1
|
Favakeh A, Bijarchi MA, Mohammadrashidi M, Yaghoobi M, Shafii MB. Ferrofluid droplet generation on a zero-thickness nozzle by a magnetic field using a wedge-shaped functional surface. PLoS One 2025; 20:e0321099. [PMID: 40408614 PMCID: PMC12101847 DOI: 10.1371/journal.pone.0321099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/01/2025] [Indexed: 05/25/2025] Open
Abstract
Digital microfluidics for ferrofluids enables the manipulation of discrete droplets on open surfaces and has garnered significant interest as an alternative to traditional continuous-flow microfluidic systems. However, droplet generation within digital microfluidics remain underdeveloped. This study introduces a novel method for droplet generation using a wedge-shaped surface with hydrophilic-hydrophobic patterning, which functions as a two-dimensional flat nozzle. We first demonstrated the concept by investigating gravity-driven water droplet generation on a sloping surface, revealing that smaller droplets form at higher tilting angles, while droplet size remains constant with increasing flow rate. Frequency of droplet formation decreases by 60% with decreasing the tilting angle from 90° to 30°. The proposed method results in significant improvement in frequency (10 Hz) compared to nozzle-based droplet generation (1-5 Hz). We then extend this approach to ferrofluid droplets under an external magnetic field, observing five distinct steps in the formation process. Additionally, a scale analysis of both water and ferrofluid droplet generation provides a deeper theoretical understanding of the governing forces, showing a strong correlation between non-dimensional droplet diameter and the Bond number, following a -1/3 power law (R2 > 0.95). The derived empirical factor offers precise droplet diameter predictions, with an average error of 3.9%. Finally, inspired by cactus structures, we demonstrate parallelization of the flat nozzles, highlighting the potential for high-throughput droplet generation in digital microfluidic applications.
Collapse
Affiliation(s)
- Amirhossein Favakeh
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohamad Ali Bijarchi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahbod Mohammadrashidi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Yaghoobi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Behshad Shafii
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Sharif Energy, Water, and Environment Institute (SEWEI), Tehran, Iran
| |
Collapse
|
2
|
Zhang W, Wang X, Guo Z. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges. MATERIALS HORIZONS 2025; 12:3267-3285. [PMID: 39992357 DOI: 10.1039/d4mh01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
Collapse
Affiliation(s)
- Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
3
|
Yan J, Yang S, Chen J, Wu X, Qing Y. Dynamic BO bonds-induced viscoelasticity and surface adhesion regulation for constructing konjac glucomannan-based soft actuators with superior mobility and capturability. Int J Biol Macromol 2025; 305:141033. [PMID: 39954880 DOI: 10.1016/j.ijbiomac.2025.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
In all soft actuators, achieving both outstanding mobility and capturability is crucial; however, these properties are usually mutually exclusive due to the lack of an effective mechanism for controlling the viscoelasticity of the switching polymer matrix while maintaining a moderate surface adhesion. In this study, we propose a dynamic bond cross-linking strategy to successfully develop a magnetically responsive soft hydrogel (MRSH) with exceptional mobility (117.56 mm/s) and capturability. By introducing dynamic BO bonds into the KGM@Fe3O4@PSSMA NPs composite matrix, the crosslinking density and overall cohesion of MRSH can be precisely controlled, resulting in unique non-Newtonian fluid characteristics. Additionally, the dynamic BO bonds transition between associative and dissociative states with the hydroxyl groups on the KGM molecular chains, which can effectively regulate the amount of hydroxyl groups on the surface of MRSH, thereby achieving demonstrate moderate surface adhesion. As a result, the synthesized MRSH exhibits remarkable capturability on various target surfaces and maintains outstanding mobility, even in underwater environments. This work paves the way for new possibilities in the field of soft actuators and engineering by overcoming the limitations of traditional soft actuators in terms of surface adhesion and responsiveness through innovative structural design and material combinations.
Collapse
Affiliation(s)
- Jie Yan
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Suwen Yang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianshan Chen
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Qing
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
4
|
Mallick R, Watanabe C, Tanaka S. Self-propulsion of liquid droplet assemblies controlled by the functionalities of their components. Phys Chem Chem Phys 2025; 27:8878-8886. [PMID: 40202772 DOI: 10.1039/d5cp00597c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The self-propulsion of droplet assemblies consisting of droplets of 1-decanol and either an ethyl salicylate (ES) or a composite droplet of ES and liquid polydimethylsiloxane (PDMS) is reported. The ES-PDMS composite droplets have an ES core covered by a PDMS layer that stabilizes the assembly significantly. Their self-propulsion exhibits characteristic predator-prey behavior, with a decanol droplet closely chasing the ES or ES-PDMS composite droplet, forming a bound droplet pair. Furthermore, the stability that PDMS gives the system enables us to construct more complex assemblies, such as two, three, and four decanol droplets closely chasing an ES-PDMS droplet, whose motion patterns depend strongly on the symmetry in the structure of the assemblies. Our findings demonstrate that long-lived assemblies composed of droplets with distinct functionalities can serve as a versatile platform for developing self-organizing and adaptive droplet systems, functioning as "droplet robots".
Collapse
Affiliation(s)
- Rony Mallick
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| | - Chiho Watanabe
- Graduate School of Integrated Sciences for life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Shinpei Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| |
Collapse
|
5
|
Mohan C, Crepaldi M, Torazza D, Adamatzky A, Abdi G, Szkudlarek A, Chiolerio A. Liquid ferrofluid synapses for spike-based neuromorphic learning. MATERIALS HORIZONS 2025. [PMID: 40241544 DOI: 10.1039/d4mh01592d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Solid-state memory devices have emerged as promising synapses for neuromorphic engineering and computing. However, features such as limited endurance, static sensitivity, and lower ON/OFF ratios, as well as the need for peculiar conditions including current compliance and forming, still make their adoption challenging. Here we report a liquid state neuromorphic device based on a ferrofluid that exhibits short-term plasticity featuring extraordinary properties: a lower dynamic range, a high endurance, a fault tolerance capability, a deterministic resistance switching behavior, and no need for prerequisites such as a forming procedure and compliance current requirements. We also show how to stabilize nanoparticles using oleic acid as the surfactant, resulting in a yield increase and a smaller resistance variance. Additionally, we propose a low-power inference system on such a liquid synapse by applying the minimal magnitude of read biases, which are only affected to about 10% by the offset, gain errors, and noise of the system. Finally, we show the liquid synapse's feature to scale down the size and the capability to classify digits using a spike-based unsupervised learning method.
Collapse
Affiliation(s)
- Charanraj Mohan
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Liguria, Italy
| | - Marco Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Liguria, Italy
| | - Diego Torazza
- Mechanical Workshop, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Liguria, Italy
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of West England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY Bristol, UK
| | - Gisya Abdi
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland
| | - Alessandro Chiolerio
- Unconventional Computing Laboratory, University of West England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY Bristol, UK
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Liguria, Italy.
| |
Collapse
|
6
|
Jeon H, Park K, Sun JY, Kim HY. Particle-armored liquid robots. SCIENCE ADVANCES 2025; 11:eadt5888. [PMID: 40117360 PMCID: PMC11927607 DOI: 10.1126/sciadv.adt5888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
It is challenging to emulate biological forms and functions with artificial machines: Fluidity and adaptability seen in cellular organisms, characterized by their ability to deform, split, merge, and engulf, are hard to recapitulate with traditional rigid robotic structures. A promising avenue to tackle this problem is harnessing the supreme deformability of liquids while providing stable yet flexible shells around them. Here, we report a highly robust liquid-particle composite, named a Particle-armored liquid roBot (PB), featuring a liquid blob coated with unusually abundant superhydrophobic particles. The enhanced deformability and structural stability of our millimetric PBs enable a range of versatile robotic functions, such as navigating through complex environments, engulfing and transporting cargoes, merging, and adapting to various environments. We use both theoretical analysis and experimental approaches to develop a framework for predicting the shape evolution, dynamics, and robotic functions of PBs. The forms and functions of our liquid robots mark an essential hallmark toward miniature biomachines that perform like cells.
Collapse
Affiliation(s)
- Hyobin Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Keunhwan Park
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Chen L, Yu H, Yang J, Shi J, Li CH, Qu Z, Wang W. Facile Synthesis of Silicone Oil-Based Ferrofluid: Toward Smart Materials and Soft Robots. ACS NANO 2025; 19:8904-8915. [PMID: 40025732 DOI: 10.1021/acsnano.4c16689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Ferrofluids are stable colloidal dispersions of magnetic nanoparticles in carrier liquids. Their combination of magnetic and fluidic characteristics not only inspires fundamental inquiries into forms and functions of matter but also enables diverse applications ranging from sealants and coolants in mechanical devices to active components in smart materials and soft robots. Spurred by such fundamental and applied interests, a growing need for easy-to-synthesize, high-quality ferrofluid exists. Here, we report the facile synthesis and comprehensive characterization of a silicone oil-based ferrofluid that displays the characteristic surface instability of high-quality ferrofluids and demonstrate its functions in smart interfacial materials and soft robots. Silicone's chemical immiscibility with polar solvents and its biological inertness, when coupled with magnetic responsiveness and fluidic deformability, enable the manipulation of solid particles, gas bubbles, simple and complex liquids, as well as micro-organisms. We envision that the silicone oil-based ferrofluid will find applications in diverse areas, including magnetic digital microfluidics, multifunctional materials, and small-scale robotics.
Collapse
Affiliation(s)
- Leilei Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengao Yu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jilan Yang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinzhuo Shi
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun-He Li
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijie Qu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wendong Wang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Solovyova AY, Grohotova EV, Ivanov AO, Elfimova EA. Magnetization of immobilized multi-core particles with varying internal structures. Phys Chem Chem Phys 2025; 27:3442-3454. [PMID: 39868698 DOI: 10.1039/d4cp03995e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely via the Néel mechanism. The formula takes into account intergranule dipole-dipole interactions at the level of pair correlations and is suitable for determining the magnetization of MCPs with any structure. The theory is tested using Monte Carlo computer simulations on a series of MCP samples with 4 and 7 superparamagnetic granules. The results demonstrate that the formulas accurately describe the magnetization of MCPs with the intergranule dipolar coupling constant λ ≤ 2. We propose a method for determining the magnetization of an ensemble of non-interacting immobilized MCPs with interacting granules by identifying this system with an ensemble of single-core immobilized non-interacting superparamagnetic particles for which the effective magnetic anisotropy parameter is determined. The results obtained in this work represent a significant step towards predicting the magnetic response of MCPs in biological media, such as biological cells.
Collapse
|
9
|
Banerjee U, Misra S, Mitra SK. A versatile multilayer liquid-liquid encapsulation technique. J Colloid Interface Sci 2025; 679:1266-1276. [PMID: 39427581 DOI: 10.1016/j.jcis.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
HYPOTHESIS Generating multi-layer cargo using conventional methods is challenging. We hypothesize that incorporating a Y-junction compound droplet generator to encase a target core inside a second liquid can circumvent the kinetic energy dependence of the impact-driven liquid-liquid encapsulation technique, enabling minimally restrictive multi-layer encapsulation. EXPERIMENTS Stable wrapping is obtained by impinging a compound droplet (generated using Y-junction) on an interfacial layer of another shell-forming liquid floating on a host liquid bath, leading to double-layered encapsulation. The underlying dynamics of the liquid-liquid interfaces are captured using high-speed imaging. To demonstrate the versatility of the technique, we used various liquids as interfacial layers, including magnetoresponsive oil-based ferrofluids. Moreover, we extended the technique to triple-layered encapsulation by overlaying a second interfacial layer atop the first floating interfacial layer. FINDINGS The encapsulating layer(s) effectively protects the water-soluble inner core (ethylene glycol) inside the water bath. A non-dimensional experimental regime is established for successful encapsulation in terms of the impact kinetic energy, interfacial layer thickness, and the viscosity ratio of the interfacial layer and the outer core liquid. Using selective fluorescent tagging, we confirm the presence of individual shell layers wrapped around the core, which presents a promising pathway to visualize the internal morphology of final encapsulated droplets.
Collapse
Affiliation(s)
- Utsab Banerjee
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sirshendu Misra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
10
|
Ren E, Hu J, Mei Z, Lin L, Zhang Q, He P, Wang J, Sheng T, Chen H, Cheng H, Xu T, Pang S, Zhang Y, Dai Q, Gao X, Liu H, Li H, Zhao Y, Gu Z, Yan X, Liu G. Water-Stable Magnetic Lipiodol Micro-Droplets as a Miniaturized Robotic Tool for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412187. [PMID: 39538994 DOI: 10.1002/adma.202412187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Magnetic microrobots, designed to navigate the complex environments of the human body, show promise for minimally invasive diagnosis and treatment. However, their clinical adoption faces hurdles such as biocompatibility, precise control, and intelligent tracking. Here a novel formulation (referred to water-stable magnetic lipiodol micro-droplets, MLMD), integrating clinically approved lipiodol, gelatin, and superparamagnetic iron oxide nanoparticles (SPION) with a fundamental understanding of the structure-property relationships is presented. This formulation demonstrates multiple improved properties including flowability, shape adaptability, efficient drug loading, and compatibility with digital subtraction angiography (DSA) imaging in both in vitro and in vivo experiments. This enables the MLMD as a versatile tool for image-guided therapy, supported by a close-looped magnetic navigation system featuring artificial intelligence (AI)-driven visual feedback for autonomous control. The system effectively performs navigational tasks, including pinpointing specific locations of MLMD, recognizing and avoiding obstacles, mapping and following predetermined paths, and utilizing magnetic fields for precise motion planning to achieve visual drug delivery. The MLMD combines magnetic actuation with an AI-directed close-looped navigation, offering a transformative platform for targeted therapeutic delivery.
Collapse
Affiliation(s)
- En Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Hu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Ziyang Mei
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Lin Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Qian Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Pan He
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Tiantian Xu
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Shiyao Pang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Qixuan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Xing Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hongjun Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Department of Shenzhen Research Institute, Xiamen University, Shenzhen, 518000, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Yan
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Wang C, Wang T, Li M, Zhang R, Ugurlu H, Sitti M. Heterogeneous multiple soft millirobots in three-dimensional lumens. SCIENCE ADVANCES 2024; 10:eadq1951. [PMID: 39504364 PMCID: PMC11540014 DOI: 10.1126/sciadv.adq1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Miniature soft robots offer opportunities for safe and physically adaptive medical interventions in hard-to-reach regions. Deploying multiple robots could further enhance the efficacy and multifunctionality of these operations. However, multirobot deployment in physiologically relevant three-dimensional (3D) tubular structures is limited by the lack of effective mechanisms for independent control of miniature magnetic soft robots. This work presents a framework leveraging the shape-adaptive robotic design and heterogeneous resistance from robot-lumen interactions to enable magnetic multirobot control. We first compute influence and actuation regions to quantify robot movement. Subsequently, a path planning algorithm generates the trajectory of a permanent magnet for multirobot navigation in 3D lumens. Last, robots are controlled individually in multilayer lumen networks under medical imaging. Demonstrations of multilocation cargo delivery and flow diversion manifest their potential to enhance biomedical functions. This framework offers a solution to multirobot actuation benefiting applications across different miniature robotic devices in complex environments.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Halim Ugurlu
- Zentrum für Radiologie Heilbronn, 74177 Heilbronn, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
12
|
Li Z, Zhang S, Wang Q, Xu Y, Li Y, Chen X, Chen P, Chen D, Shi Y, Su B. Untethered & Stiffness-Tunable Ferromagnetic Liquid Robots for Cleaning Thrombus in Complex Blood Vessels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409142. [PMID: 39308207 DOI: 10.1002/adma.202409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Thrombosis is a significant threat to human health. However, the existing clinical treatment methods have limitations. Magnetic soft matter is used in the biomedical field for years, and ferromagnetic liquids exhibit tunable stiffness and on-demand movement advantages under magnetic fields. In this study, a ferromagnetic liquid robot (FMLR) is developed and applied it to thrombus removal in complex blood vessels. The FMLR consisted of Fe3O4 magnetic nanoparticles and dimethyl silicone oil. The FMLR can pass through a narrow complex maze through shape deformation by tailoring the intensity and direction of the external magnetic field. Finite element simulation analysis is used to validate the mechanism of controllable FMLR movements. Importantly, the storage modulus of FMLR can be tuned from 0.1 to 2018 Pa by varying the external magnetic intensity, ensuring its effectiveness in removing rigid and stubborn thrombi present on the vascular walls. Toward medical robotic applications, FMLR can be used in telerobotic neurointerventional. Experiments demonstrating the capability of FMLR to remove thrombi in the ear veins of rabbits are conducted. This study introduces an efficient approach for thrombus elimination, broadening the utilization of FMLRs within the realm of clinical medicine.
Collapse
Affiliation(s)
- Zhuofan Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of, Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shanfei Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials, Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of, Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yizhuo Xu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials, Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yike Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials, Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaojun Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials, Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Peng Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials, Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dezhi Chen
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of, Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials, Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
13
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Sun M, Wu Y, Zhang J, Zhang H, Liu Z, Li M, Wang C, Sitti M. Versatile, modular, and customizable magnetic solid-droplet systems. Proc Natl Acad Sci U S A 2024; 121:e2405095121. [PMID: 39088393 PMCID: PMC11317579 DOI: 10.1073/pnas.2405095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Yingdan Wu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin150001, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Hongchuan Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| |
Collapse
|
15
|
Sun M, Sun B, Park M, Yang S, Wu Y, Zhang M, Kang W, Yoon J, Zhang L, Sitti M. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions. SCIENCE ADVANCES 2024; 10:eadp1439. [PMID: 39018413 PMCID: PMC466956 DOI: 10.1126/sciadv.adp1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Spatiotemporally controllable droplet manipulation is vital across numerous applications, particularly in miniature droplet robots known for their exceptional deformability. Despite notable advancements, current droplet control methods are predominantly limited to two-dimensional (2D) deformation and motion of an individual droplet, with minimal exploration of 3D manipulation and collective droplet behaviors. Here, we introduce a bimodal actuation strategy, merging magnetic and optical fields, for remote and programmable 3D guidance of individual ferrofluidic droplets and droplet collectives. The magnetic field induces a magnetic dipole force, prompting the formation of droplet collectives. Simultaneously, the optical field triggers isothermal changes in interfacial tension through Marangoni flows, enhancing buoyancy and facilitating 3D movements of individual and collective droplets. Moreover, these droplets can function autonomously as soft robots, capable of transporting objects. Alternatively, when combined with a hydrogel shell, they assemble into jellyfish-like robots, driven by sunlight. These findings present an efficient strategy for droplet manipulation, broadening the capabilities of droplet-based robotics.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Bonan Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Myungjin Park
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Wenbin Kang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
16
|
Hu X, Kim K, Ali A, Kim H, Kang Y, Yoon J, Torati SR, Reddy V, Im MY, Lim B, Kim C. Magnetically Selective Versatile Transport of Microrobotic Carriers. SMALL METHODS 2024; 8:e2301495. [PMID: 38308323 DOI: 10.1002/smtd.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Indexed: 02/04/2024]
Abstract
Field-driven transport systems offer great promise for use as biofunctionalized carriers in microrobotics, biomedicine, and cell delivery applications. Despite the construction of artificial microtubules using several micromagnets, which provide a promising transport pathway for the synchronous delivery of microrobotic carriers to the targeted location inside microvascular networks, the selective transport of different microrobotic carriers remains an unexplored challenge. This study demonstrated the selective manipulation and transport of microrobotics along a patterned micromagnet using applied magnetic fields. Owing to varied field strengths, the magnetic beads used as the microrobotic carriers with different sizes revealed varied locomotion, including all of them moving along the same direction, selective rotation, bidirectional locomotion, and all of them moving in a reversed direction. Furthermore, cells immobilized with magnetic beads and nanoparticles also revealed varied locomotion. It is expected that such steering strategies of microrobotic carriers can be used in microvascular channels for the targeted delivery of drugs or cells in an organized manner.
Collapse
Affiliation(s)
- Xinghao Hu
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Mi-Young Im
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for X-ray Optics, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, 94720, USA
| | - Byeonghwa Lim
- Department of Smart Sensor Engineering, Andong National University, Andong, 36729, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
17
|
Han X, Tan S, Wang Q, Zuo X, Heng L, Jiang L. Noncontact Microfluidics of Highly Viscous Liquids for Accurate Self-Splitting and Pipetting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402779. [PMID: 38594015 DOI: 10.1002/adma.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Accurate dosing for various liquids, especially for highly viscous liquids, is fundamental in wide-ranging from molecular crosslinking to material processing. Despite droppers or pipettes being widely used as pipetting devices, they are powerless for quantificationally splitting and dosing highly viscous liquids (>100 mPa s) like polymer liquids due to the intertwined macromolecular chains and strong cohesion energy. Here, a highly transparent photopyroelectric slippery (PS) platform is provided to achieve noncontact self-splitting for liquids with viscosity as high as 15 000 mPa s, just with the assistance of sunlight and a cooling source to provide a local temperature difference (ΔT). Moreover, to guarantee the accuracy for pipetting liquids (>80%), the ultrathin MXene film (within a thickness of 20 nm) is self-assembled as the photo-thermal layers, overcoming the trade-off between transparency and photothermal property. Compared with traditional pipetting strategies (≈1.3% accuracy for pipetting polymer liquids), this accurate microfluidic chip shows great potential in adhesive systems (bonding strength, twice than using the droppers or pipettes).
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Shengda Tan
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Qi Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Xiaobiao Zuo
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
- National Engineering Research Center of Functional Carbon Composite, Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China
| | - Liping Heng
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| |
Collapse
|
18
|
Jiang Q, Hu Z, Wu K, Wu W, Zhang S, Ding H, Wu Z. Squid-Inspired Powerful Untethered Soft Pumps via Magnetically Induced Phase Transitions. Soft Robot 2024; 11:423-431. [PMID: 38011800 DOI: 10.1089/soro.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Soft robots possess unique deformability and hence result in great adaptability to various unconstructive environments; meanwhile, untethered soft actuation techniques are critical in fully exploiting their potential for practical applications. However, restricted by the material's softness and structural compliance, most untethered actuation systems were incapable of achieving fully soft construction with a powerful output. While in Nature, with a fully soft body, a squid can burst high-pressure jet flow from a cavity that drives the squid to swim swiftly. Here, inspired by such a unique actuation strategy of squids, an entirely soft pump capable of high-pressure output, fast jetting, and untethered control is presented, and it helps a bionic soft robotic squid to achieve a high-efficient untethered motion in water. The soft pump is designed by a reversible liquid-gas phase transition of an inductive heating magnetic liquid metal composite that acts as an adjustable power source with high heat efficiency. In particular, being purely soft, the pump can yet lift ∼20 times its weight and achieve ∼3 times the specific pressure of the previous record. It may promote the application of soft robots with independent actuation, high output power, and embodied energy supply.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhitong Hu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Kefan Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Zhao X, Zhou Y, Song Y, Xu J, Li J, Tat T, Chen G, Li S, Chen J. Permanent fluidic magnets for liquid bioelectronics. NATURE MATERIALS 2024; 23:703-710. [PMID: 38671161 DOI: 10.1038/s41563-024-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024]
Abstract
Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid. This structure has high coercivity and permanent magnetization, with long-term magnetization stability. We establish a scaling theory model to decipher the permanent fluid magnet formation criteria and formulate a general assembly guideline. Further, we develop injectable and retrievable permanent-fluidic-magnet-based liquid bioelectronics for highly sensitive, self-powered wireless cardiovascular monitoring. Overall, our findings highlight the potential of permanent fluidic magnets as an ultrasoft material for liquid devices and systems, from bioelectronics to robotics.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Yan F, Hu L, Ji Z, Lyu Y, Chen S, Xu L, Hao J. Highly Interfacial Active Gemini Surfactants as Simple and Versatile Emulsifiers for Stabilizing, Lubricating and Structuring Liquids. Angew Chem Int Ed Engl 2024; 63:e202318926. [PMID: 38381597 DOI: 10.1002/anie.202318926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
To date, locking the shape of liquids into non-equilibrium states usually relies on jamming nanoparticle surfactants at an oil/water interface. Here we show that a synthetic water-soluble zwitterionic Gemini surfactant can serve as an alternative to nanoparticle surfactants for stabilizing, structuring and additionally lubricating liquids. By having a high binding energy comparable to amphiphilic nanoparticles at the paraffin oil/water interface, the surfactant can attain near-zero interfacial tensions and ultrahigh surface coverages after spontaneous adsorption. Owing to the strong association between neighboring surfactant molecules, closely packed monolayers with high mechanical elasticity can be generated at the oil/water interface, thus allowing the surfactant to produce not only ultra-stable emulsions but also structured liquids with various geometries by using extrusion printing and 3D printing techniques. By undergoing tribochemical reactions at its sulfonic terminus, the surfactant can endow the resultant emulsions with favorable lubricity even under high load-bearing conditions. Our study may provide new insights into creating complex liquid devices and new-generation lubricants capable of combining the characteristics of both liquid and solid lubricants.
Collapse
Affiliation(s)
- Fuli Yan
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
| | - Lulin Hu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou, 730000, China
| | - Zhongying Ji
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou, 730000, China
| | - Yang Lyu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
| | - Siwei Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Lu Xu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou, 730000, China
| | - Jingcheng Hao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
21
|
Ahmed R, Calandra R, Marvi H. Learning to Control a Three-Dimensional Ferrofluidic Robot. Soft Robot 2024; 11:218-229. [PMID: 37870771 DOI: 10.1089/soro.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In recent years, ferrofluids have found increased popularity as a material for medical applications, such as ocular surgery, gastrointestinal surgery, and cancer treatment, among others. Ferrofluidic robots are multifunctional and scalable, exhibit fluid properties, and can be controlled remotely; thus, they are particularly advantageous for such medical tasks. Previously, ferrofluidic robot control has been achieved via the manipulation of handheld permanent magnets or in current-controlled electromagnetic fields resulting in two-dimensional position and shape control and three-dimensional (3D) coupled position-shape or position-only control. Control of ferrofluidic liquid droplet robots poses a unique challenge where model-based control has been shown to be computationally limiting. Thus, in this study, a model-free control method is chosen, and it is shown that the task of learning optimal control parameters for ferrofluidic robot control can be performed using machine learning. Particularly, we explore the use of Bayesian optimization to find optimal controller parameters for 3D pose control of a ferrofluid droplet: its centroid position, stretch direction, and stretch radius. We demonstrate that the position, stretch direction, and stretch radius of a ferrofluid droplet can be independently controlled in 3D with high accuracy and precision, using a simple control approach. Finally, we use ferrofluidic robots to perform pick-and-place, a lab-on-a-chip pH test, and electrical switching, in 3D settings. The purpose of this research is to expand the potential of ferrofluidic robots by introducing full pose control in 3D and to showcase the potential of this technology in the areas of microassembly, lab-on-a-chip, and electronics. The approach presented in this research can be used as a stepping-off point to incorporate ferrofluidic robots toward future research in these areas.
Collapse
Affiliation(s)
- Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, USA
| | - Roberto Calandra
- Learning, Adaptive Systems, and Robotics (LASR) Lab, TU Dresden, Dresden, Germany
- The Centre for Tactile Internet with Human-in-the-Loop (CeTI), Dresden, Germany
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
22
|
Wang X, Zhuang Z, Li X, Yao X. Droplet Manipulation on Bioinspired Slippery Surfaces: From Design Principle to Biomedical Applications. SMALL METHODS 2024; 8:e2300253. [PMID: 37246251 DOI: 10.1002/smtd.202300253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Droplet manipulation with high efficiency, high flexibility, and programmability, is essential for various applications in biomedical sciences and engineering. Bioinspired liquid-infused slippery surfaces (LIS), with exceptional interfacial properties, have led to expanding research for droplet manipulation. In this review, an overview of actuation principles is presented to illustrate how materials or systems can be designed for droplet manipulation on LIS. Recent progress on new manipulation methods on LIS is also summarized and their prospective applications in anti-biofouling and pathogen control, biosensing, and the development of digital microfluidics are presented. Finally, an outlook is made on the key challenges and opportunities for droplet manipulation on LIS.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Zhicheng Zhuang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518075, P. R. China
| |
Collapse
|
23
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
24
|
Ali A, Kim H, Torati SR, Kang Y, Reddy V, Kim K, Yoon J, Lim B, Kim C. Magnetic Lateral Ladder for Unidirectional Transport of Microrobots: Design Principles and Potential Applications of Cells-on-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305528. [PMID: 37845030 DOI: 10.1002/smll.202305528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location. The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.
Collapse
Affiliation(s)
- Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Nanotechnology Research Center, SRKR Engineering College, Bhimavaram, Andhra Pradesh, 534204, India
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
25
|
Liu L, Lin F, Qin C, Zhong H, Tong T, Li R, Yan H, Wang Q, Li P, Liu D, Wang C, Bao J, Wang Z. Spinning a Liquid Wheel and Driving Surface Thermomagnetic Convection with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306756. [PMID: 37819771 DOI: 10.1002/adma.202306756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
A typical Tesla thermomagnetic engine employs a solid magnetic wheel to convert thermal energy into mechanical energy, while thermomagnetic convection in ferrofluid is still challenging to observe because it is a volume convection that occurs in an enclosed space. Using a water-based ferrofluid, a liquid Tesla thermomagnetic engine is demonstrated and reports the observation of thermomagnetic convection on a free surface. Both types of fluid motions are driven by light and observed by simply placing ferrofluid on a cylindrical magnet. The surface thermomagnetic convection on the free surface is made possible by eliminating the Marangoni effect, while the spinning of the liquid wheel is achieved through the solid-like behavior of the ferrofluid under a strong magnetic field. Increasing the magnetic field reveals a transition from simple thermomagnetic convection to a combination of the central spin of the spiky wheel surrounded by thermomagnetic convection in the outer region of the ferrofluid. The coupling between multiple ferrofluid wheels through a fluid bridge is further demonstrated. These demonstrations not only unveil the unique properties of ferrofluid but also provide a new platform for studying complex fluid dynamics and thermomagnetic convection, opening up exciting opportunities for light-controlled fluid actuation and soft robotics.
Collapse
Affiliation(s)
- Laichen Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Feng Lin
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan, 650091, China
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas, 77204, USA
| | - Chengzhen Qin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas, 77204, USA
| | - Hong Zhong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas, 77204, USA
| | - Tian Tong
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas, 77204, USA
| | - Runjia Li
- Department of Mechanical Engineering, University of Houston, Houston, Texas, 77204, USA
| | - Hongzhen Yan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Qiaozhen Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Peihang Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dong Liu
- Department of Mechanical Engineering, University of Houston, Houston, Texas, 77204, USA
| | - Chong Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jiming Bao
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas, 77204, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
26
|
Ren Z, Sitti M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat Protoc 2024; 19:441-486. [PMID: 38097687 DOI: 10.1038/s41596-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/21/2023] [Indexed: 02/12/2024]
Abstract
Small-scale magnetic soft-bodied robots can be designed to operate based on different locomotion modes to navigate and function inside unstructured, confined and varying environments. These soft millirobots may be useful for medical applications where the robots are tasked with moving inside the human body. Here we cover the entire process of developing small-scale magnetic soft-bodied millirobots with multimodal locomotion capability, including robot design, material preparation, robot fabrication, locomotion control and locomotion optimization. We describe in detail the design, fabrication and control of a sheet-shaped soft millirobot with 12 different locomotion modes for traversing different terrains, an ephyra jellyfish-inspired soft millirobot that can manipulate objects in liquids through various swimming modes, a larval zebrafish-inspired soft millirobot that can adjust its body stiffness for efficient propulsion in different swimming speeds and a dual stimuli-responsive sheet-shaped soft millirobot that can switch its locomotion modes automatically by responding to changes in the environmental temperature. The procedure is aimed at users with basic expertise in soft robot development. The procedure requires from a few days to several weeks to complete, depending on the degree of characterization required.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
27
|
Abstract
Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods. Mechanisms of reconfigurability and deformation properties are discussed in detail. The maneuverability of magnetic soft robots is then briefly discussed. Finally, the present challenges and possible future work in designing reconfigurable magnetic soft robots for biomedical applications are identified.
Collapse
Affiliation(s)
- Linxiaohai Ning
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Chayabhan Limpabandhu
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Zion Tsz Ho Tse
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
28
|
Ji Y, Bai X, Sun H, Wang L, Gan C, Jia L, Xu J, Zhang W, Wang L, Xu Y, Hou Y, Wang Y, Hui H, Feng L. Biocompatible Ferrofluid-Based Millirobot for Tumor Photothermal Therapy in Near-Infrared-II Window. Adv Healthc Mater 2024; 13:e2302395. [PMID: 37947303 DOI: 10.1002/adhm.202302395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Ferrofluidic robots with excellent deformability and controllability have been intensively studied recently. However, most of these studies are in vitro and the use of ferrofluids for in vivo medicinal applications remains a big challenge. The application of ferrofluidic robots to the body requires the solution of many key problems. In this study, biocompatibility, controllability, and tumor-killing efficacy are considered when creating a ferrofluid-based millirobot for in vivo tumor-targeted therapy. For biocompatibility problems, corn oil is used specifically for the ferrofluid robot. In addition, a control system is built that enables a 3D magnetic drive to be implemented in complex biological media. Using the photothermal conversion property of 1064 nm, the ferrofluid robot can kill tumor cells in vitro; inhibit tumor volume, destroy the tumor interstitium, increase tumor cell apoptosis, and inhibit tumor cell proliferation in vivo. This study provides a reference for ferrofluid-based millirobots to achieve targeted therapies in vivo.
Collapse
Affiliation(s)
- Yiming Ji
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongyan Sun
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Chunyuan Gan
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Lina Jia
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Wei Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yaxin Hou
- Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
29
|
Abdelrahman MK, Wagner RJ, Kalairaj MS, Zadan M, Kim MH, Jang LK, Wang S, Javed M, Dana A, Singh KA, Hargett SE, Gaharwar AK, Majidi C, Vernerey FJ, Ware TH. Material assembly from collective action of shape-changing polymers. NATURE MATERIALS 2024; 23:281-289. [PMID: 38177377 DOI: 10.1038/s41563-023-01761-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Some animals form transient, responsive and solid-like ensembles through dynamic structural interactions. These ensembles demonstrate emergent responses such as spontaneous self-assembly, which are difficult to achieve in synthetic soft matter. Here we use shape-morphing units comprising responsive polymers to create solids that self-assemble, modulate their volume and disassemble on demand. The ensemble is composed of a responsive hydrogel, liquid crystal elastomer or semicrystalline polymer ribbons that reversibly bend or twist. The dispersions of these ribbons mechanically interlock, inducing reversible aggregation. The aggregated liquid crystal elastomer ribbons have a 12-fold increase in the yield stress compared with cooled dispersion and contract by 34% on heating. Ribbon type, concentration and shape dictate the aggregation and govern the global mechanical properties of the solid that forms. Coating liquid crystal elastomer ribbons with a liquid metal begets photoresponsive and electrically conductive aggregates, whereas seeding cells on hydrogel ribbons enables self-assembling three-dimensional scaffolds, providing a versatile platform for the design of dynamic materials.
Collapse
Affiliation(s)
- Mustafa K Abdelrahman
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Robert J Wagner
- Mechanical Engineering Department, Materials Science and Engineering Program, University of Colorado, Boulder, CO, USA
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Min Hee Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Lindy K Jang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Suitu Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Mahjabeen Javed
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Asaf Dana
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kanwar Abhay Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sarah E Hargett
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Franck J Vernerey
- Mechanical Engineering Department, Materials Science and Engineering Program, University of Colorado, Boulder, CO, USA
| | - Taylor H Ware
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
30
|
Wei H, Sun B, Zhang S, Tang J. Magnetoactive Millirobots with Ternary Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3944-3954. [PMID: 38214466 DOI: 10.1021/acsami.3c13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Magnetoactive soft millirobots have made significant advances in programmable deformation, multimodal locomotion, and untethered manipulation in unreachable regions. However, the inherent limitations are manifested in the solid-phase millirobot as limited deformability and in the liquid-phase millirobot as low stiffness. Herein, we propose a ternary-state magnetoactive millirobot based on a phase transitional polymer embedded with magnetic nanoparticles. The millirobot can reversibly transit among the liquid, solid, and viscous-fluid phases through heating and cooling. The liquid-phase millirobot has elastic deformation and mobility for unimpeded navigation in a constrained space. The viscous-fluid phase millirobot shows irreversible deformation and large ductility. The solid-phase millirobot shows good shape stability and controllable locomotion. Moreover, the ternary-state magnetoactive millirobot can achieve prominent capabilities including stiffness change and shape reconfiguration through phase transition. The millirobot can perform potential functions of navigation in complex terrain, three-dimensional circuit connection, and simulated treatment in a stomach model. This magnetoactive millirobot may find new applications in flexible electronics and biomedicine.
Collapse
Affiliation(s)
- Huangsan Wei
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bonan Sun
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengyuan Zhang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
31
|
Liao J, Majidi C, Sitti M. Liquid Metal Actuators: A Comparative Analysis of Surface Tension Controlled Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300560. [PMID: 37358049 DOI: 10.1002/adma.202300560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Liquid metals, with their unique combination of electrical and mechanical properties, offer great opportunities for actuation based on surface tension modulation. Thanks to the scaling laws of surface tension, which can be electrochemically controlled at low voltages, liquid metal actuators stand out from other soft actuators for their remarkable characteristics such as high contractile strain rates and higher work densities at smaller length scales. This review summarizes the principles of liquid metal actuators and discusses their performance as well as theoretical pathways toward higher performances. The objective is to provide a comparative analysis of the ongoing development of liquid metal actuators. The design principles of the liquid metal actuators are analyzed, including low-level elemental principles (kinematics and electrochemistry), mid-level structural principles (reversibility, integrity, and scalability), and high-level functionalities. A wide range of practical use cases of liquid metal actuators from robotic locomotion and object manipulation to logic and computation is reviewed. From an energy perspective, strategies are compared for coupling the liquid metal actuators with an energy source toward fully untethered robots. The review concludes by offering a roadmap of future research directions of liquid metal actuators.
Collapse
Affiliation(s)
- Jiahe Liao
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Carmel Majidi
- Robotics Institute, Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine, College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
32
|
Zhao P, Yan L, Gao X. Magnetic Liquid Metal Droplet Robot with Multifunction and High Output Force in Milli-Newton. Soft Robot 2023; 10:1146-1158. [PMID: 37327366 DOI: 10.1089/soro.2022.0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Magnetically actuated miniature robots have immeasurable potential in lab-on-a-chip and biomedical due to their ability to navigate in constrained space. However, current soft robots made by elastomers have limited functionalities and are prevented from very narrow environments such as channel much smaller than their size because of their non- or limited deformability. In this study, a soft and multifunctional robot based on liquid metal (magnetic liquid-metal droplet robot [MLDR]) with high output force is reported. It is fabricated by engulfing iron particles into a Galinstan droplet. By changing the shape and motion of permanent magnets, the MLDR can be reshaped and moved. The MLDR can also be split in batches and merged efficiently. It shows good softness and flexibility when navigating freely in a narrow channel, and thus can pass through a confined space smaller than its size easily. Furthermore, the MLDR can also push and spread the accumulated liquid in a desired path, and manipulate the motions of small objects well. Benefiting from the solidification-like phenomenon, an MLDR can output milli-Newton-level force much higher than the output force of ferrofluid droplet robots in micro-Newton level. The demonstrated capabilities of the MLDR are promising for the applications in lab-on-a-chip or biomedical devices.
Collapse
Affiliation(s)
- Peiran Zhao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Liang Yan
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
- Ningbo Institute of Technology, Beihang University, Ningbo, China
- Tianmushan Laboratory, Hangzhou, China
- Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing, China
| | - Xiaoshan Gao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| |
Collapse
|
33
|
Fan X, Zhang Y, Wu Z, Xie H, Sun L, Chen T, Yang Z. Combined three dimensional locomotion and deformation of functional ferrofluidic robots. NANOSCALE 2023. [PMID: 37982182 DOI: 10.1039/d3nr02535g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Magnetic microrobots possess remarkable potential for targeted applications in the medical field, primarily due to their non-invasive, controllable properties. These unique qualities have garnered increased attention and fascination among researchers. However, these robotic systems do face challenges such as limited deformation capabilities and difficulties navigating confined spaces. Recently, researchers have turned their attention towards magnetic droplet robots, which are notable for their superior deformability, controllability, and potential for a range of applications such as automated virus detection and targeted drug delivery. Despite these advantages, the majority of current research is constrained to two-dimensional deformation and motion, thereby limiting their broader functionality. In response to these limitations, this study proposes innovative strategies for controlling deformation and achieving a three-dimensional (3D) trajectory in ferrofluidic robots. These strategies leverage a custom-designed eight-axis electromagnetic coil and a sliding mode controller. The implementation of these methods exhibits the potential of ferrofluidic robots in diverse applications, including microfluidic pump systems, 3D micromanipulation, and selective vascular occlusion. In essence, this study aims to broaden the capabilities of ferrofluidic robots, thereby enhancing their applicability across a multitude of fields such as medicine, micromanipulation, bioengineering, and more by maximizing the potential of these intricate robotic systems.
Collapse
Affiliation(s)
- Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yunfei Zhang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Zhengnan Wu
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Yikuang, Harbin 150080, China
| | - Lining Sun
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
- School of Future Science and Engineering, Soochow University, No. 1, Jiuyongxi Road, Suzhou 215222, China.
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Shen Y, Jin D, Fu M, Liu S, Xu Z, Cao Q, Wang B, Li G, Chen W, Liu S, Ma X. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat Commun 2023; 14:6276. [PMID: 37805612 PMCID: PMC10560245 DOI: 10.1038/s41467-023-41920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Magnetic liquid metal (LM) soft robots attract considerable attentions because of distinctive immiscibility, deformability and maneuverability. However, conventional LM composites relying on alloying between LM and metallic magnetic powders suffer from diminished magnetism over time and potential safety risk upon leakage of metallic components. Herein, we report a strategy to composite inert and biocompatible iron oxide (Fe3O4) magnetic nanoparticles into eutectic gallium indium LM via reactive wetting mechanism. To address the intrinsic interfacial non-wettability between Fe3O4 and LM, a silver intermediate layer was introduced to fuse with indium component into AgxIny intermetallic compounds, facilitating the anchoring of Fe3O4 nanoparticles inside LM with improved magnetic stability. Subsequently, a miniature soft robot was constructed to perform various controllable deformation and locomotion behaviors under actuation of external magnetic field. Finally, practical feasibility of applying LM soft robot in an ex vivo porcine stomach was validated under in-situ monitoring by endoscope and X-ray imaging.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Mingming Fu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Sanhu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiwu Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Qinghua Cao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoqiang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China.
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
35
|
Zhou Z, Tang W, Yang J, Fan C. Application of 4D printing and bioprinting in cardiovascular tissue engineering. Biomater Sci 2023; 11:6403-6420. [PMID: 37599608 DOI: 10.1039/d3bm00312d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cardiovascular diseases have remained the leading cause of death worldwide for the past 20 years. The current clinical therapeutic measures, including bypass surgery, stent implantation and pharmacotherapy, are not enough to repair the massive loss of cardiomyocytes after myocardial ischemia. Timely replenishment with functional myocardial tissue via biomedical engineering is the most direct and effective means to improve the prognosis and survival rate of patients. It is widely recognized that 4D printing technology introduces an additional dimension of time in comparison with traditional 3D printing. Additionally, in the context of 4D bioprinting, both the printed material and the resulting product are designed to be biocompatible, which will be the mainstream of bioprinting in the future. Thus, this review focuses on the application of 4D bioprinting in cardiovascular diseases, discusses the bottleneck of the development of 4D bioprinting, and finally looks forward to the future direction and prospect of this revolutionary technology.
Collapse
Affiliation(s)
- Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| |
Collapse
|
36
|
Singh R, Pathak S, Jain K, Noorjahan, Kim SK. Correlating the Dipolar Interactions Induced Magneto-Viscoelasticity and Thermal Conductivity Enhancements in Nanomagnetic Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205741. [PMID: 37246272 DOI: 10.1002/smll.202205741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/30/2023] [Indexed: 05/30/2023]
Abstract
The effective thermal management of electronic system holds the key to maximize their performance. The recent miniaturization trends require a cooling system with high heat flux capacity, localized cooling, and active control. Nanomagnetic fluids (NMFs) based cooling systems have the ability to meet the current demand of the cooling system for the miniaturized electronic system. However, the thermal characteristics of NMFs have a long way to go before the internal mechanisms are well understood. This review mainly focuses on the three aspects to establish a correlation between the thermal and rheological properties of the NMFs. First, the background, stability, and factors affecting the properties of the NMFs are discussed. Second, the ferrohydrodynamic equations are introduced for the NMFs to explain the rheological behavior and relaxation mechanism. Finally, different theoretical and experimental models are summarized that explain the thermal characteristics of the NMFs. Thermal characteristics of the NMFs are significantly affected by the morphology and composition of the magnetic nanoparticles (MNPs) in NMFs as well as the type of carrier liquids and surface functionalization that also influences the rheological properties. Thus, understanding the correlation between the thermal characteristics of the NMFs and rheological properties helps develop cooling systems with improved performance.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Saurabh Pathak
- National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
| | - Komal Jain
- Indian Reference Materials Division, CSIR-National Physical Laboratory, Delhi, 110012, India
| | - Noorjahan
- Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Sang-Koog Kim
- National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
| |
Collapse
|
37
|
Zhao P, Yan L, Gao X. Millirobot Based on a Phase-Transformable Magnetorheological Liquid Metal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37658-37667. [PMID: 37503740 DOI: 10.1021/acsami.3c06648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Droplet robots have attracted much attention in recent years due to their large-scale deformability and flexible mobility in confined spaces. However, droplet robots are always difficult to maintain rigid shapes, making them difficult to manipulate objects with large inertia. Moreover, their low conductivity makes them unable to complete tasks such as circuit repair. Herein, a millirobot made from magnetorheological liquid metal is proposed to address the problems. Specifically, the magnetorheological liquid metal (MLM) robot is made by engulfing iron particles into gallium-indium alloy, and the mass fraction of the MLM robot is determined by microscopic observation and rheological test. The MLM robot possesses both solid and liquid properties, enabling the robot with plasticity, large-scale deformability, good conductivity, motion flexibility, and good object manipulation. The MLM robot can achieve almost all of the functions of existing droplet robots, including splitting, merging, navigating in narrow channels, and pushing objects. In addition, it can also accomplish some other tasks that are difficult for existing droplet robots, such as pulling large objects, repairing damaged circuits selectively and reversibly, and repairing suspended circuits through plasticity. The demos show that MLM robots can traverse narrow spaces and repair circuit damage selectively and reversibly. It is believed that MLM robots can enrich diverse functionalities in the future.
Collapse
Affiliation(s)
- Peiran Zhao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Liang Yan
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
- Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
- Tianmushan Laboratory, Hangzhou 310023, China
- Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China
| | - Xiaoshan Gao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
38
|
Blackiston D, Kriegman S, Bongard J, Levin M. Biological Robots: Perspectives on an Emerging Interdisciplinary Field. Soft Robot 2023; 10:674-686. [PMID: 37083430 PMCID: PMC10442684 DOI: 10.1089/soro.2022.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.
Collapse
Affiliation(s)
- Douglas Blackiston
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| | - Sam Kriegman
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Center for Robotics and Biosystems, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Josh Bongard
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
- Department of Computer Science, University of Vermont, Burlington, Vermont, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Institute for Computationally Designed Organisms, Massachusetts and Vermont, USA
| |
Collapse
|
39
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
40
|
Xu Y, Zhu J, Chen H, Yong H, Wu Z. A Soft Reconfigurable Circulator Enabled by Magnetic Liquid Metal Droplet for Multifunctional Control of Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300935. [PMID: 37311235 PMCID: PMC10427373 DOI: 10.1002/advs.202300935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Integrated control circuits with multiple computation functions are essential for soft robots to achieve diverse complex real tasks. However, designing compliant yet simple circuits to embed multiple computation functions in soft electronic systems above the centimeter scale is still a tough challenge. Herein, utilizing smooth cyclic motions of magnetic liquid metal droplets (MLMD) in specially designed and surface-modified circulating channels, a soft reconfigurable circulator (SRC) consisting of three simple and reconfigurable basic modules is described. Through these modules, MLMD can utilize their conductivity and extreme deformation capabilities to transfer their simple cyclic motions as input signals to programmable electrical output signals carrying computing information. The obtained SRCs make it possible for soft robots to perform complex computing tasks, such as logic, programming, and self-adaptive control (a combination of programming and feedback control). Following, a digital logic-based grasping function diagnosis, a locomotion reprogrammable soft car, and a self-adaptive control-based soft sorting gripper are demonstrated to verify SRCs' capabilities. The unique attributes of MLMD allow complex computations based on simple configurations and inputs, which provide new ways to enhance soft robots' computing capabilities.
Collapse
Affiliation(s)
- Yi Xu
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jiaqi Zhu
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Han Chen
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Haochen Yong
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Zhigang Wu
- Soft Intelligence LabState Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
41
|
Wang S, Wang X, You F, Xiao H. Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances. MICROMACHINES 2023; 14:1487. [PMID: 37630023 PMCID: PMC10456655 DOI: 10.3390/mi14081487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Ultrasonic particle manipulation technique is a non-contact label-free method for manipulating micro- and nano-scale particles using ultrasound, which has obvious advantages over traditional optical, magnetic, and electrical micro-manipulation techniques; it has gained extensive attention in micro-nano manipulation in recent years. This paper introduces the basic principles and manipulation methods of ultrasonic particle manipulation techniques, provides a detailed overview of the current mainstream acoustic field generation methods, and also highlights, in particular, the applicable scenarios for different numbers and arrangements of ultrasonic transducer devices. Ultrasonic transducer arrays have been used extensively in various particle manipulation applications, and many sound field reconstruction algorithms based on ultrasonic transducer arrays have been proposed one after another. In this paper, unlike most other previous reviews on ultrasonic particle manipulation, we analyze and summarize the current reconstruction algorithms for generating sound fields based on ultrasonic transducer arrays and compare these algorithms. Finally, we explore the applications of ultrasonic particle manipulation technology in engineering and biological fields and summarize and forecast the research progress of ultrasonic particle manipulation technology. We believe that this review will provide superior guidance for ultrasonic particle manipulation methods based on the study of micro and nano operations.
Collapse
Affiliation(s)
| | - Xuewei Wang
- College of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102627, China; (S.W.)
| | | | | |
Collapse
|
42
|
Reyes Garza R, Kyriakopoulos N, Cenev ZM, Rigoni C, Timonen JVI. Magnetic Quincke rollers with tunable single-particle dynamics and collective states. SCIENCE ADVANCES 2023; 9:eadh2522. [PMID: 37390203 DOI: 10.1126/sciadv.adh2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 07/02/2023]
Abstract
Electrohydrodynamically driven active particles based on Quincke rotation have quickly become an important model system for emergent collective behavior in nonequilibrium colloidal systems. Like most active particles, Quincke rollers are intrinsically nonmagnetic, preventing the use of magnetic fields to control their complex dynamics on the fly. Here, we report on magnetic Quincke rollers based on silica particles doped with superparamagnetic iron oxide nanoparticles. We show that their magnetic nature enables the application of both externally controllable forces and torques at high spatial and temporal precision, leading to several versatile control mechanisms for their single-particle dynamics and collective states. These include tunable interparticle interactions, potential energy landscapes, and advanced programmable and teleoperated behaviors, allowing us to discover and probe active chaining, anisotropic active sedimentation-diffusion equilibria, and collective states in various geometries and dimensionalities.
Collapse
Affiliation(s)
- Ricardo Reyes Garza
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Espoo FI-02150, Finland
| | - Nikos Kyriakopoulos
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Espoo FI-02150, Finland
| | - Zoran M Cenev
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Espoo FI-02150, Finland
| | - Carlo Rigoni
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Espoo FI-02150, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Espoo FI-02150, Finland
| |
Collapse
|
43
|
Das SS, Yossifon G. Optoelectronic Trajectory Reconfiguration and Directed Self-Assembly of Self-Propelling Electrically Powered Active Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206183. [PMID: 37069767 PMCID: PMC10238198 DOI: 10.1002/advs.202206183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/25/2023] [Indexed: 06/04/2023]
Abstract
Self-propelling active particles are an exciting and interdisciplinary emerging area of research with projected biomedical and environmental applications. Due to their autonomous motion, control over these active particles that are free to travel along individual trajectories, is challenging. This work uses optically patterned electrodes on a photoconductive substrate using a digital micromirror device (DMD) to dynamically control the region of movement of self-propelling particles (i.e., metallo-dielectric Janus particles (JPs)). This extends previous studies where only a passive micromotor is optoelectronically manipulated with a translocating optical pattern that illuminates the particle. In contrast, the current system uses the optically patterned electrode merely to define the region within which the JPs moved autonomously. Interestingly, the JPs avoid crossing the optical region's edge, which enables constraint of the area of motion and to dynamically shape the JP trajectory. Using the DMD system to simultaneously manipulate several JPs enables to self-assemble the JPs into stable active structures (JPs ring) with precise control over the number of participating JPs and passive particles. Since the optoelectronic system is amenable to closed-loop operation using real-time image analysis, it enables exploitation of these active particles as active microrobots that can be operated in a programmable and parallelized manner.
Collapse
Affiliation(s)
- Sankha Shuvra Das
- School of Mechanical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Gilad Yossifon
- School of Mechanical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Biomedical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
| |
Collapse
|
44
|
Sun M, Yang S, Jiang J, Zhang L. Horizontal and Vertical Coalescent Microrobotic Collectives Using Ferrofluid Droplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300521. [PMID: 37001881 DOI: 10.1002/adma.202300521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Indexed: 06/09/2023]
Abstract
Many artificial miniature robotic collectives have been developed to overcome the inherent limitations of inadequate individual capabilities. However, the basic building blocks of the reported collectives are mainly in the solid state, where the morphological boundaries of internal individuals are clear and cannot genuinely merge. Miniature robotic collectives based on liquid units still need to be explored; such on-demand mergeable swarm systems are advantageous for adapting to the changing external environment. Here, a strategy to achieve a coalescent collective system we presented that exploits the ferrofluid droplets' splitting and coalescence properties to trigger the formation of horizontal multimodal and vertical gravity-resistant collectives and unveil pattern-enabled robotic functionalities. When subjected to a time-varying magnetic field, the droplet swarm exhibits a variety of morphologies ranging from horizontal collectives, including vortex-like, chain-like, and crystal-like patterns to vertical layer-upon-layer patterns. Using experiments and simulations, the formation and transformation of different morphological collectives are shown and their robust environmental adaptability are demonstrated. Potential applications of the multimodal droplet collectives are presented, including exploring an unknown environment, targeted object delivery, and fluid flow filtration in a lab-on-a-chip. This work may facilitate the design of microrobotic swarm systems and expand the range of materials for miniature robots.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jialin Jiang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, 999077, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
45
|
Zeng Y, Khor JW, van Neel TL, Tu WC, Berthier J, Thongpang S, Berthier E, Theberge AB. Miniaturizing chemistry and biology using droplets in open systems. Nat Rev Chem 2023; 7:439-455. [PMID: 37117816 PMCID: PMC10107581 DOI: 10.1038/s41570-023-00483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/30/2023]
Abstract
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wan-Chen Tu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
46
|
Zhang W, Deng Y, Zhao J, Zhang T, Zhang X, Song W, Wang L, Li T. Amoeba-Inspired Magnetic Venom Microrobots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207360. [PMID: 36869412 DOI: 10.1002/smll.202207360] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Indexed: 06/08/2023]
Abstract
Nature provides a successful evolutionary direction for single-celled organisms to solve complex problems and complete survival tasks - pseudopodium. Amoeba, a unicellular protozoan, can produce temporary pseudopods in any direction by controlling the directional flow of protoplasm to perform important life activities such as environmental sensing, motility, predation, and excretion. However, creating robotic systems with pseudopodia to emulate environmental adaptability and tasking capabilities of natural amoeba or amoeboid cells remains challenging. Here, this work presents a strategy that uses alternating magnetic fields to reconfigure magnetic droplet into Amoeba-like microrobot, and the mechanisms of pseudopodia generation and locomotion are analyzed. By simply adjusting the field direction, microrobots switch in monopodia, bipodia, and locomotion modes, performing all pseudopod operations such as active contraction, extension, bending, and amoeboid movement. The pseudopodia endow droplet robots with excellent maneuverability to adapt to environmental variations, including spanning 3D terrains and swimming in bulk liquids. Inspired by the "Venom," the phagocytosis and parasitic behaviors have also been investigated. Parasitic droplets inherit all the capabilities of amoeboid robot, expanding their applicable scenarios such as reagent analysis, microchemical reactions, calculi removal, and drug-mediated thrombolysis. This microrobot may provide fundamental understanding of single-celled livings, and potential applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yuguo Deng
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Jinhao Zhao
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Tao Zhang
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
- Research center for intelligent equipment, Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, P. R. China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
- Research center for intelligent equipment, Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, P. R. China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
- Research center for intelligent equipment, Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, P. R. China
| |
Collapse
|
47
|
Harischandra PAD, Välisalmi T, Cenev ZM, Linder MB, Zhou Q. Shaping Liquid Droplets on an Active Air-Ferrofluid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37224278 DOI: 10.1021/acs.langmuir.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An air-liquid interface is important in many biological and industrial applications, where the manipulation of liquids on the air-liquid interface can have a significant impact. However, current manipulation techniques on the interface are mostly limited to transportation and trapping. Here, we report a magnetic liquid shaping method that can squeeze, rotate, and shape nonmagnetic liquids on an air-ferrofluid interface with programmable deformation. We can control the aspect ratio of the ellipse and generate repeatable quasi-static shapes of a hexadecane oil droplet. We can rotate droplets and stir liquids into spiral-like structures. We can also shape phase-changing liquids and fabricate shape-programmed thin films at the air-ferrofluid interface. The proposed method may potentially open up new possibilities for film fabrication, tissue engineering, and biological experiments that can be carried out at an air-liquid interface.
Collapse
Affiliation(s)
- P A Diluka Harischandra
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| | - Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Zoran M Cenev
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
48
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
49
|
Wang B, Handschuh-Wang S, Shen J, Zhou X, Guo Z, Liu W, Pumera M, Zhang L. Small-Scale Robotics with Tailored Wettability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205732. [PMID: 36113864 DOI: 10.1002/adma.202205732] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Small-scale robots (SSRs) have emerged as promising and versatile tools in various biomedical, sensing, decontamination, and manipulation applications, as they are uniquely capable of performing tasks at small length scales. With the miniaturization of robots from the macroscale to millimeter-, micrometer-, and nanometer-scales, the viscous and surface forces, namely adhesive forces and surface tension have become dominant. These forces significantly impact motion efficiency. Surface engineering of robots with both hydrophilic and hydrophobic functionalization presents a brand-new pathway to overcome motion resistance and enhance the ability to target and regulate robots for various tasks. This review focuses on the current progress and future perspectives of SSRs with hydrophilic and hydrophobic modifications (including both tethered and untethered robots). The study emphasizes the distinct advantages of SSRs, such as improved maneuverability and reduced drag forces, and outlines their potential applications. With continued innovation, rational surface engineering is expected to endow SSRs with exceptional mobility and functionality, which can broaden their applications, enhance their penetration depth, reduce surface fouling, and inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| |
Collapse
|
50
|
Yu Z, Christov IC. Delayed Hopf bifurcation and control of a ferrofluid interface via a time-dependent magnetic field. Phys Rev E 2023; 107:055102. [PMID: 37329044 DOI: 10.1103/physreve.107.055102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/13/2023] [Indexed: 06/18/2023]
Abstract
A ferrofluid droplet confined in a Hele-Shaw cell can be deformed into a stably spinning "gear," using crossed magnetic fields. Previously, fully nonlinear simulation revealed that the spinning gear emerges as a stable traveling wave along the droplet's interface bifurcates from the trivial (equilibrium) shape. In this work, a center manifold reduction is applied to show the geometrical equivalence between a two-harmonic-mode coupled system of ordinary differential equations arising from a weakly nonlinear analysis of the interface shape and a Hopf bifurcation. The rotating complex amplitude of the fundamental mode saturates to a limit cycle as the periodic traveling wave solution is obtained. An amplitude equation is derived from a multiple-time-scale expansion as a reduced model of the dynamics. Then, inspired by the well-known delay behavior of time-dependent Hopf bifurcations, we design a slowly time-varying magnetic field such that the timing and emergence of the interfacial traveling wave can be controlled. The proposed theory allows us to determine the time-dependent saturated state resulting from the dynamic bifurcation and delayed onset of instability. The amplitude equation also reveals hysteresislike behavior upon time reversal of the magnetic field. The state obtained upon time reversal differs from the state obtained during the initial (forward-time) period, yet it can still be predicted by the proposed reduced-order theory.
Collapse
Affiliation(s)
- Zongxin Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ivan C Christov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Computer Science, University of Nicosia, 46 Makedonitissas Avenue, CY-2417 Nicosia, Cyprus
| |
Collapse
|