1
|
Ma Z, Liu F, Tsui CKM, Cai L. Phylogenomics and adaptive evolution of the Colletotrichum gloeosporioides species complex. Commun Biol 2025; 8:593. [PMID: 40204844 PMCID: PMC11982366 DOI: 10.1038/s42003-025-08024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
The Colletotrichum gloeosporioides species complex (CGSC) is one of the most devastating fungal phytopathogens, and is composed of three main clades: Kahawae, Musae, and Theobromicola. Despite the diversity of CGSC, there is limited understanding on their evolutionary mechanisms. By analysing 49 newly assembled genomes, we found that the expansion of transposable elements, especially long terminal repeat retrotransposons, facilitates the expansion of genome size and genetic variation. In-depth analyses suggested that an intra-chromosomal inversion may have been the driving force behind the divergence of Kahawae clade from its ancestor. Within the Kahawae clade, the narrow-hosted quarantine species C. kahawae has undergone extensive chromosomal rearrangements mediated by repetitive sequences, generating highly dynamic lineage-specific genomic regions compared to the closely related broad-hosted species C. cigarro. The findings of this study highlight the role of chromosomal rearrangements in promoting genetic diversification and host adaptation, and provide new perspectives for understanding the evolution of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ziying Ma
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Fang Liu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Clement K M Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lei Cai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Cooper KK, Mourkas E, Schiaffino F, Parker CT, Pinedo Vasquez TN, Garcia Bardales PF, Peñataro Yori P, Paredes Olortegui M, Manzanares Villanueva K, Romaina Cachique L, Silva Delgado H, Hitchings MD, Huynh S, Sheppard SK, Pascoe B, Kosek MN. Sharing of cmeRABC alleles between C. coli and C. jejuni associated with extensive drug resistance in Campylobacter isolates from infants and poultry in the Peruvian Amazon. mBio 2025; 16:e0205424. [PMID: 39727415 PMCID: PMC11796421 DOI: 10.1128/mbio.02054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Campylobacter is a serious health threat because of the rapid progressive evolution of antimicrobial resistance and efficient transmission from zoonotic as well as human sources. Resistance to fluoroquinolones and macrolides is particularly concerning as this compromises the two most effective oral antibiotic agents currently available for human campylobacteriosis. Here, we report on the prevalence and worldwide distribution of the operon cmeRABC, which encodes an efflux pump conferring high levels of combined resistance to fluoroquinolones and macrolides in Campylobacter strains isolated from poultry (n = 75) and children (n = 177). These mutations were found to be highly prevalent in isolates from poultry (62.7%) and children (29.4%) in Iquitos, Peru. We investigated the population structure of genes in the cmeRABC operon and identified a potential genetic bottleneck for the cmeA and cmeB genes. While most cmeB alleles segregate by species, alleles associated with high resistance to fluoroquinolones and macrolides were found in both Campylobacter jejuni and Campylobacter coli. We inferred that the likely ancestry of these alleles was from C. jejuni and was later acquired by C. coli through recombination. Publicly accessible global genomic data from 16,120 Campylobacter genomes identified these mutations in approximately 6% of C. jejuni and C. coli isolates globally, with higher prevalence in samples from poultry in many countries, including Peru. Our findings suggest that these extensively drug-resistant Campylobacter strains originated from C. jejuni in poultry.IMPORTANCEAntimicrobial resistance in Campylobacter is a growing public health concern, driven by the rapid evolution and zoonotic transmission of resistant strains. This study focuses on mutations in the cmeABC efflux pump, which confer high resistance to fluoroquinolones and macrolides, the two most effective oral antibiotics for human campylobacteriosis. By analyzing genomes from poultry and children in Iquitos, Peru, as well as global genomic data sets, we identified a significant prevalence of these resistance-associated mutations, particularly in poultry and children. Our findings suggest that these mutations originated in Campylobacter jejuni and spread to C. coli through recombination. Globally, these mutations are found in approximately 6% of isolates, with higher prevalence in poultry in multiple countries. This research underscores the critical role of genomic epidemiology in understanding the origins, evolution, and dissemination of antimicrobial resistance and highlights the need to address poultry as a reservoir for resistant Campylobacter.
Collapse
Affiliation(s)
- Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Evangelos Mourkas
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Francesca Schiaffino
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | | | | | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| | | | | | | | - Hermann Silva Delgado
- School of Human Medicine, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| |
Collapse
|
3
|
Hurtado A, Ocejo M, Oporto B, Lavín JL, Rodríguez R, Marcos MÁ, Urrutikoetxea-Gutiérrez M, Alkorta M, Marimón JM. A One Health approach for the genomic characterization of antibiotic-resistant Campylobacter isolates using Nanopore whole-genome sequencing. Front Microbiol 2025; 16:1540210. [PMID: 39980694 PMCID: PMC11841381 DOI: 10.3389/fmicb.2025.1540210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
In response to the growing threat posed by the spread of antimicrobial resistance in zoonotic Campylobacter, a One Health approach was used to examine the genomic diversity, phylogenomic relationships, and the distribution of genetic determinants of resistance (GDR) in C. jejuni and C. coli isolates from humans, animals (ruminants, swine, and chickens), and avian food products collected during a regionally (Basque Country, Spain) and temporally (mostly 2021-2022) restricted sampling. Eighty-three C. jejuni and seventy-one C. coli isolates, most exhibiting resistance to ciprofloxacin and/or erythromycin, were whole-genome sequenced using Oxford Nanopore Technologies long-fragment sequencing (ONT). Multilocus sequence typing (MLST) analysis identified a high genomic diversity among isolates. Phylogenomic analysis showed that clustering based on the core genome was aligned with MLST profiles, regardless of the sample source. In contrast, accessory genome content sometimes discriminated isolates within the same STs and occasionally differentiated isolates from different sources. The majority of the identified GDRs were present in isolates from different sources, and a good correlation was observed between GDR distribution and phenotypic susceptibility profiles (based on minimum inhibitory concentrations interpreted according to the EUCAST epidemiological cutoff values). Genotypic resistance profiles were independent of genotypes, indicating no apparent association between resistance and phylogenetic origin. This study demonstrates that ONT sequencing is a powerful tool for molecular surveillance of bacterial pathogens in the One Health framework.
Collapse
Affiliation(s)
- Ana Hurtado
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Medelin Ocejo
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - José Luis Lavín
- Applied Mathematics Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Ruth Rodríguez
- Laboratorio de Salud Pública en Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
| | - María Ángeles Marcos
- Laboratorio de Salud Pública en Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Mikel Urrutikoetxea-Gutiérrez
- Clinical Microbiology Service, Basurto University Hospital, Organización Sanitaria Integrada Bilbao-Basurto, Bilbao, Bizkaia, Spain
- Biobizkaia Health Research Institute, Microbiology and Infection Control, Barakaldo, Bizkaia, Spain
| | - Miriam Alkorta
- Infectious Diseases Area, Microbiology Department, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Donostialdea Integrated Health Organization, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
- Faculty of Medicine, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Gipuzkoa, Spain
| | - José María Marimón
- Infectious Diseases Area, Microbiology Department, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Donostialdea Integrated Health Organization, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|
4
|
Hanh VTK, Nga NH. Driving sustainable transportation: an in-depth exploration of influencing factors in Ho Chi Minh City, Vietnam. COGENT BUSINESS & MANAGEMENT 2024; 11. [DOI: 10.1080/23311975.2024.2407923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Vu Thi Kim Hanh
- Faculty of Economics, University of Economics and Law, Ho Chi Minh City, Vietnam
- Faculty of Economics, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Hong Nga
- Faculty of Economics, University of Economics and Law, Ho Chi Minh City, Vietnam
- Faculty of Economics, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Pascoe B, Futcher G, Pensar J, Bayliss SC, Mourkas E, Calland JK, Hitchings MD, Joseph LA, Lane CG, Greenlee T, Arning N, Wilson DJ, Jolley KA, Corander J, Maiden MCJ, Parker CT, Cooper KK, Rose EB, Hiett K, Bruce BB, Sheppard SK. Machine learning to attribute the source of Campylobacter infections in the United States: A retrospective analysis of national surveillance data. J Infect 2024; 89:106265. [PMID: 39245152 DOI: 10.1016/j.jinf.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES Integrating pathogen genomic surveillance with bioinformatics can enhance public health responses by identifying risk and guiding interventions. This study focusses on the two predominant Campylobacter species, which are commonly found in the gut of birds and mammals and often infect humans via contaminated food. Rising incidence and antimicrobial resistance (AMR) are a global concern, and there is an urgent need to quantify the main routes to human infection. METHODS During routine US national surveillance (2009-2019), 8856 Campylobacter genomes from human infections and 16,703 from possible sources were sequenced. Using machine learning and probabilistic models, we target genetic variation associated with host adaptation to attribute the source of human infections and estimate the importance of different disease reservoirs. RESULTS Poultry was identified as the primary source of human infections, responsible for an estimated 68% of cases, followed by cattle (28%), and only a small contribution from wild birds (3%) and pork sources (1%). There was also evidence of an increase in multidrug resistance, particularly among isolates attributed to chickens. CONCLUSIONS National surveillance and source attribution can guide policy, and our study suggests that interventions targeting poultry will yield the greatest reductions in campylobacteriosis and spread of AMR in the US. DATA AVAILABILITY All sequence reads were uploaded and shared on NCBI's Sequence Read Archive (SRA) associated with BioProjects; PRJNA239251 (CDC / PulseNet surveillance), PRJNA287430 (FSIS surveillance), PRJNA292668 & PRJNA292664 (NARMS) and PRJNA258022 (FDA surveillance). Publicly available genomes, including reference genomes and isolates sampled worldwide from wild birds are associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755, PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879, PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Contiguous assemblies of all genome sequences compared are available at Mendeley data (assembled C. coli genomes doi: 10.17632/gxswjvxyh3.1; assembled C. jejuni genomes doi: 10.17632/6ngsz3dtbd.1) and individual project and accession numbers can be found in Supplementary tables S1 and S2, which also includes pubMLST identifiers for assembled genomes. Figshare (10.6084/m9.figshare.20279928). Interactive phylogenies are hosted on microreact separately for C. jejuni (https://microreact.org/project/pascoe-us-cjejuni) and C. coli (https://microreact.org/project/pascoe-us-ccoli).
Collapse
Affiliation(s)
- Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Georgina Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Johan Pensar
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Sion C Bayliss
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica K Calland
- Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology, Oslo, Norway
| | - Matthew D Hitchings
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Lavin A Joseph
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charlotte G Lane
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tiffany Greenlee
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Nicolas Arning
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| | - Daniel J Wilson
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom; Department for Continuing Education, University of Oxford, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jukka Corander
- Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology, Oslo, Norway; Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Erica B Rose
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kelli Hiett
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, USA
| | - Beau B Bruce
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel K Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
Mourkas E, Valdebenito JO, Marsh H, Hitchings MD, Cooper KK, Parker CT, Székely T, Johansson H, Ellström P, Pascoe B, Waldenström J, Sheppard SK. Proximity to humans is associated with antimicrobial-resistant enteric pathogens in wild bird microbiomes. Curr Biol 2024; 34:3955-3965.e4. [PMID: 39142288 DOI: 10.1016/j.cub.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.
Collapse
Affiliation(s)
- Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - José O Valdebenito
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile; Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, 5090000 Valdivia, Chile; HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, 8320000 Santiago, Chile
| | - Hannah Marsh
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Craig T Parker
- Produce Safety and Microbiology Unit, Western Region Research Center, USDA, Agricultural Research Service, Albany, CA 94710, USA
| | - Tamás Székely
- HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ben Pascoe
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
7
|
Buiatte ABG, Souza SSR, Costa LRM, Peres PABM, de Melo RT, Sommerfeld S, Fonseca BB, Zac Soligno NI, Ikhimiukor OO, Armendaris PM, Andam CP, Rossi DA. Five centuries of genome evolution and multi-host adaptation of Campylobacter jejuni in Brazil. Microb Genom 2024; 10:001274. [PMID: 39028633 PMCID: PMC11316555 DOI: 10.1099/mgen.0.001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.
Collapse
Affiliation(s)
- Ana Beatriz Garcez Buiatte
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | | | | | - Roberta Torres de Melo
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Simone Sommerfeld
- Infectious Disease Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Nicole I. Zac Soligno
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Paulo Marcel Armendaris
- Federal Agriculture Defense Laboratory/RS - LFDA/RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Daise Aparecida Rossi
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
8
|
Taylor AJ, Yahara K, Pascoe B, Ko S, Mageiros L, Mourkas E, Calland JK, Puranen S, Hitchings MD, Jolley KA, Kobras CM, Bayliss S, Williams NJ, van Vliet AHM, Parkhill J, Maiden MCJ, Corander J, Hurst LD, Falush D, Keim P, Didelot X, Kelly DJ, Sheppard SK. Epistasis, core-genome disharmony, and adaptation in recombining bacteria. mBio 2024; 15:e0058124. [PMID: 38683013 PMCID: PMC11237541 DOI: 10.1128/mbio.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Collapse
Affiliation(s)
- Aidan J Taylor
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Seungwon Ko
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, United Kingdom
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Laurence D Hurst
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
| | - Paul Keim
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Xavier Didelot
- Department of Statistics, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J Kelly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
9
|
Poorrashidi M, Hitchcock M, Xu J. Meta-analyses of the global multilocus genotypes of the human pathogen Campylobacter jejuni. Genome 2024; 67:189-203. [PMID: 38427983 DOI: 10.1139/gen-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Campylobacter infections are a leading cause of bacterial diarrheal illness worldwide, with increasing reports of outbreaks in both developing and developed countries. Most studies investigating strain genotypes and epidemiology of Campylobacter jejuni examined on a local scale. Using the archived multilocus sequence typing data at seven loci, and associated strain metadata from the PubMLST database, here we investigated the spatial and temporal genetic structure of the global population of C. jejuni. Our analyses revealed evidence for clonal dispersals of multiple sequence types (STs) among countries and continents. However, despite the observed clonal dispersal and that most genetic variations were found within individual geographic subpopulations, both the non-clone-corrected and clone-corrected samples showed evidence of significant genetic differentiation among national and continental subpopulations, with non-clone-corrected samples showing greater differentiation than clone-corrected samples. Phylogenetic incompatibility analyses provided evidence for recombination within each continental subpopulation. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across the samples. Temporally, multiple STs were found to persist across four decades and the five globally most common STs showed relatively stable frequencies over the last two decades. We discussed the implications of our results to food security, disease transmission, and public health management.
Collapse
Affiliation(s)
- Monir Poorrashidi
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Megan Hitchcock
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
10
|
Piper KR, Ikhimiukor OO, Souza SSR, Garcia-Aroca T, Andam CP. Evolutionary dynamics of the accessory genomes of Staphylococcus aureus. mSphere 2024; 9:e0075123. [PMID: 38501935 PMCID: PMC11036810 DOI: 10.1128/msphere.00751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Staphylococcus aureus is a ubiquitous commensal and opportunistic bacterial pathogen that can cause a wide gamut of infections, which are exacerbated by the presence of multidrug-resistant and methicillin-resistant S. aureus. S. aureus is genetically heterogeneous and consists of numerous distinct lineages. Using 558 complete genomes of S. aureus, we aim to determine how the accessory genome content among phylogenetic lineages of S. aureus is structured and has evolved. Bayesian hierarchical clustering identified 10 sequence clusters, of which seven contained major sequence types (ST 1, 5, 8, 30, 59, 239, and 398). The seven sequence clusters differed in their accessory gene content, including genes associated with antimicrobial resistance and virulence. Focusing on the two largest clusters, BAPS8 and BAPS10, and each consisting mostly of ST5 and ST8, respectively, we found that the structure and connected components in the co-occurrence networks of accessory genomes varied between them. These differences are explained, in part, by the variation in the rates at which the two sequence clusters gained and lost accessory genes, with the highest rate of gene accumulation occurring recently in their evolutionary histories. We also identified a divergent group within BAPS10 that has experienced high gene gain and loss early in its history. Together, our results show highly variable and dynamic accessory genomes in S. aureus that are structured by the history of the specific lineages that carry them.IMPORTANCEStaphylococcus aureus is an opportunistic, multi-host pathogen that can cause a variety of benign and life-threatening infections. Our results revealed considerable differences in the structure and evolution of the accessory genomes of major lineages within S. aureus. Such genomic variation within a species can have important implications on disease epidemiology, pathogenesis of infection, and interactions with the vertebrate host. Our findings provide important insights into the underlying genetic basis for the success of S. aureus as a highly adaptable and resistant pathogen, which will inform current efforts to control and treat staphylococcal diseases.
Collapse
Affiliation(s)
- Kathryn R. Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Teddy Garcia-Aroca
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
11
|
Sabir MJ, Ijaz M, Ahmed A, Rasheed H, Javed MU, Anwaar F. First report on genotypic estimation of MRSA load in udder of nomadic sheep flocks affected with subclinical mastitis in Pakistan. Res Vet Sci 2024; 166:105107. [PMID: 38096739 DOI: 10.1016/j.rvsc.2023.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/01/2024]
Abstract
Mastitis is one of the highly devastating issues responsible for production and economic losses in all dairy animals including sheep. This study was designed to investigate subclinical mastitis (SCM) associated with S. aureus in lactating nomadic ewes, along with the associated risk factors analysis. Furthermore, molecular characterization and antibiogram profiling of local methicillin-resistant S. aureus (MRSA) isolates of ovine origin were also performed. A total of 384 milk samples (n = 384) were collected from 13 nomadic sheep flocks using a convenient sampling technique. SCM was evaluated using a Surf Field Mastitis test and the S. aureus was isolated using standard microbiological techniques. Kirby-Bauer disc diffusion assay was used for phenotypic identification of MRSA while the mecA gene was tested through PCR. Study results revealed that SCM was prevalent at 34.37% while S. aureus association was recorded at 39.39%. MRSA prevalence was 36.53% and 21.15% using phenotypic and genotypic tests, respectively. The mecA gene sequences of study isolates showed maximum resemblance with already reported sequences from Pakistan, China, and Myanmar. MRSA isolates showed maximum resistance towards penicillin, ceftriaxone sodium, and trimethoprim + sulphamethoxazole while gentamicin, ciprofloxacin, and tylosin showed maximum efficacy. Risk factors analysis revealed that various flock management, housing, and host-related factors positively influenced the incidence of S. aureus-associated SCM. This study is the first report on the prevalence of S. aureus and MRSA associated with SCM in lactating ewes in Pakistan. This study will help to devise effective treatment and control strategies for S. aureus-associated SCM.
Collapse
Affiliation(s)
- Muhammad Jawad Sabir
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan.
| | - Arslan Ahmed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Hamza Rasheed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Farwa Anwaar
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| |
Collapse
|
12
|
Woyda R, Oladeinde A, Endale D, Strickland T, Plumblee Lawrence J, Abdo Z. Virulence factors and antimicrobial resistance profiles of Campylobacter isolates recovered from consecutively reused broiler litter. Microbiol Spectr 2023; 11:e0323623. [PMID: 37882583 PMCID: PMC10871742 DOI: 10.1128/spectrum.03236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Campylobacter is a leading cause of foodborne illness in the United States due to consumption of contaminated or mishandled food products, often associated with chicken meat. Campylobacter is common in the microbiota of avian and mammalian gut; however, acquisition of antimicrobial resistance genes (ARGs) and virulence factors (VFs) may result in strains that pose significant threat to public health. Although there are studies investigating the genetic diversity of Campylobacter strains isolated from post-harvest chicken samples, there are limited data on the genome characteristics of isolates recovered from preharvest broiler production. Here, we show that Campylobacter jejuni and Campylobacter coli differ in their carriage of antimicrobial resistance and virulence factors may also differ in their ability to persist in litter during consecutive grow-out of broiler flocks. We found that presence/absence of virulence factors needed for evasion of host defense mechanisms and gut colonization played an integral role in differentiating Campylobacter strains.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, Georgia, USA
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Zang X, Pascoe B, Mourkas E, Kong K, Jiao X, Sheppard SK, Huang J. Evidence of potential Campylobacter jejuni zooanthroponosis in captive macaque populations. Microb Genom 2023; 9:001121. [PMID: 37877958 PMCID: PMC10634442 DOI: 10.1099/mgen.0.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium Campylobacter jejuni was isolated from macaques (Macaca mulatta and Macaca fascicularis) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for C. jejuni, 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with C. jejuni either directly from humans or via a common contamination source.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ke Kong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
14
|
Rodrigues JA, Blankenship HM, Cha W, Mukherjee S, Sloup RE, Rudrik JT, Soehnlen M, Manning SD. Pangenomic analyses of antibiotic-resistant Campylobacter jejuni reveal unique lineage distributions and epidemiological associations. Microb Genom 2023; 9:mgen001073. [PMID: 37526649 PMCID: PMC10483415 DOI: 10.1099/mgen.0.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Application of whole-genome sequencing (WGS) to characterize foodborne pathogens has advanced our understanding of circulating genotypes and evolutionary relationships. Herein, we used WGS to investigate the genomic epidemiology of Campylobacter jejuni, a leading cause of foodborne disease. Among the 214 strains recovered from patients with gastroenteritis in Michigan, USA, 85 multilocus sequence types (STs) were represented and 135 (63.1 %) were phenotypically resistant to at least one antibiotic. Horizontally acquired antibiotic resistance genes were detected in 128 (59.8 %) strains and the genotypic resistance profiles were mostly consistent with the phenotypes. Core-gene phylogenetic reconstruction identified three sequence clusters that varied in frequency, while a neighbour-net tree detected significant recombination among the genotypes (pairwise homoplasy index P<0.01). Epidemiological analyses revealed that travel was a significant contributor to pangenomic and ST diversity of C. jejuni, while some lineages were unique to rural counties and more commonly possessed clinically important resistance determinants. Variation was also observed in the frequency of lineages over the 4 year period with chicken and cattle specialists predominating. Altogether, these findings highlight the importance of geographically specific factors, recombination and horizontal gene transfer in shaping the population structure of C. jejuni. They also illustrate the usefulness of WGS data for predicting antibiotic susceptibilities and surveillance, which are important for guiding treatment and prevention strategies.
Collapse
Affiliation(s)
- Jose A. Rodrigues
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Heather M. Blankenship
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Wonhee Cha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Present address: National Veterinary Institute, Uppsala, Sweden
| | - Sanjana Mukherjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Present address: Center for Global Health Science and Security, Georgetown University, Washington, USA
| | - Rebekah E. Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James T. Rudrik
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Marty Soehnlen
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Meinersmann RJ, Berrang ME, Shariat NW, Richards A, Miller WG. Despite Shared Geography, Campylobacter Isolated from Surface Water Are Genetically Distinct from Campylobacter Isolated from Chickens. Microbiol Spectr 2023; 11:e0414722. [PMID: 36861983 PMCID: PMC10100874 DOI: 10.1128/spectrum.04147-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
We tested the hypothesis that Campylobacter isolated from chicken ceca and river water in an overlapping geographic area would share genetic information. Isolates of C. jejuni from chicken ceca were collected from a commercial slaughter plant and isolates of C. jejuni were also collected from rivers and creeks in the same watershed. Isolates were subjected to whole-genome sequencing and the data were used for core genome multilocus sequence typing (cgMLST). Cluster analysis showed that there were four distinct subpopulations, two from chickens and two from water. Calculation of fixation statistic (Fst) showed that all four subpopulations were significantly distinct. Greater than 90% of the loci were differentiated by subpopulation. Only two genes showed clear differentiation of both chicken subpopulations from both water subpopulations. Sequence fragments of the CJIE4 bacteriophage family were found frequently in the main chicken subpopulation and the water outgroup subpopulation but were sparsely found in the main water population and not at all in the chicken outgroup. CRISPR spacers that targeted the phage sequences were common in the main water subpopulation, only once in the main chicken subpopulation, and not at all in the chicken or water outgroups. Restriction enzyme genes also showed a biased distribution. These data suggest that there is little transfer of C. jejuni genetic material between chickens and nearby river water. Campylobacter differentiation according to these two sources does not show clear evidence of evolutionary selection; the differentiation is probably due to geospatial isolation, genetic drift, and the action of CRISPRs and restriction enzymes. IMPORTANCE Campylobacter jejuni causes gastroenteritis in humans, and chickens and environmental water are leading sources of infection. We tested the hypothesis that Campylobacter isolated from chicken ceca and river water in an overlapping geographic area would share genetic information. Isolates of Campylobacter were collected from water and chicken sources in the same watershed and their genomes were sequenced and analyzed. Four distinct subpopulations were found. There was no evidence of sharing genetic material between the subpopulations. Phage profiles, CRISPR profiles and restriction systems differed by subpopulation.
Collapse
Affiliation(s)
| | | | - Nikki W. Shariat
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amber Richards
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
16
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
17
|
Woyda R, Oladeinde A, Endale D, Strickland T, Lawrence JP, Abdo Z. Broiler house environment and litter management practices impose selective pressures on antimicrobial resistance genes and virulence factors of Campylobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526821. [PMID: 36778422 PMCID: PMC9915665 DOI: 10.1101/2023.02.02.526821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversity of Campylobacter species detected in broiler chicken litter over three consecutive flocks and determined their antimicrobial resistance and virulence factor profiles. Antimicrobial susceptibility testing and whole genome sequencing were performed on Campylobacter jejuni (n = 39) and Campylobacter coli (n = 5) isolates. All C. jejuni isolates were susceptible to all antibiotics tested while C. coli (n =4) were resistant to only tetracycline and harbored the tetracycline-resistant ribosomal protection protein (TetO). Virulence factors differed within and across grow houses but were explained by the isolates' flock cohort, species and multilocus sequence type. Virulence factors involved in the ability to invade and colonize host tissues and evade host defenses were absent from flock cohort 3 C. jejuni isolates as compared to flock 1 and 2 isolates. Our results show that virulence factors and antimicrobial resistance genes differed by the isolates' multilocus sequence type and by the flock cohort they were present in. These data suggest that the house environment and litter management practices performed imposed selective pressures on antimicrobial resistance genes and virulence factors. In particular, the absence of key virulence factors within the final flock cohort 3 isolates suggests litter reuse selected for Campylobacter strains that are less likely to colonize the chicken host.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, GA, 31793
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
18
|
Multiclonal human origin and global expansion of an endemic bacterial pathogen of livestock. Proc Natl Acad Sci U S A 2022; 119:e2211217119. [PMID: 36469788 PMCID: PMC9897428 DOI: 10.1073/pnas.2211217119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Most new pathogens of humans and animals arise via switching events from distinct host species. However, our understanding of the evolutionary and ecological drivers of successful host adaptation, expansion, and dissemination are limited. Staphylococcus aureus is a major bacterial pathogen of humans and a leading cause of mastitis in dairy cows worldwide. Here we trace the evolutionary history of bovine S. aureus using a global dataset of 10,254 S. aureus genomes including 1,896 bovine isolates from 32 countries in 6 continents. We identified 7 major contemporary endemic clones of S. aureus causing bovine mastitis around the world and traced them back to 4 independent host-jump events from humans that occurred up to 2,500 y ago. Individual clones emerged and underwent clonal expansion from the mid-19th to late 20th century coinciding with the commercialization and industrialization of dairy farming, and older lineages have become globally distributed via established cattle trade links. Importantly, we identified lineage-dependent differences in the frequency of host transmission events between humans and cows in both directions revealing high risk clones threatening veterinary and human health. Finally, pangenome network analysis revealed that some bovine S. aureus lineages contained distinct sets of bovine-associated genes, consistent with multiple trajectories to host adaptation via gene acquisition. Taken together, we have dissected the evolutionary history of a major endemic pathogen of livestock providing a comprehensive temporal, geographic, and gene-level perspective of its remarkable success.
Collapse
|
19
|
Kittiwan N, Calland JK, Mourkas E, Hitchings MD, Murray S, Tadee P, Tadee P, Duangsonk K, Meric G, Sheppard SK, Patchanee P, Pascoe B. Genetic diversity and variation in antimicrobial-resistance determinants of non-serotype 2 Streptococcus suis isolates from healthy pigs. Microb Genom 2022; 8:mgen000882. [PMID: 36326658 PMCID: PMC9836093 DOI: 10.1099/mgen.0.000882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Streptococcus suis is a leading cause of bacterial meningitis in South-East Asia, with frequent zoonotic transfer to humans associated with close contact with pigs. A small number of invasive lineages are responsible for endemic infection in the swine industry, causing considerable global economic losses. A lack of surveillance and a rising trend in clinical treatment failure has raised concerns of growing antimicrobial resistance (AMR) among invasive S. suis. Gene flow between healthy and disease isolates is poorly understood and, in this study, we sample and sequence a collection of isolates predominantly from healthy pigs in Chiang Mai province, Northern Thailand. Pangenome characterization identified extensive genetic diversity and frequent AMR carriage in isolates from healthy pigs. Multiple AMR genes were identified, conferring resistance to aminoglycosides, lincosamides, tetracycline and macrolides. All isolates were non-susceptible to three or more different antimicrobial classes, and 75 % of non-serotype 2 isolates were non-susceptible to six or more classes (compared to 37.5 % of serotype 2 isolates). AMR genes were found on integrative and conjugative elements previously observed in other species, suggesting a mobile gene pool that can be accessed by invasive disease isolates. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Nattinee Kittiwan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang 52190, Thailand
| | - Jessica K. Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Susan Murray
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK,Present address: Pathogen Genomics Unit, Public Health Wales, Cardiff, Wales, UK
| | - Pakpoom Tadee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Guillaume Meric
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK,Present address: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK,Faculty of Allied Medical Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,*Correspondence: Prapas Patchanee,
| | - Ben Pascoe
- Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK,Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK,*Correspondence: Ben Pascoe,
| |
Collapse
|
20
|
Asakura H, Yamamoto S, Yamada K, Kawase J, Nakamura H, Abe KI, Sasaki Y, Ikeda T, Nomoto R. Quantitative detection and genetic characterization of thermotolerant Campylobacter spp. in fresh chicken meats at retail in Japan. Front Microbiol 2022; 13:1014212. [PMID: 36299715 PMCID: PMC9589359 DOI: 10.3389/fmicb.2022.1014212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni and C. coli are one of the leading causes of gastrointestinal illnesses, and which are considered to be transmitted to humans mainly from chicken meats. Considering the less availability of quantitative contamination data in the retail chicken meats in Japan, 510 fresh chicken meats retailed at five distinct regions in Japan between June 2019 and March 2021 were examined. The quantitative testing resulted that 45.7% of the samples (254/510) were positive at mean ± standard deviation of 1.15 ± 1.03 logCFU/g, whereas 43 samples (8.4%) exceeded 3.0 logCFU/g. Seasonal comparison revealed increased bacterial counts in fall compared with spring and summer. As for the chicken slaughter age, those slaughtered at >75 days old were less contaminated than those at <75 days old. Genome sequencing analyses of 111 representative C. jejuni isolates resulted in the detection of three antimicrobial resistance genes (gyrA substitution T86I, tetO and blaOXA-61) at 25.2, 27.9 and 42.3%, respectively. In silico MLST analysis revealed the predominance of sequence types (ST)-21 clonal complex (CC), followed by ST-45CC and ST-464CC. The single nucleotide polymorphism (SNP)-based phylogenetic tree largely classified the sequenced C. jejuni isolates into two clusters (I and II), where all C. jejuni from highly contaminated samples (STs-21CC, -22CC and -45CC) belonged to cluster I, independent of both season and slaughter age. To our knowledge, this is the first example to study the current status of Campylobacter contamination levels in fresh chicken meats retailed in Japan. Our data would be contributable to future quantitative microbial risk assessment, to establish effective control measures for campylobacteriosis.
Collapse
Affiliation(s)
- Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- *Correspondence: Hiroshi Asakura,
| | - Shiori Yamamoto
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kazuhiro Yamada
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, Nagoya, Aichi, Japan
| | - Jun Kawase
- Department of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, Matsue, Shimane, Japan
| | - Hiromi Nakamura
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kou-ichiro Abe
- Kawasaki City Institute of Public Health, Kawasaki, Kanagawa, Japan
| | - Yoshimasa Sasaki
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Tetsuya Ikeda
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| |
Collapse
|
21
|
Genomic Characterization of Salmonella Typhimurium Isolated from Guinea Pigs with Salmonellosis in Lima, Peru. Microorganisms 2022; 10:microorganisms10091726. [PMID: 36144328 PMCID: PMC9503038 DOI: 10.3390/microorganisms10091726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is one of the most important foodborne pathogens that infect humans globally. The gastrointestinal tracts of animals like pigs, poultry or cattle are the main reservoirs of Salmonella serotypes. Guinea pig meat is an important protein source for Andean countries, but this animal is commonly infected by S. Typhimurium, producing high mortality rates and generating economic losses. Despite its impact on human health, food security, and economy, there is no genomic information about the S. Typhimurium responsible for the guinea pig infections in Peru. Here, we sequence and characterize 11 S. Typhimurium genomes isolated from guinea pigs from four farms in Lima-Peru. We were able to identify two genetic clusters (HC100_9460 and HC100_9757) distinguishable at the H100 level of the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing (HierCC-cgMLST) scheme with an average of 608 SNPs of distance. All sequences belonged to sequence type 19 (ST19) and HC100_9460 isolates were typed in silico as monophasic variants (1,4,[5],12:i:-) lacking the fljA and fljB genes. Phylogenomic analysis showed that human isolates from Peru were located within the same genetic clusters as guinea pig isolates, suggesting that these lineages can infect both hosts. We identified a genetic antimicrobial resistance cassette carrying the ant(3)-Ia, dfrA15, qacE, and sul1 genes associated with transposons TnAs3 and IS21 within an IncI1 plasmid in one guinea pig isolate, while antimicrobial resistance genes (ARGs) for β-lactam (blaCTX-M-65) and colistin (mcr-1) resistance were detected in Peruvian human-derived isolates. The presence of a virulence plasmid highly similar to the pSLT plasmid (LT2 reference strain) containing the spvRABCD operon was found in all guinea pig isolates. Finally, seven phage sequences (STGP_Φ1 to STGP_Φ7) were identified in guinea pig isolates, distributed according to the genetic lineage (H50 clusters level) and forming part of the specific gene content of each cluster. This study presents, for the first time, the genomic characteristics of S. Typhimurium isolated from guinea pigs in South America, showing particular diversity and genetic elements (plasmids and prophages) that require special attention and also broader studies in different periods of time and locations to determine their impact on human health.
Collapse
|
22
|
Drug repurposing strategy: An emerging approach to identify potential therapeutics for treatment of bovine mastitis. Microb Pathog 2022; 171:105691. [PMID: 35995254 DOI: 10.1016/j.micpath.2022.105691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
The current study was designed to characterize methicillin-resistant Staphylococcus aureus (MRSA) isolated from bovine milk, along with its response to antibiotics, and ultimately reverse its mechanism of resistance by modulation with non-antibiotics. The synergistic combination of antibiotics with NSAIDs were tested in-vivo by giving MRSA challenge to rabbits. The current study reported an overall 23.79% prevalence of MRSA. The BLAST alignment of current study sequences revealed 99% similarity with mecA gene of MRSA from NCBI database. The current study isolates were more similar to each other and also with reference sequences as compared to other mecA gene sequences from Turkey, India, and Russia. Antibiogram of MRSA isolates showed a highly resistant response to cefoxitin, amoxicillin, and gentamicin. Amoxicillin, gentamicin, tylosin, vancomycin, and ciprofloxacin elicited a significant response (p < 0.05) in combination with non-antibiotics against tested MRSA isolates. The highest zone of inhibition (ZOI) increase was noted for vancomycin in combination with flunixin meglumine (145.45%) and meloxicam (139.36%); gentamicin with flunixin meglumine (85.71%) and ciprofloxacin with ivermectin (71.13%). Synergistic behavior was observed in the combination of gentamicin with ketoprofen; sulfamethoxazole and oxytetracycline with meloxicam. Hematological analysis showed significant differences (p < 0.05) among lymphocyte count and bilirubin. On histopathological examination of skin tissue, hyperplasia of epithelium, sloughed off epidermis, hyperkeratosis, infiltration of inflammatory cells, and hemorrhages were observed. The highest cure rate was observed in case of gentamicin in combination with ketoprofen as compared to other treatment groups. The current study concluded antibiotics in combination with non-antibiotics as potential therapeutic agents for resistance modulation against MRSA. This study will help to devise treatment and control strategies against bovine mastitis. Although the prospect of using NSAIDs to manage infections caused by MRSA appears to be a promising direction, further studies should be conducted to test these medications using suitable in-vivo models in controlled clinical trials to justify their repurposing as a treatment for MRSA infections.
Collapse
|
23
|
Mouftah SF, Pascoe B, Calland JK, Mourkas E, Tonkin N, Lefevre C, Deuker D, Smith S, Wickenden H, Hitchings MD, Sheppard SK, Elhadidy M. Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Microb Genom 2022; 8. [PMID: 35675117 PMCID: PMC9455717 DOI: 10.1099/mgen.0.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ben Pascoe
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Chiang Mai University, Chiang Mai, Thailand
| | - Jessica K Calland
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Naomi Tonkin
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Charlotte Lefevre
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Danielle Deuker
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Sunny Smith
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Harry Wickenden
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | | | - Samuel K Sheppard
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Bartlett H, Holmes MA, Petrovan SO, Williams DR, Wood JLN, Balmford A. Understanding the relative risks of zoonosis emergence under contrasting approaches to meeting livestock product demand. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211573. [PMID: 35754996 PMCID: PMC9214290 DOI: 10.1098/rsos.211573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/30/2022] [Indexed: 05/03/2023]
Abstract
It has been argued that intensive livestock farming increases the risk of pandemics of zoonotic origin because of long-distance livestock movements, high livestock densities, poor animal health and welfare, low disease resistance and low genetic diversity. However, data on many of these factors are limited, and analyses to date typically ignore how land use affects emerging infectious disease (EID) risks, and how these risks might vary across systems with different yields (production per unit area). Extensive, lower yielding practices typically involve larger livestock populations, poorer biosecurity, more workers and more area under farming, resulting in different, but not necessarily lower, EID risks than higher yielding systems producing the same amount of food. To move this discussion forward, we review the evidence for each of the factors that potentially link livestock production practices to EID risk. We explore how each factor might vary with yield and consider how overall risks might differ across a mix of production systems chosen to reflect in broad terms the current livestock sector at a global level and in hypothetical low- and high-yield systems matched by overall level of production. We identify significant knowledge gaps for all potential risk factors and argue these shortfalls in understanding mean we cannot currently determine whether lower or higher yielding systems would better limit the risk of future pandemics.
Collapse
Affiliation(s)
- Harriet Bartlett
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Silviu O. Petrovan
- Department of Zoology, University of Cambridge, Cambridge, UK
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, UK
| | - David R. Williams
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Balmford
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
26
|
Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Sci Rep 2022; 12:4413. [PMID: 35292708 PMCID: PMC8924228 DOI: 10.1038/s41598-022-08230-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) poses an important threat in human and animal health. In this study, we ask whether resistance and virulence genes in S. aureus are homogeneously distributed or constrained by different animal hosts. We carried out whole genome sequencing of 114 S. aureus isolates from ten species of animals sampled from four New England states (USA) in 2017-2019. The majority of the isolates came from cats, cows and dogs. The maximum likelihood phylogenetic tree based on the alignment of 89,143 single nucleotide polymorphisms of 1173 core genes reveal 31 sequence types (STs). The most common STs were ST5, ST8, ST30, ST133 and ST2187. Every genome carried at least eight acquired resistance genes. Genes related to resistance found in all genomes included norA (fluoroquinolone), arlRS (fluoroquinolone), lmrS (multidrug), tet(38) (tetracycline) and mepAR (multidrug and tigecycline resistance). The most common superantigen genes were tsst-1, sea and sec. Acquired antibiotic resistance (n = 10) and superantigen (n = 9) genes of S. aureus were widely shared between S. aureus lineages and between strains from different animal hosts. These analyses provide insights for considering bacterial gene sharing when developing strategies to combat the emergence of high-risk clones in animals.
Collapse
|
27
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
28
|
Moura A, Lefrancq N, Wirth T, Leclercq A, Borges V, Gilpin B, Dallman TJ, Frey J, Franz E, Nielsen EM, Thomas J, Pightling A, Howden BP, Tarr CL, Gerner-Smidt P, Cauchemez S, Salje H, Brisse S, Lecuit M, Listeria CC1 Study Group. Emergence and global spread of Listeria monocytogenes main clinical clonal complex. SCIENCE ADVANCES 2021; 7:eabj9805. [PMID: 34851675 PMCID: PMC8635441 DOI: 10.1126/sciadv.abj9805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The bacterial foodborne pathogen Listeria monocytogenes clonal complex 1 (Lm-CC1) is the most prevalent clonal group associated with human listeriosis and is strongly associated with cattle and dairy products. Here, we analyze 2021 isolates collected from 40 countries, covering Lm-CC1 first isolation to present days, to define its evolutionary history and population dynamics. We show that Lm-CC1 spread worldwide from North America following the Industrial Revolution through two waves of expansion, coinciding with the transatlantic livestock trade in the second half of the 19th century and the rapid growth of cattle farming and food industrialization in the 20th century. In sharp contrast to its global spread over the past century, transmission chains are now mostly local, with limited inter- and intra-country spread. This study provides an unprecedented insight into L. monocytogenes phylogeography and population dynamics and highlights the importance of genome analyses for a better control of pathogen transmission.
Collapse
Affiliation(s)
- Alexandra Moura
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Noémie Lefrancq
- Institut Pasteur, Université de Paris, Mathematical Modelling of Infectious Diseases Unit, CNRS UMR 2000, Paris, France
| | - Thierry Wirth
- Institut Systématique Evolution Biodiversité (ISYEB),Museum National d’Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, Paris, France
- PSL University, EPHE, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Brent Gilpin
- Christchurch Science Centre, Institute of Environmental Science and Research Limited, Christchurch, New Zealand
| | | | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Juno Thomas
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Arthur Pightling
- Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia
| | - Cheryl L. Tarr
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Simon Cauchemez
- Institut Pasteur, Université de Paris, Mathematical Modelling of Infectious Diseases Unit, CNRS UMR 2000, Paris, France
| | - Henrik Salje
- Institut Pasteur, Université de Paris, Mathematical Modelling of Infectious Diseases Unit, CNRS UMR 2000, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | | |
Collapse
|
29
|
Arning N, Sheppard SK, Bayliss S, Clifton DA, Wilson DJ. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet 2021; 17:e1009436. [PMID: 34662334 PMCID: PMC8553134 DOI: 10.1371/journal.pgen.1009436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/28/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis is among the world's most common foodborne illnesses, caused predominantly by the bacterium Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as transmission occurs via multiple sources such as contaminated meat, poultry, and drinking water. Strain variation has allowed source tracking based upon allelic variation in multi-locus sequence typing (MLST) genes allowing isolates from infected individuals to be attributed to specific animal or environmental reservoirs. However, the accuracy of probabilistic attribution models has been limited by the ability to differentiate isolates based upon just 7 MLST genes. Here, we broaden the input data spectrum to include core genome MLST (cgMLST) and whole genome sequences (WGS), and implement multiple machine learning algorithms, allowing more accurate source attribution. We increase attribution accuracy from 64% using the standard iSource population genetic approach to 71% for MLST, 85% for cgMLST and 78% for kmerized WGS data using the classifier we named aiSource. To gain insight beyond the source model prediction, we use Bayesian inference to analyse the relative affinity of C. jejuni strains to infect humans and identified potential differences, in source-human transmission ability among clonally related isolates in the most common disease causing lineage (ST-21 clonal complex). Providing generalizable computationally efficient methods, based upon machine learning and population genetics, we provide a scalable approach to global disease surveillance that can continuously incorporate novel samples for source attribution and identify fine-scale variation in transmission potential.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
- * E-mail:
| | - Samuel K. Sheppard
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sion Bayliss
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - David A. Clifton
- Department of Engineering Science, University of Oxford, Oxford, UK; Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Daniel J. Wilson
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| |
Collapse
|
30
|
Panzenhagen P, Portes AB, dos Santos AMP, Duque SDS, Conte Junior CA. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes (Basel) 2021; 12:1538. [PMID: 34680933 PMCID: PMC8535712 DOI: 10.3390/genes12101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is responsible for 80% of human campylobacteriosis and is the leading cause of gastroenteritis globally. The relevant public health risks of C. jejuni are caused by particular virulence genes encompassing its virulome. We analyzed 40,371 publicly available genomes of C. jejuni deposited in the NCBI Pathogen Detection Database, combining their epidemiologic metadata with an in silico bioinformatics analysis to increase our current comprehension of their virulome from a global perspective. The collection presented a virulome composed of 126 identified virulence factors that were grouped in three clusters representing the accessory, the softcore, and the essential core genes according to their prevalence within the genomes. The multilocus sequence type distribution in the genomes was also investigated. An unexpected low prevalence of the full-length flagellin flaA and flaB locus of C. jejuni genomes was revealed, and an essential core virulence gene repertoire prevalent in more than 99.99% of genomes was identified. Altogether, this is a pioneer study regarding Campylobacter jejuni that has compiled a significant amount of data about the Multilocus Sequence Type and virulence factors concerning their global prevalence and distribution over this database.
Collapse
Affiliation(s)
- Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
31
|
Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E, Thorpe HA, Hitchings MD, Feil EJ, Corander J, Blaser MJ, Falush D, Sheppard SK. Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829. [PMID: 34582435 PMCID: PMC8500405 DOI: 10.1371/journal.pgen.1009829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.
Collapse
Affiliation(s)
- Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Elvire Berthenet
- French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, Bordeaux, France
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Harry A. Thorpe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Matthew D. Hitchings
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Edward J. Feil
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Falush
- Centre for Microbes, Development and Health, Institute Pasteur of Shanghai, Shanghai, China
- * E-mail: (DF); (SKS)
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DF); (SKS)
| |
Collapse
|
32
|
Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, Veerabadhran-Gurunathan S, Jawahir S, Calland JK, Mourkas E, Patel R, Wiens T, Decuir M, Boxrud D, Smith K, Parker CT, Farrugia G, Zhang Q, Sheppard SK, Grover M. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015. [PMID: 34462533 PMCID: PMC8405632 DOI: 10.1038/s42003-021-02554-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition. Stephanie Peters, Ben Pascoe, et al. use whole-genome sequencing and phenotypic analysis of clinical strains from patients to identify potential genetic factors involved in irritable bowel syndrome resulting from Campylobacter jejuni infection. Their data suggest that genes involved in the bacterial stress response and biosynthetic pathways may contribute toward irritable bowel syndrome, providing further insight into links between Campylobacter genotypes and risk of disease.
Collapse
Affiliation(s)
- Stephanie Peters
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Ximin Zeng
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam Edwinson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Wiens
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marijke Decuir
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Boxrud
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirk Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Craig T Parker
- United States Department of Agriculture, Albany, CA, USA
| | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
| | - Madhusudan Grover
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Implementing a new dose-response model for estimating infection probability of Campylobacter jejuni based on the key events dose-response framework. Appl Environ Microbiol 2021; 87:e0129921. [PMID: 34347512 DOI: 10.1128/aem.01299-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the dose-response relationship between ingested pathogenic bacteria and infection probability is a key factor for appropriate risk assessment of foodborne pathogens. The objectives of this study were to develop and validate a novel mechanistic dose-response model for Campylobacter jejuni and simulate the underlying mechanism of foodborne illness during digestion. Bacterial behavior in the human gastrointestinal environment, including survival at low pH in the gastric environment after meals, transition to intestines, and invasion to intestinal tissues, was described using a Bayesian statistical model based on the reported experimental results of each process while considering physical food types (liquid or solid) and host age (young adult or elderly). Combining the models in each process, the relationship between pathogen intake and the infection probability of C. jejuni was estimated and compared with reported epidemiological dose-response relationships. Taking food types and host age into account, the prediction range of the infection probability of C. jejuni successfully covered the reported dose-response relationships from actual C. jejuni outbreaks. According to sensitivity analysis of predicted infection probabilities, the host age factor and the food type factor have relatively higher relevance than other factors. Thus, the developed Key Events Dose Response Framework can derive novel information for quantitative microbiological risk assessment in addition of dose-response relationship. The developed framework is potentially applicable to other pathogens to quantify the dose-response relationship from experimental data obtained from digestion. Importance Based on the mechanistic approach called Key Events Dose Response Framework alternative to previous non-mechanistic approach, the dose-response models for infection probability of C. jejuni were developed considering with age of people who take pathogen and food type. The developed predictive framework illustrated highly accurate prediction of dose (minimum difference 0.21 log CFU) for a certain infection probability compared with the previously reported dose-response relationship. In addition, the developed prediction procedure revealed that the dose-response relationship strongly depends on food type as well as host age. The implementation of Key Event Dose Response Framework will mechanistically and logically reveal the dose-response relationship and provide useful information with quantitative microbiological risk assessment of C. jejuni on foods.
Collapse
|
34
|
Rahman MA, Paul PR, Hoque N, Islam SS, Haque AKMZ, Sikder MH, Matin A, Yamasaki S, Kabir SML. Prevalence and Antimicrobial Resistance of Campylobacter Species in Diarrheal Patients in Mymensingh, Bangladesh. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9229485. [PMID: 34395627 PMCID: PMC8357465 DOI: 10.1155/2021/9229485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
Campylobacter enteritis is the leading cause of gastroenteritis in humans worldwide including Bangladesh. The objectives of this study were to estimate the prevalence and antimicrobial-resistance status of Campylobacter spp. in human diarrheal samples collected from Surya Kanta Hospital, Mymensingh, Bangladesh. In this study, we evaluated a total of 330 clinical samples for the presence Campylobacter spp. via cultural and biochemical tests and molecular assays. Furthermore, antimicrobial susceptibility testing for Campylobacter species was accomplished by the standard agar disc diffusion technique against eight commercially available antimicrobial agents. A pretested semistructured questionnaire was used to capture the data on socioanthropological factors from the diarrheal patients. Pearson's chi-square test was performed, and a p value of <0.05 was considered for the level of significance. Nearly one in three diarrheal patients admitted in this hospital were infected with Campylobacter spp. Overall prevalence of Campylobacter spp. was estimated to be 31.5% (104/330) that comprised the prevalence of C. jejuni, 21.8% (n = 72), and C. coli, 9.6% (n = 32). Among the positive cases, the prevalence of Campylobacter was higher in the age group 0-5 years (52%) followed by 6-18 years (42.7%), 19-40 years (34.0%), 41-60 years (25.4%), and >60 years (10.5%). Age, family level's personal hygiene, and involvement with animal husbandry were captured as potential determinants to be associated with the Campylobacter positive status. Among the isolates, 27.3% (n = 20) of C. jejuni and 31.2% (n = 10) of C. coli demonstrated as multidrug-resistant (MDR) to three or more antimicrobial agents. The present study shows that Campylobacter spp. is most prevalent among the hospital-admitted diarrheal patients, and proper measures should be taken to reduce the burden focusing on the potential determinants.
Collapse
Affiliation(s)
- Md. Ashikur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Priyanka Rani Paul
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nazmul Hoque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sk Shaheenur Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - A. K. M. Ziaul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Aminul Matin
- Health Care Center, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
35
|
Cobo-Díaz JF, González Del Río P, Álvarez-Ordóñez A. Whole Resistome Analysis in Campylobacter jejuni and C. coli Genomes Available in Public Repositories. Front Microbiol 2021; 12:662144. [PMID: 34290678 PMCID: PMC8287256 DOI: 10.3389/fmicb.2021.662144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Campylobacter spp. are the most frequent agent of human gastroenteritis worldwide, and the spread of multidrug-resistant strains makes the clinical treatment difficult. The current study presents the resistome analysis of 39,798 Campylobacter jejuni and 11,920 Campylobacter coli genomes available in public repositories. Determinants of resistance to β-lactams (Be) and tetracyclines (Te) were the most frequent for both species, with resistance to quinolones (Qu) as the third most important on C. jejuni and to aminoglycosides (Am) on C. coli. Moreover, resistance to Te, Qu, and Am was frequently found in co-occurrence with resistance to other antibiotic families. Geographical differences on clonal complexes distribution were found for C. jejuni and on resistome genotypes for both C. jejuni and C. coli species. Attending to the resistome patterns by isolation source, three main clusters of genomes were found on C. jejuni genomes at antimicrobial resistance gene level. The first cluster was formed by genomes from human, food production animals (e.g., sheep, cow, and chicken), and food (e.g., dairy products) isolates. The higher incidence of tet(O), associated with tetracycline resistance, and the gyrA (T86I) single-nucleotide polymorphism (SNP), associated with quinolone resistance, among genomes from this cluster could be due to the intense use of these antibiotics in veterinary and human clinical settings. Similarly, a high incidence of tet(O) genes of C. coli genomes from pig, cow, and turkey was found. Moreover, the cluster based on resistome patterns formed by C. jejuni and C. coli genomes of human, turkey, and chicken origin is in agreement with previous observations reporting chicken or poultry-related environments as the main source of human campylobacteriosis infections. Most clonal complexes (CCs) associated with chicken host specialization (e.g., ST-354, ST-573, ST-464, and ST-446) were the CCs with the highest prevalence of determinants of resistance to Be, Qu, and Te. Finally, a clear trend toward an increase in the occurrence of Te and Qu resistance determinants on C. jejuni, linked to the spread of the co-occurrence of the blaOXA–61 and tet(O)-tet(O/W/O) genes and the gyrA (T86I) SNP, was found from 2001 to date in Europe.
Collapse
Affiliation(s)
- José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | | | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
36
|
Lopez-Chavarrias V, Ugarte-Ruiz M, Barcena C, Olarra A, Garcia M, Saez JL, de Frutos C, Serrano T, Perez I, Moreno MA, Dominguez L, Alvarez J. Monitoring of Antimicrobial Resistance to Aminoglycosides and Macrolides in Campylobacter coli and Campylobacter jejuni From Healthy Livestock in Spain (2002-2018). Front Microbiol 2021; 12:689262. [PMID: 34276619 PMCID: PMC8283307 DOI: 10.3389/fmicb.2021.689262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter spp. (Campylobacter coli and Campylobacter jejuni) is a concern due to its importance in public health, particularly when it involves aminoglycosides and macrolides, drugs of choice for treatment of human cases. Co-resistance to these two antimicrobial classes involves transfer of genetic elements and/or acquisition of mutations in different genetic loci, which can in turn spread through vertical or horizontal gene transfer (HGT) phenomena, with each route having different potential implications. This study aimed at evaluating the association between the presence of phenotypic resistance to these two antimicrobial classes in C. coli and C. jejuni recovered from livestock at slaughterhouses in Spain (as part of the AMR surveillance program), and at assessing the genetic heterogeneity between resistant and susceptible isolates by analysing the "short variable region" (SVR) of the flaA gene. Over the 2002-2018 period, antimicrobial susceptibility test results from 10,965 Campylobacter isolates retrieved from fecal samples of broilers, turkeys, pigs and cattle were collected to compare the proportion of resistant isolates and the Minimum Inhibitory Concentrations (MICs) against six antimicrobials including gentamicin (GEN), streptomycin (STR), and erythromycin (ERY). AMR-associated genes were determined for a group of 51 isolates subjected to whole genome sequencing, and the flaA SVR of a subset of 168 isolates from all hosts with different resistotypes was used to build a Neighbor-Joining-based phylogenetic tree and assess the existence of groups by means of "relative synonymous codon usage" (RSCU) analysis. The proportion of antimicrobial resistant isolates to both, aminoglycosides and macrolides, varied widely for C. coli (7-91%) and less for C. jejuni (all hosts 0-11%). Across hosts, these proportions were 7-56% in poultry, 12-82% in cattle, and 22-91% in pigs for C. coli and 0-8% in poultry and 1-11% in cattle for C. jejuni. Comparison of the MIC distributions revealed significant host-specific differences only for ERY in C. jejuni (p = 0.032). A significant association in the simultaneous presentation of AMR to both antimicrobial classes was observed across hosts/bacterial species. The flaA gene analysis showed clustering of isolates sharing resistotype and to a lesser degree bacterial species and host. Several resistance markers associated with resistance to aminoglycosides and macrolides were found among the sequenced isolates. The consistent association between the simultaneous presentation of AMR to aminoglycosides and macrolides in all hosts could be due to the persistence of strains and/or resistance mechanisms in Campylobacter populations in livestock over time. Further studies based on whole genome sequencing are needed to assess the epidemiological links between hosts and bacterial strains.
Collapse
Affiliation(s)
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Barcena
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Adolfo Olarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Garcia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Tania Serrano
- TRAGSATEC, Tecnologías y Servicios Agrarios S.A., Madrid, Spain
| | - Iratxe Perez
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Miguel Angel Moreno
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Genome-wide insights into population structure and host specificity of Campylobacter jejuni. Sci Rep 2021; 11:10358. [PMID: 33990625 PMCID: PMC8121833 DOI: 10.1038/s41598-021-89683-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
The zoonotic pathogen Campylobacter jejuni is among the leading causes of foodborne diseases worldwide. While C. jejuni colonises many wild animals and livestock, persistence mechanisms enabling the bacterium to adapt to host species' guts are not fully understood. In order to identify putative determinants influencing host preferences of distinct lineages, bootstrapping based on stratified random sampling combined with a k-mer-based genome-wide association was conducted on 490 genomes from diverse origins in Germany and Canada. We show a strong association of both the core and the accessory genome characteristics with distinct host animal species, indicating multiple adaptive trajectories defining the evolution of C. jejuni lifestyle preferences in different ecosystems. Here, we demonstrate that adaptation towards a specific host niche ecology is most likely a long evolutionary and multifactorial process, expressed by gene absence or presence and allele variations of core genes. Several host-specific allelic variants from different phylogenetic backgrounds, including dnaE, rpoB, ftsX or pycB play important roles for genome maintenance and metabolic pathways. Thus, variants of genes important for C. jejuni to cope with specific ecological niches or hosts may be useful markers for both surveillance and future pathogen intervention strategies.
Collapse
|
38
|
Buzzanca D, Botta C, Ferrocino I, Alessandria V, Houf K, Rantsiou K. Functional pangenome analysis reveals high virulence plasticity of Aliarcobacter butzleri and affinity to human mucus. Genomics 2021; 113:2065-2076. [PMID: 33961980 DOI: 10.1016/j.ygeno.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
Aliarcobacter butzleri is an emerging pathogen that may cause enteritis in humans, however, the incidence of disease caused by this member of the Campylobacteriaceae family is still underestimated. Furthermore, little is known about the precise virulence mechanism and behavior during infection. Therefore, in the present study, through complementary use of comparative genomics and physiological tests on human gut models, we sought to elucidate the genetic background of a set of 32 A. butzleri strains of diverse origin and to explore the correlation with the ability to colonize and invade human intestinal cells in vitro. The simulated infection of human intestinal models showed a higher colonization rate in presence of mucus-producing cells. For some strains, human mucus significantly improved the resistance to physical removal from the in vitro mucosa, while short time-frame growth was even observed. Pangenome analysis highlighted a hypervariable accessory genome, not strictly correlated to the isolation source. Likewise, the strain phylogeny was unrelated to their shared origin, despite a certain degree of segregation was observed among strains isolated from different segments of the intestinal tract of pigs. The putative virulence genes detected in all strains were mostly encompassed in the accessory fraction of the pangenome. The LPS biosynthesis and in particular the chain glycosylation of the O-antigen is harbored in a region of high plasticity of the pangenome, which would indicate frequent horizontal gene transfer phenomena, as well as the involvement of this hypervariable structure in the adaptive behavior and sympatric evolution of A. butzleri. Results of the present study deepen the current knowledge on A. butzleri pangenome by extending the pool of genes regarded as virulence markers and provide bases to develop new diagnostic approaches for the detection of those strains with a higher virulence potential.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy; Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy.
| |
Collapse
|
39
|
Kobras CM, Fenton AK, Sheppard SK. Next-generation microbiology: from comparative genomics to gene function. Genome Biol 2021; 22:123. [PMID: 33926534 PMCID: PMC8082670 DOI: 10.1186/s13059-021-02344-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
Microbiology is at a turning point in its 120-year history. Widespread next-generation sequencing has revealed genetic complexity among bacteria that could hardly have been imagined by pioneers such as Pasteur, Escherich and Koch. This data cascade brings enormous potential to improve our understanding of individual bacterial cells and the genetic basis of phenotype variation. However, this revolution in data science cannot replace established microbiology practices, presenting the challenge of how to integrate these new techniques. Contrasting comparative and functional genomic approaches, we evoke molecular microbiology theory and established practice to present a conceptual framework and practical roadmap for next-generation microbiology.
Collapse
Affiliation(s)
- Carolin M Kobras
- Department of Molecular Biology & Biotechnology, University of Sheffield, The Florey Institute for Host-Pathogen Interactions, Sheffield, UK
| | - Andrew K Fenton
- Department of Molecular Biology & Biotechnology, University of Sheffield, The Florey Institute for Host-Pathogen Interactions, Sheffield, UK.
| | - Samuel K Sheppard
- Department of Biology & Biochemistry, University of Bath, Milner Centre for Evolution, Bath, UK.
| |
Collapse
|
40
|
Parker CT, Cooper KK, Schiaffino F, Miller WG, Huynh S, Gray HK, Olortegui MP, Bardales PG, Trigoso DR, Penataro-Yori P, Kosek MN. Genomic Characterization of Campylobacter jejuni Adapted to the Guinea Pig ( Cavia porcellus) Host. Front Cell Infect Microbiol 2021; 11:607747. [PMID: 33816330 PMCID: PMC8012767 DOI: 10.3389/fcimb.2021.607747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of gastroenteritis worldwide with excessive incidence in low-and middle-income countries (LMIC). During a survey for C. jejuni from putative animal hosts in a town in the Peruvian Amazon, we were able to isolate and whole genome sequence two C. jejuni strains from domesticated guinea pigs (Cavia porcellus). The C. jejuni isolated from guinea pigs had a novel multilocus sequence type that shared some alleles with other C. jejuni collected from guinea pigs. Average nucleotide identity and phylogenetic analysis with a collection of C. jejuni subsp. jejuni and C. jejuni subsp. doylei suggest that the guinea pig isolates are distinct. Genomic comparisons demonstrated gene gain and loss that could be associated with guinea pig host specialization related to guinea pig diet, anatomy, and physiology including the deletion of genes involved with selenium metabolism, including genes encoding the selenocysteine insertion machinery and selenocysteine-containing proteins.
Collapse
Affiliation(s)
- Craig T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Francesca Schiaffino
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.,The Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Hannah K Gray
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | | | | | - Pablo Penataro-Yori
- The Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia, Charlottesville, VA, United States.,Biomedical Research, Asociación Benéfica PRISMA, Iquitos, Peru
| | - Margaret N Kosek
- The Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia, Charlottesville, VA, United States.,Biomedical Research, Asociación Benéfica PRISMA, Iquitos, Peru
| |
Collapse
|
41
|
Truccollo B, Whyte P, Burgess C, Bolton D. Genetic characterisation of a subset of Campylobacter jejuni isolates from clinical and poultry sources in Ireland. PLoS One 2021; 16:e0246843. [PMID: 33690659 PMCID: PMC7943001 DOI: 10.1371/journal.pone.0246843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Campylobacter spp. is a significant and prevalent public health hazard globally. Campylobacter jejuni is the most frequently recovered species from human cases and poultry are considered the most important reservoir for its transmission to humans. In this study, 30 Campylobacter jejuni isolates were selected from clinical (n = 15) and broiler (n = 15) sources from a larger cohort, based on source, virulence, and antimicrobial resistance profiles. The objective of this study was to further characterise the genomes of these isolates including MLST types, population structure, pan-genome, as well as virulence and antimicrobial resistance determinants. A total of 18 sequence types and 12 clonal complexes were identified. The most common clonal complex was ST-45, which was found in both clinical and broiler samples. We characterised the biological functions that were associated with the core and accessory genomes of the isolates in this study. No significant difference in the prevalence of virulence or antimicrobial resistance determinants was observed between clinical and broiler isolates, although genes associated with severe illness such as neuABC, wlaN and cstIII were only detected in clinical isolates. The ubiquity of virulence factors associated with motility, invasion and cytolethal distending toxin (CDT) synthesis in both clinical and broiler C. jejuni genomes and genetic similarities between groups of broiler and clinical C. jejuni reaffirm that C. jejuni from poultry remains a significant threat to public health.
Collapse
Affiliation(s)
- Brendha Truccollo
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
| | - Declan Bolton
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
| |
Collapse
|
42
|
Hoque N, Islam SKS, Uddin MN, Arif M, Haque AKMZ, Neogi SB, Hossain MM, Yamasaki S, Kabir SML. Prevalence, Risk Factors, and Molecular Detection of Campylobacter in Farmed Cattle of Selected Districts in Bangladesh. Pathogens 2021; 10:313. [PMID: 33800065 PMCID: PMC7998914 DOI: 10.3390/pathogens10030313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
A cross-sectional survey was conducted in selected districts of Bangladesh to estimate prevalence, risk factors, and molecular detection of Campylobacter isolates from 540 farmed cattle of 90 herds. As an individual sample, 540 feces, and as a pooled sample, 180 milk samples, 90 feed samples, 90 water samples, 90 manure samples, and 90 animal attendants' hand-rinse water were collected and tested via culture, biochemical, and molecular assays. A pretested semi-structured questionnaire was used to collect herd-level data on risk factors with the herd owners. The herd-level data on risk factors were analyzed through univariate and multivariate analyses, and a p-value <0.05 was considered statistically significant for all analyses. Overall, farm-level prevalence of bovine Campylobacter was enumerated to be 53.3% (95% confidence interval [CI]: 42.5-63.9%). The feces sample was found to be a high level of contamination of 30.9% (95% CI: 27-35%) followed by the manure swab (pooled) at 15.6% (95% CI: 8.8-24.7%). Campylobacter jejuni was documented as an abundant species (12.6%), followed by Campylobacter coli (5.1%), and Campylobacter fetus (0.3%). Older farms (>5 years of age), no/minimum cleaning and disinfection practices, along with animal roaming outside of the farm, were documented as significant risk factors for farm-level Campylobacter occurrence. Evidence-based control measures need to be taken through stringent biosecurity and hygienic measurement to lessen the load of the Campylobacter pathogen in the farm environment and prevent further transmission to animals and humans.
Collapse
Affiliation(s)
- Nazmul Hoque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - SK Shaheenur Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - Md. Nasir Uddin
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - Mohammad Arif
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - A. K. M. Ziaul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| | - Sucharit Basu Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (S.B.N.); (S.Y.)
| | - Md. Mehedi Hossain
- Program Specialist (Livestock), Krishi Gobeshona Foundation (KGF), Dhaka 1215, Bangladesh;
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (S.B.N.); (S.Y.)
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (N.H.); (S.S.I.); (M.N.U.); (M.A.); (A.K.M.Z.H.)
| |
Collapse
|
43
|
Abstract
Campylobacter jejuni and Campylobacter coli can be frequently isolated from poultry and poultry-derived products, and in combination these two species cause a large portion of human bacterial gastroenteritis cases. While birds are typically colonized by these Campylobacter species without clinical symptoms, in humans they cause (foodborne) infections at high frequencies, estimated to cost billions of dollars worldwide every year. The clinical outcome of Campylobacter infections comprises malaise, diarrhea, abdominal pain and fever. Symptoms may continue for up to two weeks and are generally self-limiting, though occasionally the disease can be more severe or result in post-infection sequelae. The virulence properties of these pathogens have been best-characterized for C. jejuni, and their actions are reviewed here. Various virulence-associated bacterial determinants include the flagellum, numerous flagellar secreted factors, protein adhesins, cytolethal distending toxin (CDT), lipooligosaccharide (LOS), serine protease HtrA and others. These factors are involved in several pathogenicity-linked properties that can be divided into bacterial chemotaxis, motility, attachment, invasion, survival, cellular transmigration and spread to deeper tissue. All of these steps require intimate interactions between bacteria and host cells (including immune cells), enabled by the collection of bacterial and host factors that have already been identified. The assortment of pathogenicity-associated factors now recognized for C. jejuni, their function and the proposed host cell factors that are involved in crucial steps leading to disease are discussed in detail.
Collapse
|
44
|
Hull DM, Harrell E, van Vliet AHM, Correa M, Thakur S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018-2019. PLoS One 2021; 16:e0246571. [PMID: 33571292 PMCID: PMC7877606 DOI: 10.1371/journal.pone.0246571] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated C. coli and C. jejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (C. coli n = 343, C. jejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence factors, while three C. coli carried the C. jejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of C. coli and C. jejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapA, ceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between C. coli and C. jejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.
Collapse
Affiliation(s)
- Dawn M Hull
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Maria Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
45
|
Importance of the Farm Environment and Wildlife for Transmission of Campylobacter jejuni in A Pasture-Based Dairy Herd. Microorganisms 2020; 8:microorganisms8121877. [PMID: 33260888 PMCID: PMC7761079 DOI: 10.3390/microorganisms8121877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023] Open
Abstract
Cattle are an established reservoir of the foodborne bacterial pathogen Campylobacter jejuni. Our six-month study aimed to evaluate sources and pathways governing long-term presence of C. jejuni in a pasture-based dairy herd. C. jejuni was detected in all sample types (soil, pasture, stock drinking water, bird, rodents and cow faeces). It was persistently detected from cow (54%; 49/90 samples) and bird (36%; 77/211) faeces. Genetic comparison of 252 C. jejuni isolates identified 30 Multi-Locus Sequence Types (ST). ST-61 and ST-42 were persistent in the herd and accounted for 43% of the cow isolates. They were also detected on pasture collected from fields both recently and not recently grazed, indicating that grazed pasture is an important pathway and reservoir for horizontal transmission among cows. ST-61 accounted for 9% of the bird isolates and was detected at four of the six sampling events, suggesting that bird populations might contribute to the cycling of ruminant-adapted genotypes on-farm. Overall, the results indicated that management of grazed pasture and supplementary feed contaminated by bird droppings could be targeted to effectively reduce transmission of C. jejuni to dairy herds, the farm environment and ultimately to humans.
Collapse
|
46
|
O'Keeffe KR, Oppler ZJ, Brisson D. Evolutionary ecology of Lyme Borrelia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104570. [PMID: 32998077 PMCID: PMC8349510 DOI: 10.1016/j.meegid.2020.104570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
The bacterial genus, Borrelia, is comprised of vector-borne spirochete species that infect and are transmitted from multiple host species. Some Borrelia species cause highly-prevalent diseases in humans and domestic animals. Evolutionary, ecological, and molecular research on many Borrelia species have resulted in tremendous progress toward understanding the biology and natural history of these species. Yet, many outstanding questions, such as how Borrelia populations will be impacted by climate and land-use change, will require an interdisciplinary approach. The evolutionary ecology research framework incorporates theory and data from evolutionary, ecological, and molecular studies while overcoming common assumptions within each field that can hinder integration across these disciplines. Evolutionary ecology offers a framework to evaluate the ecological consequences of evolved traits and to predict how present-day ecological processes may result in further evolutionary change. Studies of microbes with complex transmission cycles, like Borrelia, which interact with multiple vertebrate hosts and arthropod vectors, are poised to leverage the power of the evolutionary ecology framework to identify the molecular interactions involved in ecological processes that result in evolutionary change. Using existing data, we outline how evolutionary ecology theory can delineate how interactions with other species and the physical environment create selective forces or impact migration of Borrelia populations and result in micro-evolutionary changes. We further discuss the ecological and molecular consequences of those micro-evolutionary changes. While many of the currently outstanding questions will necessitate new experimental designs and additional empirical data, many others can be addressed immediately by integrating existing molecular and ecological data within an evolutionary ecology framework.
Collapse
Affiliation(s)
| | - Zachary J Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Everard M, Johnston P, Santillo D, Staddon C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. ENVIRONMENTAL SCIENCE & POLICY 2020; 111:7-17. [PMID: 32501392 PMCID: PMC7247996 DOI: 10.1016/j.envsci.2020.05.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 05/19/2023]
Abstract
There is rising international concern about the zoonotic origins of many global pandemics. Increasing human-animal interactions are perceived as driving factors in pathogen transfer, emphasising the close relationships between human, animal and environmental health. Contemporary livelihood and market patterns tend to degrade ecosystems and their services, driving a cycle of degradation in increasingly tightly linked socio-ecological systems. This contributes to reductions in the natural regulating capacities of ecosystem services to limit disease transfer from animals to humans. It also undermines natural resource availability, compromising measures such as washing and sanitation that may be key to managing subsequent human-to-human disease transmission. Human activities driving this degrading cycle tend to convert beneficial ecosystem services into disservices, exacerbating risks related to zoonotic diseases. Conversely, measures to protect or restore ecosystems constitute investment in foundational capital, enhancing their capacities to provide for greater human security and opportunity. We use the DPSIR (Drivers-Pressures-State change-Impact-Response) framework to explore three aspects of zoonotic diseases: (1) the significance of disease regulation ecosystem services and their degradation in the emergence of Covid-19 and other zoonotic diseases; and of the protection of natural resources as mitigating contributions to both (2) regulating human-to-human disease transfer; and (3) treatment of disease outbreaks. From this analysis, we identify a set of appropriate response options, recognising the foundational roles of ecosystems and the services they provide in risk management. Zoonotic disease risks are ultimately interlinked with biodiversity crises and water insecurity. The need to respond to the Covid-19 pandemic ongoing at the time of writing creates an opportunity for systemic policy change, placing scientific knowledge of the value and services of ecosystems at the heart of societal concerns as a key foundation for a more secure future. Rapid political responses and unprecedented economic stimuli reacting to the pandemic demonstrate that systemic change is achievable at scale and pace, and is also therefore transferrable to other existential, global-scale threats including climate change and the 'biodiversity crisis'. This also highlights the need for concerted global action, and is also consistent with the duties, and ultimately the self-interests, of developed, donor nations.
Collapse
Affiliation(s)
- Mark Everard
- University of the West of England (UWE), Coldharbour Lane, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Paul Johnston
- Greenpeace Research Laboratories, School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter, EX4 4RN, UK
| | - David Santillo
- Greenpeace Research Laboratories, School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter, EX4 4RN, UK
| | - Chad Staddon
- University of the West of England (UWE), Coldharbour Lane, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
48
|
Pascoe B, Schiaffino F, Murray S, Méric G, Bayliss SC, Hitchings MD, Mourkas E, Calland JK, Burga R, Yori PP, Jolley KA, Cooper KK, Parker CT, Olortegui MP, Kosek MN, Sheppard SK. Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Negl Trop Dis 2020; 14:e0008533. [PMID: 32776937 PMCID: PMC7440661 DOI: 10.1371/journal.pntd.0008533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Campylobacter is the leading bacterial cause of gastroenteritis worldwide and its incidence is especially high in low- and middle-income countries (LMIC). Disease epidemiology in LMICs is different compared to high income countries like the USA or in Europe. Children in LMICs commonly have repeated and chronic infections even in the absence of symptoms, which can lead to deficits in early childhood development. In this study, we sequenced and characterized C. jejuni (n = 62) from a longitudinal cohort study of children under the age of 5 with and without diarrheal symptoms, and contextualized them within a global C. jejuni genome collection. Epidemiological differences in disease presentation were reflected in the genomes, specifically by the absence of some of the most common global disease-causing lineages. As in many other countries, poultry-associated strains were likely a major source of human infection but almost half of local disease cases (15 of 31) were attributable to genotypes that are rare outside of Peru. Asymptomatic infection was not limited to a single (or few) human adapted lineages but resulted from phylogenetically divergent strains suggesting an important role for host factors in the cryptic epidemiology of campylobacteriosis in LMICs.
Collapse
Affiliation(s)
- Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Francesca Schiaffino
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Susan Murray
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rosa Burga
- Bacteriology Department, Naval Medical Research Unit-6 (NAMRU-6), Iquitos, Peru
| | - Pablo Peñataro Yori
- The Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Asociacion Benefica Prisma, Loreto, Peru
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America
| | | | - Margaret N. Kosek
- The Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Asociacion Benefica Prisma, Loreto, Peru
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
49
|
McCann HC. Skirmish or war: the emergence of agricultural plant pathogens. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:147-152. [PMID: 32712539 DOI: 10.1016/j.pbi.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the ecological and evolutionary processes underlying the emergence of infectious disease is critically important in guiding prevention, management and breeding strategies. Novel pathogen lineages may arise within agricultural environments, wild hosts or from non-host associated disease reservoirs. Although the source of most disease outbreaks remains unknown, environmental and zoonotic origins are frequently identified in mammalian pathosystems and expanded sampling of plant pathosystems reveals important links with wild populations. This review describes key ecological and evolutionary processes underlying disease emergence, with particular emphasis on shifts from wild reservoirs to cultivated hosts and genetic mechanisms driving host adaption subsequent to emergence.
Collapse
Affiliation(s)
- Honour C McCann
- New Zealand Institute for Advanced Study, Massey University, Albany, New Zealand; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|