1
|
Yoshinaga T, Ando Y, Sato Y, Kishida T, Kitajima M. Development of COPMAN-Air method for high-sensitivity detection of SARS-CoV-2 in air. Sci Rep 2025; 15:14340. [PMID: 40275056 PMCID: PMC12022069 DOI: 10.1038/s41598-025-99365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Several studies have successfully detected SARS-CoV-2 in air samples. However, most of these studies focused on validating the air collection method, and there was no report on the development of a virus detection method. In this study, to detect viruses in air samples with greater sensitively than conventional detection methods, we utilized COPMAN, a highly sensitive virus detection method originally used for wastewater samples. We applied COPMAN to air samples, thereby developing COPMAN-Air. Briefly, this method efficiently detects the extremely low levels of viral RNA in air samples via three reaction steps: RT, preamplification, and qPCR, as it is performed with COPMAN. We evaluated COPMAN-Air using samples from a fever clinic for COVID-19 patients. COPMAN-Air demonstrated a higher detection rate of viral RNA compared with conventional methods, detecting the virus in 22 out of 23 samples (95.7%) vs. 14 out of 23 samples (60.9%). Additionally, a positive correlation (r = 0.70) was detected between the amount of viral RNA detected by COPMAN-Air and the number of confirmed COVID-19 cases, suggesting that COPMAN-Air could estimate the number of SARS-CoV-2-positive individuals in a given space based on the quantitative values of SARS-CoV-2 RNA in air samples. Surveillance systems for airborne pathogens using COPMAN-Air are expected to be valuable for estimating the number of infected individuals and for guiding the implementation of public health measures.
Collapse
Affiliation(s)
| | | | | | | | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Baby K, Vithalkar MP, Dastidar SG, Mukhopadhyay C, Hamdy R, Soliman SSM, Nayak Y. Exploring TMPRSS2 Drug Target to Combat Influenza and Coronavirus Infection. SCIENTIFICA 2025; 2025:3687892. [PMID: 40297833 PMCID: PMC12037250 DOI: 10.1155/sci5/3687892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Respiratory viral infections, including influenza and coronaviruses, present significant health risks worldwide. The recent COVID-19 pandemic highlights the urgent need for novel and effective antiviral agents. The host cell protease, transmembrane serine protease 2 (TMPRSS2), facilitates viral pathogenesis by playing a critical role in viral invasion and disease progression. This protease is coexpressed with the viral receptors of angiotensin-converting enzyme 2 (ACE2) for SARS-CoV-2 in the human respiratory tract and plays a significant role in activating viral proteins and spreading. TMPRSS2 activates the coronavirus spike (S) protein and permits membrane fusion and viral entry by cleaving the virus surface glycoproteins. It also activates the hemagglutinin (HA) protein, an enzyme necessary for the spread of influenza virus. TMPRSS2 inhibitors can reduce viral propagation and morbidity by blocking viral entry into respiratory cells and reducing viral spread, inflammation, and disease severity. This review examines the role of TMPRSS2 in viral replication and pathogenicity. It also offers potential avenues to develop targeted antivirals to inhibit TMPRSS2 function, suggesting a possible focus on targeted antiviral development. Ultimately, the review seeks to contribute to improving public health outcomes related to these viral infections.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Centre for Emerging and Tropical Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
3
|
Emi A, Suzuki Y, Odake C, Sakaguchi S, Wu H, Nakano T. Development of an automated plaque-counting program for the quantification of the Chikungunya virus. Sci Rep 2025; 15:12429. [PMID: 40217093 PMCID: PMC11992114 DOI: 10.1038/s41598-025-97590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Chikungunya virus (CHIKV) induces a massive cytopathic effect (CPE) on various cell types. Therefore, the plaque assay, a CPE-based virus titration method, remains the gold standard for quantifying the infectious units of CHIKV. However, manual plaque counting is often a labor-intensive task, especially in experiments involving multiple samples. In this study, we developed plaQuest, a stand-alone plaque-counting software running on a Windows operating system, for rapid and reliable quantification of CHIKV plaques in a 24-well plate. Our evaluation experiments using the conventional CPE-based plaque assay showed that the CHIKV plaque counts provided by plaQuest strongly correlated with the plaque counts manually determined by four analysts. In addition, the CHIKV inhibition curve of mycophenolic acid (MPA) determined by plaQuest was identical to that determined by manual counting, resulting in a similar 50% inhibitory concentration of MPA. Furthermore, the automated plaque counting by plaQuest was applicable to the evaluation of inhibitors against other RNA viruses using the CPE-based and immunostain-based plaque assay, which is an alternative titration assay for non- (or less) cytopathic viruses. Thus, our study demonstrates that plaQuest is an effective option for quantifying infectious virus titers, reducing the workload of the plaque assay.
Collapse
Affiliation(s)
- Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| | - Chinami Odake
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
4
|
Oliveira ASF, Kearns FL, Rosenfeld MA, Casalino L, Tulli L, Berger I, Schaffitzel C, Davidson AD, Amaro RE, Mulholland AJ. Allosteric modulation by the fatty acid site in the glycosylated SARS-CoV-2 spike. eLife 2025; 13:RP97313. [PMID: 40208235 PMCID: PMC11984958 DOI: 10.7554/elife.97313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Tulli
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Imre Berger
- School of Chemistry, University of BristolBristolUnited Kingdom
- School of Biochemistry, University of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal Biology, School of ChemistryBristolUnited Kingdom
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University WalkBristolUnited Kingdom
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San DiegoLa JollaUnited States
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
5
|
Iriyama C, Ichikawa T, Tamura T, Takahata M, Ishio T, Ibata M, Kawai R, Iwata M, Suzuki M, Adachi H, Nao N, Suzuki H, Kawai A, Kamiyama A, Suzuki T, Hirata Y, Iida S, Katano H, Ishii Y, Tsuji T, Oda Y, Tanaka S, Okazaki N, Katayama Y, Nakagawa S, Tsukamoto T, Doi Y, Fukuhara T, Murata T, Tomita A. Clinical and molecular landscape of prolonged SARS-CoV-2 infection with resistance to remdesivir in immunocompromised patients. PNAS NEXUS 2025; 4:pgaf085. [PMID: 40160532 PMCID: PMC11950820 DOI: 10.1093/pnasnexus/pgaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/15/2025] [Indexed: 04/02/2025]
Abstract
Patients with hematologic diseases have experienced coronavirus disease 2019 (COVID-19) with a prolonged, progressive course. Here, we present clinical, pathological, and virological analyses of three cases of prolonged COVID-19 among patients undergoing treatment for B-cell lymphoma. These patients had all been treated with anti-CD20 antibody and bendamustine. Despite various antiviral treatments, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels persisted for >4 weeks, and two of them succumbed to COVID-19. The autopsy showed bronchopneumonia, interstitial pneumonia, alveolar hemorrhage, and fibrosis. Overlapping cytomegalovirus, fungal and/or bacterial infections were also confirmed. Sequencing of SARS-CoV-2 showed accumulation of mutations and changes in variant allele frequencies over time. NSP12 mutations V792I and M794I appeared independently in two cases as COVID-19 progressed. In vitro drug susceptibility analysis and an animal experiment using recombinant SARS-CoV-2 demonstrated that each mutation, V792 and M794I, was independently responsible for remdesivir resistance and attenuated pathogenicity. E340A, E340D, and F342INS mutations in the spike protein were found in one case, which may account for the sotrovimab resistance. Analysis of autopsy specimens indicated heterogeneous distribution of these mutations. In summary, we demonstrated temporal and spatial diversity in SARS-CoV-2 that evolved resistance to various antiviral agents in malignant lymphoma patients under immunodeficient conditions caused by certain types of immunochemotherapies. Strategies may be necessary to prevent the acquisition of drug resistance and improve outcomes, such as the selection of appropriate treatment strategies for lymphoma considering patients' immune status and the institution of early intensive antiviral therapy.
Collapse
Affiliation(s)
- Chisako Iriyama
- Department of Hematology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Takaya Ichikawa
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Department of Hematology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Mutsumi Takahata
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Takashi Ishio
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Ryuji Kawai
- Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Mitsunaga Iwata
- Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Hirokazu Adachi
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, Nagoya 462-8576, Japan
| | - Naganori Nao
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | | | - Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Akifumi Kamiyama
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasushi Ishii
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Nanase Okazaki
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Yuko Katayama
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Shimpei Nakagawa
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake 470-1192, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Takayuki Murata
- Center for Infectious Disease Research, Fujita Health University, Toyoake 470-1192, Japan
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
6
|
Wang C, Cheng Z, Miao J, Xue X, Dong Y, Zhao L, Guo H, Wang J, Wang Z, Lu S, Fang G, Peng Y, Zhai Y, Zhang Z, Gao D, Wang Z, Wang P, Zhang L, Dunmall LSC, Wang J, Tang W, Li X, Ding Z, Zhao X, Li L, Lemoine NR, Wang Z, Tonge D, Tan W, Dong J, Wang Y. Genomic-transcriptomic analysis identifies the Syrian hamster as a superior animal model for human diseases. BMC Genomics 2025; 26:286. [PMID: 40122829 PMCID: PMC11931762 DOI: 10.1186/s12864-025-11393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The Syrian hamster (Mesocricetus auratus) has shown promise as a human diseases model, recapitulating features of different human diseases including COVID-19. However, the landscape of its genome and transcriptome has not been systematically dissected, restricting its potential applications. RESULTS Here we provide a complete analysis of the genome and transcriptome of the Syrian hamster and found that its lineage diverged from that of the Chinese hamster (Cricetulus griseus) around 29.4 million years ago. 21,387 protein-coding genes were identified, with 90.03% of the 2.56G base pair sequence being anchored to 22 chromosomes. Further comparison of the transcriptomes from 15 tissues of the Syrian hamster revealed that the Syrian hamster shares a pattern of alternative splicing modes more similar to humans, compared to rats and mice. An integrated genomic-transcriptomic analysis revealed that the Syrian hamster also has genetic and biological advantages as a superior animal model for cardiovascular diseases. Strikingly, several genes involved in SARS-COV-2 infection, including ACE2, present a higher homology with humans compared to other rodents and show the same function as their human counterparts. CONCLUSION The detailed molecular characterisation of the Syrian hamster in the present study opens a wealth of fundamental resources from this small rodent for future research into human disease pathology and treatment.
Collapse
Affiliation(s)
- Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenguo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450000, People's Republic of China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter Pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yunshu Dong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Li Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Haoran Guo
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianyao Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhizhong Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangshuang Lu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guangming Fang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Peng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yafei Zhai
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dongling Gao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wenxue Tang
- Centre for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaowei Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongren Ding
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaoyan Zhao
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ling Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| | - Daniel Tonge
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Jianzeng Dong
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Department of of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
7
|
Anraku Y, Kita S, Onodera T, Sato A, Tadokoro T, Ito S, Adachi Y, Kotaki R, Suzuki T, Sasaki J, Shiwa-Sudo N, Iwata-Yoshikawa N, Nagata N, Kobayashi S, Kazuki Y, Oshimura M, Nomura T, Sasaki M, Orba Y, Suzuki T, Sawa H, Hashiguchi T, Fukuhara H, Takahashi Y, Maenaka K. Structural and virological identification of neutralizing antibody footprint provides insights into therapeutic antibody design against SARS-CoV-2 variants. Commun Biol 2025; 8:483. [PMID: 40121330 PMCID: PMC11929858 DOI: 10.1038/s42003-025-07827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Medical treatments using potent neutralizing SARS-CoV-2 antibodies have achieved remarkable improvements in clinical symptoms, changing the situation for the severity of COVID-19 patients. We previously reported an antibody, NT-108 with potent neutralizing activity. However, the structural and functional basis for the neutralizing activity of NT-108 has not yet been understood. Here, we demonstrated the therapeutic effects of NT-108 in a hamster model and its protective effects at low doses. Furthermore, we determined the cryo-EM structure of NT-108 in complex with SARS-CoV-2 spike. The single-chain Fv construction of NT-108 improved the cryo-EM maps because of the prevention of preferred orientations induced by Fab orientation. The footprints of NT-108 illuminated how escape mutations such as E484K evade from class 2 antibody recognition without ACE2 affinity attenuation. The functional and structural basis for the potent neutralizing activity of NT-108 provides insights into the rational design of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Sato
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souta Kobayashi
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Milon TI, Sarkar T, Chen Y, Grider JM, Chen F, Ji JY, Jois SD, Kousoulas KG, Raghavan V, Xu W. Development of the TSR-based computational method to investigate spike and monoclonal antibody interactions. Front Chem 2025; 13:1395374. [PMID: 40177350 PMCID: PMC11962798 DOI: 10.3389/fchem.2025.1395374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Monoclonal antibody (mAb) drug treatments have proven effective in reducing COVID-19-related hospitalizations or fatalities, particularly among high-risk patients. Numerous experimental studies have explored the structures of spike proteins and their complexes with ACE2 or mAbs. These 3D structures provide crucial insights into the interactions between spike proteins and ACE2 or mAb, forming a basis for the development of diagnostic tools and therapeutics. However, the field of computational biology has faced substantial challenges due to the lack of methods for precise protein structural comparisons and accurate prediction of molecular interactions. In our previous studies, we introduced the Triangular Spatial Relationship (TSR)-based algorithm, which represents a protein's 3D structure using a vector of integers (keys). These earlier studies, however, were limited to individual proteins. Purpose This study introduces new extensions of the TSR-based algorithm, enhancing its ability to study interactions between two molecules. We apply these extensions to gain a mechanistic understanding of spike - mAb interactions. Method We expanded the basic TSR method in three novel ways: (1) TSR keys encompassing all atoms, (2) cross keys for interactions between two molecules, and (3) intra-residual keys for amino acids. This TSR-based representation of 3D structures offers a unique advantage by simplifying the search for similar substructures within structural datasets. Results The study's key findings include: (i) The method effectively quantified and interpreted conformational changes and steric effects using the newly introduced TSR keys. (ii) Six clusters for CDRH3 and three clusters for CDRL3 were identified using all-atom keys. (iii) We constructed the TSR-STRSUM (TSR-STRucture SUbstitution Matrix), a matrix that represents pairwise similarities between amino acid structures, providing valuable applications in protein sequence and structure comparison. (iv) Intra-residual keys revealed two distinct Tyr clusters characterized by specific triangle geometries. Conclusion This study presents an advanced computational approach that not only quantifies and interprets conformational changes in protein backbones, entire structures, or individual amino acids, but also facilitates the search for substructures induced by molecular binding across protein datasets. In some instances, a direct correlation between structures and functions was successfully established.
Collapse
Affiliation(s)
- Tarikul I. Milon
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Titli Sarkar
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Yixin Chen
- Department of Computer and Information Science, The University of Mississippi, University, MS, United States
| | - Jordan M. Grider
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, LA, United States
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vijay Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
9
|
Furusawa Y, Kiso M, Uraki R, Sakai-Tagawa Y, Nagai H, Koga M, Kashima Y, Hojo M, Iwamoto N, Iwatsuki-Horimoto K, Ohmagari N, Suzuki Y, Yotsuyanagi H, Halfmann PJ, Kamitani W, Yamayoshi S, Kawaoka Y. Amino acid substitutions in NSP6 and NSP13 of SARS-CoV-2 contribute to superior virus growth at low temperatures. J Virol 2025; 99:e0221724. [PMID: 39936915 PMCID: PMC11915790 DOI: 10.1128/jvi.02217-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
In general, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates well at 37°C, which is the temperature of the human lower respiratory tract, but it poorly at 30°C‒32°C, which is the temperature of the human upper respiratory tract. The replication efficiency of SARS-CoV-2 in the upper respiratory tract may directly affect its transmissibility. In this study, an XBB.1.5 isolate showed superior replicative ability at 32°C and 30°C, whereas most other Omicron sub-variant isolates showed limited growth. Deep sequencing analysis demonstrated that the frequencies of viruses possessing the NSP6-S163P and NSP13-P238S substitutions increased to more than 97% during propagation of the XBB.1.5 isolate at 32°C but did not reach 55% at 37°C. Reverse genetics revealed that these substitutions contributed to superior virus growth in vitro at these low temperatures by improving virus genome replication. Mutant virus possessing both substitutions showed slightly higher virus titers in the upper respiratory tract of hamsters compared to the parental virus; however, transmissibility between hamsters was similar for the mutant and parental viruses. Taken together, our findings indicate that NSP6-S163P and NSP13-P238S contribute to superior virus growth at low temperatures in vitro and in the upper respiratory tract of hamsters. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates efficiently at 37°C. However, the temperature of the human upper airway is 30°C-32°C. Therefore, the replicative ability of SARS-CoV-2 at low temperatures could influence virus replication in the upper airway and transmissibility. In this study, we assessed the growth of Omicron sub-variants at low temperatures and found that an XBB.1.5 isolate showed increased replicative ability. By deep sequencing analysis and reverse genetics, we found that amino acid changes in NSP6 and NSP13 contribute to the low-temperature growth; these changes improved RNA polymerase activity at low temperatures and enhanced virus replication in the upper airway of hamsters. Although these substitutions alone did not drastically affect virus transmissibility, in combination with other substitutions, they could affect virus replication in humans. Furthermore, since these substitutions enhance virus replication in cultured cells, they could be used to improve the production of inactivated or live attenuated vaccine virus.
Collapse
Affiliation(s)
- Yuri Furusawa
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
| | - Maki Kiso
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
| | - Ryuta Uraki
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Michiko Koga
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Masayuki Hojo
- Department of Respiratory Disease, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Seiya Yamayoshi
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Singh M, Shanmukha S, Eldesouki RE, Harraz MM. FDA-approved drug repurposing screen identifies inhibitors of SARS-CoV-2 pseudovirus entry. Front Pharmacol 2025; 16:1537912. [PMID: 40166473 PMCID: PMC11955658 DOI: 10.3389/fphar.2025.1537912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose The coronavirus disease 2019 (COVID-19) pandemic has devastated global health and the economy, underscoring the urgent need for extensive research into the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry and the development of effective therapeutic interventions. Experimental approach We established a cell line expressing human angiotensin-converting enzyme 2 (ACE2). We used it as a model of pseudotyped viral entry using murine leukemia virus (MLV) expressing SARS-CoV-2 spike (S) protein on its surface and firefly luciferase as a reporter. We screened an U.S. Food and Drug Administration (FDA)-approved compound library for inhibiting ACE2-dependent SARS-CoV-2 pseudotyped viral entry and identified several drug-repurposing candidates. Key results We identified 18 drugs and drug candidates, including 14 previously reported inhibitors of viral entry and four novel candidates. Pyridoxal 5'-phosphate, Dovitinib, Adefovir dipivoxil, and Biapenem potently inhibit ACE2-dependent viral entry with inhibitory concentration 50% (IC50) values of 57nM, 74 nM, 130 nM, and 183 nM, respectively. Conclusion and implications We identified four novel FDA-approved candidate drugs for anti-SARS-CoV-2 combination therapy. Our findings contribute to the growing body of evidence supporting drug repurposing as a viable strategy for rapidly developing COVID-19 treatments.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shruthi Shanmukha
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raghda E. Eldesouki
- Genetics Unit, Histology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Koylass N, Sachithanandham J, Osei-Owusu J, Chen KH, Cheng HY, Pekosz A, Qiu Z. The proton-activated chloride channel inhibits SARS-CoV-2 spike protein-mediated viral entry through the endosomal pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642872. [PMID: 40161729 PMCID: PMC11952384 DOI: 10.1101/2025.03.12.642872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
SARS-CoV-2 binds to its obligatory receptor, angiotensin-converting enzyme 2 (ACE2) and capitalizes on decreasing endosomal acidity and cathepsin-mediated spike protein cleavage to enter cells. Endosomal acidification is driven by V-ATPase which pumps protons (H + ) into the lumen. The driving force for H + is maintained by the import of chloride (Cl - ) which is mediated by intracellular CLC transporters. We have recently identified the Proton-Activated Chloride (PAC) channel as a negative regulator of endosomal acidification. PAC responds to low pH and releases Cl - from the lumen to prevent endosomal hyperacidification. However, its role in SARS-CoV-2 viral entry remains unexplored. Here, we show that overexpressing the PAC channel in ACE2 expressing HEK 293T cells markedly inhibited the SARS-CoV-2 spike-mediated viral entry. Several lines of evidence suggest that this effect was due to the suppression of the endosomal entry pathway. First, the abilities of PAC to regulate endosomal acidification and inhibit pseudoviral entry were both dependent on its endosomal localization and channel activity. Second, the inhibitory effect on viral entry was similar to the suppression mediated by E64-d, a cathepsin inhibitor, while no major additive effect for both treatments was observed. Third, this inhibition was also attenuated in cells expressing TMPRSS2, which provides the alternative entry pathway through cell surface. Importantly, PAC overexpression also inhibited the number and size of plaques formed by two live SARS-CoV-2 isolates (B.1 and Omicron XBB.1.16) in Vero E6 cells. Altogether, our data indicates that PAC plays a vital role in inhibiting SARS-CoV-2 viral entry and identifies this endosomal channel as a potential novel target against the infection of SARS-CoV-2 and other viruses, which rely on the endosomal pathway.
Collapse
|
12
|
Sanna G, Riabova O, Kazakova E, Lepioshkin A, Monakhova N, Marongiu A, Franci G, Manzin A, Makarov V. Efficacy of dispirotripiperazine PDSTP in a golden Syrian hamster model of SARS-CoV-2 infection. Front Microbiol 2025; 16:1546946. [PMID: 40130242 PMCID: PMC11931052 DOI: 10.3389/fmicb.2025.1546946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 03/26/2025] Open
Abstract
The increasing incidence of viral pandemics calls for new small-molecule therapeutics beyond traditional approaches and targets. Dispirotripiperazine, composed of two positively charged nitrogen atoms, represents an unusual scaffold in drug discovery campaigns, and molecules based on it are known to prevent virus infection by disrupting early host-pathogen interactions. In this study, the adhesion-blocking dispirotripiperazine core compound PDSTP was evaluated against SARS-CoV-2 in vitro and in vivo. We demonstrated that the molecule was acceptably active against two clinical isolates affecting the early stages of the SARS-CoV-2 cycle. In a hamster model of SARS-CoV-2 pneumonia, PDSTP treatment resulted in reduced viral loads in the lungs and turbinates and milder lung tissue lesions. Overall, these data support PDSTP as a preclinical candidate for the treatment of COVID-19.
Collapse
Affiliation(s)
- Giuseppina Sanna
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Olga Riabova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Alexander Lepioshkin
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Natalia Monakhova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Alessandra Marongiu
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Vadim Makarov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| |
Collapse
|
13
|
Iida K, Ajiro M, Nakano-Kobayashi A, Muramoto Y, Takenaga T, Denawa M, Kurosawa R, Noda T, Hagiwara M. Switching of OAS1 splicing isoforms overcomes SNP-derived vulnerability to SARS-CoV-2 infection. BMC Biol 2025; 23:60. [PMID: 40025489 PMCID: PMC11874701 DOI: 10.1186/s12915-025-02173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic provided important insights into the relationship between infectious diseases and the human genome. A genomic region encoding the 2'-5'-oligoadenylate synthetase (OAS) family proteins that sense viral genomic RNAs and trigger an antiviral response contains single nucleotide polymorphisms (SNPs) associated with SARS-CoV-2 infection susceptibility. A high-risk SNP identified at the splice acceptor site of OAS1 exon 6-a terminal exon-alters the proportion of various splicing isoforms of OAS1 and its activity. However, the actual causality of this SNP or splicing to infection susceptibility remains unknown. RESULTS In this study, it was found that serine-arginine-rich splicing factor 6 (SRSF6) binds to the splice donor site of the human OAS1 exon 5. SRSF6 determines the selected alternative terminal exon when the risk allele disrupts the splice acceptor site. Subsequently, an inhibitor for CDC-like kinase was rationally selected as a candidate splicing modulator. RNA-Seq and RT-PCR analyses revealed that this inhibitor can induce splice switching of OAS1 mRNAs in the human lung adenocarcinoma cell line Calu-3. Under the inhibitor treatment, the cells exhibited reduced SARS-CoV-2 infection rates. Meanwhile, the colonic epithelial cell line Caco-2 expressed non-risk type OAS1 mRNA isoforms that did not undergo splice-switching or demonstrate altered SARS-CoV-2 sensitivity following treatment with the inhibitor. CONCLUSIONS These results indicate that a high-risk SNP in OAS1 influences cell susceptibility to SARS-CoV-2 infection by inducing splice-switching at its terminal exon. Additionally, chemical splicing modifiers may prove beneficial in overcoming this genomic vulnerability.
Collapse
Affiliation(s)
- Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan.
- Present address: Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Masahiko Ajiro
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
- Present address: Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Akiko Nakano-Kobayashi
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
- Laboratory of Tumor Tissue Response, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Toru Takenaga
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Ryo Kurosawa
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masatoshi Hagiwara
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
14
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
15
|
Sakudo A, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms 2025; 13:507. [PMID: 40142400 PMCID: PMC11946018 DOI: 10.3390/microorganisms13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta 836-0041, Fukuoka, Japan
| | - Rumiko Onishi
- Santa Mineral Co., Ltd., Minato-ku 105-0013, Tokyo, Japan
| | - Takashi Onodera
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Yasuhiro Yoshikawa
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd., Machida 194-0035, Tokyo, Japan
| |
Collapse
|
16
|
Akagi M, Ohta K, Sakuma M, Naruse T, Ishida Y, Niwata C, Yamakado N, Nakagawa T, Ono S, Nishi H, Shigeishi H, Aikawa T. TMPRSS2 expression in oral mucosal cells induced by transfected double-stranded RNA and IL-1β. J Oral Biosci 2025:100619. [PMID: 39965753 DOI: 10.1016/j.job.2025.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVES Transmembrane serine protease 2 (TMPRSS2) plays a key role in the entry of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A into host cells, and its elevated expression is a risk factor for the spread of viral infection. However, TMPRSS2 expression and the factors related to its induction in oral keratinocytes and fibroblasts remain largely unknown. Here, we examined TMPRSS2 expression and factors related to its induction in oral mucosal cells. METHODS TMPRSS2 expression was examined in oral keratinocytes (RT7) and fibroblasts (GT1). Subsequently, TMPRSS2 induction in was analyzed in both cell types following transfection of nucleic acid and inflammatory cytokines, such as interleukin (IL)-1β. Finally, the effects of IL-1β on STAT1 activation related to double-stranded RNA (dsRNA)-induced TMPRSS2 expression were examined. RESULTS RT7 and GT1 cells exhibited constitutive TMPRSS2 mRNA and protein expression. Transfection with Poly(I:C) (as a dsRNA) and poly (dA:dT) (as a double-stranded DNA [dsDNA]) increased TMPRSS2 expression. TMPRSS2 expression was also increased by IL-1β, but not IFN-γ or TNF-α, while the combination of IL-1β and transfected Poly(I:C) caused a dramatic increase in TMPRSS2 expression as compared to each alone in both cell types. IL-1β also enhanced transfected Poly(I:C)-activated STAT1 related to TMPRSS2 expression. CONCLUSIONS TMPRSS2-expressing oral keratinocytes and fibroblasts are targets of SARS-CoV-2 and influenza A virus. TMPRSS2 expression, in cooperation with IL-1β, plays an important role in promoting infection during virus invasion in oral mucosal cells.
Collapse
Affiliation(s)
- Misaki Akagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan.
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Takako Naruse
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yoko Ishida
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Chieko Niwata
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Nao Yamakado
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Takayuki Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Shigehiro Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| |
Collapse
|
17
|
Sugimoto A, Koike T, Kuboki Y, Komaba S, Kosono S, Aswathy M, Anzai I, Watanabe T, Toshima K, Takahashi D. Synthesis of Low-Molecular-Weight Fucoidan Analogue and Its Inhibitory Activities against Heparanase and SARS-CoV-2 Infection. Angew Chem Int Ed Engl 2025; 64:e202411760. [PMID: 39373347 PMCID: PMC11795709 DOI: 10.1002/anie.202411760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Heparan sulfate (HS) is ubiquitous on cell surfaces and is used as a receptor by many viruses including SARS-CoV-2. However, increased activity of the inflammatory enzyme heparanase (HPSE), which hydrolyses HS, in patients with COVID-19 not only increases the severity of symptoms but also may facilitate the spread of the virus by degrading HS on the cell surface. Therefore, synthetic HPSE blockades, which can bind to SARS-CoV-2 spike protein (SARS-CoV-2-S) and inhibit viral entry, have attracted much attention. This study investigated the development of a new dual-targeting antiviral agent against HPSE and SARS-CoV-2-S using fucoidan as a structural motif. It was found that all-sulfated fucoidan derivative 10, which exhibited the highest binding affinity to SARS-CoV-2-S among 13 derivatives, also showed the highest inhibitory activity against HPSE. Based on this, a newly designed and synthesized fucoidan analogue 16, in which the octyl group of 10 was changed to a cholestanyl group, was found to show approximately 3 times higher activity than 10 but did not inhibit factor Xa associated with undesired anticoagulant effects. The binding affinity of 16 to SARS-CoV-2-S was significantly increased approximately 400-fold over that of 10. The binding of 16 to SARS-CoV-2-S inhibited the binding between SARS-CoV-2-S and heparin and between SARS-CoV-2-S and ACE2. Furthermore, 16 effectively inhibited infection by the SARS-CoV-2 Wuhan strain and two Omicron subvariants.
Collapse
Affiliation(s)
- Aoi Sugimoto
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Tatsuki Koike
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Yuya Kuboki
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Sumika Komaba
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Shuhei Kosono
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Maniyamma Aswathy
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Itsuki Anzai
- Department of Molecular VirologyResearch Institute for Microbial DiseasesOsaka University3-1 YamadaokaSuitaOsaka565-0871Japan
- Center for Infectious Disease Education and Research (CiDER)Osaka University2-8 YamadaokaSuitaOsaka565-0871Japan
- Center for Advanced Modalities and DDSOsaka University2-8 YamadaokaSuitaOsaka565-0871Japan
| | - Tokiko Watanabe
- Department of Molecular VirologyResearch Institute for Microbial DiseasesOsaka University3-1 YamadaokaSuitaOsaka565-0871Japan
- Center for Infectious Disease Education and Research (CiDER)Osaka University2-8 YamadaokaSuitaOsaka565-0871Japan
- Center for Advanced Modalities and DDSOsaka University2-8 YamadaokaSuitaOsaka565-0871Japan
| | - Kazunobu Toshima
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| | - Daisuke Takahashi
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3-14-1 Hiyoshi, Kohoku-kuYokohama223-8522Japan
| |
Collapse
|
18
|
Deguchi S, Yokoi F, Takayama K. Organoids and microphysiological systems for pharmaceutical research of viral respiratory infections. Drug Metab Pharmacokinet 2025; 60:101041. [PMID: 39847975 DOI: 10.1016/j.dmpk.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/25/2025]
Abstract
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections. Advanced disease modeling using organoids, self-organized three-dimensional (3D) cell culture models derived from stem cells, or MPS, models for culturing multiple cell types in a microfluidic device and capable of recapitulating a physiological 3D dynamic environment, can accurately replicate the complex functions of respiratory organs, thus making them valuable tools for elucidating the organ damages caused by viral respiratory infections and evaluating the efficacy of candidate drugs against them. Recently, a wide range of organoids and MPS have been developed to model the complex pathophysiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and assess therapeutic drugs. In this review, we evaluate the latest pharmaceutical research on coronavirus disease 2019 (COVID-19) that utilizes organoids and MPS and discuss future perspectives of their applications.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
19
|
Kakizaki M, Hashimoto R, Nagata N, Yamamoto T, Okura T, Katoh H, Kitai Y, Akahori Y, Shirato K, Ryo A, Takayama K, Takeda M. The respective roles of TMPRSS2 and cathepsins for SARS-CoV-2 infection in human respiratory organoids. J Virol 2025; 99:e0185324. [PMID: 39601592 PMCID: PMC11784140 DOI: 10.1128/jvi.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
A critical aspect of the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the protease-mediated activation of the viral spike (S) protein. The type II transmembrane serine protease TMPRSS2 is crucial for SARS-CoV-2 infection in lung epithelial Calu-3 cells and murine airways. However, the importance of TMPRSS2 needs to be re-examined because the ability to utilize TMPRSS2 is significantly reduced in the Omicron variants that spread globally. For this purpose, replication profiles of SARS-CoV-2 were analyzed in human respiratory organoids. All tested viruses, including Omicron variants, replicated efficiently in these organoids. Notably, all SARS-CoV-2 strains retained replication ability in TMPRSS2-gene knockout (KO) respiratory organoids, suggesting that TMPRSS2 is not essential for SARS-CoV-2 infection in human respiratory tissues. However, TMPRSS2-gene knockout significantly reduces the inhibitory effect of nafamostat, indicating the advantage of TMPRSS2-utilizing ability for the SARS-CoV-2 infection in these organoids. Interestingly, Omicron variants regained the TMPRSS2-utilizing ability in recent subvariants. The basal infectivity would be supported mainly by cathepsins because the cathepsin inhibitor, EST, showed a significant inhibitory effect on infection with any SARS-CoV-2 strains, mainly when used with nafamostat. A supplementary contribution of other serine proteases was also suggested because the infection of the Delta variant was still inhibited partially by nafamostat in TMPRSS2 KO organoids. Thus, various proteases, including TMPRSS2, other serine proteases, and cathepsins, co-operatively contribute to SARS-CoV-2 infection significantly in the respiratory organoids. Thus, SARS-CoV-2 infection in the human respiratory tissues would be more complex than observed in cell lines or mice. IMPORTANCE We explored how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects human respiratory organoids, which are a cultured cell model made to mimic the physiological conditions of the human airways. We focused on understanding the role of different proteases of host cells in activating the virus spike proteins. Specifically, we looked at TMPRSS2, a transmembrane serine protease, and cathepsin L, a lysosomal enzyme, which helps the virus enter cells by cutting the viral spike protein. We discovered that while TMPRSS2 is crucial for the virus in certain cells and animal models, other proteases, including cathepsins and various serine proteases, also play significant roles in the SARS-CoV-2 infection of human respiratory organoids. We suggest that SARS-CoV-2 uses a more complex mechanism involving multiple proteases to infect human airways, differing from what we see in conventional cell lines or animal models. This complexity might help explain how different variants can spread and infect people effectively.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takashi Okura
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Akahori
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Nakamura S, Tanimura Y, Nomura R, Suzuki H, Nishikawa K, Kamegawa A, Numoto N, Tanaka A, Kawabata S, Sakaguchi S, Emi A, Suzuki Y, Fujiyoshi Y. Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes. Proc Natl Acad Sci U S A 2025; 122:e2413465122. [PMID: 39854234 PMCID: PMC11789008 DOI: 10.1073/pnas.2413465122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD). High-resolution structures of the peptide complexed with mutant RBDs revealed a mechanism of mutation-tolerant inhibition. CeSPIACE bound major mutant RBDs with picomolar affinity and inhibited infection by SARS-CoV-2 variants in VeroE6/TMPRSS2 cells (IC50 4 pM to 13 nM) and demonstrated potent in vivo efficacy by inhalation administration in hamsters. Mutagenesis analyses to address mutation risks confirmed tolerance against existing and/or potential future mutations of the RBD. Our strategy of engineering mutation-tolerant inhibitors may be applicable to other infectious diseases.
Collapse
Affiliation(s)
- Shun Nakamura
- Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
- CeSPIA Inc., Taisei Otemachi, Chiyoda-ku, Tokyo100-0004, Japan
| | - Yukihiro Tanimura
- Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
| | - Risa Nomura
- Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
| | - Hiroshi Suzuki
- Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
| | - Kouki Nishikawa
- CeSPIA Inc., Taisei Otemachi, Chiyoda-ku, Tokyo100-0004, Japan
| | - Akiko Kamegawa
- Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
- CeSPIA Inc., Taisei Otemachi, Chiyoda-ku, Tokyo100-0004, Japan
| | - Nobutaka Numoto
- International Center for Structural Biology, Research Institute for Interdisciplinary Science, Okayama University, Kita-ku, Okayama700-8530, Japan
| | - Atsushi Tanaka
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka569-8686, Japan
| | - Shigeru Kawabata
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka569-8686, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka569-8686, Japan
| | - Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka569-8686, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka569-8686, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
- CeSPIA Inc., Taisei Otemachi, Chiyoda-ku, Tokyo100-0004, Japan
| |
Collapse
|
21
|
Yang J, Yao YL, Lv XY, Geng LH, Wang Y, Adu-Gyamfi EA, Wang XJ, Qian Y, Chen MX, Zhong ZH, Li RY, Wan Q, Ding YB. The Safety and Efficacy of inactivated COVID-19 vaccination in couples undergoing assisted reproductive technology: A prospective cohort study. Vaccine 2025; 45:126635. [PMID: 39708514 DOI: 10.1016/j.vaccine.2024.126635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The safety of the COVID-19 inactivated vaccine on pregnancy outcomes in couples undergoing assisted reproductive technology remains uncertain due to limited and speculative evidence. Existing studies primarily focus on the vaccination status of females, with scant information available regarding the vaccination status of male partners. Moreover, there is minimal research tracking live birth outcomes. OBJECTIVE(S) The objective of this study was to evaluate the impact of COVID-19 inactivated vaccine administration on the outcomes of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) cycles in infertile couples in China. METHODS This prospective cohort study involved couples undergoing IVF treatment at Sichuan Jinxin Xinan Women & Children's Hospital from August 2021 to September 2022. Based on whether they received vaccination before ovarian stimulation, the couples were divided into the vaccination group and the non-vaccination group. We compared the laboratory parameters and pregnancy outcomes between the two groups. RESULTS After performing propensity score matching (PSM), we observed similar live birth rates (41.23% vs. 44.08%, P = 0.555), clinical pregnancy rates (52.61% vs. 54.98%, P = 0.625), biochemical pregnancy (62.56% vs. 63.98%, P = 0.762), and ongoing pregnancy rates (49.76% vs. 51.18%, P = 0.770) between the vaccinated and unvaccinated women. Also, no significant disparities were found in terms of embryo development and laboratory parameters between the groups. Moreover, male vaccination had no impact on patients' pregnancy outcomes in assisted reproductive technology (ART) treatments (all P > 0.05). Additionally, there were no observable effects of vaccination on embryo development and pregnancy outcomes among couples undergoing ART (all P > 0.05). CONCLUSION(S) The findings suggest that COVID-19 vaccination did not have a significant effect on patients undergoing IVF/ICSI with fresh embryo transfer. Therefore, it is recommended that couples should receive COVID-19 vaccination as scheduled to help mitigate the COVID-19 pandemic.
Collapse
Affiliation(s)
- Juan Yang
- Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu 610011, Sichuan, China
| | - Ying-Ling Yao
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xing-Yu Lv
- Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu 610011, Sichuan, China
| | - Li-Hong Geng
- Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu 610011, Sichuan, China
| | - Yue Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, State University of New York at Albany, New York 12144, USA
| | - Xue-Jiao Wang
- Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu 610011, Sichuan, China
| | - Yue Qian
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Xing Chen
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Zhao-Hui Zhong
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ren-Yan Li
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan 410219, China.
| | - Qi Wan
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
22
|
Sekine R, Takeda K, Suenaga T, Tsuno S, Kaiya T, Kiso M, Yamayoshi S, Takaku Y, Ohno S, Yamaguchi Y, Nishizawa S, Sumitomo K, Ikuta K, Kanda T, Kawaoka Y, Nishimura H, Kuge S. G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication. Commun Biol 2025; 8:27. [PMID: 39815031 PMCID: PMC11735773 DOI: 10.1038/s42003-024-07351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice. G12(S) might exhibit a stable G-tetrad with left-handed parallel-stranded G-quadruplex, and inhibit the replication process by impeding interaction between viral nucleoproteins and viral RNA in the cytoplasm. Unlike previous antiviral strategies that target the G-quadruplexes of the viral genome, we now show that excess exogenous G-quadruplex-forming small RNA displaces genomic RNA from ribonucleoprotein, effectively inhibiting viral replication. The approach has the potential to facilitate the creation of versatile middle-molecule antivirals featuring lipid nanoparticle-free delivery.
Collapse
Affiliation(s)
- Ryoya Sekine
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouki Takeda
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tsukasa Suenaga
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Satsuki Tsuno
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Takumi Kaiya
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihide Takaku
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kazuhiro Sumitomo
- Division of Geriatric and Community Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, National Hospital Organization Sendai Medical Center, 2-1-12, Miyagino, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan
| | - Shusuke Kuge
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
23
|
Ueki H, Wang IH, Kiso M, Horie K, Iida S, Mine S, Ujie M, Hsu HW, Wu CHH, Imai M, Suzuki T, Kamitani W, Kawakami E, Kawaoka Y. Neutrophil adhesion to vessel walls impairs pulmonary circulation in COVID-19 pathology. Nat Commun 2025; 16:455. [PMID: 39805823 PMCID: PMC11730596 DOI: 10.1038/s41467-024-55272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion. Re-analysis of scRNA-seq data from peripheral blood mononuclear cells from COVID-19 cases revealed increased expression levels of CD44 and SELL in neutrophils in severe COVID-19 cases compared to a healthy group, consistent with our observations in the mouse model. These findings suggest that pulmonary perfusion defects caused by neutrophil adhesion to pulmonary vessels contribute to COVID-19 severity.
Collapse
Affiliation(s)
- Hiroshi Ueki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kenta Horie
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiko Ujie
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hung-Wei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Hui Henry Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Eiryo Kawakami
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Kanagawa, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan.
| |
Collapse
|
24
|
Hirabayashi A, Muramoto Y, Takenaga T, Tsunoda Y, Wakazaki M, Sato M, Fujita-Fujiharu Y, Nomura N, Yamauchi K, Onishi C, Nakano M, Toyooka K, Noda T. Coatomer complex I is required for the transport of SARS-CoV-2 progeny virions from the endoplasmic reticulum-Golgi intermediate compartment. mBio 2025; 16:e0333124. [PMID: 39611845 PMCID: PMC11708035 DOI: 10.1128/mbio.03331-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
SARS-CoV-2 undergoes budding within the lumen of the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), and the progeny virions are delivered to the cell surface via vesicular transport. However, the molecular mechanisms remain poorly understood. Using three-dimensional electron microscopic analysis, such as array tomography and electron tomography, we found that virion-transporting vesicles possessed protein coats on their membrane and demonstrated that the protein coat was coatomer complex I (COPI). During the later stages of SARS-CoV-2 infection, we observed a notable alteration in the distribution of COPI and ERGIC throughout the cytoplasm, suggesting their potential involvement in virus replication. Depletion of COPB2, a key component of COPI, led to the confinement of SARS-CoV-2 progeny virions within the ERGIC at the perinuclear region. While the expression levels of viral proteins within cells were comparable, this depletion significantly reduced the efficiency of virion release, leading to the significant reduction of viral replication. Hence, our findings suggest COPI as a critical player in facilitating the transport of SARS-CoV-2 progeny virions from the ERGIC. Thus, COPI could be a promising target for the development of antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2 virions are synthesized within the ERGIC and are transported to the cell surface via vesicular transport for release. However, the precise mechanisms remain unclear. Through various electron microscopic techniques, we identified the presence of COPI on virion-transporting vesicles. Alterations in the distribution of COPI and ERGIC in SARS-CoV-2 infected cells are evident, suggesting their involvement in virus replication. When COPB2, a component of COPI, is depleted, progeny virions become trapped within the ERGIC, leading to a reduction in the efficiency of virion release. These findings highlight COPI's crucial role in mediating SARS-CoV-2 vesicular transport from the ERGIC and suggest it as a potential antiviral target.
Collapse
Affiliation(s)
- Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Toru Takenaga
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Prefecture, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Prefecture, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, , Kyoto, Kyoto Prefecture, Japan
| | - Koji Yamauchi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Chiho Onishi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Prefecture, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Prefecture, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto Prefecture, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Kyoto Prefecture, Japan
| |
Collapse
|
25
|
Oluwasemowo OO, Graham ME, Murugesh DK, Borucki MK. Improved Zika virus plaque assay using Vero/TMPRSS2 cell line. Microbiol Spectr 2025; 13:e0162424. [PMID: 39611828 PMCID: PMC11705888 DOI: 10.1128/spectrum.01624-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Plaque assay is the gold standard for the quantification of viable cytopathic viruses like Zika virus (ZIKV). Some strains of ZIKV produce plaques that are very difficult to accurately visualize and count on the commonly used Vero cell line. From data generated in our lab, we became curious if Vero/TMPRSS2 cells may be a better alternative; therefore, we compared the plaque forming units of two strains of ZIKV on Vero/TMPRSS2 cells to those produced by Vero cells. We also compared the virus stock titer generated on Vero/TMPRSS2 cells to that generated by the Vero cell line. Although the Vero cells generated higher quantity of ZIKV stocks, the Vero/TMPRSS2 cells produced plaques with significantly improved morphology and visibility and may, therefore, be a better alternative to use for performing plaque assays for strains of ZIKV that are more difficult to titer on regular Vero cells. IMPORTANCE While there are several methods of viral quantification, the plaque assay remains the gold standard for accurate quantification of replication-competent, cytopathic viruses including Zika virus (ZIKV). Vero cells are commonly used to titer ZIKV stock via the plaque assay. Prior to the initiation of this study, we observed that ZIKV-PRV strain plaque assays using Vero cells often yielded plaques that were very small, overly diffuse, and hard to count. We also observed that the ZIKV-CAM strain often did not produce plaques at all on Vero cells. This study shows that Vero cells expressing TMPRSS2 improve the morphology and visibility of plaques produced by ZIKV-PRV and ZIKV-CAM compared to regular Vero cells and may, therefore, be a better alternative to use for performing plaque assays for these strains and perhaps for other strains of ZIKV that are difficult to titer. However, Vero cells proved to be superior for generating high titer stock.
Collapse
Affiliation(s)
- Olukunle O. Oluwasemowo
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica E. Graham
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Deepa K. Murugesh
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica K. Borucki
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
26
|
Iketani T, Miyazaki K, Iwata-Yoshikawa N, Sakai Y, Shiwa-Sudo N, Ozono S, Asanuma H, Hasegawa H, Suzuki T, Nagata N. A Mouse Model of Ovalbumin-Induced Airway Allergy Exhibits Altered Localization of SARS-CoV-2-Susceptible Cells in the Lungs, Which Reflects Omicron BA.5 Infection Dynamics, Viral Mutations, and Immunopathology. Microbiol Immunol 2025; 69:59-76. [PMID: 39572887 DOI: 10.1111/1348-0421.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025]
Abstract
Asthma, an allergic disease of the airways, is a risk factor for severity of common respiratory viral infections; however, the relationship between asthma and severity in COVID-19 remains unclear. Here, we examined the effects of SARS-CoV-2 (Omicron BA.5 strain) infection in a mouse model of airway allergy. First, stimulation of allergic mice with OVA resulted in the appearance of ACE2-negative mucus-secreting goblet cells in the bronchiolar region, and an increase in the number of ACE2-expressing cells in the alveoli. As a result, ACE2-expressing cells, which are susceptible to SARS-CoV-2, were limited to the distal portion of the bronchioles while they increased in the alveolar area. After viral infection, the peak infectious viral load in the OVA group was 100-fold lower than that in the phosphate buffered saline (PBS) group; however, clearance of viral RNA from the upper/lower airways was delayed. There were notable differences in acquisition of nsp5 and nsp6 mutations by the Omicron BA.5 strain recovered from BALF samples obtained from the OVA and PBS groups. Immune responses associated with viral clearance were essentially the same, but expression of granulocyte-associated chemokines was higher, M2 macrophage responses were predominant, and the higher spike-specific IgG1/IgG2a ratio in the OVA group post-infection. Infection localized in the alveolar region earlier in the OVA group, resulting in more severe alveolar damage than in the PBS group. These data suggest a Th2-shifted immune background and altered localization of SARS-CoV-2 susceptible cells in mice with OVA-induced airway allergy, which reflect Omicron BA.5 infection dynamics, viral mutations, and immunopathology.
Collapse
Affiliation(s)
- Takao Iketani
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kaya Miyazaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Asanuma
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
27
|
Koze H, Sudoh M, Onitsuka S, Okamura H, Ishikawa T, Tani F, Miyata-Yabuki Y, Shirouzu M, Baba M, Okamoto M, Hamada T. Sulfoquinovosyl diacylglycerol, a component of Holy Basil Ocimum tenuiflorum, inhibits the activity of the SARS-CoV-2 main protease and viral replication in vitro. J Nat Med 2025; 79:122-133. [PMID: 39585602 PMCID: PMC11735596 DOI: 10.1007/s11418-024-01855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024]
Abstract
The persistence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new mutant strains continue to present a substantial threat with potential for future pandemics. Safe, effective, and readily available COVID-19 therapeutics are urgently needed to prepare for future coronavirus pandemics. To help identify new antiviral agents, the present study focused on natural products in the extracts of Holy Basil, Ocimum tenuiflorum L., which show potential inhibitory effects against the SARS-CoV-2 main protease (Mpro). Bioassay-guided isolation of the MeOH extracts of O. tenuiflorum led to the identification of a sulfur-containing glyceroglycolipid, sulfoquinovosyl diacylglycerol (SQDG: 1), as a potent Mpro inhibitor that effectively inhibited Mpro activity (IC50: 0.42 µM). SQDG (1) also markedly suppressed SARS-CoV-2 replication (EC50, 51.2 µM) in vitro while displaying no cytotoxicity (CC50 > 100 µM). Further inhibition kinetic studies and docking simulations clearly demonstrated that SQDG strongly inhibited SARS-CoV-2 Mpro in a competitive and mixed-inhibition manner. These findings highlight SQDG as a promising lead compound for COVID-19 therapy and emphasize the need to explore new drugs from natural sources.
Collapse
Affiliation(s)
- Hinako Koze
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
- Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Masayuki Sudoh
- Department of Translational Research, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Satoaki Onitsuka
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
- Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Hiroaki Okamura
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
- Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukako Miyata-Yabuki
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Masanori Baba
- Division of Infection Control Research, Center for Advanced Science Research and Promotion, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-8580, Japan
| | - Mika Okamoto
- Division of Infection Control Research, Center for Advanced Science Research and Promotion, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-8580, Japan
| | - Toshiyuki Hamada
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.
- Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
28
|
Yasugi M, Gunji K, Inagaki K, Kuroda M, Ii C. Disinfection effect of ozonated water on SARS-CoV-2 in the presence of salivary proteins. J Hosp Infect 2025; 155:209-215. [PMID: 39547535 DOI: 10.1016/j.jhin.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Ozonated water is expected to be an effective disinfectant for SARS-CoV-2 present on environmental fomites; however, ozone is consumed by organic substances, resulting in attenuation of its effect. SARS-CoV-2 present in saliva can contaminate environmental surfaces; therefore, it is essential to understand the effect of organic substances in saliva on the disinfectant properties of ozonated water. AIM To assess organic factors in saliva and the extent to which they diminish the effect of ozonated water on SARS-CoV-2. METHODS Ozonated water was exposed to salivary organic factors and residual ozone concentrations were measured. SARS-CoV-2 was exposed to a salivary factor and virus inactivation by ozonated water was measured. FINDINGS Amylase and mucin consumed ozone in a concentration-dependent manner. Urea did not. Ozonated water appeared to inactivate SARS-CoV-2 within 30 s. The amount of inactivated SARS-CoV-2 decreased as the protein concentration increased. Virus inactivation was stronger by 1.5 mg/L ozonated water than by 0.5 mg/L ozonated water. CONCLUSION This study suggests that the salivary amylase and mucin decay ozone in a concentration-dependent manner, thereby attenuating the disinfection properties of ozonated water for SARS-CoV-2. An increase of the initial amount of ozone can ameliorate the disinfection effect of ozonated water on SARS-CoV-2. Ozone consumption should be taken into consideration for virus infection control. These results provide fundamental information about the effect of ozonated water when used to decontaminate surfaces harbouring SARS-CoV-2 in saliva.
Collapse
Affiliation(s)
- M Yasugi
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan; Asian Health Science Research Institute, Osaka Metropolitan University, Izumisano, Osaka, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano, Osaka, Japan.
| | - K Gunji
- Panasonic Corporation, Living Appliances and Solutions Company, Kusatsu, Shiga, Japan
| | - K Inagaki
- Panasonic Corporation, Living Appliances and Solutions Company, Kusatsu, Shiga, Japan
| | - M Kuroda
- Panasonic Corporation, Living Appliances and Solutions Company, Kusatsu, Shiga, Japan
| | - C Ii
- Panasonic Corporation, Living Appliances and Solutions Company, Kusatsu, Shiga, Japan
| |
Collapse
|
29
|
Ko C, Cheng CC, Mistretta D, Ambike S, Sacherl J, Velkov S, Liao BH, Bester R, Gültan M, Polezhaeva O, Herrmann A, Jakwerth CA, Schmidt-Weber CB, Bugert JJ, Wölfel R, Grass V, Essbauer S, Schnepf D, Keppler OT, Vondran FWR, Pichlmair A, Mogler C, Ebert G, Protzer U. SARS-CoV-2 Productively Infects Human Hepatocytes and Induces Cell Death. J Med Virol 2025; 97:e70156. [PMID: 39760326 DOI: 10.1002/jmv.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
SARS-CoV-2 infection is accompanied by elevated liver enzymes, and patients with pre-existing liver conditions experience more severe disease. While it was known that SARS-CoV-2 infects human hepatocytes, our study determines the mechanism of infection, demonstrates viral replication and spread, and highlights direct hepatocyte damage. Viral replication was readily detectable upon infection of primary human hepatocytes and hepatoma cells with the ancestral SARS-CoV-2, Delta, and Omicron variants. Hepatocytes express the SARS-CoV-2 receptor ACE2 and the host cell protease TMPRSS2, and knocking down ACE2 and TMPRSS2 impaired SARS-CoV-2 infection. Progeny viruses released from infected hepatocytes showed the typical coronavirus morphology by electron microscopy and proved infectious when transferred to fresh cells, indicating that hepatocytes can contribute to virus spread. Importantly, SARS-CoV-2 infection rapidly induced hepatocyte death in a replication-dependent fashion, with the Omicron variant showing faster onset but less extensive cell death. C57BL/6 wild-type mice infected with a mouse-adapted SARS-CoV-2 strain showed high levels of viral RNA in liver and lung tissues. ALT peaked when viral RNA was cleared from the liver. Liver histology revealed profound tissue damage and immune cell infiltration, indicating that direct cytopathic effects of SARS-CoV-2 and immune-mediated killing of infected hepatocytes contribute to liver pathology.
Collapse
Grants
- This study was supported by the German Research Foundation (DFG) via SFB-TRR179 (project 272983813 to U.P.), TRR22 (project 398577603 to C.S.W.) and TRR353 (project 471011418 to G.E.), by the State of Bavaria via research network FOR-COVID and Bay-VOC, by the project "Virological and immunological determinants of COVID-19 pathogenesis-lessons to get prepared for future pandemics" (KA1-Co-02 "COVIPA" to U.P.) and "Airborne Transmission of SARS Coronavirus - From Fundamental Science to Efficient Air Cleaning Systems" (KA1-Co-06 "CORAERO" to G.E.), grants from the Helmholtz Association's Initiative and Networking Fund, by the European Commission FET Open Grant VIROFIGHT (grant no. 899619), by the State of Bavaria and the European Union via a grant for regional infrastructure development (EFRE - REACT, to U.P. and G.E.), by the State of Bavaria via research networks FOR-COVID and Bay-VOC (to U.P. and O.T.K.) by the Federal Ministry of Education and Research (project ESCAPE; 01KI20169A to C.S.W.), and by the Medical Biological Defense Research Program of the Bundeswehr Medical Service (to J.J.B.). In addition, this research was supported by intramural funds from KRICT (project KK2432-10 and BSF24-111 to C.K.).
Collapse
Affiliation(s)
- Chunkyu Ko
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Cho-Chin Cheng
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Daniele Mistretta
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Shubhankar Ambike
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Julia Sacherl
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Stoyan Velkov
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Bo-Hung Liao
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Merve Gültan
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Olga Polezhaeva
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Alexander Herrmann
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich/Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich/Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Lung Research (DZL), Munich Partner Site, Munich, Germany
| | - Joachim J Bugert
- Department of Viruses and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Roman Wölfel
- Department of Viruses and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Vincent Grass
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Sandra Essbauer
- Department of Viruses and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Oliver T Keppler
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Faculty of Medicine, University of Munich, Munich, Germany
| | - Florian W R Vondran
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| |
Collapse
|
30
|
Uematsu T, Takai-Todaka R, Haga K, Kobayashi H, Imajima M, Kobayashi N, Katayama K, Hanaki H. Pharmacological effect of cepharanthine on SARS-CoV-2-induced disease in a Syrian hamster model. J Infect Chemother 2025; 31:102505. [PMID: 39197667 DOI: 10.1016/j.jiac.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health threat. Although several effective vaccines and therapeutics have been developed, continuous emergence of new variants necessitates development of drugs with different mechanisms of action. Recent studies indicate that cepharanthine, a chemical derivative purified from Stephania cepharantha, inhibits SARS-CoV-2 replication in vitro. METHODS This study examined the in vivo effects of cepharanthine using a Syrian hamster SARS-CoV-2 infection model. To evaluate the prophylactic and therapeutic effects, cepharanthine was intranasally administered before or after SARS-CoV-2 infection. Effects were assessed by monitoring body weight changes, lung pathology, lung viral load, and inflammatory response in the lungs. RESULTS Pre-infection administration of cepharanthine resulted in less weight loss, reduced virus titers, alleviated histopathological severity, and decreased lung inflammation. Furthermore, post-infection administration of cepharanthine also exhibited therapeutic effects. CONCLUSIONS This study demonstrated that both prophylactic and therapeutic administration of cepharanthine reduces the pathogenesis of COVID-19 in a Syrian hamster SARS-CoV-2 infection model. Our findings suggest that cepharanthine is a potential therapeutic agent against COVID-19.
Collapse
Affiliation(s)
- Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Arai, Kitamoto, Saitama, Japan.
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Kei Haga
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Hideyuki Kobayashi
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., Tokyo, Japan.
| | - Makiko Imajima
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., Tokyo, Japan.
| | - Noritada Kobayashi
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Arai, Kitamoto, Saitama, Japan.
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Hideaki Hanaki
- Infection Control Research Center, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| |
Collapse
|
31
|
Sata S, Kojima I, Esaki M, Funakoshi K, Kajihara M, Hirano S, Murakami S, Miyazaki K, Ozawa M, Okuya K. The First Isolation and Characterization of Bat Jeilongviruses in Japan. Transbound Emerg Dis 2024; 2024:5530007. [PMID: 40303027 PMCID: PMC12017206 DOI: 10.1155/tbed/5530007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/12/2024] [Indexed: 05/02/2025]
Abstract
Bats represent natural reservoirs of several paramyxoviruses, raising concerns about the potential for these viruses to cause cross-species infections. In this study, we isolated two jeilongviruses belonging to the family Paramyxoviridae from oral swab samples of the Eastern bent-wing bat (Miniopterus fuliginosus) and Far Eastern myotis bat (Myotis bombinus) in Kagoshima Prefecture, Japan. Notably, this is the first report isolating bat paramyxoviruses in Japan. Genomic analyses revealed a high identity between Kagoshima isolates (PMV/Bat35 and PMV/Bat111) and jeilongvirus B16-40, previously isolated from a Schreiber's bent-wing bat (Miniopterus schreibersii) in South Korea in 2016. PMV/Bat35 infected and replicated in a range of cell lines derived from different animal species, although the level of syncytium formation varied among cell lines. Animal experiments revealed that Syrian hamsters inoculated intranasally with PMV/Bat35 did not exhibit clinical symptoms or significant weight loss. Nevertheless, viral genes were detected in the lungs and tracheas of Syrian hamsters on 2- and 5-day postinfection (dpi). Importantly, neutralizing antibodies against PMV/Bat35 developed in hamsters on 14 dpi. These results suggest that bat jeilongviruses can cross the species barriers. Our findings highlight the critical importance of ongoing monitoring and characterization of viruses circulating in bat populations to assess the risk of zoonotic outbreaks.
Collapse
Affiliation(s)
- Sho Sata
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mana Esaki
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kimitake Funakoshi
- Biological Laboratory, Faculty of Intercultural Studies, The International University of Kagoshima, Kagoshima, Japan
| | - Masahiro Kajihara
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinji Hirano
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kosuke Okuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
32
|
Brangel P, Tureli S, Mühlemann B, Liechti N, Zysset D, Engler O, Hunger-Glaser I, Ghiga I, Mattiuzzo G, Eckerle I, Bekliz M, Rössler A, Schmitt MM, Knabl L, Kimpel J, Tort LFL, de Araujo MF, de Oliveira ACA, Caetano BC, Siqueira MM, Budt M, Gensch JM, Wolff T, Hassan T, Selvaraj FA, Hermanus T, Kgagudi P, Crowther C, Richardson SI, Bhiman JN, Moore PL, Cheng SMS, Li JKC, Poon LLM, Peiris M, Corman VM, Drosten C, Lai L, Hunsawong T, Rungrojcharoenkit K, Lohachanakul J, Sigal A, Khan K, Thiel V, Barut GT, Ebert N, Mykytyn AZ, Owusu Donkor I, Aboagye JO, Nartey PA, Van Kerkhove MD, Cunningham J, Haagmans BL, Suthar MS, Smith D, Subissi L. A Global Collaborative Comparison of SARS-CoV-2 Antigenicity Across 15 Laboratories. Viruses 2024; 16:1936. [PMID: 39772242 PMCID: PMC11680265 DOI: 10.3390/v16121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels. When comparing fold drops, excellent data consistency was observed across the labs using common reagents, including between pseudovirus and live virus neutralisation assays (RMSD of data from mean fold drop was 0.59). Utilising a Bayesian model, geometric mean titres and assay titre magnitudes (offsets) can describe the data efficiently. Titre magnitudes were seen to vary largely even for labs within the same assay group. We have observed that overall, live Microneutralisation assays tend to have the lowest titres, whereas Pseudovirus Neutralisation have the highest (with a mean difference of 3.2 log2 units between the two). These findings are relevant for laboratory networks, such as the WHO Coronavirus Laboratory Network (CoViNet), that seek to support a global surveillance system for evolution and antigenic characterisation of variants to support monitoring of population immunity and vaccine composition policy.
Collapse
Affiliation(s)
| | - Sina Tureli
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | - Barbara Mühlemann
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicole Liechti
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Daniel Zysset
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Olivier Engler
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | | | - Ioana Ghiga
- World Health Organization, 1202 Geneva, Switzerland
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, London SW1W 9SZ, UK
| | - Isabella Eckerle
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Meriem Bekliz
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Melanie M. Schmitt
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Luis Fernando Lopez Tort
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay
| | - Mia Ferreira de Araujo
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Any Caroline Alves de Oliveira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Braulia Costa Caetano
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Matthias Budt
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Jean-Marc Gensch
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Thorsten Wolff
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Tarteel Hassan
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Francis Amirtharaj Selvaraj
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Tandile Hermanus
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Prudence Kgagudi
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Carol Crowther
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Samuel M. S. Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John K. C. Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor M. Corman
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Drosten
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Lilin Lai
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taweewun Hunsawong
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Kamonthip Rungrojcharoenkit
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Jindarat Lohachanakul
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Africa Health Research Institute, Durban 4013, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban 4013, South Africa
| | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - G. Tuba Barut
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - Nadine Ebert
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | | | - Irene Owusu Donkor
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
| | - James Odame Aboagye
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | - Prince Adom Nartey
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | | | | | | | - Mehul S. Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Derek Smith
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | | |
Collapse
|
33
|
Goux H, Green J, Wilson A, Sozhamannan S, Richard SA, Colombo R, Lindholm DA, Jones MU, Agan BK, Larson D, Saunders DL, Mody R, Cox J, Deans R, Walish J, Fries A, Simons MP, Pollett SD, Smith DR. Performance of rapid antigen tests to detect SARS-CoV-2 variant diversity and correlation with viral culture positivity: implication for diagnostic development and future public health strategies. mBio 2024; 15:e0273724. [PMID: 39480114 PMCID: PMC11633148 DOI: 10.1128/mbio.02737-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Antigen-based rapid diagnostic tests (Ag-RDTs) provide timely results, are simple to use, and are less expensive than molecular assays. Recent studies suggest that antigen-based testing aligns with virus culture-based results (a proxy of contagiousness at the peak viral phase of illness); however, the performance of Ag-RDTs for newer SARS-CoV-2 variants is unclear. In this study, we (i) assessed the performance of Ag-RDTs and diagnostic antibodies to detect a range of SARS-CoV-2 variants and (ii) determined whether Ag-RDT results correlated with culture positivity. We noted only minor differences in the limit of detection by variant for all assays, and we demonstrated consistent antibody affinity to the N protein among the different variants. We observed moderate to high sensitivity (46.8%-83.9%) for Ag-RDTs when compared to PCR positivity (100%), and all variants were assessed on each assay. Ag-RDT sensitivity and PCR Ct showed an inverse correlation with the detection of viable virus. Collectively, our results demonstrate that commercially available Ag-RDTs offer variable sensitivity compared to PCR, show similar diagnostic validity across variants, and may predict the risk of transmissibility. These findings may be used to support more tailored SARS-CoV-2 isolation strategies, particularly if other studies clarify the direct association between Ag-RDT positivity and transmission risk. The apparent trade-off between sensitivity in the detection of any PCR-positive infection and concordance with infectious virus positivity may also inform new RDT diagnostic development strategies for SARS-CoV-2 and other epidemic respiratory pathogens. IMPORTANCE Despite the availability of vaccines, COVID-19 continues to be a major health concern, and antigen-based rapid diagnostic tests (Ag-RDTs) are commonly used as point-of-care or at-home diagnostic tests. In this study, we evaluated the performance of two commercially available Ag-RDTs and a research Ag-RDT to detect multiple SARS-CoV-2 variants using upper respiratory tract swab samples from clinical COVID-19 cases. Furthermore, we determined whether Ag-RDT results correlated with culture positivity, a potential proxy of viral transmissibility. Our results have important implications to inform future testing and response strategies during periods of high COVID-19 transmission with new variants.
Collapse
Affiliation(s)
- Heather Goux
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Jennetta Green
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Andrew Wilson
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Shanmuga Sozhamannan
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies, Frederick, Maryland, USA
- Joint Research and Development, Inc., Stafford, Virginia, USA
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Rhonda Colombo
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Madigan Army Medical Center, Joint Base Lewis McChord, Washington, USA
| | - David A. Lindholm
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas, USA
| | - Milissa U. Jones
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian K. Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Derek Larson
- Naval Medical Center, San Diego, California, USA
| | - David L. Saunders
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rupal Mody
- William Beaumont Army Medical Center, El Paso, Texas, USA
| | - Jason Cox
- C2Sense, Inc., Watertown, Massachusetts, USA
| | | | | | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Darci R. Smith
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| |
Collapse
|
34
|
Matsumoto Y, Honda T, Yasui F, Endo A, Sanada T, Toyama S, Takagi A, Munakata T, Kono R, Yamaji K, Yamamoto N, Saeki Y, Kohara M. Generation of a SARS-CoV-2-susceptible mouse model using adenovirus vector expressing human angiotensin-converting enzyme 2 driven by an elongation factor 1α promoter with leftward orientation. Front Immunol 2024; 15:1440314. [PMID: 39717778 PMCID: PMC11663739 DOI: 10.3389/fimmu.2024.1440314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice. Methods We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation. Results In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication. An early circulating strain of SARS-CoV-2 caused the most severe weight loss when compared to SARS-CoV-2 variants such as Alpha, Beta and Gamma, although histopathological findings, viral replication, and cytokine expression characteristics were comparable. Discussion We found that a distinct proteome of an early circulating strain infected lung characterized by elevated complement activation and blood coagulation, which were mild in other variants, can contribute to disease severity. Unraveling the specificity of early circulating SARS-CoV-2 strains is important in elucidating the origin of the pandemic.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
35
|
Sugiura Y, Shimizu K, Takahashi T, Ueno S, Tanigou H, Amarbayasgalan S, Kamitani W. Amino acid T25 in the substrate-binding domain of SARS-CoV-2 nsp5 is involved in viral replication in the mouse lung. PLoS One 2024; 19:e0312800. [PMID: 39642113 PMCID: PMC11623800 DOI: 10.1371/journal.pone.0312800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 12/08/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 5 (nsp5) is a cysteine protease involved in viral replication and suppression of the host immune system. The substrate-binding domain of nsp5 is important for its protease activity. However, the relationship between nsp5 protease activity and viral replication remains unclear. We confirmed the importance of amino acid T25 in the nsp5 substrate-binding domain for viral replication using a split luciferase assay. By generating recombinant viruses using bacterial artificial chromosomes, we found that the proliferation of viruses with the T25I mutation in nsp5 was cell-dependent in culture. Furthermore, mice infected with the T25I mutant recombinant virus with a mouse acclimation backbone showed weight loss and increased lung viral load, similar to the wild-type (WT) infected group, up to 3 days after infection. However, after day 4, the lung viral load was significantly reduced in the T25I-infected group compared to that in the WT-infected group. This suggests that nsp5 T25 is involved in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Yoshiro Sugiura
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kenta Shimizu
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tatsuki Takahashi
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Shiori Ueno
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Haruka Tanigou
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | | | - Wataru Kamitani
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
36
|
Xiang Q, Wouters C, Chang P, Lu YN, Liu M, Wang H, Yang J, Pekosz A, Zhang Y, Wang J. Ubiquitin Ligase ITCH Regulates Life Cycle of SARS-CoV-2 Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.624804. [PMID: 39677672 PMCID: PMC11642887 DOI: 10.1101/2024.12.04.624804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
SARS-CoV-2 infection poses a major threat to public health, and understanding the mechanism of viral replication and virion release would help identify therapeutic targets and effective drugs for combating the virus. Herein, we identified E3 ubiquitin-protein ligase Itchy homolog (ITCH) as a central regulator of SARS-CoV-2 at multiple steps and processes. ITCH enhances the ubiquitination of viral envelope and membrane proteins and mutual interactions of structural proteins, thereby aiding in virion assembly. ITCH-mediated ubiquitination also enhances the interaction of viral proteins to the autophagosome receptor p62, promoting their autophagosome-dependent secretion. Additionally, ITCH disrupts the trafficking of the protease furin and the maturation of cathepsin L, thereby suppressing their activities in cleaving and destabilizing the viral spike protein. Furthermore, ITCH exhibits robust activation during the SARS-CoV-2 replication stage, and SARS-CoV-2 replication is significantly decreased by genetic or pharmacological inhibition of ITCH. These findings provide new insights into the mechanisms of the SARS-CoV-2 life cycle and identify a potential target for developing treatments for the virus-related diseases.
Collapse
Affiliation(s)
- Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Camille Wouters
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peixi Chang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Haocheng Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Junqin Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
37
|
Cool K, Gaudreault NN, Trujillo JD, Morozov I, McDowell CD, Bold D, Kwon T, Balaraman V, Assato P, Madden DW, Mantlo E, Souza-Neto J, Matias-Ferreyra F, Retallick J, Singh G, Schotsaert M, Carossino M, Balasuriya UBR, Wilson WC, Pogranichniy RM, García-Sastre A, Richt JA. Experimental co-infection of calves with SARS-CoV-2 Delta and Omicron variants of concern. Emerg Microbes Infect 2024; 13:2281356. [PMID: 37938158 PMCID: PMC10763854 DOI: 10.1080/22221751.2023.2281356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Since emerging in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has repeatedly crossed the species barrier with natural infections reported in various domestic and wild animal species. The emergence and global spread of SARS-CoV-2 variants of concern (VOCs) has expanded the range of susceptible host species. Previous experimental infection studies in cattle using Wuhan-like SARS-CoV-2 isolates suggested that cattle were not likely amplifying hosts for SARS-CoV-2. However, SARS-CoV-2 sero- and RNA-positive cattle have since been identified in Europe, India, and Africa. Here, we investigated the susceptibility and transmission of the Delta and Omicron SARS-CoV-2 VOCs in cattle. Eight Holstein calves were co-infected orally and intranasally with a mixed inoculum of SARS-CoV-2 VOCs Delta and Omicron BA.2. Twenty-four hours post-challenge, two sentinel calves were introduced to evaluate virus transmission. The co-infection resulted in a high proportion of calves shedding SARS-CoV-2 RNA at 1- and 2-days post-challenge (DPC). Extensive tissue distribution of SARS-CoV-2 RNA was observed at 3 and 7 DPC and infectious virus was recovered from two calves at 3 DPC. Next-generation sequencing revealed that only the SARS-CoV-2 Delta variant was detected in clinical samples and tissues. Similar to previous experimental infection studies in cattle, we observed only limited seroconversion and no clear evidence of transmission to sentinel calves. Together, our findings suggest that cattle are more permissive to infection with SARS-CoV-2 Delta than Omicron BA.2 and Wuhan-like isolates but, in the absence of horizontal transmission, are not likely to be reservoir hosts for currently circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Patricia Assato
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Emily Mantlo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jayme Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jaime Retallick
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS, USA
| | - Roman M. Pogranichniy
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
38
|
Kuroda Y, Ozaki M, Sakai Y, Uchida-Fujii E, Hanada I, Yamamoto T, Tatemoto K, Hirata Y, Sato Y, Katano H, Nagata N, Kato H, Shimada T, Suzuki T, Nakao T, Maeda K. An outbreak of SARS-CoV-2 omicron variant and deaths of three lions in a zoo. One Health 2024; 19:100870. [PMID: 39206254 PMCID: PMC11350503 DOI: 10.1016/j.onehlt.2024.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
There have been reports of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to various mammalian species. Some infected animals show clinical signs and may even die in rare cases. Outbreaks of SARS-CoV-2 have been reported in zoos where susceptible animals are bred in high population densities. However, there have been few reports of omicron variant outbreaks in zoo animals. From late 2022 to 2023, an outbreak of the SARS-CoV-2 omicron variant occurred in one Japanese zoo. A total of 24 lions were housed in the zoo; 13 of them showed respiratory symptoms, and the three oldest lions died. Molecular and histopathological analyses revealed that the deceased lions were infected with SARS-CoV-2 omicron BF.7.15. Virus-neutralization tests showed that all 21 lions were positive for antibodies against the omicron variant, but not against the delta variant. In addition, three tigers and one bear in the same or neighboring building as the lions possessed antibodies against the omicron variant. This is a very rare report on the outbreak of a SARS-CoV-2 omicron variant infection that resulted in the death of animals. This finding demonstrates the importance of continuous countermeasures to protect non-vaccinated animals from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Miki Ozaki
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eri Uchida-Fujii
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ikumi Hanada
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirofumi Kato
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoe Shimada
- Center for Field Epidemic Intelligence Research and Professional Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tatsuko Nakao
- Adventure World, 2399 Katada, Shirahama-cho, Nishimuro-gun, Wakayama 649-2201, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
39
|
Saba AA, Nur J, Alam MS, Howlader ZH, Islam LN, Nabi AN. Missense variant rs75603675 within TMPRSS2 gene is associated with the increased risk of severe form of COVID-19. GENE REPORTS 2024; 37:102039. [DOI: 10.1016/j.genrep.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
40
|
Nakashima M, Nobori H, Kuroda T, Shimba A, Miyagawa S, Hayashi A, Matsumoto K, Yoshida M, Baba K, Kato T, Fukao K. Oral 3CL protease inhibitor ensitrelvir suppressed SARS-CoV-2 shedding and infection in a hamster aerosol transmission model. Antiviral Res 2024; 232:106026. [PMID: 39477094 DOI: 10.1016/j.antiviral.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) remain a major global health challenge, with aerosol transmission being the primary route of spread. The use of antivirals as medical countermeasures to control SARS-CoV-2 transmission and spread is promising but remains to be clarified. The current study established and used an in vivo hamster aerosol transmission model system to evaluate the efficacy of the protease inhibitor ensitrelvir to prevent the spread of SARS-CoV-2. Male Index Syrian hamsters were intranasally infected with SARS-CoV-2, paired with naïve Contact hamsters, and co-housed for 12 h under conditions to allow for only aerosol transmission. The Index hamsters were treated three times with ensitrelvir starting 8 h post infection, or the Contact hamsters were treated once with ensitrelvir 12 h prior to co-housing. Viral infection and transmission were monitored by evaluating nasal lavage fluid, lung tissues, and body and lung weights. Post-infection administration of ensitrelvir to Index hamsters suppressed virus shedding in a dose-dependent manner. Pre-exposure administration of 750 mg/kg ensitrelvir to naïve Contact hamsters also protected against aerosol SARS-CoV-2 infection in a dose-dependent manner. Furthermore, pre-exposure treatment of 750 mg/kg ensitrelvir supressed body weight loss and lung weight increase of aerosol infected hamsters compared to vehicle-treated hamsters. These findings suggest that ensitrelvir may prevent SARS-CoV-2 spread when administered to infected patients and may prevent or limit SARS-CoV-2 infection when prophylactically administered to non-infected individuals. Both approaches may help protect at-risk individuals, such as family members living with SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Haruaki Nobori
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Takayuki Kuroda
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Alice Shimba
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Satoshi Miyagawa
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Akane Hayashi
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Kazumi Matsumoto
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Mei Yoshida
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Teruhisa Kato
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Keita Fukao
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan.
| |
Collapse
|
41
|
Kurose M, Yamamoto A, Elsayed AMA, Lawal-Ayinde BM, Nomura T, Higashiura A, Irie T, Fukushi M, Kanda M, Tahara H, Morita D, Kuroda T, Ko K, Takahashi K, Tanaka J, Sakaguchi T. Viral coexistence and insertional mutations in the ORF8 region of SARS-CoV-2: A possible mechanism of nucleotide insertion. Virus Res 2024; 350:199478. [PMID: 39368662 PMCID: PMC11491963 DOI: 10.1016/j.virusres.2024.199478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The virus obtained from a swab sample ID: S66 in Hiroshima was reported to have a single T-base insertion in the ORF8 coding region. However, no T insertion was observed when we determined the genomic sequence using another method. We then extracted RNA from the S66 swab sample and sequenced the insertion site using the Sanger method. The resulting waveform was disrupted beyond the insertion site, suggesting the presence of a mixed population of viruses with different sequences. Through plasmid cloning of RT-PCR amplification fragments and virus cloning by limiting dilution, along with TIDE analysis to determine the ratio of components from the Sanger sequencing waveform, it was confirmed that the sample contained a mixture of viruses with varying numbers of T-base insertions. The virus with one T insertion (T1+) was predominant in 70-75 % of the genomes, and genomes with T0, T2+, T3+, T4+, and T5+ were also detected. No T-base insertion mutations were observed in the ORF8 region in three other SARS-CoV-2 samples. In the S66 sample, a C27911T point mutation near the insertion site in the ORF8 region resulted in a sequence of seven or more consecutive T bases, which was the cause of the T-base insertion. When the cloned S66 virus (T1+) was passaged in cultured cells, there was a tendency for viruses with more insertion bases to become dominant with successive generations, suggesting that the T-base insertion was due to polymerase stuttering. The insertion of T bases resulted in synthesis of deletion mutants of the ORF8 protein, but no significant change was observed in the proliferation of the viruses in cultured cells. A search of the GenBank database using NCBI BLAST for viruses similar to S66 with T-base insertion mutations revealed hundreds of viruses widely distributed on the molecular phylogenetic tree. These base insertion viruses were thought to have occasionally arisen during the virus infection process. This study suggests one mechanism of insertion mutations in SARS-CoV-2, and it is important to consider the emergence of future mutant strains.
Collapse
Affiliation(s)
- Miuko Kurose
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Abeer Mohamed Abdelfattah Elsayed
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Basirat Mojisola Lawal-Ayinde
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Toshihito Nomura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Takashi Irie
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Fukushi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Miyuki Kanda
- Collaborative Laboratory of Liquid Biopsy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Daichi Morita
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Ko Ko
- Department of Epidemiology, Infectious Disease Control, and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kazuaki Takahashi
- Department of Epidemiology, Infectious Disease Control, and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
42
|
Mao B, Le-Trilling VTK, Tang H, Hu J, Schmitz MS, Barbet K, Xu D, Wei Z, Guo B, Mennerich D, Yao C, Liu J, Li Z, Wan Y, Zhang X, Wang K, Tang N, Yu Z, Trilling M, Lin Y. Diphyllin elicits a doubled-pronged attack on the entry of SARS-CoV-2 by inhibiting cathepsin L and furin. Virus Res 2024; 350:199485. [PMID: 39424146 PMCID: PMC11532987 DOI: 10.1016/j.virusres.2024.199485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic, posing serious threats to global health. Effective broad-spectrum antiviral drugs for the treatment of COVID-19 are not sufficiently available. In the present study, we investigated the antiviral activity of the natural lignan diphyllin (PubChem CID 100492) against different SARS-CoV-2 variants and explored the underlying molecular mechanisms. We found that diphyllin dose-dependently inhibits the SARS-CoV-2 spike (S)-mediated entry into different types of cells. The potent inhibition was evident against spike proteins derived from the original SARS-CoV-2 and from variants of concern such as Alpha, Beta, Delta or Omicron. Accordingly, diphyllin also significantly inhibited the in vitro infection of a clinical SARS-CoV-2 virus isolate. Mechanistically, diphyllin simultaneously inhibited the endosomal entry of SARS-CoV-2 by neutralizing the endosomal acidification and reducing the activity of the cysteine protease cathepsin L (CTSL) as well as S-meditated cell surface entry by impairing furin activity. Collectively, our findings establish diphyllin as novel inhibitor of CTSL and furin proteases, resulting in a double-pronged attack on SARS-CoV-2 entry along endosomal as well as cell surface routes. Therefore, diphyllin has the potential to be advanced as an inhibitor of SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Vu Thuy Khanh Le-Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Haihuan Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Hu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Mona S Schmitz
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Kimberly Barbet
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Dan Xu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Beinu Guo
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Denise Mennerich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Chun Yao
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Jinxin Liu
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Zhenghan Li
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Yushun Wan
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Zhang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zebo Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Mirko Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Shah AU, Hemida MG. The dual actions of miRNA16a in restricting Bovine Coronavirus replication through downregulation of Furin and enhancing the host immune response. Sci Rep 2024; 14:29308. [PMID: 39592722 PMCID: PMC11599744 DOI: 10.1038/s41598-024-80708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
The roles of host cell miRNAs have not been well studied in the context of BCoV replication and immune regulation. This study aimed to identify miRNA candidates that regulate essential host genes involved in BCoV replication, tissue tropism, and immune regulation. To achieve these goals, we used two isolates of BCoV (enteric and respiratory) to infect bovine endothelial cells (BECs) and Madine Darby Bovine Kidney (MDBK) cells. We determined the miRNA expression profiles of these cells after BCoV infection. The expression of miRNA16a is differentially altered during BCoV infection. Our data show that miRNA16a is a significantly downregulated miRNA in both in vitro and ex vivo models. We confirmed the miRNA16aexpression profile by qRT-PCR. Overexpression of pre-miRNA16ain the BEC and the MDBK cell lines markedly inhibited BCoV infection, as determined by the viral genome copy numbers measured by qRT‒PCR, viral protein expression (S and N) measured by Western blot, and virus infectivity using a plaque assay. Our bioinformatic prediction showed that Furin is a potential target of miRNA16a. We compared the Furin protein expression level in pre-miRNA16a-transfected/BCoV-infected cells to that in pre-miRNA-scrambled-transfected cells. Our qRT-PCR and Western blot data revealed marked inhibition of Furin expression at the mRNA and protein levels, respectively. BCoV-S protein expression was markedly inhibited at both the mRNA and protein levels. To further confirm the impact of the downregulation of the Furin enzyme on the replication of BCoV, we transfected cells with specific Furin-siRNAs parallel to the scrambled siRNA. Marked inhibition of BCoV replication was observed in the Furin-siRNA-treated group. To further validate Furin as a novel target for miRNA16a, we cloned the 3'UTR of bovine Furin carrying the seed region of miRNA16a in the dual luciferase vector. Our data showed that luciferase activity in pre-miRNA16a-transfected cells decreased by more than 50% compared to cells transfected with the construct carrying the mutated Furin seed region. Our data confirmed that miRNA16ainhibits BCoV replication by targeting the host cell line Furin and the BCoV-S glycoprotein. It also enhances the host immune response, which contributes to the inhibition of viral replication. This is the first study to confirm that Furin is a valid target of miRNA16a. Our findings highlight the clinical applications of host miRNA16a as a potential miRNA-based vaccine/antiviral therapy.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 212 Roth Hall, 720 Northern Blvd., Brookville, NY, 11548, USA
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 212 Roth Hall, 720 Northern Blvd., Brookville, NY, 11548, USA.
| |
Collapse
|
44
|
Khan S, Yahiro T, Kimitsuki K, Hashimoto T, Matsuura K, Yano S, Noguchi K, Sonezaki A, Yoshizawa K, Kumasako Y, Akbar SMF, Nishizono A. Exploring the Replication and Pathogenic Characteristics of Alpha, Delta, and Omicron Variants of SARS-CoV-2. Int J Mol Sci 2024; 25:12641. [PMID: 39684353 DOI: 10.3390/ijms252312641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The variants of concern (VOCs) of SARS-CoV-2 have exhibited different phenotypic characteristics in clinical settings which are yet to be fully explored. This study aimed to characterize the viral replication features of major VOCs of SARS-CoV-2 and their association with pathogenicity. The Alpha, Delta, and Omicron variants of SARS-CoV-2 isolated from the COVID-19 patients in Japan were propagated in VeroE6/TMPRSS2 cells. The viral replication and pathological features were evaluated by laser and electron microscopy at different time points. The results revealed that the Delta variant dominantly infected the VeroE6/TMPRSS2 cells and formed increased syncytia compared to the Alpha and Omicron variants. Relatively large numbers of virions and increased immunoreactivities of the SARS-CoV-2 N-protein were detected in the endoplasmic reticulum and intracellular vesicles of Delta-infected cells. Interestingly, the N-protein and virions were detected in the nucleus of Delta-infected cells, while such properties were not observed in the case of Alpha and Omicron variants. In addition, early nuclear membrane damage followed by severe cellular damage was prominent in Delta-infected cells. A unique mutation (G215C) in the N-protein of the Delta variant is thought to be associated with severe cell damage. In conclusion, this study highlights the distinct replicative and pathogenic characteristics of the Delta variant of SARS-CoV-2 compared to the Alpha and Omicron variants, shedding light on the potential mechanisms underlying its increased pathogenicity.
Collapse
Affiliation(s)
- Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Takaaki Yahiro
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
- Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Kazunori Kimitsuki
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Takehiro Hashimoto
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
- Hospital Infection Control Center, Oita University Hospital, Yufu, Oita 879-5593, Japan
| | - Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Shinji Yano
- Institute for Research Management, Oita University, Yufu, Oita 879-5593, Japan
| | - Kazuko Noguchi
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Akane Sonezaki
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Kaori Yoshizawa
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Yoko Kumasako
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | - Sheikh Mohammad Fazle Akbar
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Clinical Research Organization, Dhaka 1213, Bangladesh
- Miyakawa Memorial Research Foundation, Tokyo 107-0062, Japan
| | - Akira Nishizono
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| |
Collapse
|
45
|
Iwatsuki-Horimoto K, Kiso M, Ito M, Yamayoshi S, Kawaoka Y. Sensitivity of rodents to SARS-CoV-2: Gerbils are susceptible to SARS-CoV-2, but guinea pigs are not. NPJ VIRUSES 2024; 2:59. [PMID: 40295803 PMCID: PMC11721077 DOI: 10.1038/s44298-024-00068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 04/30/2025]
Abstract
Syrian hamster are sensitive to SARS-CoV-2 and widely used as an animal model of COVID-19. In contrast, mice are not readily infected by the ancestral strains of SARS-CoV-2 because of differences in their angiotensin-converting enzyme 2 (ACE2) receptors. Thus, even among rodents, susceptibility to SARS-CoV-2 varies. Knowledge of virus transmissibility from humans to pet rodents is important for public health to assess the potential for transmission in the home and pet breeding and selling facilities. In this study, we assessed the sensitivity of guinea pigs and gerbils to SARS-CoV-2 isolated from humans, and found that gerbils are susceptible to SARS-CoV-2, but guinea pigs are not. Pet sellers often display hamsters with high susceptibility to SARS-CoV-2 in the same area as gerbils, so caution should be exercised during COVID-19 outbreaks.
Collapse
Affiliation(s)
- Kiyoko Iwatsuki-Horimoto
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, Japan.
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
Wooding D, Buist K, Romero-Ramirez A, Savage H, Watkins R, Bengey D, Greenland-Bews C, Thompson CR, Kontogianni N, Body R, Hayward G, Byrne RL, Gould S, Myerscough C, Atkinson B, Shaw V, Greenhalf B, Adams E, Cubas-Atienzar A, Khoo S, Fletcher T, Edwards T. Optimization of SARS-CoV-2 culture from clinical samples for clinical trial applications. mSphere 2024; 9:e0030424. [PMID: 39412283 PMCID: PMC11580409 DOI: 10.1128/msphere.00304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
Clinical trials of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics often include virological secondary endpoints to compare viral clearance and viral load reduction between treatment and placebo arms. This is typically achieved using quantitative reverse-transcriptase PCR (RT-qPCR), which cannot differentiate replicant competent virus from non-viable virus or free RNA, limiting its utility as an endpoint. Culture-based methods for SARS-CoV-2 exist; however, these are often insensitive and poorly standardized for use as clinical trial endpoints. We report optimization of a culture-based approach evaluating three cell lines, three detection methods, and key culture parameters. We show that Vero-angiotensin-converting enzyme 2-transmembrane serine protease 2 cells in combination with RT-qPCR of culture supernatants from the first passage provides the greatest overall detection of Delta viral replication (22 of 32, 68.8%), being able to identify viable virus in 83.3% (20 of 24) of clinical samples with initial Ct values of <30. Likewise, we demonstrate that RT-qPCR using culture supernatants from the first passage of Vero human signaling lymphocytic activation molecule cells provides the highest overall detection of Omicron viral replication (9 of 31, 29%), detecting live virus in 39.1% (9 of 23) of clinical samples with initial Ct values of <25. This assessment demonstrates that combining RT-qPCR with virological endpoint analysis has utility in clinical trials of therapeutics for SARS-CoV-2; however, techniques may require optimization based on dominant circulating strain. IMPORTANCE RT-qPCR is commonly used for virological endpoints during clinical trials for antiviral therapy to determine the quantity and presence of virus in a sample. However, RT-qPCR identifies viral RNA and cannot determine if viable virus is present. Existing culture-based techniques for SARS-CoV-2 are insensitive and not sufficiently standardized to be employed as clinical study endpoints. The use of a culture system to monitor replicating viruses could mitigate the possibility of molecular techniques identifying viral RNA from inactive or lysed viral particles. The methodology optimized in this study for detecting infectious viruses may have application as a secondary virological endpoint in clinical trials of therapeutics for SARS-CoV-2 in addition to numerous research processes.
Collapse
Affiliation(s)
- Dominic Wooding
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Kate Buist
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Alessandra Romero-Ramirez
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Helen Savage
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Rachel Watkins
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Daisy Bengey
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Caitlin Greenland-Bews
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Caitlin R. Thompson
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Nadia Kontogianni
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Richard Body
- Manchester University NHS Foundation Trust, Research and Innovation, Manchester, United Kingdom
| | - Gail Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Byrne
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Susan Gould
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - CONDOR Steering GroupAllenA. JoyBraybrookJulianBucklePeterDarkPaulDavisKerrieGordonAdamHalsteadAnnaHardenCharlotteInksonColetteJonesNaokoJonesWilliamLassersonDanLeeJosephLendremClareLewingtonAndrewLoganMaryMicocciMassimoNicholsonBrianPerera-SalazarRafaelPrestwichGrahamPriceD. AshleyReynardCharlesRileyBeverleySimpsonA. J.TateValerieTurnerPhilipWilcoxMarkZhifangMelody
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
- Manchester University NHS Foundation Trust, Research and Innovation, Manchester, United Kingdom
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Christopher Myerscough
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Barry Atkinson
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | | | | | - Emily Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Ana Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| | - Saye Khoo
- University of Liverpool, Liverpool, United Kingdom
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Tom Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine and Hygiene, Liverpool, United Kingdom
| |
Collapse
|
47
|
Inoue M, Takayama K, Hashimoto R, Enomoto M, Date N, Ohsumi A, Mizowaki T. Hyponatremia unleashes neutrophil extracellular traps elevating life-threatening pulmonary embolism risk. Proc Natl Acad Sci U S A 2024; 121:e2404947121. [PMID: 39475645 PMCID: PMC11551416 DOI: 10.1073/pnas.2404947121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/27/2024] [Indexed: 11/13/2024] Open
Abstract
Neutrophil extracellular traps (NETs), essential for controlling infections, can induce various pathologies when dysregulated. Known triggers for infection-independent NETs release exist, yet a comprehensive understanding of the conditions prompting such responses is lacking. In this study, we identify hyponatremia as an independent inducer of NETs release, a common clinical condition that disrupts sodium/calcium exchange within neutrophils. This disruption leads to an excess of intracellular calcium, subsequent elevation of reactive oxygen species (ROS), and the citrullination of histone H3, culminating in the activation of NETs-release pathways. Notably, under hyponatremic conditions, this mechanism is exacerbated during infectious states, leading to the deposition of NETs in the lungs and increasing the risk of life-threatening pulmonary embolism. Our findings underscore the critical role of sodium and calcium homeostasis in neutrophil functionality and provide insights into the pathogenesis of hyponatremia-associated diseases, highlighting potential therapeutic interventions targeting NETs dynamics.
Collapse
Affiliation(s)
- Minoru Inoue
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto606-8507, Japan
- Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Shizuoka411-8777, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto606-8507, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto606-8507, Japan
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Naoki Date
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto606-8507, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto606-8507, Japan
| |
Collapse
|
48
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
49
|
Wu H, Fujioka Y, Sakaguchi S, Suzuki Y, Nakano T. Electron Tomography as a Tool to Study SARS-CoV-2 Morphology. Int J Mol Sci 2024; 25:11762. [PMID: 39519314 PMCID: PMC11547116 DOI: 10.3390/ijms252111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus, is the causative agent of COVID-19, which has caused economic and social disruption worldwide. To date, many drugs and vaccines have been developed for the treatment and prevention of COVID-19 and have effectively controlled the global epidemic of SARS-CoV-2. However, SARS-CoV-2 is highly mutable, leading to the emergence of new variants that may counteract current therapeutic measures. Electron microscopy (EM) is a valuable technique for obtaining ultrastructural information about the intracellular process of virus replication. In particular, EM allows us to visualize the morphological and subcellular changes during virion formation, which would provide a promising avenue for the development of antiviral agents effective against new SARS-CoV-2 variants. In this review, we present our recent findings using transmission electron microscopy (TEM) combined with electron tomography (ET) to reveal the morphologically distinct types of SARS-CoV-2 particles, demonstrating that TEM and ET are valuable tools for visually understanding the maturation status of SARS-CoV-2 in infected cells. This review also discusses the application of EM analysis to the evaluation of genetically engineered RNA viruses.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | | | | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | |
Collapse
|
50
|
van der Horst D, Carter-Timofte ME, Danneels A, Silva da Costa L, Kurmasheva N, Thielke AL, Hansen AL, Chorošajev V, Holm CK, Belouzard S, de Weber I, Beny C, Olagnier D. Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses. Antiviral Res 2024; 231:106012. [PMID: 39332537 DOI: 10.1016/j.antiviral.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for in vitro testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with in vitro testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | - Naziia Kurmasheva
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Anne L Thielke
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | | | | | - Christian K Holm
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | | | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark.
| |
Collapse
|