1
|
Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion. Microorganisms 2022; 10:microorganisms10010114. [PMID: 35056563 PMCID: PMC8778405 DOI: 10.3390/microorganisms10010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.
Collapse
|
2
|
Powles J, Ko K. Alternative splice variants of rhomboid proteins: Comparative analysis of database entries for select model organisms and validation of functional potential. F1000Res 2018; 7:139. [PMID: 32201561 PMCID: PMC7065720 DOI: 10.12688/f1000research.13383.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Rhomboid serine proteases are present across many species and are often encoded in each species by more than one predicted gene. Based on protein sequence comparisons, rhomboids can be differentiated into groups - secretases, presenilin-like associated rhomboid-like (PARL) proteases, iRhoms, and "inactive" rhomboid proteins. Although these rhomboid groups are distinct, the different types can operate simultaneously. Studies in Arabidopsis showed that the number of rhomboid proteins working simultaneously can be further diversified by alternative splicing. This phenomenon was confirmed for the Arabidopsis plastid rhomboid proteins At1g25290 and At1g74130. Although alternative splicing was determined to be a significant mechanism for diversifying these two Arabidopsis plastid rhomboids, there has yet to be an assessment as to whether this mechanism extends to other rhomboids and to other species. Methods: We thus conducted a comparative analysis of select databases to determine if the alternative splicing mechanism observed for the two Arabidopsis plastid rhomboids was utilized in other species to expand the repertoire of rhomboid proteins. To help verify the in silico observations, select splice variants from different groups were tested for activity using transgenic- and additive-based assays. These assays aimed to uncover evidence that the selected splice variants display capacities to influence processes like antimicrobial sensitivity. Results: A comparison of database entries of six widely used eukaryotic experimental models (human, mouse, Arabidopsis, Drosophila, nematode, and yeast) revealed robust usage of alternative splicing to diversify rhomboid protein structure across the various motifs or regions, especially in human, mouse and Arabidopsis. Subsequent validation studies uncover evidence that the splice variants selected for testing displayed functionality in the different activity assays. Conclusions: The combined results support the hypothesis that alternative splicing is likely used to diversify and expand rhomboid protein functionality, and this potentially occurred across the various motifs or regions of the protein.
Collapse
Affiliation(s)
- Joshua Powles
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kenton Ko
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
3
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
4
|
Jin J, Dupré C, Yoneda K, Watanabe MM, Legrand J, Grizeau D. Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: Recent advances and opportunities. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Abstract
Chemical signaling between cells is an effective way to coordinate behavior within a community. Although cell-to-cell signaling has mostly been studied in single species, it is now appreciated that the sensing of chemical signals across kingdoms can be an important regulator of nutrient acquisition, virulence, and host defense. In this review, we focus on the role of interkingdom signaling in the interactions that occur between bacterial pathogens and their mammalian hosts. We discuss the quorum-sensing (QS) systems and other mechanisms used by these bacteria to sense, respond to, and modulate host signals that include hormones, immune factors, and nutrients. We also describe cross talk between these signaling pathways and strategies used by the host to interfere with bacterial signaling, highlighting the complex bidirectional signaling networks that are established across kingdoms.
Collapse
|
6
|
Riestra AM, Gandhi S, Sweredoski MJ, Moradian A, Hess S, Urban S, Johnson PJ. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells. PLoS Pathog 2015; 11:e1005294. [PMID: 26684303 PMCID: PMC4684317 DOI: 10.1371/journal.ppat.1005294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022] Open
Abstract
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. Trichomonas vaginalis, a common pathogen with a worldwide distribution, causes a sexually transmitted infection and exacerbates other diseases. Estimated to infect over a million people annually in the United States alone, the Center for Disease Control and Prevention categorized trichomoniasis as one of five neglected parasitic diseases in the US in 2014. Only one class of drug is available to treat T. vaginalis infection, making discovery of parasite factors contributing to host colonization critical for the development of new therapeutics. Here we report the first characterization of T. vaginalis intramembrane rhomboid proteases. One protease, TvROM1, is shown to increase the parasite’s association with and destruction of host cells. We further identified two TvROM1 substrates, one of which we demonstrate is involved in modulating host: parasite interactions. This study highlights the involvement of rhomboid proteases in T. vaginalis pathogenic processes, and provides further support for targeting parasite surface proteases for therapeutic intervention.
Collapse
Affiliation(s)
- Angelica M. Riestra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shiv Gandhi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Joshi H, Dave R, Venugopalan VP. Protein as chemical cue: non-nutritional growth enhancement by exogenous protein in Pseudomonas putida KT2440. PLoS One 2014; 9:e103730. [PMID: 25117434 PMCID: PMC4130607 DOI: 10.1371/journal.pone.0103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
Research pertaining to microbe-microbe and microbe-plant interactions has been largely limited to small molecules like quorum sensing chemicals. However, a few recent reports have indicated the role of complex molecules like proteins and polysaccharides in microbial communication. Here we demonstrate that exogenous proteins present in culture media can considerably accelerate the growth of Pseudomonas putida KT2440, even when such proteins are not internalized by the cells. The growth enhancement is observed when the exogenous protein is not used as a source of carbon or nitrogen. The data show non-specific nature of the protein inducing growth; growth enhancement was observed irrespective of the protein type. It is shown that growth enhancement is mediated via increased siderophore secretion in response to the exogenous protein, leading to better iron uptake. We highlight the ecological significance of the observation and hypothesize that exogenous proteins serve as chemical cues in the case of P.putida and are perceived as indicator of the presence of competitors in the environment. It is argued that enhanced siderophore secretion in response to exogenous protein helps P.putida establish numerical superiority over competitors by way of enhanced iron assimilation and quicker utilization of aromatic substrates.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, India
| | - Rachna Dave
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, India
| | - Vayalam P. Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, India
- * E-mail:
| |
Collapse
|
8
|
RHBDL2 is a critical membrane protease for anoikis resistance in human malignant epithelial cells. ScientificWorldJournal 2014; 2014:902987. [PMID: 24977233 PMCID: PMC4058132 DOI: 10.1155/2014/902987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 05/11/2014] [Indexed: 01/11/2023] Open
Abstract
Anoikis resistance allows metastatic tumor cells to survive in a homeless environment. Activation of epithelial growth factor receptor (EGFR) signaling is one of the key mechanisms for metastatic tumor cells to resist anoikis, yet the regulation mechanisms of homeless-triggered EGFR activation in metastatic tumor cells remain unclear. Rhomboid-like-2 (RHBDL2), an evolutionally conserved intramembrane serine protease, can cleave the EGF ligand and thus trigger EGFR activation. Herein, we demonstrated that RHBDL2 overexpression in human epithelial cells resulted in promotion of cell proliferation, reduction of cell adhesion, and suppression of anoikis. During long-term suspension cultures, increased RHBDL2 was only detected in aggressive tumor cell lines. Treatment with the rhomboid protease inhibitor or RHBDL2 shRNA increased cleaved caspase 3, a marker of apoptosis. Finally, inhibition of EGFR activation increased the cleaved caspase 3 and attenuated the detachment-induced focal adhesion kinase phosphorylation. Taken together, these findings provide evidence for the first time that RHBDL2 is a critical molecule in anoikis resistance of malignant epithelial cells, possibly through the EGFR-mediated signaling. Our study demonstrates RHBDL2 as a new therapeutic target for cancer metastasis.
Collapse
|
9
|
Dickey SW, Baker RP, Cho S, Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2014; 155:1270-81. [PMID: 24315097 DOI: 10.1016/j.cell.2013.10.053] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/04/2013] [Accepted: 10/28/2013] [Indexed: 10/25/2022]
Abstract
Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 μM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications.
Collapse
Affiliation(s)
- Seth W Dickey
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
10
|
Untangling structure-function relationships in the rhomboid family of intramembrane proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2862-72. [PMID: 24099005 DOI: 10.1016/j.bbamem.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 05/04/2013] [Indexed: 12/30/2022]
Abstract
Rhomboid proteases are a family of integral membrane proteins that have been implicated in critical regulatory roles in a wide array of cellular processes and signaling events. The determination of crystal structures of the prokaryotic rhomboid GlpG from Escherichia coli and Haemophilus influenzae has ushered in an era of unprecedented understanding into molecular aspects of intramembrane proteolysis by this fascinating class of protein. A combination of structural studies by X-ray crystallography, and biophysical and spectroscopic analyses, combined with traditional enzymatic and functional analysis has revealed fundamental aspects of rhomboid structure, substrate recognition and the catalytic mechanism. This review summarizes these remarkable advances by examining evidence for the proposed catalytic mechanism derived from inhibitor co-crystal structures, conflicting models of rhomboid-substrate interaction, and recent work on the structure and function of rhomboid cytosolic domains. In addition to exploring progress on aspects of rhomboid structure, areas for future research and unaddressed questions are emphasized and highlighted. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
|
11
|
Abstract
Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.
Collapse
Affiliation(s)
- Ya Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
12
|
Rather P. Role of rhomboid proteases in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2849-54. [PMID: 23518036 DOI: 10.1016/j.bbamem.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 11/20/2022]
Abstract
The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Philip Rather
- Department of Microbiology and Immunology, 3001 Rollins Research Bldg, Emory University School of Medicine, Atlanta, GA 30322, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
13
|
Making the cut: intramembrane cleavage by a rhomboid protease promotes ERAD. Nat Struct Mol Biol 2013; 19:979-81. [PMID: 23037595 DOI: 10.1038/nsmb.2398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endoplasmic reticulum–associated degradation (ERAD) is a cellular protein quality-control process that disposes of proteasomal substrates from the early secretory pathway. Recent work shows that the endoplasmic reticulum–resident rhomboid protease RHBDL4 facilitates ERAD by recognizing and cleaving integral membrane substrates. The work indicates that intramembrane proteolysis may have a general role in the extraction of misfolded membrane proteins from the endoplasmic reticulum.
Collapse
|
14
|
Kateete DP, Katabazi FA, Okeng A, Okee M, Musinguzi C, Asiimwe BB, Kyobe S, Asiimwe J, Boom WH, Joloba ML. Rhomboids of Mycobacteria: characterization using an aarA mutant of Providencia stuartii and gene deletion in Mycobacterium smegmatis. PLoS One 2012; 7:e45741. [PMID: 23029216 PMCID: PMC3448690 DOI: 10.1371/journal.pone.0045741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/24/2012] [Indexed: 01/07/2023] Open
Abstract
Background Rhomboids are ubiquitous proteins with unknown roles in mycobacteria. However, bioinformatics suggested putative roles in DNA replication pathways and metabolite transport. Here, mycobacterial rhomboid-encoding genes were characterized; first, using the Providencia stuartii null-rhomboid mutant and then deleted from Mycobacterium smegmatis for additional insight in mycobacteria. Methodology/Principal Findings Using in silico analysis we identified in M. tuberculosis genome the genes encoding two putative rhomboid proteins; Rv0110 (referred to as “rhomboid protease 1”) and Rv1337 (“rhomboid protease 2”). Genes encoding orthologs of these proteins are widely represented in all mycobacterial species. When transformed into P. stuartii null-rhomboid mutant (ΔaarA), genes encoding mycobacterial orthologs of “rhomboid protease 2” fully restored AarA activity (AarA is the rhomboid protein of P. stuartii). However, most genes encoding mycobacterial “rhomboid protease 1” orthologs did not. Furthermore, upon gene deletion in M. smegmatis, the ΔMSMEG_4904 single mutant (which lost the gene encoding MSMEG_4904, orthologous to Rv1337, “rhomboid protease 2”) formed the least biofilms and was also more susceptible to ciprofloxacin and novobiocin, antimicrobials that inhibit DNA gyrase. However, the ΔMSMEG_5036 single mutant (which lost the gene encoding MSMEG_5036, orthologous to Rv0110, “rhomboid protease 1”) was not as susceptible. Surprisingly, the double rhomboid mutant ΔMSMEG_4904–ΔMSMEG_5036 (which lost genes encoding both homologs) was also not as susceptible suggesting compensatory effects following deletion of both rhomboid-encoding genes. Indeed, transforming the double mutant with a plasmid encoding MSMEG_5036 produced phenotypes of the ΔMSMEG_4904 single mutant (i.e. susceptibility to ciprofloxacin and novobiocin). Conclusions/Significance Mycobacterial rhomboid-encoding genes exhibit differences in complementing aarA whereby it's only genes encoding “rhomboid protease 2” orthologs that fully restore AarA activity. Additionally, gene deletion data suggests inhibition of DNA gyrase by MSMEG_4904; however, the ameliorated effect in the double mutant suggests occurrence of compensatory mechanisms following deletion of genes encoding both rhomboids.
Collapse
Affiliation(s)
- David Patrick Kateete
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Alfred Okeng
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Moses Okee
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Conrad Musinguzi
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Benon Byamugisha Asiimwe
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
| | - Jeniffer Asiimwe
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
- College of Veterinary Medicine, Animal Resources and Biosecurity (CoVAB), Makerere University, Kampala, Uganda
| | - W. Henry Boom
- Tuberculosis Research Unit (TBRU), Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Moses Lutaakome Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences (MakCHS), Kampala, Uganda
- Tuberculosis Research Unit (TBRU), Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Thompson EP, Smith SGL, Glover BJ. An Arabidopsis rhomboid protease has roles in the chloroplast and in flower development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3559-70. [PMID: 22416142 PMCID: PMC3388827 DOI: 10.1093/jxb/ers012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/03/2012] [Accepted: 01/08/2012] [Indexed: 05/23/2023]
Abstract
Increasing numbers of cellular pathways are now recognized to be regulated via proteolytic processing events. The rhomboid family of serine proteases plays a pivotal role in a diverse range of pathways, activating and releasing proteins via regulated intramembrane proteolysis. The prototype rhomboid protease, rhomboid-1 in Drosophila, is the key activator of epidermal growth factor (EGF) receptor pathway signalling in the fly and thus affects multiple aspects of development. The role of the rhomboid family in plants is explored and another developmental phenotype, this time in a mutant of an Arabidopsis chloroplast-localized rhomboid, is reported here. It is confirmed by GFP-protein fusion that this protease is located in the envelope of chloroplasts and of chlorophyll-free plastids elsewhere in the plant. Mutant plants lacking this organellar rhomboid demonstrate reduced fertility, as documented previously with KOM-the one other Arabidopsis rhomboid mutant that has been reported in the literature-along with aberrant floral morphology.
Collapse
Affiliation(s)
- Elinor P Thompson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
16
|
Jeyaraju DV, Sood A, Laforce-Lavoie A, Pellegrini L. Rhomboid proteases in mitochondria and plastids: keeping organelles in shape. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:371-80. [PMID: 22634239 DOI: 10.1016/j.bbamcr.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/16/2023]
Abstract
Rhomboids constitute the most widespread and conserved family of intramembrane cleaving proteases. They are key regulators of critical cellular processes in bacteria and animals, and are poised to play an equally important role also in plants. Among eukaryotes, a distinct subfamily of rhomboids, prototyped by the mammalian mitochondrial protein Parl, ensures the maintenance of the structural and functional integrity of mitochondria and plastids. Here, we discuss the studies that in the past decade have unveiled the role, regulation, and structure of this unique group of rhomboid proteases. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Danny V Jeyaraju
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Abstract
Rhomboids are ubiquitous intramembrane serine proteases the sequences of which are found in nearly all sequenced genomes, including those of plants. They were molecularly characterized in a number of organisms, and were found to play a role in a variety of biological functions including signaling, development, apoptosis, mitochondrial integrity, parasite invasion and more. Although rhomboid sequences are found in plants, very little is known about their function. Here, we present the current knowledge in the rhomboids field in general, and in plant rhomboids in particular. In addition, we discuss possible physiological roles of different plant rhomboids.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
18
|
Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, Ha Y. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Biochemistry 2012; 51:3723-31. [PMID: 22515733 DOI: 10.1021/bi300368b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhomboid protease conducts proteolysis inside the hydrophobic environment of the membrane. The conformational flexibility of the protease is essential for the enzyme mechanism, but the nature of this flexibility is not completely understood. Here we describe the crystal structure of rhomboid protease GlpG in complex with a phosphonofluoridate inhibitor, which is covalently bonded to the catalytic serine and extends into the S' side of the substrate binding cleft. Inhibitor binding causes subtle but extensive changes in the membrane protease. Many transmembrane helices tilt and shift positions, and the gap between S2 and S5 is slightly widened so that the inhibitor can bind between them. The side chain of Phe-245 from a loop (L5) that acts as a cap rotates and uncovers the opening of the substrate binding cleft to the lipid bilayer. A concurrent turn of the polypeptide backbone at Phe-245 moves the rest of the cap and exposes the catalytic serine to the aqueous solution. This study, together with earlier crystallographic investigation of smaller inhibitors, suggests a simple model for explaining substrate binding to rhomboid protease.
Collapse
Affiliation(s)
- Yi Xue
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rules of engagement: defining bacterial communication. Curr Opin Microbiol 2011; 15:155-61. [PMID: 22185908 DOI: 10.1016/j.mib.2011.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/17/2011] [Indexed: 12/26/2022]
Abstract
Microbiologists often describe communication as occurring within and between bacterial species and even across the prokaryote-eukaryote divide. In a strictly evolutionary sense, however, communication should occur only rarely between unrelated organisms. Clearly, the microbiological and evolutionary definitions and standards for what qualifies as communication widely differ. In microbiology, the term "communication" is often used to denote any interaction between two organisms. Advancement in knowledge hinges on precise language and conceptual distinctions when introducing new scientific ideas. While terminology exists for describing interactions which are not true communication, excessive preoccupation with semantics may impede progress. Umbrella terms such as 'communication' are useful, but additional insight can be gained by understanding the fitness consequences and adaptive significance of behaviors observed in multispecies communities.
Collapse
|
20
|
M Santos J, Graindorge A, Soldati-Favre D. New insights into parasite rhomboid proteases. Mol Biochem Parasitol 2011; 182:27-36. [PMID: 22173057 DOI: 10.1016/j.molbiopara.2011.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/16/2022]
Abstract
The rhomboid-like proteins constitute a large family of intramembrane serine proteases that are present in all branches of life. First studied in Drosophila, these enzymes catalyse the release of the active forms of proteins from the membrane and hence trigger signalling events. In protozoan parasites, a limited number of rhomboid-like proteases have been investigated and some of them are associated to pathogenesis. In Apicomplexans, rhomboid-like protease activity is involved in shedding adhesins from the surface of the zoites during motility and host cell entry. Recently, a Toxoplasma gondii rhomboid was also implicated in an intracellular signalling mechanism leading to parasite proliferation. In Entamoeba histolytica, the capacity to adhere to host cells and to phagocytose cells is potentiated by a rhomboid-like protease. Survey of a small number of protozoan parasite genomes has uncovered species-specific rhomboid-like protease genes, many of which are predicted to encode inactive enzymes. Functional investigation of the rhomboid-like proteases in other protozoan parasites will likely uncover novel and unexpected implications for this family of proteases.
Collapse
Affiliation(s)
- Joana M Santos
- Department of Microbiology, Faculty of Medicine, University of Geneva, 1 Rue-Michel Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
21
|
Abstract
Summary Rhomboid proteases are the largest family of enzymes that hydrolyze peptide bonds within the cell membrane. Although discovered to be serine proteases only a decade ago, rhomboid proteases are already considered to be the best understood intramembrane proteases. The presence of rhomboid proteins in all domains of life emphasizes their importance but makes their evolutionary history difficult to chart with confidence. Phylogenetics nevertheless offers three guiding principles for interpreting rhomboid function. The near ubiquity of rhomboid proteases across evolution suggests broad, organizational roles that are not directly essential for cell survival. Functions have been deciphered in only about a dozen organisms and fall into four general categories: initiating cell signaling in animals, facilitating bacterial quorum sensing, regulating mitochondrial homeostasis, and dismantling adhesion complexes of parasitic protozoa. Although in no organism has the full complement of rhomboid function yet been elucidated, links to devastating human disease are emerging rapidly, including to Parkinson's disease, type II diabetes, cancer, and bacterial and malaria infection. Rhomboid proteases are unlike most proteolytic enzymes, because they are membrane-immersed; understanding how the membrane immersion affects their function remains a key challenge.
Collapse
Affiliation(s)
- Sinisa Urban
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
22
|
Probiotic (symbiotic) bacterial languages. Anaerobe 2011; 17:490-5. [PMID: 21624483 DOI: 10.1016/j.anaerobe.2011.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 12/22/2022]
Abstract
Symbiotic gut microorganisms release of various soluble low molecular weight (LMW)molecules of different chemical nature (surface and exogenous proteins, nucleases, serpins, sirtuines, other enzymes, lectins, peptides, amines, bacteriocines, fatty and amino acids, lactones, furanons, miRNA, NO, etc). These LMW molecules are able to sense environment, interact with corresponding cell surface, membrane, cytoplasm and nucleic acid receptors, to reply quickly and coordinately by induction of special sets of genes, to support stability of host genome and microbiome, to modulate epigenomic regulation of gene phenotypic expression, to ensure the information exchange in numerous bacterial and bacteria-host systems playing an important role in the control for many genetic and physiological functions, biochemical and behaviour reactions, in supporting host health in general. Various symbiotic (probiotic) strains produce different spectrum of such LMW molecules. There is chemical and functional similarity between LMW molecules synthesized by host eukaryotic cells, indigenous and probiotic microorganisms and some micronutrients. It means many LMW compounds of different origin may be the universal regulators contributing to the transmission of information, quorum sensing effects, metagenome stability and epigenomic control for cell growth and development as well as phenotypic expression of different genes. Knowledge accumulated concerning molecular languages of symbiotic microorganisms allows us to better understand the mode of action of known probiotics and to design in principle novel probiotics (metabiotics) with increased health effectiveness. Now we are only at the beginning of a new era of molecular personal biotherapy and nutrition. Soon we can successfully manipulate both the host and its microbiota through interfering in their cross talk, stability and epigenomic regulation of expression of genes using various types of eukaryotic, prokaryotic and nutrition origin LMW molecules are capable to modulate genetic, metabolic and physiological activities.
Collapse
|
23
|
Kateete DP, Okee M, Katabazi FA, Okeng A, Asiimwe J, Boom HW, Eisenach KD, Joloba ML. Rhomboid homologs in mycobacteria: insights from phylogeny and genomic analysis. BMC Microbiol 2010; 10:272. [PMID: 21029479 PMCID: PMC2989971 DOI: 10.1186/1471-2180-10-272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhomboids are ubiquitous proteins with diverse functions in all life kingdoms, and are emerging as important factors in the biology of some pathogenic apicomplexa and Providencia stuartii. Although prokaryotic genomes contain one rhomboid, actinobacteria can have two or more copies whose sequences have not been analyzed for the presence putative rhomboid catalytic signatures. We report detailed phylogenetic and genomic analyses devoted to prokaryotic rhomboids of an important genus, Mycobacterium. RESULTS Many mycobacterial genomes contained two phylogenetically distinct active rhomboids orthologous to Rv0110 (rhomboid protease 1) and Rv1337 (rhomboid protease 2) of Mycobacterium tuberculosis H37Rv, which were acquired independently. There was a genome-wide conservation and organization of the orthologs of Rv1337 arranged in proximity with glutamate racemase (mur1), while the orthologs of Rv0110 appeared evolutionary unstable and were lost in Mycobacterium leprae and the Mycobacterium avium complex. The orthologs of Rv0110 clustered with eukaryotic rhomboids and contained eukaryotic motifs, suggesting a possible common lineage. A novel nonsense mutation at the Trp73 codon split the rhomboid of Mycobacterium avium subsp. Paratuberculosis into two hypothetical proteins (MAP2425c and MAP2426c) that are identical to MAV_1554 of Mycobacterium avium. Mycobacterial rhomboids contain putative rhomboid catalytic signatures, with the protease active site stabilized by Phenylalanine. The topology and transmembrane helices of the Rv0110 orthologs were similar to those of eukaryotic secretase rhomboids, while those of Rv1337 orthologs were unique. Transcription assays indicated that both mycobacterial rhomboids are possibly expressed. CONCLUSIONS Mycobacterial rhomboids are active rhomboid proteases with different evolutionary history. The Rv0110 (rhomboid protease 1) orthologs represent prokaryotic rhomboids whose progenitor may be the ancestors of eukaryotic rhomboids. The Rv1337 (rhomboid protease 2) orthologs appear more stable and are conserved nearly in all mycobacteria, possibly alluding to their importance in mycobacteria. MAP2425c and MAP2426c provide the first evidence for a split homologous rhomboid, contrasting whole orthologs of genetically related species. Although valuable insights to the roles of rhomboids are provided, the data herein only lays a foundation for future investigations for the roles of rhomboids in mycobacteria.
Collapse
Affiliation(s)
- David P Kateete
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses Okee
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Fred A Katabazi
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Alfred Okeng
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jeniffer Asiimwe
- Department of Veterinary Parasitology & Microbiology, Faculty of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Henry W Boom
- Case Western Reserve University, Cleveland, OH, USA
| | - Kathleen D Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Moses L Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
24
|
Schäfer A, Zick M, Kief J, Steger M, Heide H, Duvezin-Caubet S, Neupert W, Reichert AS. Intramembrane proteolysis of Mgm1 by the mitochondrial rhomboid protease is highly promiscuous regarding the sequence of the cleaved hydrophobic segment. J Mol Biol 2010; 401:182-93. [PMID: 20558178 DOI: 10.1016/j.jmb.2010.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/28/2010] [Accepted: 06/08/2010] [Indexed: 11/19/2022]
Abstract
Rhomboids are a family of intramembrane serine proteases that are conserved in bacteria, archaea, and eukaryotes. They are required for numerous fundamental cellular functions such as quorum sensing, cell signaling, and mitochondrial dynamics. Mitochondrial rhomboids form an evolutionarily distinct class of rhomboids. It is largely unclear how their activity is controlled and which substrate determinants are responsible for recognition and cleavage. We investigated these requirements for the mitochondrial rhomboid protease Pcp1 and its substrate Mgm1. In contrast to several other rhomboid proteases, Pcp1 does not require helix-breaking amino acids in the cleaved hydrophobic region of Mgm1, termed 'rhomboid cleavage region' (RCR). Even transmembrane segments of inner membrane proteins that are normally not processed by Pcp1 become cleavable when put in place of the authentic RCR of Mgm1. We further show that mutational alterations of a highly negatively charged region located C-terminally to the RCR led to a strong processing defect. Moreover, we show that the determinants required for Mgm1 processing by mitochondrial rhomboid protease are conserved during evolution, as PARL (the human ortholog of Pcp1) showed similar substrate requirements. These results suggest a surprising promiscuity of the mitochondrial rhomboid protease regarding the sequence requirements of the cleaved hydrophobic segment. We propose a working hypothesis on how the mitochondrial rhomboid protease can, despite this promiscuity, achieve a high specificity in recognizing Mgm1. This hypothesis relates to the exceptional biogenesis pathway of Mgm1.
Collapse
Affiliation(s)
- Anja Schäfer
- CEF Makromolekulare Komplexe, Mitochondriale Biologie, Fachbereich Medizin, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Urban S. Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis. Biochem J 2010; 425:501-12. [PMID: 20070259 PMCID: PMC3131108 DOI: 10.1042/bj20090861] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhomboid proteases are a fascinating class of enzymes that combine a serine protease active site within the core of an integral membrane protein. Despite having key roles in animal cell signalling and microbial pathogenesis, the membrane-immersed nature of these enzymes had long imposed obstacles to elucidating their biochemical mechanisms. But recent multidisciplinary approaches, including eight crystal structures, four computer simulations and nearly 100 engineered mutants interrogated in vivo and in vitro, are coalescing into an integrated model for one rhomboid orthologue in particular, bacterial GlpG. The protein creates a central hydrated microenvironment immersed below the membrane surface to support hydrolysis by its serine protease-like catalytic apparatus. Four conserved architectural elements in particular act as 'keystones' to stabilize this structure, and the lateral membrane-embedded L1 loop functions as a 'flotation device' to position the protease tilted in the membrane. Complex interplay between lateral substrate gating by rhomboid, substrate unwinding and local membrane thinning leads to intramembrane proteolysis of selected target proteins. Although far from complete, studies with GlpG currently offer the best prospect for achieving a thorough and sophisticated understanding of a simplified intramembrane protease.
Collapse
Affiliation(s)
- Sinisa Urban
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Hill RB, Pellegrini L. The PARL family of mitochondrial rhomboid proteases. Semin Cell Dev Biol 2010; 21:582-92. [PMID: 20045481 DOI: 10.1016/j.semcdb.2009.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Rhomboids are an ancient and conserved family of intramembrane-cleaving proteases, a small group of proteolytic enzymes capable of hydrolyzing a peptide bond within a transmembrane helix that anchors a substrate protein to the membrane. Mitochondrial rhomboids evolved in eukaryotes to coordinate a critical aspect of cell biology, the regulation of mitochondrial membranes dynamics. This function appears to have required the emergence of a structural feature that is unique among all other rhomboids: an additional transmembrane helix (TMH) positioned at the N-terminus of six TMHs that form the core proteolytic domain of all prokaryotic and eukaryotic rhomboids. This "1+6" structure, which is shared only among mitochondrial rhomboids, defines a subfamily of rhomboids with the prototypical family member being mammalian Parl. Here, we present the findings that in 11 years have elevated mitochondrial rhomboids as the gatekeepers of mitochondrial dynamics and apoptosis; further, we discuss the aspects of their biology that are bound to introduce new paradigm shifts in our understanding of how the organelle uses this unique type of protease to govern stress, signaling to the nucleus, and other key mitochondrial activities in health and disease.
Collapse
Affiliation(s)
- R Blake Hill
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
27
|
|
28
|
Lei X, Li YM. The Processing of Human Rhomboid Intramembrane Serine Protease RHBDL2 Is Required for Its Proteolytic Activity. J Mol Biol 2009; 394:815-25. [DOI: 10.1016/j.jmb.2009.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 11/26/2022]
|
29
|
Abstract
Proteolysis in cellular membranes to liberate effector domains from their transmembrane anchors is a well-studied regulatory mechanism in animal biology and disease. By contrast, the function of intramembrane proteases in unicellular organisms has received little attention. Recent progress has now established that intramembrane proteases execute pivotal roles in a range of pathogens, from regulating Mycobacterium tuberculosis envelope composition, cholera toxin production, bacterial adherence and conjugation, to malaria parasite invasion, fungal virulence, immune evasion by parasitic amoebae and hepatitis C virus assembly. These advances raise the exciting possibility that intramembrane proteases may serve as targets for combating a wide range of infectious diseases. This Review focuses on summarizing the advances, evaluating the limitations and highlighting the promise of this newly emerging field.
Collapse
Affiliation(s)
- Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
30
|
Freeman M. Rhomboids: 7 years of a new protease family. Semin Cell Dev Biol 2009; 20:231-9. [PMID: 19022390 DOI: 10.1016/j.semcdb.2008.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/13/2008] [Indexed: 12/24/2022]
Abstract
Drosophila Rhomboid-1 was discovered to be the first known intramembrane serine protease about 7 years ago. The study of the rhomboid-like family has since blossomed, and the purpose of this review is to take stock of where the field is, and how it may progress in the next few years. Three major themes are the increasing understanding of the biological roles of rhomboids, the detailed information we now have about their function and mechanism, and the promising leads they offer as medical targets.
Collapse
Affiliation(s)
- Matthew Freeman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
31
|
Ha Y. Structure and mechanism of intramembrane protease. Semin Cell Dev Biol 2009; 20:240-50. [PMID: 19059492 PMCID: PMC2760405 DOI: 10.1016/j.semcdb.2008.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Many functionally important membrane proteins are cleaved within their transmembrane helices to become activated. This unusual reaction is catalyzed by a group of highly specialized and membrane-bound proteases. Here I briefly summarize current knowledge about their structure and mechanism, with a focus on the rhomboid family. It has now become clear that rhomboid protease can cleave substrates not only within transmembrane domains, but also in the solvent-exposed juxtamembrane region. This dual specificity seems possible because the protease active site is positioned in a shallow pocket that can directly open to aqueous solution through the movement of a flexible capping loop. The narrow membrane-spanning region of the protease suggests a possible mechanism for accessing scissile bonds that are located near the end of substrate transmembrane helices. Similar principles may apply to the metalloprotease family, where a crystal structure has also become available. Although how the GxGD proteases work is still less clear, recent results indicate that presenilin also appears to clip substrate from the end of transmembrane helices.
Collapse
Affiliation(s)
- Ya Ha
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
32
|
Pacheco AR, Sperandio V. Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 2009; 12:192-8. [PMID: 19318290 DOI: 10.1016/j.mib.2009.01.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Chemical communication between cells ensures coordination of behavior. In prokaryotes, this chemical communication is usually referred to as quorum sensing, while eukaryotic cells signal through hormones. In the past years, a growing number of reports have shown that bacterial quorum sensing signals, called autoinducers, signal to eukaryotic cells, mimicking hormones. Conversely, host hormones can signal to bacterial cells through converging pathways to autoinducer signaling. This inter-kingdom signaling mediates symbiotic and pathogenic relationships between bacteria, mammalian and plant hosts.
Collapse
Affiliation(s)
- Alline R Pacheco
- Department of Microbiology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, 75390-9048, USA
| | | |
Collapse
|
33
|
Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J 2009; 23:425-32. [PMID: 18832597 PMCID: PMC2638965 DOI: 10.1096/fj.08-112771] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/11/2008] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an activated oncogene in many cancers. It can be transactivated by ligands of G protein-coupled receptors (GPCRs). We show here that a novel gene, human rhomboid family-1 (RHBDF1), which was recently reported to have a pivotal role in epithelial cancer cell growth in culture and in xenograft tumors, participates in the modulation of GPCR-mediated EGFR transactivation. The RHBDF1 protein localizes mainly in the endoplasmic reticulum. Silencing the RHBDF1 gene in head and neck squamous cancer cell line 1483 cells with siRNA causes an inhibition of gastrin-releasing peptide (GRP) -induced phosphorylation of EGFR and EGFR-dependent signaling proteins p44/42 MAPK and AKT, accompanied by an inhibition of GRP-induced survival, proliferation, and invasion of the cells. The EGFR signaling pathway itself remains intact, however, as the cells remain responsive to exogenous EGF. In addition, RHBDF1 gene silencing disrupts GRP-stimulated secretion of EGFR ligand TGF-alpha, but not the production of latent TGF-alpha, whereas engineered overexpression of RHBDF1 markedly accelerates the secretion of TGF-alpha. These findings are consistent with the view that RHBDF1 is critically involved in a GPCR ligand-stimulated process leading to the activation of latent EGFR ligands.
Collapse
Affiliation(s)
- Huafei Zou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ryan RP, Dow JM. Diffusible signals and interspecies communication in bacteria. MICROBIOLOGY-SGM 2008; 154:1845-1858. [PMID: 18599814 DOI: 10.1099/mic.0.2008/017871-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacteria use cell-cell communication mediated by diffusible signal molecules to monitor their population density or confinement to niches and to modulate their behaviour in response to these aspects of their environment. Work on signalling systems within individual species has formed a platform for studies of interspecies interactions that can occur within polymicrobial communities in nature. In addition to signalling between organisms that synthesize the same or related signal molecules, it is becoming evident that bacteria can sense signal molecules that they do not synthesize, thereby eavesdropping on signalling by other organisms in their immediate environment. Furthermore, molecules such as antibiotics that are considered not to be signals for the producing species can have effects on gene expression in other bacteria that indicate a signalling function. Interspecies signalling can lead to alteration in factors contributing to the virulence or persistence of bacterial pathogens as well as influencing the development of beneficial microbial communities. Here we review our current understanding of interspecies signalling in bacteria and the signals involved, what is known of the underlying signal transduction mechanisms and their influences on bacterial behaviour.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland
| | - J Maxwell Dow
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland
| |
Collapse
|
35
|
Abstract
Microorganisms and their hosts communicate with each other through an array of hormonal signals. This cross-kingdom cell-to-cell signalling involves small molecules, such as hormones that are produced by eukaryotes and hormone-like chemicals that are produced by bacteria. Cell-to-cell signalling between bacteria, usually referred to as quorum sensing, was initially described as a means by which bacteria achieve signalling in microbial communities to coordinate gene expression within a population. Recent evidence shows, however, that quorum-sensing signalling is not restricted to bacterial cell-to-cell communication, but also allows communication between microorganisms and their hosts.
Collapse
Affiliation(s)
- David T Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
36
|
Abstract
The rhomboids are a well-conserved family of intramembrane serine proteases, which are unrelated to the classical soluble serine proteases. Their active site is buried within the plane of the membrane, and they cleave substrates in or near transmembrane domains. Although recently discovered, it is becoming clear that rhomboids control many important cellular functions. This review briefly describes recent biochemical and structural work that begins to explain how proteolysis occurs in a hydrophobic environment, but then focuses more extensively on the emerging biological functions of rhomboids. Although the function of most rhomboids is not yet known, they have already been implicated in growth factor signaling, mitochondrial function, host cell invasion by apicomplexan parasites, and protein translocation across membranes in bacteria. By exploiting cellular membrane trafficking machinery, rhomboids have evolved novel strategies to regulate proteolysis.
Collapse
|
37
|
Willis MS, Koth CM. Structural proteomics of membrane proteins: a survey of published techniques and design of a rational high throughput strategy. Methods Mol Biol 2008; 426:277-295. [PMID: 18542871 DOI: 10.1007/978-1-60327-058-8_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Approximately one third of the proteins encoded in prokaryotic and eukaryotic genomes reside in the membrane. However, membrane proteins comprise only a minute fraction of the entries in protein structural databases. This disparity is largely due to inherent difficulties in the expression and purification of sufficient quantities of membrane targets. To begin addressing the challenges of membrane protein production for high throughput structural proteomics efforts, the authors sought to develop a simple strategy that would permit the standardization of most procedures and the exploration of large numbers of proteins. Successful methods that have yielded membrane protein crystals suitable for structure determination were surveyed first. A number of recurrent trends in the expression, solubilization, purification, and crystallization techniques were identified. Based largely on these observations, a robust strategy was then developed that rapidly identifies highly expressed membrane protein targets and simplifies their production for structural studies. This method has been used to express and purify intramembrane proteases to levels sufficient for crystallization. This strategy is a paradigm for the purification of many other membrane proteins, as discussed.
Collapse
|
38
|
Akiyama Y, Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol Microbiol 2007; 64:1028-37. [PMID: 17501925 DOI: 10.1111/j.1365-2958.2007.05715.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rhomboids are a family of serine proteases belonging to intramembrane cleaving proteases, which are supposed to catalyse proteolysis of a substrate protein within the membrane. It remains unclear whether substrates of the rhomboid proteases have a common sequence feature that allows specific cleavage by rhomboids. We showed previously that GlpG, the Escherichia coli rhomboid, can cleave a type I model membrane protein Bla-LY2-MBP having the second transmembrane region of lactose permease (LY2) at the extramembrane region in vivo and in vitro, and that determinants for proteolysis reside within the LY2 sequence. Here we characterized sequence features in LY2 that allow efficient cleavage by GlpG and identified two elements, a hydrophilic region encompassing the cleavage site and helix-destabilizing residues in the downstream hydrophobic region. Importance of the positioning of helix-destabilizers relative to the cleavage site was suggested. These two elements appear to co-operatively promote proteolysis of substrates by GlpG. Finally, random mutagenesis of the cleavage site residues in combination with in vivo screening revealed that GlpG prefers residues with a small side chain and a negative charge at the P1 and P1' sites respectively.
Collapse
Affiliation(s)
- Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | |
Collapse
|
39
|
Baker RP, Young K, Feng L, Shi Y, Urban S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc Natl Acad Sci U S A 2007; 104:8257-62. [PMID: 17463085 PMCID: PMC1895938 DOI: 10.1073/pnas.0700814104] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramembrane proteolysis is a core regulatory mechanism of cells that raises a biochemical paradox of how hydrolysis of peptide bonds is accomplished within the normally hydrophobic environment of the membrane. Recent high-resolution crystal structures have revealed that rhomboid proteases contain a catalytic serine recessed into the plane of the membrane, within a hydrophilic cavity that opens to the extracellular face, but protected laterally from membrane lipids by a ring of transmembrane segments. This architecture poses questions about how substrates enter the internal active site laterally from membrane lipid. Because structures are static glimpses of a dynamic enzyme, we have taken a structure-function approach analyzing >40 engineered variants to identify the gating mechanism used by rhomboid proteases. Importantly, our analyses were conducted with a substrate that we show is cleaved at two intramembrane sites within the previously defined Spitz substrate motif. Engineered mutants in the L1 loop and active-site region of the GlpG rhomboid protease suggest an important structural, rather than dynamic, gating function for the L1 loop that was first proposed to be the substrate gate. Conversely, three classes of mutations that promote transmembrane helix 5 displacement away from the protease core dramatically enhanced enzyme activity 4- to 10-fold. Our functional analyses have identified transmembrane helix 5 movement to gate lateral substrate entry as a rate-limiting step in intramembrane proteolysis. Moreover, our mutagenesis also underscores the importance of other residue interactions within the enzyme that warrant further scrutiny.
Collapse
Affiliation(s)
- Rosanna P. Baker
- *Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 507 Preclinical Teaching Building, 725 North Wolfe Street, Baltimore, MD 21205; and
| | - Keith Young
- *Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 507 Preclinical Teaching Building, 725 North Wolfe Street, Baltimore, MD 21205; and
| | - Liang Feng
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - Yigong Shi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - Sinisa Urban
- *Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 507 Preclinical Teaching Building, 725 North Wolfe Street, Baltimore, MD 21205; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Maegawa S, Koide K, Ito K, Akiyama Y. The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates. Mol Microbiol 2007; 64:435-47. [PMID: 17493126 DOI: 10.1111/j.1365-2958.2007.05679.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Escherichia coli GlpG is an orthologue of the rhomboid proteases that catalyse intramembrane proteolysis of specific membrane proteins. We previously showed that it can cleave a type I model membrane protein, Bla-LY2-MBP, having the second transmembrane region of lactose permease (LY2) in vivo and in vitro at the predicted periplasm-membrane boundary region of LY2. Here we investigated the environment of the active site regions of GlpG in the membrane-integrated state by examining the modifiability of Cys residues introduced into the regions around the catalytic residues with membrane-permeable and -impermeable alkylating reagents. The results indicate that the enzyme active site is fully open to the external aqueous phase. GlpG also cleaved a similar fusion protein, Bla-GknTM-MBP, having the transmembrane region of Gurken (GknTM), a physiological substrate of Drosophila rhomboids. Engineered Cys residues in the cleavage site regions of the LY2 and GknTM sequences were efficiently modified with a membrane-impermeable alkylating reagent, showing that these regions are exposed to the periplasm. These results suggest that GlpG cleaves an extramembrane region of substrates, unlike the currently prevailing view that this class of membrane proteases acts against a membrane-embedded polypeptide segment after its lateral entrance into the enzyme's active site.
Collapse
Affiliation(s)
- Saki Maegawa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
41
|
Karakasis K, Taylor D, Ko K. Uncovering a Link between a Plastid Translocon Component and Rhomboid Proteases Using Yeast Mitochondria-Based Assays. ACTA ACUST UNITED AC 2007; 48:655-61. [PMID: 17327256 DOI: 10.1093/pcp/pcm031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rhomboid proteases are present in bacteria, insects, yeasts, parasites, mammals and plants. These proteases are part of the regulated intramembrane proteolysis mechanism for controlling processes such as development, stress response, lipid metabolism and mitochondrial membrane remodeling. Specific rhomboid protease substrates linked to these processes have been identified from insects to mammals, but not for plants. Identification of a link is a key step for elucidating the role of each rhomboid protease. Here, using a yeast mitochondria-based approach, we report evidence of a potential link between a plastid translocon component and organellar rhomboid proteases. This identification expands the types of processes involving regulated intramembrane proteolysis potentially to include at least one aspect of plastid protein transport.
Collapse
Affiliation(s)
- Katherine Karakasis
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
42
|
Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M, Rather PN. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci U S A 2007; 104:1003-8. [PMID: 17215357 PMCID: PMC1783354 DOI: 10.1073/pnas.0608140104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/18/2022] Open
Abstract
The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease.
Collapse
Affiliation(s)
- Lindsay G. Stevenson
- *Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322
| | - Kvido Strisovsky
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
| | - Katy M. Clemmer
- Research Service, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033
| | - Shantanu Bhatt
- *Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322
| | - Matthew Freeman
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
| | - Philip N. Rather
- *Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322
- Research Service, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033
| |
Collapse
|
43
|
Affiliation(s)
- Raquel L. Lieberman
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Del Rio A, Dutta K, Chavez J, Ubarretxena-Belandia I, Ghose R. Solution Structure and Dynamics of the N-terminal Cytosolic Domain of Rhomboid Intramembrane Protease from Pseudomonas aeruginosa: Insights into a Functional Role in Intramembrane Proteolysis. J Mol Biol 2007; 365:109-22. [PMID: 17059825 DOI: 10.1016/j.jmb.2006.09.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/09/2006] [Accepted: 09/18/2006] [Indexed: 12/20/2022]
Abstract
Rhomboids are ubiquitous integral membrane proteases that release cellular signals from membrane-bound substrates through a general signal transduction mechanism known as regulated intramembrane proteolysis (RIP). We present the NMR structure of the cytosolic N-terminal domain (NRho) of P. aeruginosa Rhomboid. NRho consists of a novel alpha/beta fold and represents the first detailed structural insight into this class of intramembrane proteases. We find evidence that NRho is capable of strong and specific association with detergent micelles that mimic the membrane/water interface. Relaxation measurements on NRho reveal structural fluctuations on the microseconds-milliseconds timescale in regions including and contiguous to those implicated in membrane interaction. This structural plasticity may facilitate the ability of NRho to recognize and associate with membranes. We suggest that NRho plays a role in scissile peptide bond selectivity by optimally positioning the Rhomboid active site relative to the membrane plane.
Collapse
Affiliation(s)
- Armando Del Rio
- Department of Chemistry, The City College of New York, 138th Street & Convent Avenue, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
45
|
Ben-Shem A, Fass D, Bibi E. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc Natl Acad Sci U S A 2006; 104:462-6. [PMID: 17190827 PMCID: PMC1766407 DOI: 10.1073/pnas.0609773104] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surround a short TM4, which starts deep within the membrane at the catalytic serine residue. Thus, the catalytic serine is in an externally exposed cavity, which provides a hydrophilic environment for proteolysis. Our results reveal a mechanism to enable water-dependent catalysis at the depth of the hydrophobic milieu of the membrane and suggest how substrates gain access to the sequestered rhomboid active site.
Collapse
Affiliation(s)
- Adam Ben-Shem
- Departments of *Biological Chemistry and
- To whom correspondence may be addressed. E-mail:
or
| | - Deborah Fass
- Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Bibi
- Departments of *Biological Chemistry and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
46
|
Abstract
The rhomboid gene was discovered in Drosophila, where it encodes a seven transmembrane protein that is the signal-generating component of epidermal growth factor (EGF) receptor signaling during development. Although metazoan developmental regulators are rarely conserved outside the animal kingdom, rhomboid proteins are conserved in all kingdoms of life, but the significance of this remains unclear. Recent biochemical reconstitution and high-resolution crystal structures have provided proof that rhomboid proteins function as novel intramembrane proteases, with a serine protease-like catalytic apparatus embedded within the membrane bilayer, buried in a hydrophilic cavity formed by a protein ring. A thorough consideration of all known examples of rhomboid function suggests that, despite biochemical similarity in mechanism and specificity, rhomboid proteins function in diverse processes including quorum sensing in bacteria, mitochondrial membrane fusion, apoptosis, and stem cell differentiation in eukaryotes; rhomboid proteins are also now starting to be linked to human disease, including early-onset blindness, diabetes, and parasitic diseases. Regulating cell signaling is at the heart of rhomboid protein function in many, but not all, of these processes. Further study of these novel enzymes promises to reveal the evolutionary path of rhomboid protein function, which could provide insights into the forces that drive the molecular evolution of regulatory mechanisms.
Collapse
Affiliation(s)
- Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
47
|
Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, Gu L, Jeffrey PD, Urban S, Shi Y. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol 2006; 13:1084-91. [PMID: 17099694 DOI: 10.1038/nsmb1179] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/07/2006] [Indexed: 01/05/2023]
Abstract
Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5.
Collapse
Affiliation(s)
- Zhuoru Wu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang Y, Zhang Y, Ha Y. Crystal structure of a rhomboid family intramembrane protease. Nature 2006; 444:179-80. [PMID: 17051161 DOI: 10.1038/nature05255] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 09/18/2006] [Indexed: 11/09/2022]
Abstract
Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and gamma-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 A resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.
Collapse
Affiliation(s)
- Yongcheng Wang
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
49
|
Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D'Adamio L, Derks C, Dejaegere T, Pellegrini L, D'Hooge R, Scorrano L, De Strooper B. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126:163-75. [PMID: 16839884 DOI: 10.1016/j.cell.2006.06.021] [Citation(s) in RCA: 565] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 03/08/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.
Collapse
Affiliation(s)
- Sara Cipolat
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Bacteria use a variety of means to communicate with one another and with their eukaryotic hosts. In some cases, social interactions allow bacteria to synchronize the behavior of all of the members of the group and thereby act like multicellular organisms. By contrast, some bacterial social engagements promote individuality among members within the group and thereby foster diversity. Here we explore the molecular mechanisms underpinning some recently discovered bacterial communication systems. These include long- and short-range chemical signaling channels; one-way, two-way, and multi-way communication; contact-mediated and contact-inhibited signaling; and the use and spread of misinformation or, more dramatically, even deadly information.
Collapse
Affiliation(s)
- Bonnie L Bassler
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|