1
|
Aminian-Dehkordi J, Dickson A, Valiei A, Mofrad MRK. MetaBiome: a multiscale model integrating agent-based and metabolic networks to reveal spatial regulation in gut mucosal microbial communities. mSystems 2025; 10:e0165224. [PMID: 40183581 PMCID: PMC12090770 DOI: 10.1128/msystems.01652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Mucosal microbial communities (MMCs) are complex ecosystems near the mucosal layers of the gut essential for maintaining health and modulating disease states. Despite advances in high-throughput omics technologies, current methodologies struggle to capture the dynamic metabolic interactions and spatiotemporal variations within MMCs. In this work, we present MetaBiome, a multiscale model integrating agent-based modeling (ABM), finite volume methods, and constraint-based models to explore the metabolic interactions within these communities. Integrating ABM allows for the detailed representation of individual microbial agents each governed by rules that dictate cell growth, division, and interactions with their surroundings. Through a layered approach-encompassing microenvironmental conditions, agent information, and metabolic pathways-we simulated different communities to showcase the potential of the model. Using our in-silico platform, we explored the dynamics and spatiotemporal patterns of MMCs in the proximal small intestine and the cecum, simulating the physiological conditions of the two gut regions. Our findings revealed how specific microbes adapt their metabolic processes based on substrate availability and local environmental conditions, shedding light on spatial metabolite regulation and informing targeted therapies for localized gut diseases. MetaBiome provides a detailed representation of microbial agents and their interactions, surpassing the limitations of traditional grid-based systems. This work marks a significant advancement in microbial ecology, as it offers new insights into predicting and analyzing microbial communities.IMPORTANCEOur study presents a novel multiscale model that combines agent-based modeling, finite volume methods, and genome-scale metabolic models to simulate the complex dynamics of mucosal microbial communities in the gut. This integrated approach allows us to capture spatial and temporal variations in microbial interactions and metabolism that are difficult to study experimentally. Key findings from our model include the following: (i) prediction of metabolic cross-feeding and spatial organization in multi-species communities, (ii) insights into how oxygen gradients and nutrient availability shape community composition in different gut regions, and (iii) identification of spatiallyregulated metabolic pathways and enzymes in E. coli. We believe this work represents a significant advance in computational modeling of microbial communities and provides new insights into the spatial regulation of gut microbiome metabolism. The multiscale modeling approach we have developed could be broadly applicable for studying other complex microbial ecosystems.
Collapse
Affiliation(s)
- Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Andrew Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
2
|
Rose AE, Fansler RT, Zhu W. Commensal resilience: ancient ecological lessons for the modern microbiota. Infect Immun 2025:e0050224. [PMID: 40387449 DOI: 10.1128/iai.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The gut microbiota constitutes a complex ecosystem essential for host health, offering metabolic support, modulating the immune system, and protecting against pathogens. However, this community faces constant destabilizing challenges, including dietary changes, antibiotics, and enteric infection. Prolonged microbiota imbalance or dysbiosis can exacerbate intestinal disease states, including inflammatory bowel disease and colorectal cancer. Understanding the mechanisms that sustain microbiota resilience in the face of these imbalances is crucial for maintaining host health and developing effective therapeutics. This review explores microbiota resilience through the lens of an ecological model, emphasizing the interplay between microbial communities and host-driven environmental controls. We highlight two critical factors shaping microbiota resilience: oxygen tension and iron availability-challenges encountered by ancient anaerobic organisms during early evolutionary history, from which the predominant members of the microbiota have descended. Disruptions in intestinal anaerobiosis during inflammation increase luminal oxygen levels, favoring pro-inflammatory facultative anaerobes and depleting obligately anaerobic commensals. Simultaneously, host nutritional immunity restricts iron availability, further challenging commensal survival. This dual environmental challenge of rising oxygen tension and reduced iron availability is a convergent outcome of a diverse array of perturbations, from pathogen invasion to antibiotic treatment. By highlighting these conserved downstream environmental challenges rather than the specific upstream perturbations, this ecological view offers a focused framework for understanding microbiota resilience. This perspective not only enhances our understanding of host-microbiota interactions but also informs therapeutic strategies to foster resilience and support host health.
Collapse
Affiliation(s)
- Abigail E Rose
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Cheng HS, Tey YH, Hu SY, Yeo AYN, Ngo ZH, Kim JHS, Tan NS. Advancements and Challenges in Modeling Mechanobiology in Intestinal Host-Microbiota Interaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40382722 DOI: 10.1021/acsami.4c20961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The gastrointestinal tract is a dynamic biomechanical environment where physical forces, cellular processes, and microbial interactions converge to shape the gut health and disease. In this review, we examine the unique mechanical properties of the gut, including peristalsis, viscoelasticity, shear stress, and tissue stiffness, and their roles in modulating host mechanosignaling and microbial behavior under physiological and pathological conditions. We discuss how these mechanical forces regulate gut epithelial integrity, immune responses, and microbial colonization, leading to distinct ecological niches across different intestinal segments. Furthermore, we highlight recent advancements in 3D culture systems and gut-on-a-chip models that accurately recapitulate the complex interplay between biomechanics and gut microbiota. By elucidating the intricate relationship between mechanobiology and gut function, this review underscores the potential for mechanotherapeutic strategies to modulate host-microbe interactions, offering promising avenues for the prevention and treatment of disorders such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Yee Han Tey
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Si Yuan Hu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Alethea Yen Ning Yeo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Zong Heng Ngo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Joseph Han Sol Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| |
Collapse
|
4
|
Inan S, Wilson RP, Tükel Ç. IUPHAR review: From gut to brain: The role of gut dysbiosis, bacterial amyloids, and metabolic disease in Alzheimer's disease. Pharmacol Res 2025; 215:107693. [PMID: 40086611 DOI: 10.1016/j.phrs.2025.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Gut microbial dysbiosis, or altered gut microbial communities, in Alzheimer's Disease suggests a pathogenic role for gut inflammation and microbial products in shaping a neuroinflammatory environment. Similarly, metabolic diseases, such as obesity and diabetes, are also associated with an increased risk of Alzheimer's Disease. As the metabolic landscape shifts during gut inflammation, and gut inflammation in turn impacts metabolic processes, we explore how these interconnected pathways may contribute to the progression of Alzheimer's Disease. Additionally, we discuss the role of bacterial amyloids produced by gut microbes, which may exacerbate amyloid aggregation in the brain and contribute to neurodegenerative processes. Furthermore, we highlight potential therapeutic strategies aimed at reducing gut inflammation, improving metabolic health, and decreasing amyloid content as a means to mitigate Alzheimer's Disease progression. These approaches, targeting the gut-brain-metabolic axis, could offer promising avenues for delaying or preventing cognitive decline in affected individuals.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - R Paul Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
James J, Santos RE, Watnick PI. Carbon source, cell density, and the microbial community control inhibition of V. cholerae surface colonization by environmental nitrate. mBio 2025; 16:e0406624. [PMID: 39998205 PMCID: PMC11980369 DOI: 10.1128/mbio.04066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
The intestinal diarrheal pathogen Vibrio cholerae colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, V. cholerae respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here, we show that V. cholerae nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability. V. cholerae nitrate respiration results in extracellular accumulation of nitrite because V. cholerae does not possess the machinery for nitrite reduction. This nitrite inhibits V. cholerae biofilm formation via an as-yet unelucidated mechanism that depends on the high cell density master regulator HapR. The genome of Paracoccus aminovorans, an intestinal microbe identified in the microbiome of cholera patients that has been shown to enhance V. cholerae biofilm accumulation in the neonatal mouse gut, encodes enzymes that reduce nitrite to nitrogen gas. We report that, in nitrate-supplemented co-cultures, P. aminovorans metabolizes the nitrite generated by V. cholerae and, thereby, enhances V. cholerae surface accumulation. We propose that V. cholerae biofilm formation in the host intestine is limited by nitrite production but can be rescued by intestinal microbes such as P. aminovorans that have the capacity to metabolize nitrite. Such microbes increase V. cholerae colonization of the host ileum and predispose to symptomatic infection.IMPORTANCEVibrio cholerae colonizes the terminal ileum where both oxygen and nitrate are available as terminal electron acceptors. V. cholerae biofilm formation is inhibited by nitrate due to its conversion to nitrite during V. cholerae respiration. When co-cultured with a microbe that can further reduce nitrite, V. cholerae surface accumulation in the presence of nitrate is rescued. The contribution of biofilm formation to ileal colonization depends on the composition of the microbiota. We propose that the intestinal microbiota predisposes mammalian hosts to cholera by consuming the nitrite generated by V. cholerae in the terminal ileum. Differences in the intestinal abundance of nitrite-reducing microbes may partially explain the differential susceptibility of humans to cholera and the resistance of non-human mammalian models to intestinal colonization with V. cholerae.
Collapse
Affiliation(s)
- Jamaurie James
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Renato E.R.S. Santos
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Schulte NB, Reznik N, Chacón KN, Fass D, Franz KJ. Simultaneous Binding of Cu + and Cu 2+ at the Two-Tiered Copper Binding Site of the Intestinal Mucin MUC2. Inorg Chem 2025; 64:5568-5578. [PMID: 40056184 DOI: 10.1021/acs.inorgchem.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Mucin glycoproteins are secreted from epithelial goblet cells to create protective barriers lining the intestines, stomach, lungs, and other body surfaces. MUC2 is the primary glycoprotein secreted in the intestine and is essential for intestinal homeostasis. The D1 segment of the MUC2 N-terminal region was recently shown to bind Cu2+ and Cu+ separately in a unique two-tiered binding site. Copper is an essential metal acquired through diet for cells and enzymes to function properly, but little is known about how it is handled in the digestive tract. With both oxidation states of Cu in the intestine, we asked how the binding of Cu+ to MUC2 D1 impacts the binding of Cu2+ and vice versa. Here, we use a combination of competition titrations, electron paramagnetic spectroscopy, and X-ray absorption spectroscopy to characterize the physical properties of Cu2+ and Cu+ binding to MUC2 D1 at pH values relevant to the intestine. Our data show that simultaneous yet noncooperative binding of Cu2+ and Cu+ is possible and further reveal new insights into the pH dependence and plasticity of the Cu2+ and Cu+ binding sites. These results inspire interesting questions about the functional roles of MUC2 Cu handling in the intestinal tract.
Collapse
Affiliation(s)
- Natalie B Schulte
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nava Reznik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kelly N Chacón
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Chavez-Arroyo A, Radlinski LC, Bäumler AJ. Principles of gut microbiota assembly. Trends Microbiol 2025:S0966-842X(25)00071-X. [PMID: 40089422 DOI: 10.1016/j.tim.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
The gut microbiota plays a critical role in human health, yet its taxonomic complexity, interpersonal variability, and resistance to change in adulthood present challenges for understanding the factors driving shifts in its composition and function. Here, we propose a hierarchy of ecological factors governing gut microbiota assembly, stability, and resilience. At the apex of this hierarchy is habitat filtering by host-derived electron acceptors, which dictates the ecological guilds that dominate distinct gut regions. Host dietary behavior shapes niche availability within these ecological guilds by regulating nutrient availability. Priority effects preserve taxonomic stability whereas microbial antagonism governs competition for open ecological positions. This framework highlights how host control over microbial energy metabolism directs microbiota self-assembly and maintains gut homeostasis.
Collapse
Affiliation(s)
- Alfredo Chavez-Arroyo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Cao L, Guo W, Yang S, Ahmad AA, Dong Y, Gong C, Wang S, Yang X, Cheng Z, Yan Z, Wang W. Survey of gut microbial biogeography and their functional niche in the grow-finishing swine of ordinary feeding. Front Microbiol 2025; 16:1530553. [PMID: 40124893 PMCID: PMC11925874 DOI: 10.3389/fmicb.2025.1530553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Background Swine represent one of the most economically significant livestock worldwide, and their intestinal microbial communities are crucial for maintaining physiological development and regulating host metabolism. While extensive research has focused on the fecal microbiota of swine, investigations into microbial communities across different intestinal segments remain limited. Objective This study aims to elucidate the intestinal microbiota of swine by analyzing luminal contents from different intestinal segments, including the duodenum, jejunum, ileum, cecum, and colon. Methods We employed 16S rRNA sequencing to explore the diversity and structure of gut microbial biogeography, microbial functional niches, and their associated pathways. Results Our findings reveal significantly lower microbial richness and diversity in the small intestine (duodenum, jejunum, and ileum) compared to the large intestine (cecum and colon) (p < 0.05). At the phylum level, Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant phyla, collectively accounting for over 90% of the total sequences. In the small intestine, Proteobacteria (4.76-34.2%), Actinobacteria, and Fusobacteriota were more abundant, whereas in the large intestine, Firmicutes (89.8-90.4%) was predominated. At the genus level, Fusobacterium, Corynebacterium, Rothia, Bradyrhizobium, and Brevundimonas were predominant in duodenum. Romboutsia, Clostridium_sensu_stricto_1, Terrisporobacter, and Jeotgalicoccus demonstrated greater abundances in the jejunum and ileum. Oscillospiraceae_UCG-005 in the cecum and Christensenellaceae_R-7_group in the colon were more abundant with 16.4 and 20.2% relative abundances, respectively. The specialists detected from the duodenum to the colon were all the predominant genera in each intestinal segment with relatively higher relative abundance. For instance, Romboutsia (3.06-36.1%), Clostridium_sensu_stricto_1 (5.31-18.6%), and Terrisporobacter (0.849-5.72%) were dominant genera and specialists in the small intestine, associated with enriched pathways of Amino acid metabolism and Lipid metabolism. Conversely, Oscillospiraceae_UCG-005 (16.4%, 4.06%) and Christensenellaceae_R-7_group (5.44%, 20.2%) are predominant genera and specialists within the large intestine, linked to pathways involved in Glycan biosynthesis and metabolism pathway, as well as the Biosynthesis of other secondary metabolites. Conclusion These highlight the importance of genus specialists compared to genus generalists. The findings provide essential data for assessing the role of the intestinal microbiome in maintaining and enhancing swine health and productivity, offering fundamental guidance for further exploration of host-microbe interaction mechanisms and regulatory pathways.
Collapse
Affiliation(s)
- Lili Cao
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Guo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Shiyu Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Guizhou Yuhong Biotechnology Co., Ltd., Guiyang, China
| | - Anum Ali Ahmad
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuntao Dong
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Cen Gong
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Shuoqi Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xuemin Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhihong Yan
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Institute of New Rural Development, Guizhou University, Guiyang, China
| | - Weiwei Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Zhang W, Jia J, Yang Y, Ye D, Li Y, Li D, Wang J. Estradiol metabolism by gut microbiota in women's depression pathogenesis: inspiration from nature. Front Psychiatry 2025; 16:1505991. [PMID: 39935532 PMCID: PMC11811108 DOI: 10.3389/fpsyt.2025.1505991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
The recurrence and treatment resistance of depression remain significant issues, primarily due to an inadequate understanding of its pathogenesis. Recent scientific evidence indicates that gut microbiota influence estradiol metabolism and are associated with the development of depression in nonpremenopausal women. Integrating existing studies on the regulation of estradiol metabolism by microorganisms in nature and the relevance of its degradation products to depression, recent scientific explorations have further elucidated the key mechanisms by which gut microbiota catabolize estradiol through specific metabolic pathways. These emerging scientific findings suggest that the unique metabolic effects of gut microbiota on estradiol may be one of the central drivers in the onset and course of depression in non-menopausal women.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghan Jia
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Yuhang Yang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Dawei Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Di Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
11
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Butkovich LV, Vining OB, O'Malley MA. New approaches to secondary metabolite discovery from anaerobic gut microbes. Appl Microbiol Biotechnol 2025; 109:12. [PMID: 39831966 PMCID: PMC11747023 DOI: 10.1007/s00253-024-13393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize in silico tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. KEY POINTS: • Gut microbial secondary metabolites have therapeutic and biotechnological potential • Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery • Anaerobic biofoundries enable high-throughput workflows for metabolite discovery.
Collapse
Affiliation(s)
- Lazarina V Butkovich
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Oliver B Vining
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Lang A, Collins JM, Nijsure MP, Belali S, Khan MP, Moharrer Y, Schipani E, Yien YY, Fan Y, Gelinsky M, Vinogradov SA, Koch C, Boerckel JD. Local erythropoiesis directs oxygen availability in bone fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632440. [PMID: 39829797 PMCID: PMC11741344 DOI: 10.1101/2025.01.10.632440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen. This elevated oxygen stems not from angiogenesis but from activated erythropoiesis in the adjacent bone marrow. Fracture-activated erythroid progenitor cells concentrate oxygen through haemoglobin formation. Blocking transferrin receptor 1 (CD71)-mediated iron uptake prevents oxygen binding by these cells, induces fracture site hypoxia, and enhances bone repair through increased angiogenesis and osteogenesis. These findings upend our current understanding of the early phase of bone fracture repair, provide a mechanism for high oxygen tension in the bone marrow after injury, and reveal an unexpected and targetable role of erythroid progenitors in fracture repair.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph M. Collins
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Simin Belali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette Y. Yien
- Division of Hematology/Oncology, Department of Medicine and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
James J, Santos RE, Watnick PI. Carbon source, cell density, and the microbial community control inhibition of V. cholerae surface colonization by environmental nitrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630902. [PMID: 39803477 PMCID: PMC11722358 DOI: 10.1101/2024.12.31.630902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The intestinal diarrheal pathogen Vibrio cholerae colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, V. cholerae respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that V. cholerae nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability. V. cholerae nitrate respiration results in extracellular accumulation of nitrite because V. cholerae does not possess the machinery for nitrite reduction. This nitrite inhibits V. cholerae biofilm formation via an as yet unelucidated mechanism that depends on the high cell density master regulator HapR. The genome of Paracoccus aminovorans , an intestinal microbe shown to enhance V. cholerae biofilm accumulation in the neonatal mouse gut and predispose household contacts to cholera, encodes enzymes that reduce nitrite to nitrogen gas. We report that, in nitrate-supplemented co-cultures, P. aminovorans metabolizes the nitrite generated by V. cholerae and, thereby, enhances V. cholerae surface accumulation. We propose that V. cholerae biofilm formation in the host intestine is limited by nitrite production but can be rescued by intestinal microbes such as P. aminovorans that have the capacity to metabolize nitrite. Such microbes increase V. cholerae colonization of the host ileum and predispose to infection. Importance V. cholerae colonizes the terminal ileum where both oxygen and nitrate are available as terminal electron acceptors. V. cholerae biofilm formation is inhibited by nitrate due to its conversion to nitrite during V. cholerae respiration. When co-cultured with a microbe that can further reduce nitrite, V. cholerae surface accumulation in the presence of nitrate is rescued. The contribution of biofilm formation to ileal colonization depends on the composition of the microbiota. We propose that the intestinal microbiota predisposes mammalian hosts to cholera by consuming the nitrite generated by V. cholerae in the terminal ileum. Differences in the intestinal abundance of nitrite-reducing microbes may partially explain the differential susceptibility of humans to cholera and the resistance of non-human mammalian models to intestinal colonization with V. cholerae .
Collapse
|
15
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024; 92:e0030224. [PMID: 39347570 PMCID: PMC11556149 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P. Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
16
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Rogers AWL, Radlinski LC, Nguyen H, Tiffany CR, Carvalho TP, Masson HLP, Goodson ML, Bechtold L, Yamazaki K, Liou MJ, Miller BM, Mahan SP, Young BM, Demars AM, Gretler SR, Larabi AB, Lee JY, Bays DJ, Tsolis RM, Bäumler AJ. Salmonella re-engineers the intestinal environment to break colonization resistance in the presence of a compositionally intact microbiota. Cell Host Microbe 2024; 32:1774-1786.e9. [PMID: 39181125 PMCID: PMC11466686 DOI: 10.1016/j.chom.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota prevents harmful microbes from entering the body, a function known as colonization resistance. The enteric pathogen Salmonella enterica serovar (S.) Typhimurium uses its virulence factors to break colonization resistance through unknown mechanisms. Using metabolite profiling and genetic analysis, we show that the initial rise in luminal pathogen abundance was powered by a combination of aerobic respiration and mixed acid fermentation of simple sugars, such as glucose, which resulted in their depletion from the metabolome. The initial rise in the abundance of the pathogen in the feces coincided with a reduction in the cecal concentrations of acetate and butyrate and an increase in epithelial oxygenation. Notably, these changes in the host environment preceded changes in the microbiota composition. We conclude that changes in the host environment can weaken colonization resistance even in the absence of overt compositional changes in the gut microbiota.
Collapse
Affiliation(s)
- Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Thaynara Parente Carvalho
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lalita Bechtold
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kohei Yamazaki
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA; Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aurore M Demars
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sophie R Gretler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anaïs B Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California at Davis, One Shields Avenue, Sacramento, CA 95817, USA
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Bollati E, Hughes DJ, Suggett DJ, Raina JB, Kühl M. Microscale sampling of the coral gastrovascular cavity reveals a gut-like microbial community. Anim Microbiome 2024; 6:55. [PMID: 39380028 PMCID: PMC11460067 DOI: 10.1186/s42523-024-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Animal guts contain numerous microbes, which are critical for nutrient assimilation and pathogen defence. While corals and other Cnidaria lack a true differentiated gut, they possess semi-enclosed gastrovascular cavities (GVCs), where vital processes such as digestion, reproduction and symbiotic exchanges take place. The microbiome harboured in GVCs is therefore likely key to holobiont fitness, but remains severely understudied due to challenges of working in these small compartments. Here, we developed minimally invasive methodologies to sample the GVC of coral polyps and characterise the microbial communities harboured within. We used glass capillaries, low dead volume microneedles, or nylon microswabs to sample the gastrovascular microbiome of individual polyps from six species of corals, then applied low-input DNA extraction to characterise the microbial communities from these microliter volume samples. Microsensor measurements of GVCs revealed anoxic or hypoxic micro-niches, which persist even under prolonged illumination with saturating irradiance. These niches harboured microbial communities enriched in putatively microaerophilic or facultatively anaerobic taxa, such as Epsilonproteobacteria. Some core taxa found in the GVC of Lobophyllia hemprichii from the Great Barrier Reef were also detected in conspecific colonies held in aquaria, indicating that these associations are unlikely to be transient. Our findings suggest that the coral GVC is chemically and microbiologically similar to the gut of higher Metazoa. Given the importance of gut microbiomes in mediating animal health, harnessing the coral "gut microbiome" may foster novel active interventions aimed at increasing the resilience of coral reefs to the climate crisis.
Collapse
Affiliation(s)
- Elena Bollati
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark.
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - David J Suggett
- KAUST Coral Restoration Initiative (KCRI) and Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| |
Collapse
|
19
|
Raabis SM, Westerman TL, Cruz E, Deblois CL, Suen G, Elfenbein JR. Sensitivity of dairy calf Salmonella enterica serotype Cerro isolates to infection-relevant stressors. Microbiol Spectr 2024; 12:e0021224. [PMID: 39145636 PMCID: PMC11448428 DOI: 10.1128/spectrum.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Salmonella enterica serotype Cerro (S. Cerro) is an emerging Salmonella serotype isolated from cattle, but the association of S. Cerro with disease is not well understood. While comparative genomic analyses of bovine S. Cerro isolates have indicated mutations in elements associated with virulence, the correlation of S. Cerro fecal shedding with clinical disease in cattle varies between epidemiologic studies. The primary objective of this study was to characterize the infection-relevant phenotypes of S. Cerro fecal isolates obtained from neonatal calves born on a dairy farm in Wisconsin, USA. The S. Cerro isolates varied in biofilm production and sensitivity to the bile salt deoxycholate. All S. Cerro isolates were sensitive to sodium hypochlorite, hydrogen peroxide, and acidic shock. However, S. Cerro isolates were resistant to nitric oxide stress. Two S. Cerro isolates were unable to compete with S. Typhimurium during infection of calf ligated intestinal loops, indicating decreased fitness in vivo. Together, our data suggest that S. Cerro is sensitive to some innate antimicrobial defenses present in the gut, many of which are also used to control Salmonella in the environment. The observed phenotypic variation in S. Cerro isolates from a single farm suggest phenotypic plasticity that could impact infectious potential, transmission, and persistence on a farm.IMPORTANCESalmonella enterica is a zoonotic pathogen that threatens both human and animal health. Salmonella enterica serotype Cerro is being isolated from cattle at increasing frequency over the past two decades; however, its association with clinical disease is unclear. The goal of this study was to characterize infection-relevant phenotypes of S. Cerro isolates obtained from dairy calves from a single farm. Our work shows that there can be variation among temporally related S. Cerro isolates and that these isolates are sensitive to killing by toxic compounds of the innate immune system and those used for environmental control of Salmonella. This work contributes to our understanding of the pathogenic potential of the emerging pathogen S. Cerro.
Collapse
Affiliation(s)
- Sarah M Raabis
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Trina L Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Courtney L Deblois
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol 2024; 32:970-983. [PMID: 38503579 DOI: 10.1016/j.tim.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The small intestinal microbiota (SIM) is essential for gastrointestinal health, influencing digestion, immune modulation, and nutrient metabolism. Unlike the colonic microbiota, the SIM has been poorly characterized due to sampling challenges and ethical considerations. Current evidence suggests that the SIM consists of five core genera and additional segment-specific taxa. These bacteria closely interact with the human host, regulating nutrient absorption and metabolism. Recent work suggests the presence of two forms of small intestinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a second dominated by coliform bacteria. Less invasive sampling techniques, omics approaches, and mechanistic studies will allow a more comprehensive understanding of the SIM, paving the way for interventions engineering the SIM towards better health.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
22
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
23
|
Ling J, Hryckowian AJ. Re-framing the importance of Group B Streptococcus as a gut-resident pathobiont. Infect Immun 2024; 92:e0047823. [PMID: 38436256 PMCID: PMC11392526 DOI: 10.1128/iai.00478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.
Collapse
Affiliation(s)
- Joie Ling
- Department of
Medicine, Division of Gastroenterology and Hepatology, University of
Wisconsin School of Medicine and Public
Health, Madison,
Wisconsin, USA
- Department of Medical
Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Healthon,
Madison, Wisconsin, USA
- Microbiology Doctoral
Training Program, University of
Wisconsin-Madison, Madison,
Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of
Medicine, Division of Gastroenterology and Hepatology, University of
Wisconsin School of Medicine and Public
Health, Madison,
Wisconsin, USA
- Department of Medical
Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Healthon,
Madison, Wisconsin, USA
| |
Collapse
|
24
|
Drakes N, Kondrikova G, Pytel D, Hamlett ED. Unveiling the Intricate Link Between Anaerobe Niche and Alzheimer Disease Pathogenesis. J Infect Dis 2024; 230:S117-S127. [PMID: 39255391 DOI: 10.1093/infdis/jiae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Dysbiosis within microbiomes has been increasingly implicated in many systemic illnesses, such as cardiovascular disease, metabolic syndrome, respiratory infections, and Alzheimer disease (Ad). The correlation between Ad and microbial dysbiosis has been repeatedly shown, yet the etiologic cause of microbial dysbiosis remains elusive. From a neuropathology perspective, abnormal (often age-related) changes in the brain, associated structures, and bodily lumens tend toward an accumulation of oxygen-depleted pathologic structures, which are anaerobically selective niches. These anaerobic environments may promote progressive change in the microbial community proximal to the brain and thus deserve further investigation. In this review, we identify and explore what is known about the anaerobic niche near or associated with the brain and the anaerobes that it is harbors. We identify the anaerobe stakeholders within microbiome communities and the impacts on the neurodegenerative processes associated with Ad. Chronic oral dysbiosis in anaerobic dental pockets and the composition of the gut microbiota from fecal stool are the 2 largest anaerobic niche sources of bacterial transference to the brain. At the blood-brain barrier, cerebral atherosclerotic plaques are predominated by anaerobic species intimately associated with the brain vasculature. Focal cerebritis/brain abscess and corpora amylacea may also establish chronic anaerobic niches in direct proximity to brain parenchyma. In exploring the anaerobic niche proximal to the brain, we identify research opportunities to explore potential sources of microbial dysbiosis associated with Ad.
Collapse
Affiliation(s)
- NyEmma Drakes
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Biology, College of Charleston
| | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| |
Collapse
|
25
|
Melki R, Litvak Y. From vacant to vivid: The nutritional landscape drives infant gut microbiota establishment. Mol Microbiol 2024; 122:347-356. [PMID: 39044538 DOI: 10.1111/mmi.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
From the moment of birth, the newborn gastrointestinal tract is infiltrated by various bacteria originating from both maternal and environmental sources. These colonizing bacteria form a complex microbiota community that undergoes continuous changes until adulthood and plays an important role in infant health. The maturation of the infant gut microbiota is driven by many factors and follows a distinct patterned trajectory, with specific bacterial taxa establish in the intestine in accordance with developmental milestones as the infant grows. In this review, we highlight how elements such as diet and host physiology select for specific microbial functions and shape the composition of the bacterial community in the large intestine.
Collapse
Affiliation(s)
- Reut Melki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Litvak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Timmermans S, Wallaeys C, Garcia-Gonzalez N, Pollaris L, Saeys Y, Libert C. Identification and Characterization of Multiple Paneth Cell Types in the Mouse Small Intestine. Cells 2024; 13:1435. [PMID: 39273007 PMCID: PMC11394207 DOI: 10.3390/cells13171435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The small intestinal crypts harbor secretory Paneth cells (PCs) which express bactericidal peptides that are crucial for maintaining intestinal homeostasis. Considering the diverse environmental conditions throughout the course of the small intestine, multiple subtypes of PCs are expected to exist. We applied single-cell RNA-sequencing of PCs combined with deep bulk RNA-sequencing on PC populations of different small intestinal locations and discovered several expression-based PC clusters. Some of these are discrete and resemble tuft cell-like PCs, goblet cell (GC)-like PCs, PCs expressing stem cell markers, and atypical PCs. Other clusters are less discrete but appear to be derived from different locations along the intestinal tract and have environment-dictated functions such as food digestion and antimicrobial peptide production. A comprehensive spatial analysis using Resolve Bioscience was conducted, leading to the identification of different PC's transcriptomic identities along the different compartments of the intestine, but not between PCs in the crypts themselves.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Natalia Garcia-Gonzalez
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lotte Pollaris
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (S.T.); (C.W.); (N.G.-G.); (L.P.); (Y.S.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
27
|
Heo S, Jung EJ, Park MK, Sung MH, Jeong DW. Evolution and Competitive Struggles of Lactiplantibacillus plantarum under Different Oxygen Contents. Int J Mol Sci 2024; 25:8861. [PMID: 39201547 PMCID: PMC11354895 DOI: 10.3390/ijms25168861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Lactiplantibacillus (Lb.) plantarum is known as a benign bacterium found in various habitats, including the intestines of animals and fermented foods. Since animal intestines lack oxygen, while fermented foods provide a limited or more oxygen environment, this study aimed to investigate whether there were genetic differences in the growth of Lb. plantarum under aerobic vs. anaerobic conditions. Genomic analysis of Lb. plantarum obtained from five sources-animals, dairy products, fermented meat, fermented vegetables, and humans-was conducted. The analysis included not only an examination of oxygen-utilizing genes but also a comparative pan-genomic analysis to investigate evolutionary relationships between genomes. The ancestral gene analysis of the evolutionary pathway classified Lb. plantarum into groups A and B, with group A further subdivided into A1 and A2. It was confirmed that group A1 does not possess the narGHIJ operon, which is necessary for energy production under limited oxygen conditions. Additionally, it was found that group A1 has experienced more gene acquisition and loss compared to groups A2 and B. Despite an initial assumption that there would be genetic distinctions based on the origin (aerobic or anaerobic conditions), it was observed that such differentiation could not be attributed to the origin. However, the evolutionary process indicated that the loss of genes related to nitrate metabolism was essential in anaerobic or limited oxygen conditions, contrary to the initial hypothesis.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| | - Eun Jin Jung
- Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea;
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea;
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| |
Collapse
|
28
|
Liu D, Bhunia AK. Anchorless Bacterial Moonlighting Metabolic Enzymes Modulate the Immune System and Contribute to Pathogenesis. ACS Infect Dis 2024; 10:2551-2566. [PMID: 39066728 DOI: 10.1021/acsinfecdis.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Penarete-Acosta D, Stading R, Emerson L, Horn M, Chakraborty S, Han A, Jayaraman A. A microfluidic co-culture model for investigating colonocytes-microbiota interactions in colorectal cancer. LAB ON A CHIP 2024; 24:3690-3703. [PMID: 38973701 DOI: 10.1039/d4lc00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Changes in the abundance of certain bacterial species within the colorectal microbiota correlate with colorectal cancer (CRC) development. While carcinogenic mechanisms of single pathogenic bacteria have been characterized in vitro, limited tools are available to investigate interactions between pathogenic bacteria and both commensal microbiota and colonocytes in a physiologically relevant tumor microenvironment. To address this, we developed a microfluidic device that can be used to co-culture colonocyte spheroids and colorectal microbiota. The device was used to explore the effect of Fusobacterium nucleatum, an opportunistic pathogen associated with colorectal cancer development in humans, on colonocyte gene expression and microbiota composition. F. nucleatum altered the transcription of genes involved in cytokine production, epithelial-to-mesenchymal transition, and proliferation in colonocytes in a contact-independent manner; however, most of these effects were significantly diminished by the presence of commensal microbiota. Interestingly, F. nucleatum significantly altered the abundance of multiple bacterial clades associated with mucosal immune responses and cancer development in the colon. Our results highlight the importance of evaluating the potential carcinogenic activity of pathogens in the context of a commensal microbiota, and the potential to discover novel inter-species microbial interactions in the CRC microenvironment.
Collapse
Affiliation(s)
| | - Rachel Stading
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| | - Laura Emerson
- Department of Biomedical Engineering, Texas A&M University, USA.
| | - Mitchell Horn
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
- Department of Electrical and Computer Engineering, Texas A&M University, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, USA
| |
Collapse
|
30
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Firrman J, Friedman ES, Hecht A, Strange WC, Narrowe AB, Mahalak K, Wu GD, Liu L. Preservation of conjugated primary bile acids by oxygenation of the small intestinal microbiota in vitro. mBio 2024; 15:e0094324. [PMID: 38727244 PMCID: PMC11237543 DOI: 10.1128/mbio.00943-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 06/13/2024] Open
Abstract
Bile acids play a critical role in the emulsification of dietary lipids, a critical step in the primary function of the small intestine, which is the digestion and absorption of food. Primary bile acids delivered into the small intestine are conjugated to enhance functionality, in part, by increasing aqueous solubility and preventing passive diffusion of bile acids out of the gut lumen. Bile acid function can be disrupted by the gut microbiota via the deconjugation of primary bile acids by bile salt hydrolases (BSHs), leading to their conversion into secondary bile acids through the expression of bacterial bile acid-inducible genes, a process often observed in malabsorption due to small intestinal bacterial overgrowth. By modeling the small intestinal microbiota in vitro using human small intestinal ileostomy effluent as the inocula, we show here that the infusion of physiologically relevant levels of oxygen, normally found in the proximal small intestine, reduced deconjugation of primary bile acids, in part, through the expansion of bacterial taxa known to have a low abundance of BSHs. Further recapitulating the small intestinal bile acid composition of the small intestine, limited conversion of primary into secondary bile acids was observed. Remarkably, these effects were preserved among four separate communities, each inoculated with a different small intestinal microbiota, despite a high degree of taxonomic variability under both anoxic and aerobic conditions. In total, these results provide evidence for a previously unrecognized role that the oxygenated environment of the small intestine plays in the maintenance of normal digestive physiology. IMPORTANCE Conjugated primary bile acids are produced by the liver and exist at high concentrations in the proximal small intestine, where they are critical for proper digestion. Deconjugation of these bile acids with subsequent transformation via dehydroxylation into secondary bile acids is regulated by the colonic gut microbiota and reduces their digestive function. Using an in vitro platform modeling the small intestinal microbiota, we analyzed the ability of this community to transform primary bile acids and studied the effect of physiological levels of oxygen normally found in the proximal small intestine (5%) on this metabolic process. We found that oxygenation of the small intestinal microbiota inhibited the deconjugation of primary bile acids in vitro. These findings suggest that luminal oxygen levels normally found in the small intestine may maintain the optimal role of bile acids in the digestive process by regulating bile acid conversion by the gut microbiota.
Collapse
Affiliation(s)
- Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron Hecht
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William C. Strange
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Karley Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
32
|
Nishihara K, Villot C, Cangiano L, Guan LL, Steele M. Bacteria colonization and gene expression related to immune function in colon mucosa is associated with growth in neonatal calves regardless of live yeast supplementation. J Anim Sci Biotechnol 2024; 15:76. [PMID: 38835065 DOI: 10.1186/s40104-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and β diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada
| | - Clothilde Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
- Lallemand SAS, Blagnac, F-31702, France
| | - Lautaro Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada.
- Present Address: Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
33
|
Fowler EA, Farias Amorim C, Mostacada K, Yan A, Amorim Sacramento L, Stanco RA, Hales ED, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis. J Clin Invest 2024; 134:e177992. [PMID: 38833303 PMCID: PMC11245163 DOI: 10.1172/jci177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8+ T cell responses mediate disease. Although these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8+ T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8+ T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce ROS and ultimately increased the hypoxic state and granzyme B expression in CD8+ T cells. Importantly, lesions from patients with cutaneous leishmaniasis exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8+ T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as for other inflammatory skin diseases in which cytolytic CD8+ T cells contribute to pathogenesis.
Collapse
Affiliation(s)
- Erin A. Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Klauss Mostacada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Allison Yan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Rae A. Stanco
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Emily D.S. Hales
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Wenjing Zong
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila I. de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, Brazil
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fernanda O. Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Southwell JW, Wilson KS, Thomas GH, Duhme-Klair AK. Enhancement of growth media for extreme iron limitation in Escherichia coli. Access Microbiol 2024; 6:000735.v4. [PMID: 39045240 PMCID: PMC11261726 DOI: 10.1099/acmi.0.000735.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Iron is an essential nutrient for microbial growth and bacteria have evolved numerous routes to solubilize and scavenge this biometal, which is often present at very low concentrations in host tissue. We recently used a MOPS-based medium to induce iron limitation in Escherichia coli K-12 during the characterization of novel siderophore-conjugated antibiotics. In this study we confirm that growth media derived from commercially available M9 salts are unsuitable for studies of iron-limited growth, probably through the contamination of the sodium phosphate buffer components with over 100 µM iron. In contrast, MOPS-based media that are treated with metal-binding Chelex resin allow the free iron concentration to be reduced to growth-limiting levels. Despite these measures a small amount of E. coli growth is still observed in these iron-depleted media. By growing E. coli in conditions that theoretically increase the demand for iron-dependent enzymes, namely by replacing the glucose carbon source for acetate and by switching to a microaerobic atmosphere, we can reduce background growth even further. Finally, we demonstrate that by adding an exogeneous siderophore to the growth media which is poorly used by E. coli, we can completely prevent growth, perhaps mimicking the situation in host tissue. In conclusion, this short study provides practical experimental insight into low iron media and how to augment the growth conditions of E. coli for extreme iron-limited growth.
Collapse
Affiliation(s)
- James W. Southwell
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Keith S. Wilson
- York Structural Biology Laboratory, University of York, Heslington, York, YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
35
|
Hu Q, Luo J, Cheng F, Wang P, Gong P, Lv X, Wang X, Yang M, Wei P. Spatial profiles of the bacterial microbiota throughout the gastrointestinal tract of dairy goats. Appl Microbiol Biotechnol 2024; 108:356. [PMID: 38822843 PMCID: PMC11144141 DOI: 10.1007/s00253-024-13200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while β-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest β-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.
Collapse
Affiliation(s)
- Qingyong Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jun Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China.
| | - Fei Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xinpei Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Min Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Pengbo Wei
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
36
|
Matera M. Bifidobacteria, Lactobacilli... when, how and why to use them. GLOBAL PEDIATRICS 2024; 8:100139. [DOI: 10.1016/j.gpeds.2024.100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Choi H, Duarte YG, Pasquali GAM, Kim SW. Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs. J Anim Sci Biotechnol 2024; 15:63. [PMID: 38704593 PMCID: PMC11070102 DOI: 10.1186/s40104-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. METHODS Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller's dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. RESULTS Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. CONCLUSIONS A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Yesid Garavito Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
38
|
Ortiz de Ora L, Balsamo JM, Uyeda KS, Bess EN. Discovery of a Gut Bacterial Metabolic Pathway that Drives α-Synuclein Aggregation. ACS Chem Biol 2024; 19:1011-1021. [PMID: 38517270 PMCID: PMC11040608 DOI: 10.1021/acschembio.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Parkinson's disease (PD) etiology is associated with aggregation and accumulation of α-synuclein (α-syn) proteins in midbrain dopaminergic neurons. Emerging evidence suggests that in certain subtypes of PD, α-syn aggregates originate in the gut and subsequently spread to the brain. However, mechanisms that instigate α-syn aggregation in the gut have remained elusive. In the brain, the aggregation of α-syn is induced by oxidized dopamine. Such a mechanism has not been explored in the context of the gastrointestinal tract, a niche harboring 46% of the body's dopamine reservoirs. Here, we report that Enterobacteriaceae, a bacterial family prevalent in human gut microbiotas, induce α-syn aggregation. More specifically, our in vitro data indicate that respiration of nitrate by Escherichia coli K-12, which results in production of nitrite that mediates oxidation of Fe2+ to Fe3+, creates an oxidizing redox potential. These oxidizing conditions enabled the formation of dopamine-derived quinones and α-syn aggregates. Exposing nitrite, but not nitrate, to enteroendocrine STC-1 cells induced aggregation of α-syn that is natively expressed in these cells, which line the intestinal tract. Taken together, our findings indicate that bacterial nitrate reduction may be critical for initiating intestinal α-syn aggregation.
Collapse
Affiliation(s)
- Lizett Ortiz de Ora
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Julia M. Balsamo
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Kylie S. Uyeda
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Elizabeth N. Bess
- Department
of Chemistry, University of California, Irvine, California 92617, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92617, United States
| |
Collapse
|
39
|
Moore ML, Ford JL, Schladweiler MC, Dye JA, Jackson TW, Miller CN. Gut metabolic changes during pregnancy reveal the importance of gastrointestinal region in sample collection. Metabolomics 2024; 20:40. [PMID: 38460019 PMCID: PMC11168590 DOI: 10.1007/s11306-024-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Studies of gastrointestinal physiology and the gut microbiome often consider the influence of intestinal region on experimental endpoints. However, this same consideration is not often applied to the gut metabolome. Understanding the contribution of gut regionality may be critically important to the rapidly changing metabolic environments, such as during pregnancy. OBJECTIVES We sought to characterize the difference in the gut metabolome in pregnant mice stratified by region-comparing the small intestine, cecum, and feces. Pre-pregnancy feces were collected to understand the influence of pregnancy on the fecal metabolome. METHODS Feces were collected from CD-1 female mice before breeding. On gestation day (GD) 18, gut contents were collected from the small intestine, cecum, and descending colon. Metabolites were analyzed with LC-MS/MS using the Biocrates MetaboINDICATOR™ MxP® Quant 500 kit. RESULTS Of the 104 small molecule metabolites meeting analysis criteria, we found that 84 (81%) were differentially abundant based on gut region. The most significant regional comparison observed was between the cecum and small intestines, with 52 (50%) differentially abundant metabolites. Pregnancy itself altered 41 (39.4%) fecal small molecule metabolites. CONCLUSIONS The regional variation observed in the gut metabolome are likely due to the microbial and physiological differences between the different parts of the intestines. Additionally, pregnancy impacts the fecal metabolome, which may be due to evolving needs of both the dam and fetus.
Collapse
Affiliation(s)
- Makala L Moore
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
40
|
Sugihara K, Kamada N. Metabolic network of the gut microbiota in inflammatory bowel disease. Inflamm Regen 2024; 44:11. [PMID: 38443988 PMCID: PMC10913301 DOI: 10.1186/s41232-024-00321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Gut dysbiosis is closely linked to the pathogenesis of inflammatory bowel disease (IBD). Emerging studies highlight the relationship between host metabolism and the modulation of gut microbiota composition through regulating the luminal microenvironment. In IBD, various disease-associated factors contribute to the significant perturbation of host metabolism. Such disturbance catalyzes the selective proliferation of specific microbial populations, particularly pathobionts such as adherent invasive Escherichia coli and oral-derived bacteria. Pathobionts employ various strategies to adapt better to the disease-associated luminal environments. In addition to the host-microbe interaction, recent studies demonstrate that the metabolic network between commensal symbionts and pathobionts facilitates the expansion of pathobionts in the inflamed gut. Understanding the metabolic network among the host, commensal symbionts, and pathobionts provides new insights into the pathogenesis of IBD and novel avenues for treating IBD.
Collapse
Affiliation(s)
- Kohei Sugihara
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Nobuhiko Kamada
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Zhou M, Li X, Liu J, Wu Y, Tan Z, Deng N. Adenine's impact on mice's gut and kidney varies with the dosage administered and relates to intestinal microorganisms and enzyme activities. 3 Biotech 2024; 14:88. [PMID: 38406640 PMCID: PMC10884393 DOI: 10.1007/s13205-024-03959-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
This study aimed to investigate the effects of different dosages of adenine on intestinal microorganisms and enzyme activities, laying the experimental groundwork for subsequent exploration of the microbial mechanisms underlying diarrhea with kidney yang deficiency syndrome. Twenty-four mice were assigned to the following four groups: the control (NC) group, low-dosage adenine (NML) group, middle-dosage adenine (NMM) group, and high-dosage adenine (NMH) group. Mice in the NML, NMM, and NMH groups received 25 mg/(kg·d), 50 mg/(kg·d), and 100 mg/(kg·d) of adenine, respectively, 0.4 mL/each, once a day for 14 days. The NC group received 0.4 mL sterile water. Parameters including body weight, rectal temperature, intestinal microorganisms, enzyme activities, and microbial activity were measured. Results indicated that mice in the experimental group displayed signs of a poor mental state, curled up with their backs arched, and felt sleepy and lazy, with sparse fur that was easily shed, and damp bedding. Some mice showed fecal adhesion contamination in the perianal and tail areas. Dosage-dependent effects were observed, with decreased food intake, body weight, rectal temperature, and microbial activity and increased water intake and fecal water content. Enzyme activity analyses revealed significantly higher activities of protease, sucrase, amylase, and cellulase in intestinal contents and lactase, sucrase, amylase, and cellulase in the mucosa of the NMM group compared to those of other groups. Ultimately, the higher adenine dosage was associated with more pronounced symptoms of kidney yang deficiency syndrome, with 50 mg/kg adenine exhibiting the most substantial impact on the number of intestinal microbial colonies and enzyme activities.
Collapse
Affiliation(s)
- Mengsi Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000 China
| | - Jin Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| |
Collapse
|
42
|
Vorländer D, Schultz G, Hoffmann K, Rasch D, Dohnt K. PETR: A novel peristaltic mixed tubular bioreactor simulating human colonic conditions. Biotechnol Bioeng 2024; 121:1118-1143. [PMID: 38151924 DOI: 10.1002/bit.28636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
A novel bioreactor simulating human colonic conditions for in vitro cultivation of intestinal microbiota is presented. The PEristaltic mixed Tubular bioReactor (PETR) is modular designed and periodically kneaded to simulate intestinal peristalsis. The reactor is introduced, characterized from a bioprocess engineer's perspective and discussed in its ability to mimic colon conditions. PETR provides physiological temperature and appropriate anaerobic conditions, simulates intestinal peristalsis, and has a mean residence time of 32.8 ± 0.8 h comparable to the adult human colon. The single-tube design enables a time-constant and longitudinally progressive pH gradient from 5.5 to 7.0. Using a dialysis liquid containing high molecular weight polyethylene glycol, the integrated dialysis system efficiently absorbs short chain fatty acids (up to 60%) and water (on average 850 mL d-1 ). Cultivation of a typical gut bacterium (Bifidobacterium animalis) was performed to demonstrate the applicability for controlled microbiota cultivation. PETR is unique in combining simulation of the entire colon, peristaltic mixing, dialytic water and metabolite absorption, and a progressive pH gradient in a single-tube design. PETR is a further step to precise replication of colonic conditions in vitro for reliable and reproducible microbiota research, such as studying the effect of food compounds, prebiotics or probiotics, or the development and treatment of infections with enteric pathogens, but also for further medical applications such as drug delivery studies or to study the effect of drugs on and their degradation by the microbiota.
Collapse
Affiliation(s)
- David Vorländer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Gábor Schultz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Hoffmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
43
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
45
|
Ishola OA, Kublik S, Durai Raj AC, Ohnmacht C, Schulz S, Foesel BU, Schloter M. Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models. Microorganisms 2024; 12:255. [PMID: 38399658 PMCID: PMC10892684 DOI: 10.3390/microorganisms12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Oluwaseun A. Ishola
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Abilash Chakravarthy Durai Raj
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Caspar Ohnmacht
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University of Munich, Helmholtz Zentrum München, 85764 München, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Bärbel U. Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
- Central Institute for Nutrition and Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
46
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy MK, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Eren AM, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. mBio 2024; 15:e0283023. [PMID: 38063424 PMCID: PMC10790697 DOI: 10.1128/mbio.02830-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE The Gram-negative bacterium Bacteroides fragilis is a common member of the human gut microbiota that colonizes multiple host niches and can influence human physiology through a variety of mechanisms. Identification of genes that enable B. fragilis to grow across a range of host environments has been impeded in part by the relatively limited genetic tractability of this species. We have developed a high-throughput genetic resource for a B. fragilis strain isolated from a UC pouchitis patient. Bile acids limit microbial growth and are altered in abundance in UC pouches, where B. fragilis often blooms. Using this resource, we uncovered pathways and processes that impact B. fragilis fitness in bile and that may contribute to population expansions during bouts of gut inflammation.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Miette K. Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
47
|
Flores JN, Lubin JB, Silverman MA. The case for microbial intervention at weaning. Gut Microbes 2024; 16:2414798. [PMID: 39468827 PMCID: PMC11540084 DOI: 10.1080/19490976.2024.2414798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Weaning, the transition from a milk-based diet to solid food, coincides with the most significant shift in gut microbiome composition in the lifetime of most mammals. Notably, this period also marks a "window of opportunity" where key components of the immune system develop, and host-microbe interactions shape long-term immune homeostasis thereby influencing the risk of autoimmune and inflammatory diseases. This review provides a comprehensive analysis of the changes in nutrition, microbiota, and host physiology that occur during weaning. We explore how these weaning-associated processes differ across species, lifestyles, and regions of the intestine. Using prinicples of microbial ecology, we propose that the weaning transition is an optimal period for microbiome-targeted therapeutic interventions. Additionally, we suggest that replicating features of the weaning microbiome in adults could promote the successful engraftment of probiotics. Finally, we highlight key research areas that could deepen our understanding of the complex relationships between diet, commensal microbes, and the host, informing the development of more effective microbial therapies.
Collapse
Affiliation(s)
- Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Orgler E, Baumgartner M, Duller S, Kumptisch C, Hausmann B, Moser D, Khare V, Lang M, Köcher T, Frick A, Muttenthaler M, Makristathis A, Moissl-Eichinger C, Gasche C. Archaea influence composition of endoscopically visible ileocolonic biofilms. Gut Microbes 2024; 16:2359500. [PMID: 38825783 PMCID: PMC11152093 DOI: 10.1080/19490976.2024.2359500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.
Collapse
Affiliation(s)
- Elisabeth Orgler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine II, University Hospital, Munich, Germany
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Stefanie Duller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christina Kumptisch
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bela Hausmann
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Metabolomics Service and Research Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Athanasios Makristathis
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| |
Collapse
|
49
|
Zong W, Friedman ES, Allu SR, Firrman J, Tu V, Daniel SG, Bittinger K, Liu L, Vinogradov SA, Wu GD. Disruption of intestinal oxygen balance in acute colitis alters the gut microbiome. Gut Microbes 2024; 16:2361493. [PMID: 38958039 PMCID: PMC11225921 DOI: 10.1080/19490976.2024.2361493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
The juxtaposition of well-oxygenated intestinal colonic tissue with an anerobic luminal environment supports a fundamentally important relationship that is altered in the setting of intestinal injury, a process likely to be relevant to diseases such as inflammatory bowel disease. Herein, using two-color phosphorometry to non-invasively quantify both intestinal tissue and luminal oxygenation in real time, we show that intestinal injury induced by DSS colitis reduces intestinal tissue oxygenation in a spatially defined manner and increases the flux of oxygen from the tissue into the gut lumen. By characterizing the composition of the microbiome in both DSS colitis-affected gut and in a bioreactor containing a stable human fecal community exposed to microaerobic conditions, we provide evidence that the increased flux of oxygen into the gut lumen augments glycan degrading bacterial taxa rich in glycoside hydrolases which are known to inhabit gut mucosal surface. Continued disruption of the intestinal mucus barrier through such a mechanism may play a role in the perpetuation of the intestinal inflammatory process.
Collapse
Affiliation(s)
- Wenjing Zong
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Elliot S. Friedman
- Department of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Srinivasa Rao Allu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Sergei A. Vinogradov
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary D. Wu
- Department of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Deng ZL, Pieper DH, Stallmach A, Steube A, Vital M, Reck M, Wagner-Döbler I. Engraftment of essential functions through multiple fecal microbiota transplants in chronic antibiotic-resistant pouchitis-a case study using metatranscriptomics. MICROBIOME 2023; 11:269. [PMID: 38037086 PMCID: PMC10691019 DOI: 10.1186/s40168-023-01713-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). Around 50% of patients will experience pouchitis, an idiopathic inflammatory condition. Antibiotics are the backbone of treatment of pouchitis; however, antibiotic-resistant pouchitis develops in 5-10% of those patients. It has been shown that fecal microbiota transplantation (FMT) is an effective treatment for UC, but results for FMT antibiotic-resistant pouchitis are inconsistent. METHODS To uncover which metabolic activities were transferred to the recipients during FMT and helped the remission, we performed a longitudinal case study of the gut metatranscriptomes from three patients and their donors. The patients were treated by two to three FMTs, and stool samples were analyzed for up to 140 days. RESULTS Reduced expression in pouchitis patients compared to healthy donors was observed for genes involved in biosynthesis of amino acids, cofactors, and B vitamins. An independent metatranscriptome dataset of UC patients showed a similar result. Other functions including biosynthesis of butyrate, metabolism of bile acids, and tryptophan were also much lower expressed in pouchitis. After FMT, these activities transiently increased, and the overall metatranscriptome profiles closely mirrored those of the respective donors with notable fluctuations during the subsequent weeks. The levels of the clinical marker fecal calprotectin were concordant with the metatranscriptome data. Faecalibacterium prausnitzii represented the most active species contributing to butyrate synthesis via the acetyl-CoA pathway. Remission occurred after the last FMT in all patients and was characterized by a microbiota activity profile distinct from donors in two of the patients. CONCLUSIONS Our study demonstrates the clear but short-lived activity engraftment of donor microbiota, particularly the butyrate biosynthesis after each FMT. The data suggest that FMT triggers shifts in the activity of patient microbiota towards health which need to be repeated to reach critical thresholds. As a case study, these insights warrant cautious interpretation, and validation in larger cohorts is necessary for generalized applications. In the long run, probiotics with high taxonomic diversity consisting of well characterized strains could replace FMT to avoid the costly screening of donors and the risk of transferring unwanted genetic material. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Group Computational Biology for Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany.
| | - Dietmar H Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research, Brunswick, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Reck
- Group Microbial Communication, Helmholtz Center for Infection Research, Brunswick, Germany
- TÜV Rheinland, Cologne, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Brunswick, Germany
| |
Collapse
|