1
|
Chen Z, Zhou X, Qu H, Zhang X, Kwak-Kim J, Wang W. Characteristics and functions of memory regulatory T cells in normal pregnancy cycle and pregnancy complications. J Reprod Immunol 2024; 163:104235. [PMID: 38574576 DOI: 10.1016/j.jri.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Regulatory T cells (Tregs) are activated and expanded after exposure to fetal-specific (paternal) antigens. A proportion of Tregs differentiate into memory Tregs (mTregs), exhibiting immune memory function and exerting more potent immunosuppression than naive Tregs (nTregs). However, it is unclear how mTregs are regulated during normal and pathological pregnancies (e.g., gestational diabetes mellitus (GDM) and preeclampsia (PE)). In this study, PD-1, HLA-G, and HLA-DR expressions on memory CD4+ T cells, naive CD4+ T cells, Tregs, mTregs, and nTregs in healthy non-pregnant women (n=20), healthy first (n=20), second (n=20), and third-trimester women (n=20), postpartum women (n=20), GDM (n=20), and PE patients (n=20) were analyzed. The proportion of mTregs out of Tregs was increased (P<0.05) in the first trimester compared with that in non-pregnancy and reduced in the second and third trimesters. The proportions of PD-1+ Tregs and mTregs were significantly increased during the first trimester compared to those of non-pregnancy (P<0.01), reached their maximum in the second trimester. Moreover, the proportions of HLA-G+ memory CD4+ T cells, Tregs, and mTregs were increased in the first and second trimesters (P<0.01), reached their maximum in the third trimester. GDM patients were characterized by significantly lower percentages of PD-1+ and HLA-G+ mTregs (P<0.01), while PE patients were characterized by significantly lower percentages of HLA-G+ mTregs (P<0.01), compared with the healthy third-trimester women. In general, as demonstrated by this study, mTregs increase in number and enhance maternal-fetal immunoregulation during pregnancy, and their dysfunction can result in pregnancy complications such as GMD or PE.
Collapse
Affiliation(s)
- Zeyang Chen
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China; School of Medicine, Qingdao University, Qingdao 266000, PR China
| | - Xiaojiao Zhou
- Department of Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Hongmei Qu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Xiaolu Zhang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Zhang YN, Wu Q, Deng YH. Phenotypic characterisation of regulatory T cells in patients with gestational diabetes mellitus. Sci Rep 2024; 14:4881. [PMID: 38418860 PMCID: PMC10902321 DOI: 10.1038/s41598-023-47638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication that occurs during pregnancy. Emerging evidence suggests that immune abnormalities play a pivotal role in the development of GDM. Specifically, regulatory T cells (Tregs) are considered a critical factor in controlling maternal-fetal immune tolerance. However, the specific characteristics and alterations of Tregs during the pathogenesis of GDM remain poorly elucidated. Therefore, this study aimed to investigate the changes in Tregs among pregnant women diagnosed with GDM compared to healthy pregnant women. A prospective study was conducted, enrolling 23 healthy pregnant women in the third trimester and 21 third-trimester women diagnosed with GDM. Participants were followed up until the postpartum period. The proportions of various Treg, including Tregs, mTregs, and nTregs, were detected in the peripheral blood of pregnant women from both groups. Additionally, the expression levels of PD-1, HLA-G, and HLA-DR on these Tregs were examined. The results revealed no significant differences in the proportions of Tregs, mTregs, and nTregs between the two groups during the third trimester and postpartum period. However, GDM patients exhibited significantly reduced levels of PD-1+ Tregs (P < 0.01) and HLA-G+ Tregs (P < 0.05) in the third trimester compared to healthy pregnant women in the third trimester. Furthermore, GDM patients demonstrated significantly lower levels of PD-1+ mTregs (P < 0.01) and HLA-G+ (P < 0.05) mTregs compared to healthy pregnant women in the third trimester. Overall, the proportion of Tregs did not exhibit significant changes during the third trimester in GDM patients compared to healthy pregnant women. Nevertheless, the observed dysregulation of immune regulation function in Tregs and mTregs may be associated with the development of GDM in pregnant women.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Qin Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Yi-Hui Deng
- School of Chinese Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China.
| |
Collapse
|
3
|
Jahan P, Bhuwalka R, Begum M, Madduru D, Ahmad A, Bonu R. UP-regulated levels of sHLA-G in women with a history of RPL in mid-gestation presumably to achieve ongoing pregnancy. Am J Reprod Immunol 2023; 90:e13798. [PMID: 38009053 DOI: 10.1111/aji.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM Recurrent Pregnancy Loss (RPL) is a disorder characterized by two or more pregnancy losses within 20th week of gestation. Globally 1-5% of the couples are affected, 50% of these cases are with unknown etiology. HLA-G, an Immuno-modulatory molecule is a non-classical MHC-1 protein, expressed abundantly on extravillous trophoblastic cells, responsible for spiral artery remodeling, maintaining maternal immune tolerance and fetal growth by adjusting pro and anti-inflammatory milieu during different gestational phases. METHOD OF STUDY In the present case-control study CD4+HLA-G+ tTreg cells were enumerated by flow cytometry and estimation of the circulating levels of sHLA-G in the blood samples of 300 mid-gestation pregnant women with (iRPL) and without history of RPL (nRPL) by Enzyme-linked Immunosorbent assay was done. The cases included 92 primary and 58 secondary RPL cases RESULTS: A significant reduction in number of tTregs and elevated levels of circulating sHLA-G in iRPL (.03, 200.9) versus nRPL (.09, 90.32) was observed. Further, the primary cases showed higher circulating sHLA-G and no difference in relation to CD4+HLA-G+ tTregs compared to the secondary cases. Receiver operating curve (ROC) characteristics of sHLA-G (AUC = .8) was superior to CD4+HLA-G+ (AUC = .7) for iRPL patients over nRPL group. CONCLUSIONS Our results are suggestive of the over-expression of sHLA-G which may be caused due to its shedding from surface of trophoblast as a compensatory mechanism to save the on-going pregnancy. To realize the present outcome, studies are required on on-going pregnancy follow-up cases with favorable and unfavorable pregnancy outcome.
Collapse
Affiliation(s)
- Parveen Jahan
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad, Telangana, India
| | - Rashmi Bhuwalka
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad, Telangana, India
| | - Mahmooda Begum
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad, Telangana, India
| | - Dhatri Madduru
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, India
| | - Arif Ahmad
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad, Telangana, India
| | - Rajeshwari Bonu
- Gynaecology and Obstetrics Department, Niloufer Hospital, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Mao J, Feng Y, Zhu X, Ma F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023; 13:1213. [PMID: 37627278 PMCID: PMC10452754 DOI: 10.3390/biom13081213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal-fetal interface during pregnancy and is essential in establishing immune tolerance. This review provides a comprehensive understanding of the multiple molecular mechanisms by which HLA-G regulates the immune function of NK cells. It highlights that HLA-G binds to microRNA to suppress NK cell cytotoxicity and stimulate the secretion of growth factors to support fetal growth. The interactions between HLA-G and NK cells also activate senescence signaling, promoting spiral artery remodeling and maintaining the balance of maternal-fetal immune responses. In addition, HLA-G can inhibit the function of decidual T cells, dendritic cells, and macrophages. Overall, the interaction between trophoblast cells and immune cells mediated by HLA-G plays a crucial role in understanding immune regulation at the maternal-fetal interface and offers insights into potential treatments for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jia Mao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Gunavathy N, Asirvatham A, Chitra A, Jayalakshmi M. Evaluation of HLA-G 14bp Ins/Del and +3142 C/G Polymorphisms in Type 1 Diabetes among South Indian Population. Indian J Endocrinol Metab 2023; 27:223-229. [PMID: 37583409 PMCID: PMC10424110 DOI: 10.4103/ijem.ijem_7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/02/2023] [Accepted: 04/22/2023] [Indexed: 08/17/2023] Open
Abstract
Background Type 1 diabetes (T1D) is a multifactorial autoimmune disease, involving strong genetic components with familial predisposition. Human leukocyte antigen-G (HLA-G) is a non-classical HLA-class I molecule having several immunomodulatory functions. Polymorphisms in HLA-G are associated with several autoimmune diseases including T1D. This study aims to evaluate the association of HLA-G 14bp Ins/Del and +3142 C/G polymorphisms with T1D among the South Indian population. Methods The study was performed in a cohort of 123 T1D patients along with their 51 siblings and 126 parents. The association and linkage of HLA-G 14bp Ins/Del and +3142 C/G polymorphisms with T1D were analysed, and transmission disequilibrium test (TDT) was performed. Results Significantly increased frequencies of HLA-G 14bp Del/Del genotype (OR = 2.16, pc = 0.0302) and Del allele (OR = 1.71, pc = 0.0398) were observed in female patients compared to parents. Higher frequencies of DelDel/GG combined genotype (OR = 4.45, pc = 0.0049) and Del/G haplotype (OR = 2.91, pc = 0.0277) were observed in female patients compared to parents. TDT also revealed over-transmission of Del/G haplotype (25T vs 7UT; P = 0.0015) and a strong linkage disequilibrium between the studied polymorphisms. Conclusion This familial study shows the association of HLA-G 3'UTR 14bp Ins/Del polymorphism with the risk of T1D among the South Indian population, especially in females.
Collapse
Affiliation(s)
- Nagarajan Gunavathy
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Arthur Asirvatham
- Department of Diabetology, Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Ayyappan Chitra
- Institute of Child Health and Research Centre, Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Mariakuttikan Jayalakshmi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
6
|
Xie Y, Gao Y, Liu W, Zou Y, Li C. Determination of soluble HLA-G serum levels in patients with adenomyosis and uterine fibroids before and after surgery. Hum Immunol 2023:S0198-8859(23)00060-5. [PMID: 37059598 DOI: 10.1016/j.humimm.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
Adenomyosis is a benign gynaecological disease caused by the growth of endometrial tissue in the myometrium that affects approximately 30 % of child-bearing-age women. We evaluated the levels of soluble human leukocyte antigen G (sHLA-G) in the serum of patients with adenomyosis before and after treatment. Serum samples of 34 patients with adenomyosis and 31 patients with uterine fibroids were collected before and after the operation and were analysed for sHLA-G levels byELISAassay. The preoperative levels of serum sHLA-G in the adenomyosis group (28.05 ± 2.466 ng/ml) were significantly higher than those in the uterine fibroid group (18.53 ± 1.435 ng/ml) (P < 0.05). Serum sHLA-G levels in the adenomyosis group showed a decreasing trend at different time points after surgery (28.05 ± 14.38 ng/ml, 18.41 ± 8.34 ng/ml, and 14.45 ± 5.77 ng/ml). Adenomyosis patients who underwent total hysterectomy (n = 20) had a more significant decrease in sHLA-G levels in the early postoperative period (2 days post-operative) than those who underwent partial hysterectomy (n = 14). These results suggest that immunologic dysfunctions may be detected in patients with adenomyosis.
Collapse
Affiliation(s)
- Yunkai Xie
- Department of Obstetrics & Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100000, China
| | - Yixuan Gao
- Department of Obstetrics & Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong 250021, China
| | - Wei Liu
- Department of Obstetrics & Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong 250021, China
| | - Yonghui Zou
- Department of Obstetrics & Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong 250021, China.
| | - Changzhong Li
- Department of Obstetrics & Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong 250021, China; Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
7
|
IL-10-producing memory B regulatory cells as a novel target for HLA-G to prolong human kidney allograft survival. Hum Immunol 2023:S0198-8859(23)00044-7. [PMID: 36934068 DOI: 10.1016/j.humimm.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Despite the growing interest in the role of regulatory B cells (Bregs) in autoimmunity, their distinct role and function in kidney transplant outcomes remain elusive. Here, we retrospectively analyzed the proportion of Bregs, transitional Bregs (tBregs) and memory Bregs (mBregs) and their capacity to produce IL-10 in non-rejected (NR) versus rejected (RJ) kidney transplant recipients. In the NR group, we observed a significant increase in the proportion of mBregs (CD19+CD24hiCD27+) but no difference in tBregs (CD19+CD24hiCD38+), as compared to the RJ group. We also observed a significant increase in IL-10-producing mBregs (CD19+CD24hiCD27+IL-10+) in the NR group. As our group and others have previously reported a potential role of the human leukocyte antigen G (HLA-G) in human renal allograft survival, notably through IL-10, we then investigated possible crosstalk between HLA-G and IL-10+ mBregs. Our ex vivo data suggest a role of HLA-G in enhancing IL-10+ mBreg expansion upon stimulation, which further decreased CD3+ T cell proliferation capability. Using RNA-sequencing (RNA-seq), we identified potential key signaling pathways involved in HLA-G-driven IL-10+ mBreg expansion, such as the MAPK, TNF and chemokine signaling pathways. Together, our study highlights a novel HLA-G-mediated IL-10-producing mBreg pathway that may serve as a therapeutic target to improve kidney allograft survival.
Collapse
|
8
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Grille-Cancela Z, Barge-Caballero E, Suárez-Fuentetaja N, Domenech-García N, Paniagua-Martín MJ, Barge-Caballero G, Couto-Mallón D, Enríquez-Vázquez D, Blanco-Canosa P, Pombo-Otero J, Vázquez-Rodríguez JM, Crespo-Leiro MG. Soluble HLA-G levels in heart transplant recipients: Dynamics and correlation with clinical outcomes. Transpl Immunol 2023; 76:101771. [PMID: 36473577 DOI: 10.1016/j.trim.2022.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To describe the evolution of the serum levels of soluble HLA-G (s-HLA-G) during the first 12 months after heart transplantation (HT) and to correlate it with clinical outcomes. METHODS Observational study based in a single-center cohort of 59 patients who underwent HT between December-2003 and March-2010. Soluble HLA-G levels were measured from serum samples extracted before HT, and 1, 3, 6 and 12 months after HT. The cumulative burden of s-HLA-G expression during the first post-transplant year was assessed by means of the area under the curve (AUC) of s-HLA-G levels over time and correlated with the acute rejection burden -as assessed by a rejection score-, the presence of coronary allograft vasculopathy (CAV) grade ≥ 1 and infections during the first post-transplant year; as well as with long-term patient and graft survival. Mean follow-up was 12.4 years. RESULTS Soluble HLA-G levels decreased over the first post-transplant year (p = 0.020). The AUC of s-HLA-G levels during the first post-transplant year was higher among patients with infections vs. those without infections (p = 0.006). No association was found between the AUC of s-HLA-G levels and the burden of acute rejection or the development of CAV. Overall long-term survival, long-term survival free of late graft failure and cancer-free survival were not significantly different in patients with an AUC of s-HLA-G levels higher or lower than the median of the study population. CONCLUSIONS Soluble HLA-G levels decreased over the first year after HT. Higher HLA-G expression was associated with a higher frequency of infections, but not with the burden of acute rejection or the development of CAV, neither with long-term patient or graft survival.
Collapse
Affiliation(s)
- Zulaika Grille-Cancela
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Barge-Caballero
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Natalia Suárez-Fuentetaja
- Servicio de Análisis Clínicos, Complejo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Nieves Domenech-García
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Paniagua-Martín
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Barge-Caballero
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - David Couto-Mallón
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Enríquez-Vázquez
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Blanco-Canosa
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jorge Pombo-Otero
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - José M Vázquez-Rodríguez
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María G Crespo-Leiro
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Suzuki S, Morishima S, Murata M, Tanaka M, Shigenari A, Ito S, Kanga U, Kulski JK, Morishima Y, Shiina T. Sequence Variations Within HLA-G and HLA-F Genomic Segments at the Human Leukocyte Antigen Telomeric End Associated With Acute Graft-Versus-Host Disease in Unrelated Bone Marrow Transplantation. Front Immunol 2022; 13:938206. [PMID: 35935961 PMCID: PMC9351719 DOI: 10.3389/fimmu.2022.938206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is defined as a syndrome of an immunological response of graft to the host that occurs early after allogeneic hematopoietic stem cell transplantation (HCT). This disease is frequently observed even in HCT matched for human leukocyte antigen (HLA) alleles at multiple gene loci. Although the HLA region represents complex and diverse genomic characteristics, detailed association analysis is required for the identification of uncharacterized variants that are strongly associated with aGVHD. We genotyped three loci, OR2H2, HLA-F-AS1, and HLA-G, that are located in the 460 kb of HLA telomeric region and statistically analyzed the genotypes including HLA-DPB1 with clinical and transplantation outcomes using 338 unrelated bone marrow transplantation (UR-BMT) patient–donor pairs who were matched for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 (HLA-10/10). Multivariate analyses demonstrated that HLA-F-AS1 and HLA-DPB1 mismatches were associated with grade II–IV aGVHD (hazard ratio (HR), 1.76; 95% CI, 1.07–2.88; p = 0.026; and HR, 1.59; CI, 1.02–2.49; p = 0.042, respectively). There was no confounding between HLA-F-AS1 and HLA-DPB1 (p = 0.512), suggesting that the HLA-F-AS1 mismatch has a strong effect on aGVHD independently of HLA-DPB1. Moreover, a stratified analysis suggested possible associations of HLA-F-AS1, HLA-DPB1, and/or HLA-G mismatches with grade II–IV aGVHD and the more severe grade III–IV aGVHD. These findings provide new insights into understanding the molecular mechanism of aGVHD caused by HLA-matched UR-BMT.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Sayaka Ito
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Uma Kanga
- Clinical Immunogenetics Laboratory, Centre for Excellence in Molecular Medicine, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, The University of Western Australia Medical School, Crawley, WA, Australia
| | - Yasuo Morishima
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Hematology and Oncology, Nakagami Hospital, Okinawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Takashi Shiina,
| |
Collapse
|
11
|
Liu S, Bos NA, Verschuuren EAM, van Baarle D, Westra J. Biological Characteristics of HLA-G and Its Role in Solid Organ Transplantation. Front Immunol 2022; 13:902093. [PMID: 35769475 PMCID: PMC9234285 DOI: 10.3389/fimmu.2022.902093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Organ transplantation is a lifesaving option for patients with advanced diseases. Rejection is regarded as one of the most severe risk factors post-transplantation. A molecule that contributes to immune tolerance and resisting rejection is human leukocyte antigen (HLA)-G, which belongs to the non-classical major histocompatibility complex class (MHC) I family. HLA-G was originally found to play a role during pregnancy to maintain immune tolerance between mother and child. It is expressed in the placenta and detected in several body fluids as soluble factor as well as different membrane isoforms on cells. Recent findings on HLA-G show that it can also play multifaceted roles during transplantation. This review will explain the general characteristics and biological function of HLA-G and summarize the views supporting the tolerogenic and other roles of HLA-G to better understand its role in solid organ transplantation (SOT) and its complications. Finally, we will discuss potential future research on the role of HLA-G in prevention, diagnosis, and treatment in SOT.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johanna Westra,
| |
Collapse
|
12
|
Negrini S, Contini P, Murdaca G, Puppo F. HLA-G in Allergy: Does It Play an Immunoregulatory Role? Front Immunol 2022; 12:789684. [PMID: 35082780 PMCID: PMC8784385 DOI: 10.3389/fimmu.2021.789684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Allergy is an inflammatory process determined by a cascade of immune events characterized by T-helper 2 lymphocytes polarization leading to interleukin-4 upregulation, IgE secretion, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, are known to play a key immunoregulatory role and their involvement in allergic diseases is supported by increasing literature data. HLA-G expression and secretion is specifically induced in peripheral blood mononuclear cells of allergic patients after in vitro incubation with the causal allergen. Elevated levels of soluble HLA-G molecules are detected in serum of patients with allergic rhinitis correlating with allergen-specific IgE levels, clinical severity, drug consumption and response to allergen-specific immunotherapy. HLA-G genetic polymorphisms confer susceptibility to allergic asthma development and high levels of soluble HLA-G molecules are found in plasma and bronchoalveolar lavage fluid of patients with allergic asthma correlating with allergen-specific IgE levels. Interestingly, allergic pregnant women have lower plasma sHLA-G levels than non-allergic women during the 3rd trimester of pregnancy and at delivery. Finally, in allergic patients with atopic dermatitis HLA-G molecules are expressed by T cells, monocytes-macrophages and Langerhans cells infiltrating the dermis. Although at present is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are specifically expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation.
Collapse
Affiliation(s)
| | | | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
Lin A, Yan WH. Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Front Immunol 2021; 12:788769. [PMID: 34938296 PMCID: PMC8685204 DOI: 10.3389/fimmu.2021.788769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has threatened public health worldwide. Host antiviral immune responses are essential for viral clearance and disease control, however, remarkably decreased immune cell numbers and exhaustion of host cellular immune responses are commonly observed in patients with COVID-19. This is of concern as it is closely associated with disease severity and poor outcomes. Human leukocyte antigen-G (HLA-G) is a ligand for multiple immune inhibitory receptors, whose expression can be upregulated by viral infections. HLA-G/receptor signalling, such as engagement with immunoglobulin-like transcript 2 (ILT-2) or ILT-4, not only inhibit T and natural killer (NK) cell immune responses, dendritic cell (DC) maturation, and B cell antibody production. It also induces regulatory cells such as myeloid-derived suppressive cells (MDSCs), or M2 type macrophages. Moreover, HLA-G interaction with CD8 and killer inhibitory receptor (KIR) 2DL4 can provoke T cell apoptosis and NK cell senescence. In this context, HLA-G can induce profound immune suppression, which favours the escape of SARS-CoV-2 from immune attack. Although detailed knowledge on the clinical relevance of HLA-G in SARS-CoV-2 infection is limited, we herein review the immunopathological aspects of HLA-G/receptor signalling in SARS-CoV-2 infection, which could provide a better understanding of COVID-19 disease progression and identify potential immunointerventions to counteract SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
14
|
Mestrallet G, Rouas-Freiss N, LeMaoult J, Fortunel NO, Martin MT. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front Immunol 2021; 12:772516. [PMID: 34938293 PMCID: PMC8685247 DOI: 10.3389/fimmu.2021.772516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Although the role of epidermal cells in skin regeneration has been extensively documented, their functions in immunity and tolerance mechanisms are largely underestimated. The aim of the present review was to outline the state of knowledge on resident immune cells of hematopoietic origin hosted in the epidermis, and then to focus on the involvement of keratinocytes in the complex skin immune networks acting in homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of immune tolerance are reviewed. In particular, strategies based on immunosuppression mediated by HLA-G are highlighted, as recent advances in this field open up perspectives in epidermis-substitute bioengineering for temporary and permanent skin replacement strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Joel LeMaoult
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Nicolas O Fortunel
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Michele T Martin
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
15
|
The HLA-G Immune Checkpoint Plays a Pivotal Role in the Regulation of Immune Response in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413348. [PMID: 34948145 PMCID: PMC8706866 DOI: 10.3390/ijms222413348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The human G-leukocyte antigen (HLA-G) molecule is a non-classical major histocompatibility complex (MHC) class I molecule. The pertinence of HLA-G has been investigated in numerous studies which have sought to elucidate the relevance of HLA-G in pathologic conditions, such as autoimmune diseases, cancers, and hematologic malignancies. One of the main goals of the current research on HLA-G is to use this molecule in clinical practice, either in diagnostics or as a therapeutic target. Since HLA-G antigens are currently considered as immunomodulatory molecules that are involved in reducing inflammatory and immune responses, in this review, we decided to focus on this group of antigens as potential determinants of progression in autoimmune diseases. This article highlights what we consider as recent pivotal findings on the immunomodulatory function of HLA-G, not only to establish the role of HLA-G in the human body, but also to explain how these proteins mediate the immune response.
Collapse
|
16
|
Bovee EM, Gulati M, Maas AH. Novel Cardiovascular Biomarkers Associated with Increased Cardiovascular Risk in Women With Prior Preeclampsia/HELLP Syndrome: A Narrative Review. Eur Cardiol 2021; 16:e36. [PMID: 34721670 PMCID: PMC8546910 DOI: 10.15420/ecr.2021.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that women with a history of preeclampsia or haemolysis, elevated liver enzymes and low platelets (HELLP) syndrome have an increased risk of cardiovascular disease later in life. Recommendations for screening, prevention and management after such pregnancies are not yet defined. The identification of promising non-traditional cardiovascular biomarkers might be useful to predict which women are at greatest risk. Many studies are inconsistent and an overview of the most promising biomarkers is currently lacking. This narrative review provides an update of the current literature on circulating cardiovascular biomarkers that may be associated with an increased cardiovascular disease risk in women after previous preeclampsia/HELLP syndrome. Fifty-six studies on 53 biomarkers were included. From the summary of evidence, soluble fms-like tyrosine kinase-1, placental growth factor, interleukin (IL)-6, IL-6/IL-10 ratio, high-sensitivity cardiac troponin I, activin A, soluble human leukocyte antigen G, pregnancy-associated plasma protein A and norepinephrine show potential and are interesting candidate biomarkers to further explore. These biomarkers might be potentially eligible for cardiovascular risk stratification after preeclampsia/HELLP syndrome and may contribute to the development of adequate strategies for prevention of hypertension and adverse events in this population.
Collapse
Affiliation(s)
| | | | - Angela Hem Maas
- Department of Cardiology, Radboud University Medical Center Nijmegen, the Netherlands
| |
Collapse
|
17
|
HLA-G and HLA-E Immune Checkpoints Are Widely Expressed in Ewing Sarcoma but Have Limited Functional Impact on the Effector Functions of Antigen-Specific CAR T Cells. Cancers (Basel) 2021; 13:cancers13122857. [PMID: 34201079 PMCID: PMC8227123 DOI: 10.3390/cancers13122857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Solid cancers can effectively counteract immune attack by inhibitory checkpoints in the tumor microenvironment. Blockade of relevant immune checkpoints could be a useful tool for enhancing the efficacy of antitumor T cell therapies. Here, we studied the capacity of two nonclassical HLA molecules with known immunosuppressive function, HLA-G and HLA-E, to prevent antigen-specific immune effector functions of gene-engineered T cells against Ewing sarcoma. Inflammatory conditions and interactions of Ewing sarcoma cells with antitumor T cells reliably induced upregulation of the two molecules on the tumor cells. Moreover, as previously shown for HLA-G, HLA-E was detected in a high proportion of human Ewing sarcoma biopsies. However, artificial expression of either of the two molecules on Ewing sarcoma cells failed to reduce cytolytic and activation responses of antigen-specific T cells. We conclude that blockade of HLA-G and HLA-E immune checkpoints is not a promising strategy for enhancing T cell therapies in Ewing sarcoma. Abstract Immune-inhibitory barriers in the tumor microenvironment of solid cancers counteract effective T cell therapies. Based on our finding that Ewing sarcomas (EwS) respond to chimeric antigen receptor (CAR) gene-modified effector cells through upregulation of human leukocyte antigen G (HLA-G), we hypothesized that nonclassical HLA molecules, HLA-G and HLA-E, contribute to immune escape of EwS. Here, we demonstrate that HLA-G isotype G1 expression on EwS cells does not directly impair cytolysis by GD2-specific CAR T cells (CART), whereas HLA-G1 on myeloid bystander cells reduces CART degranulation responses against EwS cells. HLA-E was induced in EwS cells by IFN-γ stimulation in vitro and by GD2-specific CART treatment in vivo and was detected on tumor cells or infiltrating myeloid cells in a majority of human EwS biopsies. Interaction of HLA-E-positive EwS cells with GD2-specific CART induced upregulation of HLA-E receptor NKG2A. However, HLA-E expressed by EwS tumor cells or by myeloid bystander cells both failed to reduce antitumor effector functions of CART. We conclude that non-classical HLA molecules are expressed in EwS under inflammatory conditions, but have limited functional impact on antigen-specific T cells, arguing against a relevant therapeutic benefit from combining CART therapy with HLA-G or HLA-E checkpoint blockade in this cancer.
Collapse
|
18
|
Arnaiz-Villena A, Juarez I, Suarez-Trujillo F, López-Nares A, Vaquero C, Palacio-Gruber J, Martin-Villa JM. HLA-G: Function, polymorphisms and pathology. Int J Immunogenet 2021; 48:172-192. [PMID: 33001562 DOI: 10.1111/iji.12513] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
HLA-G immune modulatory genes and molecules are presently being studied by a widespread number of research groups. In the present study, we do not aim to be exhaustive since the number of manuscripts published every year is overwhelming. Instead, our aim is pointing out facts about HLA-G function, polymorphism and pathology that have been confirmed by several different researchers, together with exposing aspects that may have been overlooked or not sufficiently remarked in this productive field of study. On the other hand, we question whether performing mainly studies on HLA-G and disease associations is going to give a clear answer in the future, since 40 years of study of classical HLA molecules association with disease has still given no definite answer on this issue.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Adrián López-Nares
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Christian Vaquero
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose M Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
19
|
Li X, Sheng Z, Sun Y, Wang Y, Xu M, Zhang Z, Li H, Shao L, Zhang Y, Yu J, Ma C, Gao C, Hou M, Ni H, Peng J, Ma J, Feng Q. Human leukocyte antigen-G upregulates immunoglobulin-like transcripts and corrects dysfunction of immune cells in immune thrombocytopenia. Haematologica 2021; 106:770-781. [PMID: 32079695 PMCID: PMC7927897 DOI: 10.3324/haematol.2018.204040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class I antigen with potent immune-inhibitory function. HLA-G benefit patients in allotransplantation and autoimmune diseases by interacting with its receptors, immunoglobulinlike transcripts. Here we observed significantly less HLA-G in plasma from immune thrombocytopenia (ITP) patients positive for anti-platelet autoantibodies compared with autoantibodies-negative patients or healthy controls, while we found that HLA-G is positively correlated with platelet counts in both patients and healthy controls. We also found less membranebound HLA-G and immunoglobulin-like transcripts on CD4+ and CD14+ cells in patients. Recombinant HLA-G upregulated immunoglobulin-like transcript 2 expression on CD4+ and immunoglobulin-like transcript 4 on CD14+ cells. HLA-G upregulated IL-4 and IL-10, and downregulated tumor necrosis factor-a, IL-12 and IL-17 secreted by patient peripheral blood mononuclear cells, suggesting a stimulation of Th2 differentiation and downregulation of Th1 and Th17 immune response. HLA-G-modulated dendritic cells from ITP patients showed decreased expression of CD80 and CD86, and suppressed CD4+ T-cell proliferation compared to unmodulated cells. Moreover, HLA-G-modulated cells from patients induced less platelet apoptosis. HLA-G administration also significantly alleviated thrombocytopenia in a murine model of ITP. In conclusion, our data demonstrated that impaired expression of HLA-G and immunoglobulin-like transcripts is involved in the pathogenesis of ITP; recombinant HLA-G can correct this abnormality via upregulation of immunoglobulin-like transcripts, indicating that HLA-G can be a diagnostic marker and a therapeutic option for ITP.
Collapse
Affiliation(s)
- Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuanxin Sun
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Yuanjian Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqi Zhang
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chengjiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Ming Hou
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada,Department of Laboratory Medicine, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada,Canadian Blood Services Center for Innovation, Toronto, Ontario, Canada
| | - Jun Peng
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Medical Oncology, Tianjin Medical University, Tianjin, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
20
|
Wu CL, Caumartin J, Amodio G, Anna F, Loustau M, Gregori S, Langlade-Demoyen P, LeMaoult J. Inhibition of iNKT Cells by the HLA-G-ILT2 Checkpoint and Poor Stimulation by HLA-G-Expressing Tolerogenic DC. Front Immunol 2021; 11:608614. [PMID: 33505397 PMCID: PMC7832389 DOI: 10.3389/fimmu.2020.608614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a small and distinct population of T cells crucial in immunomodulation. After activation by alpha-GalactosylCeramide (αGC), an exogenic glycolipid antigen, iNKT cells can rapidly release cytokines to enhance specific anti-tumor activity. Several human clinical trials on iNKT cell-based anti-cancer are ongoing, however results are not as striking as in murine models. Given that iNKT-based immunotherapies are dependent mainly on antigen-presenting cells (APC), a human tolerogenic molecule with no murine homolog, such as Human Leucocyte Antigen G (HLA-G), could contribute to this discrepancy. HLA-G is a well-known immune checkpoint molecule involved in fetal-maternal tolerance and in tumor immune escape. HLA-G exerts its immunomodulatory functions through the interaction with immune inhibitory receptors such as ILT2, differentially expressed on immune cell subsets. We hypothesized that HLA-G might inhibit iNKT function directly or by inducing tolerogenic APC leading to iNKT cell anergy, which could impact the results of current clinical trials. Using an ILT2-transduced murine iNKT cell line and human iNKT cells, we demonstrate that iNKT cells are sensitive to HLA-G, which inhibits their cytokine secretion. Furthermore, human HLA-G+ dendritic cells, called DC-10, failed at inducing iNKT cell activation compared to their autologous HLA-G‒ DCs counterparts. Our data show for the first time that the HLA-G/ILT2 ICP is involved in iNKT cell function modulation.
Collapse
Affiliation(s)
- Ching-Lien Wu
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France.,Université de Paris, IRSL, UMRS 976, Paris, France.,Invectys, Paris, France
| | | | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Joel LeMaoult
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France.,Université de Paris, IRSL, UMRS 976, Paris, France
| |
Collapse
|
21
|
Martínez-Razo LD, Martínez-Ibarra A, Vázquez-Martínez ER, Cerbón M. The impact of Di-(2-ethylhexyl) Phthalate and Mono(2-ethylhexyl) Phthalate in placental development, function, and pathophysiology. ENVIRONMENT INTERNATIONAL 2021; 146:106228. [PMID: 33157377 DOI: 10.1016/j.envint.2020.106228] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a chemical widely distributed in the environment as is extensively used in the plastic industry. DEHP is considered an endocrine disruptor chemical (EDC) and humans are inevitably and unintentionally exposed to this EDC through several sources including food, beverages, cosmetics, medical devices, among others. DEHP exposure has been associated and may be involved in the development of various pathologies; importantly, pregnant women are a particular risk group considering that endocrine alterations during gestation may impact fetal programming leading to the development of several chronic diseases in adulthood. Recent studies have indicated that exposure to DEHP and its metabolite Mono(2-ethylhexyl) phthalate (MEHP) may impair placental development and function, which in turn would have a negative impact on fetal growth. Studies performed in several trophoblastic and placental models have shown the negative impact of DEHP and MEHP in key processes related to placental development such as implantation, differentiation, invasion and angiogenesis. In addition, many alterations in placental functions like hormone signaling, metabolism, transfer of nutrients, immunomodulation and oxidative stress response have been reported. Moreover, clinical-epidemiological evidence supports the association between DEHP exposure and adverse pregnancy outcomes and pathologies. In this review, we aim to summarize for the first time current knowledge about the impact of DEHP and MEHP exposure on placental development and pathophysiology, as well as the mechanisms involved. We also remark the importance of exploring DEHP and MEHP effects in different trophoblast cell populations and discuss new perspectives regarding this topic.
Collapse
Affiliation(s)
- Luis Daniel Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico.
| |
Collapse
|
22
|
Mendes J, Areia AL, Rodrigues-Santos P, Santos-Rosa M, Mota-Pinto A. Innate Lymphoid Cells in Human Pregnancy. Front Immunol 2020; 11:551707. [PMID: 33329512 PMCID: PMC7734178 DOI: 10.3389/fimmu.2020.551707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a new set of cells considered to be a part of the innate immune system. ILCs are classified into five subsets (according to their transcription factors and cytokine profile) as natural killer cells (NK cells), group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Functionally, these cells resemble the T helper population but lack the expression of recombinant genes, which is essential for the formation of T cell receptors. In this work, the authors address the distinction between peripheral and decidual NK cells, highlighting their diversity in ILC biology and its relevance to human pregnancy. ILCs are effector cells that are important in promoting immunity, inflammation, and tissue repair. Recent studies have directed their attention to ILC actions in pregnancy. Dysregulation or expansion of pro-inflammatory ILC populations as well as abnormal tolerogenic responses may directly interfere with pregnancy, ultimately resulting in pregnancy loss or adverse outcomes. In this review, we characterize these cells, considering recent findings and addressing knowledge gaps in perinatal medicine in the context of ILC biology. Moreover, we discuss the relevance of these cells not only to the process of immune tolerance, but also in disease.
Collapse
Affiliation(s)
- João Mendes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Areia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Obstetrics Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
| | - Anabela Mota-Pinto
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Jacobsen DP, Lekva T, Moe K, Fjeldstad HES, Johnsen GM, Sugulle M, Staff AC. Pregnancy and postpartum levels of circulating maternal sHLA-G in preeclampsia. J Reprod Immunol 2020; 143:103249. [PMID: 33254097 DOI: 10.1016/j.jri.2020.103249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a leading cause of maternal and offspring mortality and morbidity, and predicts increased future cardiovascular disease risk. Placental dysfunction and immune system dysregulation are likely key pathophysiological factors. Soluble human leukocyte antigen G (sHLA-G) may dampen the specific immune response towards placental trophoblasts. Previous studies have shown low sHLA-G levels in preeclampsia, but postpartum, levels are unknown. Furthermore, the relationship between sHLA-G and sFlt-1 and PlGF, placental function markers, is unknown. We hypothesized that low maternal sHLA-G during pregnancy would be associated with placental dysfunction, including preeclampsia, gestational hypertension, and dysregulated sFlt-1 and PlGF, and that sHLA-G would remain decreased following preeclampsia. We included 316 pregnant women: 58 with early-onset preeclampsia (<34 weeks' gestation), 81 with late-onset preeclampsia (≥34 weeks' gestation), 25 with gestational hypertension, and 152 normotensive controls. Postpartum (1 or 3 years), we included 321 women: 29 with early-onset preeclampsia, 98 with late-onset preeclampsia, 57 with gestational hypertension, and 137 who were normotensive during their index pregnancies. In pregnancy, plasma sHLA-G was significantly lower both in the early- and late-onset preeclampsia groups compared to controls. In women with preeclampsia or gestational hypertension, sHLA-G was inversely correlated with serum sFlt-1. Postpartum, plasma sHLA-G levels were significantly higher in women who had had early-onset preeclampsia compared to controls. Our results support that sHLA-G may be important for placental function. Unexpectedly, sHLA-G was elevated up to 3 years after early-onset preeclampsia, suggesting an excessively activated immune system following this severe preeclampsia form, potentially contributing to future cardiovascular disease risk.
Collapse
Affiliation(s)
- Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway.
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Kjartan Moe
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Obstetrics and Gynaecology, Bærum Hospital, Vestre Viken HF, Norway
| | - Heidi E S Fjeldstad
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Guro Mørk Johnsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway
| | - Meryam Sugulle
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Anne Cathrine Staff
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
24
|
Contini P, Murdaca G, Puppo F, Negrini S. HLA-G Expressing Immune Cells in Immune Mediated Diseases. Front Immunol 2020; 11:1613. [PMID: 32983083 PMCID: PMC7484697 DOI: 10.3389/fimmu.2020.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
HLA-G is a HLA class Ib antigen that possesses immunomodulatory properties. HLA-G-expressing CD4+ and CD8+ T lymphocytes, NK cells, monocytes, and dendritic cells with immunoregulatory functions are present in small percentages of patients with physiologic conditions. Quantitative and qualitative derangements of HLA-G+ immune cells have been detected in several conditions in which the immune system plays an important role, such as infectious, neoplastic, and autoimmune diseases as well as in complications from transplants and pregnancy. These observations strongly support the hypothesis that HLA-G+ immune cells may be implicated in the complex mechanisms underlying the pathogenesis of these disorders.
Collapse
Affiliation(s)
| | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | |
Collapse
|
25
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
26
|
Xu HH, Yan WH, Lin A. The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis. Front Immunol 2020; 11:1349. [PMID: 32670296 PMCID: PMC7330167 DOI: 10.3389/fimmu.2020.01349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low polymorphism frequency, restricted tissue distribution and immunoinhibitory property. HLA-G expression in tumor cells and cells chronically infected with virus may enable them to escape from host immune surveillance. It is well-known that the HLA-G molecule is a novel biomarker and potential therapeutic target that is relevant in various types of cancers, but its role in cervical cancer has not been fully explored. In this review, we aim to summarize and discuss the immunologic role of the HLA-G molecule in the context of HPV infections and the process of cervical cancer carcinogenesis. A better understanding of the potential impact of HLA-G on the clinical course of persistent HPV infections, cervical epithelial cell transformation, tumor growth, recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker for cervical cancer, which is critical for cervical cancer risk screening. In addition, it is also necessary to identify HLA-G-driven immune mechanisms involved in the interactions between host and virus to explore novel immunotherapy strategies that target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
27
|
Adamson MB, Ribeiro RVP, Yu F, Lazarte J, Runeckles K, Manlhiot C, Rao V, Delgado DH. Human leukocyte antigen-G donor-recipient matching of the 14-base pair polymorphism protects against cancer after heart transplant. J Heart Lung Transplant 2020; 39:686-694. [PMID: 32317137 DOI: 10.1016/j.healun.2020.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND After a transplant, cancer is a leading cause of morbidity and mortality. Human leukocyte antigen-G (HLA-G)-an immune checkpoint molecule-reduces allograft rejection by dampening host immune responses. Reports suggest malignant cells utilize HLA-G to evade the immune system and promote cancer development. Our objective was to evaluate HLA-G donor-recipient polymorphism matching and development of cancer after a heart transplant. METHODS Recipients (n = 251) and corresponding donors (n = 196) were genotyped retrospectively to identify HLA-G polymorphisms in the 5' regulatory (-725, -201), 3' untranslated (+3,197, +3,187, +3,142, 14-base pair insertion-deletion polymorphism [14-bp indel]) and coding regions (Haplotypes I-VI). Associations between donor-recipient polymorphism matching and development of cancer were assessed through multivariate proportional hazard regression models. RESULTS Recipient and donor (48.2 ± 12.1 and 35.5 ± 14.3 years, respectively) mean follow-up was 7.2 ± 4.6 years. Overall, 42 (16.7%) recipients developed de novo post-transplant cancer. 14-bp polymorphism matching significantly reduced the proportion of cancer, revealing an independent protective effect (hazard ratio [95% CI]: 0.26 [0.10-0.75]; p = 0.012). Recipients with the 14-bp insertion sequence, whether homozygous or heterozygous, had a lower proportion of cancer (p > 0.008), matching the INS sequence (INS/INS and INS/DEL) protected against cancer (p = 0.002). No differences were seen between matched vs unmatched cohorts regarding all donor-recipient pre-transplant and post-transplant characteristics. No other polymorphisms showed significant associations. CONCLUSIONS We investigated donor-recipient HLA-G polymorphism matching and development of cancer following a heart transplant. Donor-recipient 14-bp matching was an independent protective factor against cancer development. HLA-G may have a role in therapeutic and diagnostic strategies against cancer. Identifying relevant HLA-G polymorphisms may warrant alterations in immunotherapy to reduce post-transplant cancer risk.
Collapse
Affiliation(s)
- Mitchell B Adamson
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Roberto V P Ribeiro
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Frank Yu
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada
| | - Julieta Lazarte
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada
| | - Kyle Runeckles
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cedric Manlhiot
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada; The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vivek Rao
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Diego H Delgado
- Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Negrini S, Contini P, Pupo F, Greco M, Murdaca G, Puppo F. Expression of membrane-bound human leucocyte antigen-G in systemic sclerosis and systemic lupus erythematosus. Hum Immunol 2020; 81:162-167. [PMID: 31848026 DOI: 10.1016/j.humimm.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Human leucocyte antigen-G (HLA-G) is a nonclassical class I major histocompatibility complex (MHC) molecule characterized by complex immunoregulatory and tolerogenic functions. Membrane-bound HLA-G is expressed on the surface of different cell populations in both physiological and pathological conditions. Systemic sclerosis (SSc) is a multisystem autoimmune disease characterized by widespread tissue fibrosis, vascular lesions and immunological alterations. Systemic lupus erythematosus is the prototypic systemic autoimmune disease affecting virtually any organ system, such as skin, joints, central nervous system, or kidneys. In SSc and SLE patients, the membrane expression of HLA-G on monocytes (0.88 ± 1.54 and 0.43 ± 0.75, respectively), CD4+ (0.42 ± 0.78 and 0.63 ± 0.48, respectively), CD8+ (2.65 ± 3.47 and 1.29 ± 1.34, respectively) and CD4+ CD8+ double-positive cells (13.87 ± 15.97 and 3.79 ± 3.11, respectively) was significantly higher than in healthy controls (0.12 ± 0.07; 0.01 ± 0.01; 0.14 ± 0.20 and 0.32 ± 0.38, respectively) (p < 0.0001). Our results show that in SSc and SLE the membrane expression of HLA-G by different subpopulations of peripheral blood mononuclear cells (PBMC) is increased, suggesting a potential role of HLA-G molecules in the complex immunological pathogenesis of these two autoimmune disorders.
Collapse
Affiliation(s)
- Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pupo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
29
|
Detection of serum soluble HLA-G levels in patients with acute ischemic stroke: A pilot study. Hum Immunol 2020; 81:156-161. [DOI: 10.1016/j.humimm.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022]
|
30
|
Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and the Orbicularis Oris Muscle: How Do They Behave When Exposed to a Proinflammatory Stimulus? Stem Cells Int 2020; 2020:3670412. [PMID: 32184831 PMCID: PMC7060870 DOI: 10.1155/2020/3670412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/04/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied as a promising type of stem cell for use in cell therapies because of their ability to regulate the immune response. Although they are classically isolated from the bone marrow, many studies have sought to isolate MSCs from noninvasive sources. The objective of this study was to evaluate how MSCs isolated from the dental pulp of human exfoliated deciduous teeth (SHED) and fragments of the orbicularis oris muscle (OOMDSCs) behave when treated with an inflammatory IFN-γ stimulus, specifically regarding their proliferative, osteogenic, and immunomodulatory potentials. The results demonstrated that the proliferation of SHED and OOMDSCs was inhibited by the addition of IFN-γ to their culture medium and that treatment with IFN-γ at higher concentrations resulted in a greater inhibition of the proliferation of these cells than treatment with IFN-γ at lower concentrations. SHED and OOMDSCs maintained their osteogenic differentiation potential after stimulation with IFN-γ. Additionally, SHED and OOMDSCs have been shown to have low immunogenicity because they lack expression of HLA-DR and costimulatory molecules such as CD40, CD80, and CD86 before and after IFN-γ treatment. Last, SHED and OOMDSCs expressed the immunoregulatory molecule HLA-G, and the expression of this antigen increased after IFN-γ treatment. In particular, an increase in intracellular HLA-G expression was observed. The results obtained suggest that SHED and OOMDSCs lack immunogenicity and have immunomodulatory properties that are enhanced when they undergo inflammatory stimulation with IFN-γ, which opens new perspectives for the therapeutic use of these cells.
Collapse
|
31
|
Ajith A, Portik-Dobos V, Horuzsko DD, Kapoor R, Mulloy LL, Horuzsko A. HLA-G and humanized mouse models as a novel therapeutic approach in transplantation. Hum Immunol 2020; 81:178-185. [PMID: 32093884 DOI: 10.1016/j.humimm.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/12/2023]
Abstract
HLA-G is a nonclassical MHC-Class I molecule whose expression, along the feto-maternal barrier contributes towards tolerance of the semiallogeneic fetus during pregnancy. In light of its inhibitory properties, recent research has established HLA-G involvement in mechanisms responsible for directing allogeneic immune responses towards tolerance during allogeneic situations such as organ transplantation. Here, we critically review the data supporting the tolerogenic role of HLA-G in organ transplantation, the various factors influencing its expression, and the introduction of novel humanized mouse models that are one of the best approaches to assess the utility of HLA-G as a therapeutic tool in organ transplantation.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vera Portik-Dobos
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel D Horuzsko
- Philadelphia College of Osteopathic Medicine South Georgia, Moultrie, GA, USA
| | - Rajan Kapoor
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Laura L Mulloy
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Anatolij Horuzsko
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
32
|
Jacquier A, Dumont C, Carosella ED, Rouas-Freiss N, LeMaoult J. Cytometry-based analysis of HLA-G functions according to ILT2 expression. Hum Immunol 2020; 81:168-177. [PMID: 32081570 DOI: 10.1016/j.humimm.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
HLA-G was described as a molecule inhibiting NK and T cells functions through its receptor, ILT2. However, most functional studies of HLA-G were so far performed on heterogeneous immune populations and regardless of ILT2 expression. This may lead to an underestimation of the effect of HLA-G. Thus, considering the immune subpopulations sensitive to HLA-G remained an important issue in the field. Here we present a new cytometry assay to evaluate HLA-G effects on both NK and CD8+ T cell cytotoxic functions. Using flow cytometry allows for the comparison of HLA-G function on multiple subsets and multiple functions in the same time. In particular, we sharpen the analysis by specifically studying the immune subpopulations expressing HLA-G receptor ILT2. We focused our work on: IFN-gamma production and cytotoxicity (CD107a expression) by CD8+ T cells and NK cells expressing or not ILT2. We compared the expression of these markers in presence of target cells, expressing or not HLA-G1, and added a blocking antibody to reverse HLA-G inhibition. This new method allows for the discrimination of cell subsets responding and non-responding to HLA-G1 in one tube. We confirm that HLA-G-specifically inhibits the ILT2+ CD8+ T cell and ILT2+ NK cell subsets but not ILT2-negative ones. By blocking HLA-G/ILT2 interaction using an anti-ILT2 antibody we restored the cytotoxicity level, corroborating the specific inhibition of HLA-G1. We believe that our methodology enables to investigate HLA-G immune functions easily and finely towards other immune cell lineages or expressing other receptors, and might be applied in several pathological contexts, such as cancer and transplantation.
Collapse
Affiliation(s)
- A Jacquier
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France
| | - C Dumont
- Department of Medical Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, France
| | - E D Carosella
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France
| | - N Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France
| | - J LeMaoult
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France.
| |
Collapse
|
33
|
Crabtree E, Song L, Llanga T, Bower JJ, Cullen M, Salmon JH, Hirsch ML, Gilger BC. AAV-mediated expression of HLA-G1/5 reduces severity of experimental autoimmune uveitis. Sci Rep 2019; 9:19864. [PMID: 31882729 PMCID: PMC6934797 DOI: 10.1038/s41598-019-56462-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Non-infectious uveitis (NIU) is an intractable, recurrent, and painful disease that is a common cause of vision loss. Available treatments of NIU, such as the use of topical corticosteroids, are non-specific and have serious side effects which limits them to short-term use; however, NIU requires long-term treatment to prevent vision loss. Therefore, a single dose therapeutic that mediates long-term immunosuppression with minimal side effects is desirable. In order to develop an effective long-term therapy for NIU, an adeno-associated virus (AAV) gene therapy approach was used to exploit a natural immune tolerance mechanism induced by the human leukocyte antigen G (HLA-G). To mimic the prevention of NIU, naïve Lewis rats received a single intravitreal injection of AAV particles harboring codon-optimized cDNAs encoding HLA-G1 and HLA-G5 isoforms one week prior to the induction of experimental autoimmune uveitis (EAU). AAV-mediated expression of the HLA-G-1 and -5 transgenes in the targeted ocular tissues following a single intravitreal injection of AAV-HLA-G1/5 significantly decreased clinical and histopathological inflammation scores compared to untreated EAU eyes (p < 0.04). Thus, localized ocular gene delivery of AAV-HLA-G1/5 may reduce the off-target risks and establish a long-term immunosuppressive effect that would serve as an effective and novel therapeutic strategy for NIU, with the potential for applications to additional ocular immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth Crabtree
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Liujiang Song
- Department of Pediatrics, Hunan Normal University Medical College, Changsha, Hunan, China
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Telmo Llanga
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jacquelyn J Bower
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Megan Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacklyn H Salmon
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Matthew L Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Brian C Gilger
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
34
|
Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol 2019; 221:457-469. [PMID: 31288009 DOI: 10.1016/j.ajog.2019.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/01/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023]
Abstract
Research on the placenta as the interface between the mother and the fetus has been undertaken for some 150 years, and in 2 subsequent reviews, we attempted to summarize the situation. In the first part, we described the discovery of unique physiological modifications of the uteroplacental spiral arteries, enabling them to cope with a major increase in blood flow necessary to ensure proper growth of the fetus. These consist of an invasion of the arterial walls by trophoblast and a progressive disappearance of its normal structure. Researchers then turned to the pathophysiology of the placental bed and in particular to its maternal vascular tree. This yielded vital information for a better understanding of the so-called great obstetrical syndromes (preeclampsia, fetal growth restriction, premature labor and delivery, placenta accreta). Systematic morphological investigations of the uteroplacental vasculature showed that preeclampsia is associated with decreased or failed transformation of spiral arteries and the persistence of endothelial and smooth muscle cells in segments of their myometrial portion. Here we report on recent functional investigations of the placental bed, including in situ biophysical studies of uteroplacental blood flow and vascular resistance, and manipulation of uteroplacental perfusion. These new methodologies have provided a novel way of identifying pregnancies in which remodeling is impaired. In animals it is now possible to manipulate uteroplacental blood flow, leading to an enhancement of fetal growth; this opens the way to trials in abnormal human pregnancies. In this second part, we explored a new, extremely important area of research that deals with the role of specific subsets of leukocytes and macrophages in the placental bed. The human first-trimester decidua is rich in leukocytes called uterine natural killer cells. Both macrophages and uterine natural killer cells increase in number from the secretory endometrium to early pregnancy and play a critical role in mediating the process of spiral artery transformation by inducing initial structural changes. It seems therefore that vascular remodeling of spiral arteries is initiated independently of trophoblast invasion. Dysregulation of the immune system may lead to reproductive failure or pregnancy complications, and in this respect, recent studies have advanced our understanding of the mechanisms regulating immunological tolerance during pregnancy, with several mechanisms being proposed for the development of tolerance to the semiallogeneic fetus. In particular, these include several strategies by which the trophoblast avoids maternal recognition. Finally, an important new dimension is being explored: the likelihood that pregnancy syndromes and impaired uteroplacental vascular remodeling may be linked to future maternal and even the child's cardiovascular disease risk. The functional evidence underlying these observations will be discussed.
Collapse
|
35
|
Human Hepatocytes and Differentiated Adult-Derived Human Liver Stem/Progenitor Cells Display In Vitro Immunosuppressive Properties Mediated, at Least in Part, through the Nonclassical HLA Class I Molecule HLA-G. J Immunol Res 2019; 2019:8250584. [PMID: 31612154 PMCID: PMC6757295 DOI: 10.1155/2019/8250584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
One of the main challenges in liver cell therapy (LCT) is the induction of a tolerogenic microenvironment to promote graft acceptance in the recipient. Little is known about the immunomodulatory potential of the hepatic cells used in liver cell therapy. In this work, we wanted to evaluate the immunosuppressive properties of human hepatocytes and adult-derived human liver stem/progenitor cells (ADHLSCs), as well as the potential involvement of the immunomodulatory molecule HLA-G. We demonstrated that both cell types were capable of inhibiting the proliferative response of PBMCs to an allogenic stimulus and that the immune inhibitory potential of ADHLSCs, although lower than that of hepatocytes, increased after hepatogenic differentiation. We demonstrated that liver cells express HLA-G and that the immune inhibition pattern was clearly associated to its expression. Interestingly, HLA-G expression increased after the third step of differentiation, wherein oncostatin M (OSM) was added. A 48 hr treatment with OSM was sufficient to induce HLA-G expression in ADHLSCs and result in immune inhibition. Surprisingly, blocking HLA-G partially reversed the immune inhibition mediated by hepatocytes and differentiated ADHLSCs, but not that of undifferentiated ADHLSCs, suggesting that additional immune inhibitory mechanisms may be used by these cells. In conclusion, we demonstrated that both hepatocytes and ADHLSCs present immunomodulatory properties mediated, at least in part, through HLA-G, which can be upregulated following hepatogenic differentiation or liver cell pretreatment with OSM. These observations open up new perspectives for the induction of tolerance following LCT and for potential therapeutic applications of these liver cells.
Collapse
|
36
|
Foschi V, Bortolotti D, Doyle AF, Stratigou V, Stephens L, Trivedi P, Rinaldi R, Padovan M, Bortoluzzi A, Lightstone L, Cairns TD, Botto M, Cook TH, Rizzo R, Govoni M, Pickering MC. Analysis of HLA-G expression in renal tissue in lupus nephritis: a pilot study. Lupus 2019; 28:1091-1100. [PMID: 31291846 DOI: 10.1177/0961203319860582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The study aimed to investigate whether HLA-G antigen is expressed in the kidneys of patients affected by lupus nephritis (LN) and whether its detection in renal biopsies could be adopted as a marker of treatment response and prognosis. METHODS Thirty renal biopsies from patients with LN were selected and analyzed through immunohistochemistry. Laboratory and clinical data were retrospectively collected at baseline, 6 and 12 months and at the latest clinical appointment. A number of patients (63.3%) were treated with rituximab (RTX) +/- methylprednisolone in the induction phase. The expression of HLA-G in glomeruli, tubules and infiltrating cells was examined and compared between lupus patients who achieved either complete or partial renal response and those who did not respond to treatment. RESULTS HLA-G staining was observed in the glomeruli of 20 of 30 samples from patients with LN. The expression of the antigen was detected in podocytes, along glomerular capillary walls, on parietal glomerular epithelial cells and within the juxtaglomerular apparatus. Seventy per cent of patients whose glomeruli expressed HLA-G achieved partial or complete response at 6 months and 75% at the latest available follow up compared with 30% and 40%, respectively, of those who did not show any expression. The pattern of staining in tubules and infiltrating cells was highly variable precluding any clinical correlation. CONCLUSION This study demonstrates that HLA-G is expressed in renal tissue in LN. Our retrospective data suggest that its expression could correlate with response to treatment.
Collapse
Affiliation(s)
- V Foschi
- 1 Department of Medical Sciences, Section of Rheumatology, University of Ferrara, Italy.,2 Centre for Complement and Inflammation Research, Imperial College London, UK
| | - D Bortolotti
- 3 Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Italy
| | - A F Doyle
- 2 Centre for Complement and Inflammation Research, Imperial College London, UK
| | - V Stratigou
- 2 Centre for Complement and Inflammation Research, Imperial College London, UK
| | - L Stephens
- 2 Centre for Complement and Inflammation Research, Imperial College London, UK
| | - P Trivedi
- 4 Department of Pathology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - R Rinaldi
- 5 Section of Pathology and Biomolecular Diagnostics, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - M Padovan
- 1 Department of Medical Sciences, Section of Rheumatology, University of Ferrara, Italy
| | - A Bortoluzzi
- 1 Department of Medical Sciences, Section of Rheumatology, University of Ferrara, Italy
| | - L Lightstone
- 6 Section of Renal and Vascular Inflammation, Department of Medicine, Imperial College London, UK.,7 Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - T D Cairns
- 7 Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - M Botto
- 2 Centre for Complement and Inflammation Research, Imperial College London, UK
| | - T H Cook
- 2 Centre for Complement and Inflammation Research, Imperial College London, UK
| | - R Rizzo
- 3 Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Italy
| | - M Govoni
- 1 Department of Medical Sciences, Section of Rheumatology, University of Ferrara, Italy
| | - M C Pickering
- 2 Centre for Complement and Inflammation Research, Imperial College London, UK
| |
Collapse
|
37
|
Lim R. Concise Review: Fetal Membranes in Regenerative Medicine: New Tricks from an Old Dog? Stem Cells Transl Med 2019; 6:1767-1776. [PMID: 28834402 PMCID: PMC5689753 DOI: 10.1002/sctm.16-0447] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
The clinical application of the fetal membranes dates back to nearly a century. Their use has ranged from superficial skin dressings to surgical wound closure. The applications of the fetal membranes are constantly evolving, and key to this is the uncovering of multiple populations of stem and stem-like cells, each with unique properties that can be exploited for regenerative medicine. In addition to pro-angiogenic and immunomodulatory properties of the stem and stem-like cells arising from the fetal membranes, the dehydrated and/or decellularized forms of the fetal membranes have been used to support the growth and function of other cells and tissues, including adipose-derived mesenchymal stem cells. This concise review explores the biological origin of the fetal membranes, a history of their use in medicine, and recent developments in the use of fetal membranes and their derived stem and stem-like cells in regenerative medicine. Stem Cells Translational Medicine 2017;6:1767-1776.
Collapse
Affiliation(s)
- Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Kalotra V, Lall M, Verma IC, Kaur A, Kaur A. The HLA-G 14 bp insertion/deletion polymorphism and its association with soluble HLA-G levels in women with recurrent miscarriages. HLA 2019; 91:167-174. [PMID: 29280596 DOI: 10.1111/tan.13198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
HLA-G, a nonclassical class-Ib gene is mainly expressed on extravillous trophoblasts at the fetal-maternal interface. HLA-G molecule is considered to play an important role in maternal immune suppression during pregnancy. The 14 bp insertion/deletion polymorphism (rs66554220) in exon eight of the HLA-G gene influences HLA-G mRNA stability and isoform splicing patterns. In this study, 202 recurrent miscarriage (RM) women with two or more than two consecutive miscarriages, their 202 partners and 204 fertile control women with at least one live birth and no miscarriages were analyzed for 14 bp insertion/deletion polymorphism. Soluble HLA-G (sHLA-G) levels were also determined and compared between randomly selected 111 RM women and 111 control women using QAYEE-Bio ELISA kits. Student's t test and χ2 test were used to depict the statistical differences. The results showed no significant differences for 14 bp allele and genotype frequencies between the study groups. However, our study showed a significant difference (P = .0107) for sHLA-G levels in RM women and control women. Furthermore, a significant difference (P = .0135) for sHLA-G levels in relation to +/-14 bp heterozygous genotype was seen between the two groups. The 14 bp allele sharing between the partners did not show any significant association with the number of miscarriages in RM couples. The association of 14 bp polymorphism and recurrent miscarriages was not significant in our study.
Collapse
Affiliation(s)
- V Kalotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India.,Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - M Lall
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - I C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - A Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - A Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
39
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
40
|
Janssen M, Thaiss F, Nashan B, Koch M, Thude H. Donor derived HLA-G polymorphisms have a significant impact on acute rejection in kidney transplantation. Hum Immunol 2019; 80:176-183. [PMID: 30610894 DOI: 10.1016/j.humimm.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022]
Abstract
Human leucocyte antigen G (HLA-G) is a non-classical HLA-class I antigen that exerts immunoregulatory functions. The polymorphisms 14-base pair (bp) insertion/deletion (ins/del) (rs1704) and +3142C > G (rs1063320) could modify the expression level of HLA-G. We genotyped 175 kidney recipients (41 with acute rejection and 134 without rejection) and additionally the corresponding donors for both polymorphisms in order to assess their impact on acute rejections one year after transplantation. In addition, we analyzed soluble HLA-G (sHLA-G) levels in sera of 32 living kidney donors and compared the sHLA-G levels in terms of the present genotype. In kidney transplant recipients we did not observe an impact of the 14-bp ins/ins and the +3142GG genotypes on acute rejection. In contrast, we found a higher frequency of these genotypes in the donors of the no-rejection collective compared to the rejection collective (4.9% vs. 24.6%; p = 0.010; 9.8% vs. 31.3%; p = 0.006). Soluble HLA-G levels were highest in healthy kidney donors homozygous for the 14-bp insertion. We conclude that the HLA-G polymorphisms of the donor are of importance for susceptibility of acute rejection in kidney transplantation. We suggest that the 14-bp ins/ins and the +3142GG genotypes are protective against kidney transplant rejection.
Collapse
Affiliation(s)
- Maike Janssen
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University Hospital Heidelberg, Department for Hematology, Oncology and Rheumatology, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Friedrich Thaiss
- University Medical Center Hamburg-Eppendorf, Center for Internal Medicine, Martinistraße 52, 20246 Hamburg, Germany
| | - Björn Nashan
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University of Science and Technology, Hefei, Anhui, China
| | - Martina Koch
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Department of General, Visceral, and Abdominal Surgery, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hansjörg Thude
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
42
|
Human Herpesvirus 6A and 6B inhibit in vitro angiogenesis by induction of Human Leukocyte Antigen G. Sci Rep 2018; 8:17683. [PMID: 30523283 PMCID: PMC6283866 DOI: 10.1038/s41598-018-36146-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
We have previously reported that human herpesvirus 6 (HHV-6) infection of endothelial cells (ECs) induces the loss of angiogenic properties, through the expression of HHV-6 U94, possibly associated to the release of a soluble mediator. It is also known that the soluble isoform of HLA-G exhibits an anti-angiogenic function, important in implantation, transplantation and neoplastic development. In this study, we analyzed the expression of HLA-G in HHV-6 infected ECs, showing that both HHV-6A and HHV-6B infection induce a potent up-modulation of HLA-G, including both membrane and soluble isoforms. Interestingly, HHV-6A and HHV-6B induced different isoforms of HLA-G. The virus-induced increase of HLA-G was likely due to the expression of the U94 viral gene, that by itself was able to reproduce the effect of whole virus. The effect of U94 was mediated by human transcription factor ATF3, that induced HLA-G activation by recognizing a consensus sequence on its promoter. Virus-induced inhibition of ECs angiogenic ability directly correlated to HLA-G expression and release, and the addition of anti-HLA-G antibody restored the angiogenic properties of HHV6-infected ECs. The induction of HLA-G expression in ECs might represent an important mediator of HHV-6 induced effects.
Collapse
|
43
|
Sonon P, Sadissou I, Tokplonou L, M'po KKG, Glitho SSC, Agniwo P, Ibikounlé M, Massaro JD, Massougbodji A, Moreau P, Sabbagh A, Mendes-Junior CT, Moutairou KA, Castelli EC, Courtin D, Donadi EA. HLA-G, -E and -F regulatory and coding region variability and haplotypes in the Beninese Toffin population sample. Mol Immunol 2018; 104:108-127. [PMID: 30448608 DOI: 10.1016/j.molimm.2018.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
HLA-G/E/F genes exhibit immunomodulatory properties and are expressed in placenta. Little attention has been devoted to the study of these genes in sub-Saharan African populations, which are yet the most diverse. To fill this gap, we evaluated the complete gene variability, approximately 5.1 kb for HLA-G (n = 149), 7.7 kb for HLA-E (n = 150) and 6.2 kb for HLA-F (n = 152) in the remote Beninese Toffin population, using massive parallel sequencing. Overall, 96, 37 and 68 variable sites were detected along the entire HLA-G, -E and -F, respectively, arranged into region-specific haplotypes; i.e., promoter haplotypes (16, 19, and 15 respectively), coding haplotypes (19, 15, and 29 respectively), 3' untranslated region (3'UTR) haplotypes (12, 7 and 2, respectively) and extended haplotypes (33, 31 and 32 respectively). All promoter/coding/3'UTR haplotypes followed the patterns already described in worldwide populations. HLA-E was the most conserved, exhibiting mainly two full-length encoded-molecules (E*01:01 and E*01:03), followed by HLA-F, three full-length proteins (F*01:01, F*01:02 and F*01:03) and HLA-G, four proteins: three full-length (G*01:01, G*01:03 and G*01:04) and one truncated (G*01:05N). Although HLA-G/E/F alleles in the Toffin population were the most frequently observed worldwide, the frequencies of the coding haplotypes were closely similar to those described for other African populations (Guinea-Conakry and Burkina-Faso), when compared to non-African ones (Brazilian), indicating that variable sites along these genes were present in Africa before human dispersion.
Collapse
Affiliation(s)
- Paulin Sonon
- Laboratório de Biologia Molecular, Universidade de São Paulo, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Ibrahim Sadissou
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université d'Abomey-Calavi, Cotonou, Benin.
| | - Kuumaaté K G M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Sonya S C Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Moudachirou Ibikounlé
- Université d'Abomey-Calavi, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Juliana Doblas Massaro
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin.
| | - Philippe Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; Université Paris-Diderot, Sorbonne Paris-Cité, UMR_E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Audrey Sabbagh
- UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, State of São Paulo, Brazil.
| | - Kabirou A Moutairou
- Laboratoire de Biologie et Physiologie Cellulaire, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Erick C Castelli
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, State of São Paulo, Brazil.
| | - David Courtin
- UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Eduardo A Donadi
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| |
Collapse
|
44
|
Murdaca G, Calamaro P, Lantieri F, Pigozzi S, Mastracci L, Grillo F, Magnani O, Ceppa P, Puppo F, Fiocca R. HLA-G expression in gastric carcinoma: clinicopathological correlations and prognostic impact. Virchows Arch 2018; 473:425-433. [PMID: 29845360 DOI: 10.1007/s00428-018-2379-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 01/28/2023]
Abstract
To analyze expression of human leukocyte antigen-G (HLA-G) in gastric adenocarcinoma and correlate its expression with histological and clinical variables. A continuous series of 94 unselected patients with gastric adenocarcinoma (stage I to III) were selected. All histological and clinical variables were collected including the intensity of intra- and peri-tumor lymphocytic infiltration. HLA-G expression was investigated using immunohistochemistry. All histological samples analyzed for HLA-G expression were taken from the primary gastric lesion and included non-neoplastic mucosa. Evaluation of HLA-G expression was performed on the transition zone between tumor and non-neoplastic mucosa, and the invasive front of the tumor and assessment was performed as follows: percentage of positive (strong expression vs weak) cells. A variable amount of HLA-G-positive tumor cells was found in 24 out of 94 cases (25.5%). No significant correlation was found between HLA-G expression and other clinicopathological variables (sex, age, stage, grade, histotype). The overall median survival was worse in patients with HLA-G-positive adenocarcinoma (24.3 months, CI95% 7.7-41.0) compared to those with HLA-G-negative tumors (66.3 months, CI95% 53.0-79.7; p < 0.0001). Two- and 5-year survival rates of HLA-G-negative patients were 88 and 44%, respectively, while were 42 and 11% in those HLA-G-positive. This trend was observed in all stages but was more marked in stage III. HLA-G expression is associated with poor survival in stage III gastric cancer patients and represents a possible immunoescape mechanism of cancer cells.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine (DIMI), University of Genoa and Ospedale Policlinico San Martino, Viale Benedetto XV, n. 6, 16132, Genoa, Italy.
| | - Paola Calamaro
- Anatomic Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Lantieri
- Department of Health Sciences, Biostatistics Unit, University of Genoa, Genoa, Italy
| | - Simona Pigozzi
- Anatomic Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Anatomic Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Anatomic Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Ottavia Magnani
- Clinical Immunology Unit, Department of Internal Medicine (DIMI), University of Genoa and Ospedale Policlinico San Martino, Viale Benedetto XV, n. 6, 16132, Genoa, Italy
| | - Paola Ceppa
- Anatomic Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine (DIMI), University of Genoa and Ospedale Policlinico San Martino, Viale Benedetto XV, n. 6, 16132, Genoa, Italy
| | - Roberto Fiocca
- Anatomic Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
45
|
Contini P, Negrini S, Murdaca G, Borro M, Puppo F. Evaluation of membrane-bound and soluble forms of human leucocyte antigen-G in systemic sclerosis. Clin Exp Immunol 2018; 193:152-159. [PMID: 29660112 PMCID: PMC6046504 DOI: 10.1111/cei.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 12/26/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by immune dysregulation, extensive vascular damage and widespread fibrosis. Human leucocyte antigen-G (HLA-G) is a non-classic class I major histocompatibility complex (MHC) molecule characterized by complex immunomodulating properties. HLA-G is expressed on the membrane of different cell lineages in both physiological and pathological conditions. HLA-G is also detectable in soluble form (sHLA-G) deriving from the shedding of surface isoforms (sHLA-G1) or the secretion of soluble isoforms (HLA-G5). Several immunosuppressive functions have been attributed to both membrane-bound and soluble HLA-G molecules. The plasma levels of sHLA-G were higher in SSc patients (444·27 ± 304·84 U/ml) compared to controls (16·74 ± 20·58 U/ml) (P < 0·0001). The plasma levels of transforming growth factor (TGF)-β were higher in SSc patients (18 937 ± 15 217 pg/ml) compared to controls (11 099 ± 6081 pg/ml; P = 0·003), and a significant correlation was found between TGF-β and the plasma levels of total sHLA-G (r = 0·65; P < 0·01), sHLA-G1 (r = 0·60; P = 0·003) and HLA-G5 (r = 0·47; P = 0·02). The percentage of HLA-G-positive monocytes (0·98 ± 1·72), CD4+ (0·37 ± 0·68), CD8+ (2·05 ± 3·74) and CD4+ CD8+ double-positive cells (14·53 ± 16·88) was higher in SSc patients than in controls (0·11 ± 0·08, 0·01 ± 0·01, 0·01 ± 0·01 and 0·39 ± 0·40, respectively) (P < 0·0001). These data indicate that in SSc the secretion and/or shedding of soluble HLA-G molecules and the membrane expression of HLA-G by peripheral blood mononuclear cells (PBMC) is clearly elevated, suggesting an involvement of HLA-G molecules in the immune dysregulation of SSc.
Collapse
Affiliation(s)
- P. Contini
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - S. Negrini
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - G. Murdaca
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - M. Borro
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - F. Puppo
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
46
|
Comparison of Immunological Characteristics of Mesenchymal Stem Cells from the Periodontal Ligament, Umbilical Cord, and Adipose Tissue. Stem Cells Int 2018; 2018:8429042. [PMID: 29760736 PMCID: PMC5901833 DOI: 10.1155/2018/8429042] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of therapeutic importance in the fields of regenerative medicine and immunological diseases. Accordingly, studies evaluating MSCs for clinical applications are increasing. In this study, we characterized MSCs from the periodontal ligament, umbilical cord (UC-MSCs), and adipose tissue, which were relatively easy to obtain with limited ethical concerns regarding their acquisition, and compared their immunological characteristics. Among MSCs isolated from the three different tissues, UC-MSCs grew the fastest in vitro. The three types of MSCs were shown to inhibit proliferation of activated peripheral blood mononuclear cells (PBMCs) to a similar degree, via the indoleamine 2,3-dioxygenase and cyclooxygenase-2 pathways. They were also shown to inhibit the proliferation of PBMCs using HLA-G, which was most prominent in UC-MSCs. Unlike the other two types of MSCs, UC-MSCs showed minimal expression of HLA-DR after activation, suggesting that they pose minimal risk of initiating an allogeneic immune response when administered in vivo. These characteristics, the ease of collection, and the minimal ethical concerns regarding their use suggest UC-MSCs to be suitable MSC therapeutic candidates.
Collapse
|
47
|
Kordelas L, da Silva Nardi F, Wagner B, Ditschkowski M, Liebregts T, Lindemann M, Heinemann FM, Horn PA, Beelen DW, Rebmann V. Elevated soluble human leukocyte antigen G levels in patients after allogeneic stem cell transplantation are associated with less severe acute and chronic graft-versus-host disease. Bone Marrow Transplant 2018. [DOI: 10.1038/s41409-018-0145-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Sabbagh A, Sonon P, Sadissou I, Mendes-Junior CT, Garcia A, Donadi EA, Courtin D. The role of HLA-G in parasitic diseases. HLA 2018; 91:255-270. [PMID: 29368453 DOI: 10.1111/tan.13196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Little attention has been devoted to the role of HLA-G gene and molecule on parasitic disorders, and the available studies have focused on malaria, African and American trypanosomiasis, leishmaniosis, toxoplasmosis and echinococcosis. After reporting a brief description regarding the role of the cells of innate and adaptive immune system against parasites, we reviewed the major features of the HLA-G gene and molecule and the role of HLA-G on the major cells of immune system. Increased levels of soluble HLA-G (sHLA-G) have been observed in patients presenting toxoplasmosis and in the active phase of echinococcosis. In addition, increased sHLA-G has also been associated with increased susceptibility to malaria and increased susceptibility to develop human African trypanosomiasis (HAT). In contrast, decreased membrane-bound HLA-G has been reported in placenta of patients infected with Plasmodium falciparum and in heart and colon of patients presenting Chagas disease. The 3' untranslated region of the HLA-G gene has been the main focus of studies on malaria, HAT and Chagas disease, exhibiting distinct patterns of associations. Considering that HLA-G is an immune checkpoint molecule, inhibiting the activity of several cells of the immune system, the excessive neoexpression and the increased sHLA-G levels together with the decreased constitutive tissue expression of membrane-bound HLA-G may be detrimental to the host infected with parasite agents.
Collapse
Affiliation(s)
- A Sabbagh
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - P Sonon
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - I Sadissou
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - C T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A Garcia
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | - E A Donadi
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - D Courtin
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| |
Collapse
|
49
|
Spurny C, Kailayangiri S, Altvater B, Jamitzky S, Hartmann W, Wardelmann E, Ranft A, Dirksen U, Amler S, Hardes J, Fluegge M, Meltzer J, Farwick N, Greune L, Rossig C. T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G. Oncotarget 2017; 9:6536-6549. [PMID: 29464090 PMCID: PMC5814230 DOI: 10.18632/oncotarget.23815] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 01/10/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-Gpos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 of 47 pretherapeutic tumor biopsies and in 4 of 12 relapse tumors. HLA-G expression was not associated with risk-related patient variables or response to standard chemotherapy, but with significantly increased numbers of tumor-infiltrating CD3+ T cells compared to HLA-Gneg EwS biopsies. In a mouse model, EwS xenografts after adoptive therapy with tumor antigen-specific CAR T cells strongly expressed HLA-G whereas untreated control tumors were HLA-Gneg. IFN-γ stimulation of EwS cell lines in vitro induced expression of HLA-G protein. We conclude that EwS cells respond to tumor-infiltrating T cells by upregulation of HLA-G, a candidate mediator of local immune escape. Strategies that modulate HLA-G expression in the tumor microenvironment may enhance the efficacy of cellular immunotherapeutics in this cancer.
Collapse
Affiliation(s)
- Christian Spurny
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard Domagk Institute of Pathology, University of Muenster, Muenster, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University of Muenster, Muenster, Germany
| | - Andreas Ranft
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany.,University Hospital Essen, Pediatrics III, West German Cancer Centre, Essen, Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany.,University Hospital Essen, Pediatrics III, West German Cancer Centre, Essen, Germany
| | - Susanne Amler
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Jendrik Hardes
- Department of Orthopedic Surgery, University Hospital Muenster, Muenster, Germany.,Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Maike Fluegge
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Lea Greune
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Germany
| |
Collapse
|
50
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|