yu G, Giavedoni LD, Tardif S, Patterson J. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Sci Rep 2017; 7:17126. [PMID: 29215081 PMCID: PMC5719425 DOI: 10.1038/s41598-017-17067-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
A monkey model of Zika virus (ZIKV) infection is urgently needed to better understand transmission and pathogenesis, given its proven association with fetal brain defects in pregnant women and acute neurological illness. Here we experimentally infected 4 male marmosets with ZIKV (prototype 1947 African strain) and monitored them clinically with sampling of various body fluids and tissues for nearly 3 months. We show that the course of acute infection with ZIKV in these New World monkeys resembles the human illness in many respects, including (1) lack of apparent clinical symptoms in most cases, (2) persistence of the virus in body fluids such as semen and saliva for longer periods of time than in serum, and (3) generation of neutralizing antibodies as well as an antiviral immunological host response. Importantly, ZIKV-infected saliva samples (in addition to serum) were found to be infectious, suggesting potential capacity for viral transmission by the oral route. Re-challenge of a previously infected marmoset with a contemporary outbreak strain SPH2015 from Brazil resulted in continued protection against infection, no viral shedding, and boosting of the immune response. Given the key similarities to human infection, a marmoset model of ZIKV infection may be useful for testing of new drugs and vaccines.
Collapse
Affiliation(s)
- Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA. .,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA. .,Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, 94107, USA.
| | - Claudia Sánchez-San Martín
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA
| | - Jerome Bouquet
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA
| | - Tony Li
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA
| | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, USA
| | | | - Vida L Hodara
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura M Parodi
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sneha Somasekar
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA
| | - Guixia Yu
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.,UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA
| | | | - Suzette Tardif
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jean Patterson
- Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|