1
|
Eriksen EF, Andrews AJ, Nielsen SV, Persson P, Malca E, Onar V, Aniceti V, Piquès G, Piattoni F, Fontani F, Wiech M, Ferter K, Kersten O, Ferrari G, Cariani A, Tinti F, Cilli E, Atmore LM, Star B. Five millennia of mitonuclear discordance in Atlantic bluefin tuna identified using ancient DNA. Heredity (Edinb) 2025; 134:175-185. [PMID: 39920258 PMCID: PMC11977281 DOI: 10.1038/s41437-025-00745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
Mitonuclear discordance between species is readily documented in marine fishes. Such discordance may either be the result of past natural phenomena or the result of recent introgression from previously seperated species after shifts in their spatial distributions. Using ancient DNA spanning five millennia, we here investigate the long-term presence of Pacific bluefin tuna (Thunnus orientalis) and albacore (Thunnus alalunga) -like mitochondrial (MT) genomes in Atlantic bluefin tuna (Thunnus thynnus), a species with extensive exploitation history and observed shifts in abundance and age structure. Comparing ancient (n = 130) and modern (n = 78) Atlantic bluefin MT genomes from most of its range, we detect no significant spatial or temporal population structure, which implies ongoing gene flow between populations and large effective population sizes over millennia. Moreover, we identify discordant MT haplotypes in ancient specimens up to 5000 years old and find that the frequency of these haplotypes has remained similar through time. We therefore conclude that MT discordance in the Atlantic bluefin tuna is not driven by recent introgression. Our observations provide oldest example of directly observed MT discordance in the marine environment, highlighting the utility of ancient DNA to obtain insights in the long-term persistence of such phenomena.
Collapse
Affiliation(s)
- Emma Falkeid Eriksen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway.
| | - Adam Jon Andrews
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
- Norwegian Institute of Water Research, Oslo, Norway
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | | | - Per Persson
- Museum of Cultural History, University of Oslo, Oslo, Norway
| | - Estrella Malca
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA
- NOAA Fisheries, Southeast Fisheries Science Center, Miami, FL, USA
| | - Vedat Onar
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Kocman University, Muğla, Türkiye
| | - Veronica Aniceti
- Consejo Superior de Investigaciones Científicas, Institució Milà i Fontanals (CSIC-IMF), Barcelona, Spain
| | - Gäel Piquès
- ASM, CNRS, Université Paul Valéry-Montpellier 3, Montpellier, France
| | - Federica Piattoni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Martin Wiech
- Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway
| | - Keno Ferter
- Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Liu X, Milesi E, Fontsere C, Owens HL, Heinsohn R, Gilbert MTP, Crates R, Nogués-Bravo D, Morales HE. Time-lagged genomic erosion and future environmental risks in a bird on the brink of extinction. Proc Biol Sci 2025; 292:20242480. [PMID: 40132633 PMCID: PMC11936686 DOI: 10.1098/rspb.2024.2480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Global biodiversity is rapidly declining due to habitat degradation and genomic erosion, highlighting the urgent need to monitor endangered species and their genetic health. Temporal genomics and ecological modelling offer finer resolution than single-time-point measurements, providing a comprehensive view of species' recent and future trajectories. We investigated genomic erosion and environmental suitability in the critically endangered regent honeyeater (Anthochaera phrygia) by sequencing whole genomes of historical and modern specimens and building multi-temporal species distribution models (SDMs) across the last century. The species has declined from hundreds of thousands of individuals to fewer than 300 over the past 100 years. SDMs correctly predicted known patterns of local extinction in southeast Australia. Our demographic reconstructions revealed a gradual population decline from 2000 to 2500 years ago, sharply accelerating in the last 500 years due to climate variability and habitat loss. Despite this substantial demographic collapse, the regent honeyeater has lost only 9% of its genetic diversity, with no evidence of inbreeding or connectivity loss. Also, it exhibits higher diversity than many other threatened bird species. Forward-in-time genomic simulations indicate that this time lag between population decline and genetic diversity loss conceals the risk of ongoing genomic erosion into a future of rapidly degrading environmental suitability. Our work underscores the need for targeted conservation efforts and continuous genetic monitoring to prevent species extinction.
Collapse
Affiliation(s)
- Xufen Liu
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ester Milesi
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Hannah L. Owens
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Informatics Department, University of Florida, Gainesville, FL, USA
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | - M. Thomas P. Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | | | - Hernán E. Morales
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Vlček J, Espinoza‐Ulloa S, Cowles SA, Ortiz‐Catedral L, Coutu C, Chaves JA, Andrés J, Štefka J. Genomes of Galápagos Mockingbirds Reveal the Impact of Island Size and Past Demography on Inbreeding and Genetic Load in Contemporary Populations. Mol Ecol 2025; 34:e17665. [PMID: 39912126 PMCID: PMC11842953 DOI: 10.1111/mec.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Restricted range size brings about noteworthy genetic consequences that may affect the viability of a population and eventually its extinction. Particularly, the question if an increase in inbreeding can avert the accumulation of genetic load via purging is hotly debated in the conservation genetic field. Insular populations with limited range sizes represent an ideal setup for relating range size to these genetic factors. Leveraging a set of eight differently sized populations of Galápagos mockingbirds (Mimus), we investigated how island size shaped effective population size (Ne), inbreeding and genetic load. We assembled a genome of M. melanotis and genotyped three individuals per population by whole-genome resequencing. Demographic inference showed that the Ne of most populations remained high after the colonisation of the archipelago 1-2 Mya. Ne decline in M. parvulus happened only 10-20 Kya, whereas the critically endangered M. trifasciatus showed a longer history of reduced Ne. Despite these historical fluctuations, the current island size determines Ne in a linear fashion. In contrast, significant inbreeding coefficients, derived from runs of homozygosity, were identified only in the four smallest populations. The index of additive genetic load suggested purging in M. parvulus, where the smallest populations showed the lowest load. By contrast, M. trifasciatus carried the highest genetic load, possibly due to a recent rapid bottleneck. Overall, our study demonstrates a complex effect of demography on inbreeding and genetic load, providing implications in conservation genetics in general and in a conservation project of M. trifasciatus in particular.
Collapse
Affiliation(s)
- Jakub Vlček
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of Parasitology, Biology Centre CASČeské BudějoviceCzech Republic
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonCanada
- Facultad de MedicinaPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Sarah A. Cowles
- Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | - Luis Ortiz‐Catedral
- School of Natural Sciences, Ecology & Conservation LabMassey UniversityAucklandNew Zealand
| | - Cathy Coutu
- Agriculture & Agri‐Food CanadaSaskatoonCanada
| | - Jaime A. Chaves
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biologicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Galapagos Science CenterUniversidad San Francisco de QuitoQuitoEcuador
| | - Jose Andrés
- Department of BiologyUniversity of SaskatchewanSaskatoonCanada
| | - Jan Štefka
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of Parasitology, Biology Centre CASČeské BudějoviceCzech Republic
| |
Collapse
|
4
|
Gargiulo R, Budde KB, Heuertz M. Mind the lag: understanding genetic extinction debt for conservation. Trends Ecol Evol 2025; 40:228-237. [PMID: 39572352 DOI: 10.1016/j.tree.2024.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 03/08/2025]
Abstract
The delay between disturbance events and genetic responses within populations is a common but surprisingly overlooked phenomenon in ecology and evolutionary and conservation genetics. If not accounted for when interpreting genetic data, this time lag problem can lead to erroneous conservation assessments. We (i) identify life-history traits related to longevity and reproductive strategies as the main determinants of time lags, (ii) evaluate potential confounding factors affecting genetic parameters during time lags, and (iii) propose approaches that allow controlling for time lags. Considering the current unprecedented rate of loss of genetic diversity and adaptive potential, we expect our novel interpretive and methodological framework for time lags to stimulate further research and discussion on the most appropriate approaches to analyse genetic diversity for conservation.
Collapse
Affiliation(s)
| | - Katharina B Budde
- Northwest German Forest Research Institute, Professor-Olekers-Strasse 6, 34346 Hann. Münden, Germany
| | - Myriam Heuertz
- Univ. Bordeaux, INRAE, Biogeco, 69 route d'Arcachon, 33610 Cestas, France
| |
Collapse
|
5
|
Bemmels JB, Starko S, Weigel BL, Hirabayashi K, Pinch A, Elphinstone C, Dethier MN, Rieseberg LH, Page JE, Neufeld CJ, Owens GL. Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp. Curr Biol 2025; 35:688-698.e8. [PMID: 39826555 DOI: 10.1016/j.cub.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Kelp forests are declining in many parts of the northeast Pacific.1,2,3,4 In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles,5,6,7 but natural selection may purge harmful variants.8,9,10 To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.) from the coastlines of British Columbia and Washington. We identified 6 to 7 geographically and genetically distinct clusters in each species. Low effective population size was associated with low genetic diversity and high inbreeding coefficients (including increased selfing rates), with extreme variation in these genetic health indices among bull kelp populations but more moderate variation in giant kelp. We found no evidence that natural selection is purging putative recessive deleterious alleles in either species. Instead, genetic drift has fixed many such alleles in small populations of bull kelp, leading us to predict (1) reduced within-population inbreeding depression in small populations, which may be associated with an observed shift toward increased selfing rate, and (2) hybrid vigor in crosses between small populations. Our genomic findings imply several strategies for optimal sourcing and crossing of populations for restoration and aquaculture, but these require experimental validation. Overall, our work reveals strong genetic structure and suggests that conservation strategies should consider the multiple health risks faced by small populations whose evolutionary dynamics are dominated by genetic drift.
Collapse
Affiliation(s)
- Jordan B Bemmels
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Samuel Starko
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of Western Australia, School of Biological Sciences, Stirling Highway, Crawley, WA 6009, Australia
| | - Brooke L Weigel
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA; Western Washington University, College of the Environment, High Street, Bellingham, WA 98225, USA
| | - Kaede Hirabayashi
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; University of British Columbia, Michael Smith Laboratories, East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alex Pinch
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Cassandra Elphinstone
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Megan N Dethier
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA
| | - Loren H Rieseberg
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan E Page
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Christopher J Neufeld
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia Okanagan, Department of Biology, University Way, Kelowna, BC V1V 1V7, Canada
| | - Gregory L Owens
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
6
|
Xiao J, Wang WX. Genomic evidence for demographic fluctuations, genetic burdens and adaptive divergence in fourfinger threadfin Eleutheronema rhadinum. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:66-78. [PMID: 40027332 PMCID: PMC11871173 DOI: 10.1007/s42995-024-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Declining populations and bottlenecks lead to the accumulation of deleterious mutations in fish populations. These processes also trigger genetic purging, which is a key genetic factor in reducing the deleterious burdens and increasing population viability. However, there is a lack of empirical evidence on the interaction between demographic history and the genome-wide pattern of deleterious variations. Here, we generated genome resequencing data of Eleutheronema rhadinum from China and Thailand, representing the major distribution of the species' southern regions. E. rhadinum had exceptionally low genome-wide variability and experienced dramatic population expansions followed by continuous declines. The geographical divergence, which occurred ~ 23,000 years ago, shaped different demographic trajectories and generated different regional patterns of deleterious mutations in China and Thailand populations. Several lines of evidence revealed that this geographical pattern of deleterious mutation was driven by the purging of highly deleterious mutations. We showed that purifying selection had inbreeding-associated fitness costs and was more efficient against missense mutations in the Thailand population, which had the lowest genetic burden of homozygous deleterious mutations. Multiple evolutionarily conserved protein domains were disrupted by the loss-of-function mutations, posing a high probability of gene functionality elimination. Moreover, thermal and salinity genes (Trpm3, Nek4, Gtf2f2, Cldn14) were identified in genomic divergence regions of E. rhadinum among China and Thailand populations. Our findings highlight the importance of demographic history factors shaping the geographical patterns of deleterious mutations. The results serve to deepen our understanding of the adaptive evolution and divergence of E. rhadinum with implications for other marine fish. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00276-4.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
7
|
Xiao Q, Shi XD, Shi L, Yao ZY, Chen YH, Yang WZ, Liao ZY, Qi Y. Enhanced risk assessment framework integrating distribution dynamics, genetically inferred populations, and morphological traits of Diploderma lizards. Zool Res 2025; 46:15-26. [PMID: 39757017 DOI: 10.24272/j.issn.2095-8137.2024.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Assessing the threat status of species in response to global change is critical for biodiversity monitoring and conservation efforts. However, current frameworks, even the IUCN Red List, often neglect critical factors such as genetic diversity and the impacts of climate and land-use changes, hindering effective conservation planning. To address these limitations, we developed an enhanced extinction risk assessment framework using Diploderma lizards as a model. This framework incorporates long-term field surveys, environmental data, and land-use information to predict distributional changes for 10 recently described Diploderma species on the Qinghai-Xizang Plateau, which hold ecological significance but remain underassessed in conservation assessment. By integrating the distribution data and genetically inferred effective population sizes ( Ne), we conducted scenario analyses and used a rank-sum approach to calculate Risk ranking scores (RRS) for each species. This approach revealed significant discrepancies with the IUCN Red List assessments. Notably, D. yangi and D. qilin were identified as facing the highest extinction risk. Furthermore, D. vela, D. batangense, D. flaviceps, D. dymondi, D. yulongense, and D. laeviventre, currently classified as "Least Concern", were found to warrant reclassification as "Vulnerable" due to considerable threat from projected range contractions. Exploring the relationship between morphology and RRS revealed that traits such as snout-vent length and relative tail length could serve as potential predictors of extinction risk, offering preliminary metrics for assessing species vulnerability when comprehensive data are unavailable. This study enhances the precision of extinction risk assessment frameworks and demonstrates their capacity to refine and update risk assessments, especially for lesser-known taxa.
Collapse
Affiliation(s)
- Qi Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiu-Dong Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Lin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Zhong-Yi Yao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - You-Hua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Wei-Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Zi-Yan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China. E-mail:
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
- Mangkang Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China. E-mail:
| |
Collapse
|
8
|
Bernard AM, Mehlrose MR, Finnegan KA, Wetherbee BM, Shivji MS. Connections Across Open Water: A Bi-Organelle, Genomics-Scale Assessment of Atlantic-Wide Population Dynamics in a Pelagic, Endangered Apex Predator Shark ( Isurus oxyrinchus). Evol Appl 2025; 18:e70071. [PMID: 39850807 PMCID: PMC11754249 DOI: 10.1111/eva.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (Isurus oxyrinchus), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach. Complete mitochondrial genome (mitogenome) sequences and genome-wide SNPs from sharks distributed across the Atlantic revealed contrasting patterns of population structure across marker types. Consistent with this species' long-distance migratory capabilities, SNPs showed high connectivity and Atlantic panmixia overall. In contrast, there was matrilineal population genetic structure across Northern and Southern Hemispheres, suggesting at least large regional-scale female philopatry. Linkage disequilibrium network analysis indicated that makos possess a chromosomal inversion that occurs Atlantic wide, a genome feature that may be informative for evolutionary investigations concerning adaptations and the global history of this iconic species. Mitogenome diversity in Atlantic makos was high compared to other elasmobranchs assessed at the mitogenome level, and nuclear diversity was high compared to the two other, highly migratory pelagic shark species assessed with SNPs. These results support management efforts for shortfin makos on at least Northern versus Southern Hemisphere scales to preserve their matrilineal genetic distinctiveness. The overall comparative genetic diversity findings provide a baseline for future comparative assessments and monitoring of genetic diversity, as called for by the United Nations Convention on Biological Diversity, and cautious optimism regarding the health and recovery potential of Atlantic shortfin makos if further population declines can be halted.
Collapse
Affiliation(s)
- Andrea M. Bernard
- Save Our Seas Foundation Shark Research Center, Halmos College of Arts & SciencesNova Southeastern UniversityDaniaFloridaUSA
| | - Marissa R. Mehlrose
- Save Our Seas Foundation Shark Research Center, Halmos College of Arts & SciencesNova Southeastern UniversityDaniaFloridaUSA
- Guy Harvey Research Institute, Halmos College of Arts & Sciences, Nova Southeastern UniversityDaniaFloridaUSA
| | - Kimberly A. Finnegan
- Save Our Seas Foundation Shark Research Center, Halmos College of Arts & SciencesNova Southeastern UniversityDaniaFloridaUSA
| | - Bradley M. Wetherbee
- Guy Harvey Research Institute, Halmos College of Arts & Sciences, Nova Southeastern UniversityDaniaFloridaUSA
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Mahmood S. Shivji
- Save Our Seas Foundation Shark Research Center, Halmos College of Arts & SciencesNova Southeastern UniversityDaniaFloridaUSA
- Guy Harvey Research Institute, Halmos College of Arts & Sciences, Nova Southeastern UniversityDaniaFloridaUSA
| |
Collapse
|
9
|
Hoban S, Hvilsom C, Aissi A, Aleixo A, Bélanger J, Biala K, Ekblom R, Fedorca A, Funk WC, Goncalves AL, Gonzalez A, Heuertz M, Hughes A, Ishihama F, Stroil BK, Laikre L, McGowan PJK, Millette KL, O'Brien D, Paz-Vinas I, Rincón-Parra VJ, Robuchon M, Rodríguez JP, Rodríguez-Morales MA, Segelbacher G, Straza TRA, Susanti R, Tshidada N, Vilaça ST, da Silva JM. How can biodiversity strategy and action plans incorporate genetic diversity and align with global commitments? Bioscience 2025; 75:47-60. [PMID: 39911160 PMCID: PMC11791525 DOI: 10.1093/biosci/biae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 02/07/2025] Open
Abstract
National, subnational, and supranational entities are creating biodiversity strategy and action plans (BSAPs) to develop concrete commitments and actions to curb biodiversity loss, meet international obligations, and achieve a society in harmony with nature. In light of policymakers' increasing recognition of genetic diversity in species and ecosystem adaptation and resilience, this article provides an overview of how BSAPs can incorporate species' genetic diversity. We focus on three areas: setting targets; committing to actions, policies, and programs; and monitoring and reporting. Drawing from 21 recent BSAPs, we provide examples of policies, knowledge, projects, capacity building, and more. We aim to enable and inspire specific and ambitious BSAPs and have put forward 10 key suggestions mapped to the policy cycle. Together, scientists and policymakers can translate high level commitments, such as the Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework, into concrete nationally relevant targets, actions and policies, and monitoring and reporting mechanisms.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, Colorado State University, Fort Collins, Colorado, United States
| | | | - Abdeldjalil Aissi
- LAPAPEZA, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna, Algeria
| | | | - Julie Bélanger
- Office of Climate Change, Biodiversity and Environment, Food and Agriculture Organization, United Nations, Rome, Italy
| | | | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Ancuta Fedorca
- National Institute for Research and Development, Forestry Marin Dracea, Department of Silviculture, Transilvania University, Brasov, Romania
| | - W Chris Funk
- Colorado State University, Fort Collins, Colorado, United States
- CSU Global Biodiversity Center
| | - Alejandra Lorena Goncalves
- National University of Misiones, National Council of Scientific and Technical Research, Institute of Subtropical Biology, Posadas, Argentina
| | - Andrew Gonzalez
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | | | - Alice Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Fumiko Ishihama
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Belma Kalamujic Stroil
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Society for Genetic Conservation of B&H Endemic and Autochthonous Resources GENOFOND, Sarajevo, Bosnia and Herzegovina
| | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philip J K McGowan
- Newcastle University, Newcastle upon Tyne, England, United Kingdom
- IUCN Species Survival Commission Global Biodiversity Framework Task Force
| | - Katie L Millette
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | - David O'Brien
- NatureScot, Inverness, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ivan Paz-Vinas
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne, France
| | | | - Marine Robuchon
- Joint Research Centre of the European Commission, Ispra, Italy
| | - Jon Paul Rodríguez
- IUCN Species Survival Commission
- Center for Ecology of the Venezuelan Institute for Scientific Investigations, Caracas, Venezuela
| | | | - Gernot Segelbacher
- Chair of Wildlife Ecology and Management, University Freiburg, Freiburg, Germany
| | - Tiffany R A Straza
- Secretariat of the Pacific Regional Environment Programme, Apia, Samoa
- United Nations Educational, Scientific, and Cultural Organization, Paris, France
| | - Ruliyana Susanti
- Research Center for Ecology and Ethnobiology
- Secretariat of Scientific Authority for Biodiversity, National Research and Innovation Agency, Indonesia
| | | | | | - Jessica M da Silva
- South African National Biodiversity Institute, Cape Town, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Kardos M, Keller LF, Funk WC. What Can Genome Sequence Data Reveal About Population Viability? Mol Ecol 2024:e17608. [PMID: 39681836 DOI: 10.1111/mec.17608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Biologists have long sought to understand the impacts of deleterious genetic variation on fitness and population viability. However, our understanding of these effects in the wild is incomplete, in part due to the rarity of sufficient genetic and demographic data needed to measure their impact. The genomics revolution is promising a potential solution by predicting the effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences alone bypassing the need for costly demographic data. After a historical perspective on the theoretical and empirical basis of our understanding of the dynamics and fitness effects of deleterious genetic variation, we evaluate the potential for these new genomic measures of genetic load to predict population viability. We argue that current genomic analyses alone cannot reliably predict the effects of deleterious genetic variation on population growth, because these depend on demographic, ecological and genetic parameters that need more than just genome sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to improve our understanding of the composition of the genetic load, they are currently of little use for evaluating population viability. Demographic data and ecological context remain crucial to our understanding of the consequences of deleterious genetic variation for population fitness. However, when combined with such demographic and ecological data, genomic information can offer important insights into genetic variation and inbreeding that are crucial for conservation decision making.
Collapse
Affiliation(s)
- Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies & Natural History Museum, University of Zurich, Zurich, Switzerland
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Black JG, Cooper SJB, Schmidt TL, Weeks AR. Simulating Genetic Mixing in Strongly Structured Populations of the Threatened Southern Brown Bandicoot ( Isoodon obesulus). Evol Appl 2024; 17:e70050. [PMID: 39650626 PMCID: PMC11621039 DOI: 10.1111/eva.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 12/11/2024] Open
Abstract
Genetic mixing aims to increase the genetic diversity of small or isolated populations, by mitigating genetic drift and inbreeding depression, either by maximally increasing genetic diversity, or minimising the prevalence of recessive, deleterious alleles. However, few studies investigate this beyond a single generation of mixing. Here, we model genetic mixing using captive, low-diversity recipient population of the threatened Southern brown bandicoot (Isoodon obesulus) over 50 generations and compare wild populations across south-eastern Australia as candidate source populations. We first assess genetic differentiation between 12 populations, including the first genomic assessment of three mainland Australian and three Tasmanian populations. We assess genetic diversity in the 12 populations using an individualised autosomal heterozygosity pipeline, using these results to identify a candidate recipient population for genetic mixing simulations. We found that populations fell into four major groups of genetic similarity: Adelaide Hills, western Victoria, eastern Victoria, and Tasmania, but populations within these groups were also distinct, and additional substructure was observed in some populations. Our autosomal heterozygosity pipeline indicated significant variability in mean heterozygosity between populations, identifying one extremely genetically degraded population on Inner Sister Island, Tasmania. Genetic mixing simulations of a low heterozygosity captive population in Victoria suggested the greatest increase in heterozygosity would be reached by using highly differentiated populations as mixing sources. However, when removing populations that may represent taxonomically discrete lineages, neither metrics of differentiation nor heterozygosity was strongly correlated with modelled heterozygosity increase, indicating the value of simulation-based approaches when selecting source populations for population mixing.
Collapse
Affiliation(s)
- John G. Black
- School of BiosciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Steven J. B. Cooper
- School of Biological Sciences and the Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Thomas L. Schmidt
- School of BiosciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Andrew R. Weeks
- School of BiosciencesThe University of MelbourneMelbourneVictoriaAustralia
- Cesar AustraliaBrunswickVictoriaAustralia
| |
Collapse
|
12
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Bagaturov MF, Vaissi S, Heshmatzad P, Janzen P, Swegen A, Strand J, McGinnity D. The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:3395. [PMID: 39682361 DOI: 10.3390/ani14233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth's biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management. This change can economically and reliably perpetuate species irrespective of environmental targets and extend to satisfy humanity's future needs as the biosphere expands into space. Currently applied RBCs include the hormonal stimulation of reproduction, the collection and refrigerated storage of sperm and oocytes, sperm cryopreservation, in vitro fertilization, and biobanking of germplasm and somatic cells. The benefits of advanced biotechnologies in development, such as assisted evolution and cloning for species adaptation or restoration, have yet to be fully realized. We broaden our discussion to include genetic management, political and cultural engagement, and future applications, including the extension of the biosphere through humanity's interplanetary and interstellar colonization. The development and application of RBCs raise intriguing ethical, theological, and philosophical issues. We address these themes with amphibian models to introduce the Multidisciplinary Digital Publishing Institute Special Issue, The Sixth Mass Extinction and Species Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs.
Collapse
Affiliation(s)
- Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize 91011, Belize
| | - Qinghua Luo
- Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Pei Wang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Nabil Mansour
- Fujairah Research Centre, University of Science and Technology of Fujairah, Fujairah P.O. Box 2202, United Arab Emirates
| | - Svetlana A Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Edith N Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Natalia V Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Victor K Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Ludmila I Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, Karnataka, India
| | - Mikhail F Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Northern Region, Russia
- Leningrad Zoo, St. Petersburg 197198, Northern Region, Russia
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
| | - Pouria Heshmatzad
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran
| | - Peter Janzen
- Justus-von-Liebig-Schule, 47166 Duisburg, Germany
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Julie Strand
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Ost, Denmark and Randers Regnskov, Torvebryggen 11, 8900 Randers C, Denmark
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA
| |
Collapse
|
13
|
Pereira H, Chakarov N, Caspers BA, Gilles M, Jones W, Mijoro T, Zefania S, Székely T, Krüger O, Hoffman JI. The gut microbiota of three avian species living in sympatry. BMC Ecol Evol 2024; 24:144. [PMID: 39574002 PMCID: PMC11580620 DOI: 10.1186/s12862-024-02329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Evolutionary divergence and genetic variation are often linked to differences in microbial community structure and diversity. While environmental factors and diet heavily influence gut microbial communities, host species contributions are harder to quantify. Closely related species living in sympatry provide a unique opportunity to investigate species differences without the confounding effects of habitat and dietary variation. We therefore compared and contrasted the gut microbiota of three sympatric plover species: the widespread Kittlitz's and white-fronted plovers (Anarhynchus pecuarius and A. marginatus) and the endemic and vulnerable Madagascar plover (A. thoracicus). RESULTS We found no significant differences in the beta diversity (composition) of the gut microbiota of the three species. However, A. thoracicus exhibited higher intraspecific compositional similarity (i.e. lower pairwise distances) than the other two species; this pattern was especially pronounced among juveniles. By contrast, microbial alpha diversity varied significantly among the species, being highest in A. pecuarius, intermediate in A. marginatus and lowest in A. thoracicus. This pattern was again stronger among juveniles. Geographical distance did not significantly affect the composition of the gut microbiota, but genetic relatedness did. CONCLUSION While patterns of microbial diversity varied across species, the lack of compositional differences suggests that habitat and diet likely exert a strong influence on the gut microbiota of plovers. This may be enhanced by their precocial, ground-dwelling nature, which could facilitate the horizontal transmission of microbes from the environment. We hypothesise that gut microbiota diversity in plovers primarily reflects the ecological pool of microbiota, which is subsequently modified by host-specific factors including genetics. The reduced microbial and genetic diversity of the endemic A. thoracicus may hinder its ability to adapt to environmental changes, highlighting the need for increased conservation efforts for this vulnerable species.
Collapse
Grants
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 316099922 Deutsche Forschungsgemeinschaft
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- 396780709 Deutsche Forschungsgemeinschaft,
- Universität Bielefeld (3146)
Collapse
Affiliation(s)
- Hugo Pereira
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - William Jones
- Institut Supérieur de Technologie de Menabe, Université of Toliara & Morondava, Toliara, 601, Madagascar
| | - Tafitasoa Mijoro
- HUN-REN-Debrecen University Reproductive Strategies Research Group, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Sama Zefania
- HUN-REN-Debrecen University Reproductive Strategies Research Group, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Tamás Székely
- Institut Supérieur de Technologie de Menabe, Université of Toliara & Morondava, Toliara, 601, Madagascar
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Evolutionary Population Genetics, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, Bielefeld, 33615, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| |
Collapse
|
14
|
Fuentes L, Guevara-Suarez M, Zambrano MM, Jiménez P, Duitama J, Restrepo S. Genetic diversity of Anadara tuberculosa in two localities of the Colombian Pacific Coast. Sci Rep 2024; 14:28467. [PMID: 39557973 PMCID: PMC11574214 DOI: 10.1038/s41598-024-78869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Piangua, Anadara tuberculosa, is an economically important mollusk for the human population living on the Colombian Pacific Coast. In the last years, the demand and exploitation of this mollusk have increased, putting it at risk to the point of being endangered. This research aimed to identify the genetic diversity and population structure of piangua in two localities on the Pacific Coast of Colombia. We assembled a chromosome-level genome using PacBio-Hifi and Arima sequencing. We obtained 274 scaffolds with an N50 of 45.42 Mbp, a total size of 953 Mbp, and a completeness of 91% based on BUSCO scores. The transposable elements accounted for 30.29% of the genome, and 24,317 genes were annotated. Genome-guided variant calling for 89 samples using DArT sequencing data delivered 4,825 bi-allelic SNPs, which supported genetic diversity and population structure analyses. Data showed that the piangua populations in the two localities were under expansion events more than 100k years ago. However, results also showed a reduction in genetic diversity, as evidenced by the loss of heterozygosity, which may be caused by high levels of inbreeding, probably due to a recent overexploitation. Furthermore, although we evidenced gene flow between the two localities, there is also a subtle geographical population structure between the two localities and among mangroves in one of the localities. This is the first study in Colombia that provides relevant genetic information on piangua to lay the foundations for conservation strategies.
Collapse
Affiliation(s)
- Luis Fuentes
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Biological Sciences, Department of Food and Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
- Applied genomics research group, Vice president of Research, Universidad de Los Andes, Bogotá, Colombia
| | - Marcela Guevara-Suarez
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Biological Sciences, Department of Food and Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
- Applied genomics research group, Vice president of Research, Universidad de Los Andes, Bogotá, Colombia
| | | | - Pedro Jiménez
- Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Jorge Duitama
- Department of System and Computing Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Biological Sciences, Department of Food and Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia.
- Boyce Thompson Institute, Ithaca, NY, USA.
| |
Collapse
|
15
|
Cheng X, Steinrücken M. Population Genomic Scans for Natural Selection and Demography. Annu Rev Genet 2024; 58:319-339. [PMID: 39227130 DOI: 10.1146/annurev-genet-111523-102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Uncovering the fundamental processes that shape genomic variation in natural populations is a primary objective of population genetics. These processes include demographic effects such as past changes in effective population size or gene flow between structured populations. Furthermore, genomic variation is affected by selection on nonneutral genetic variants, for example, through the adaptation of beneficial alleles or balancing selection that maintains genetic variation. In this article, we discuss the characterization of these processes using population genetic models, and we review methods developed on the basis of these models to unravel the underlying processes from modern population genomic data sets. We briefly discuss the conditions in which these approaches can be used to infer demography or identify specific nonneutral genetic variants and cases in which caution is warranted. Moreover, we summarize the challenges of jointly inferring demography and selective processes that affect neutral variation genome-wide.
Collapse
Affiliation(s)
- Xiaoheng Cheng
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA;
| | - Matthias Steinrücken
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
16
|
Castillo-Rodríguez N, Saldarriaga-Gómez AM, Antelo R, Vargas-Ramírez M. First genetic evaluation of a wild population of Crocodylus intermedius: New insights for the recovery of a Critically Endangered species. PLoS One 2024; 19:e0311412. [PMID: 39361668 PMCID: PMC11449319 DOI: 10.1371/journal.pone.0311412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
During the second third of last century, the Orinoco Crocodile (Crocodylus intermedius) underwent a hunting process driven by the demand from the North American, European, and Japanese leather industry, resulting in a sharp decline of its populations. Currently, only two known remaining populations of this Critically Endangered species persist in the Colombian Orinoquía: in the Guayabero-Duda-Lozada and the Cravo Norte-Ele-Lipa River Systems. The latter has been the only population subject of study, including recent surveys and local conservation initiatives such as egg and hatchling ranching. Despite suggestions for population recovery based on the observed increase in clutches in the area, information regarding its genetic status has been pending assessment. This research aims to provide a genetic characterization of this remaining population and to evaluate the diversity recovered during a period of the egg ranching initiative. For this purpose, we utilized variable molecular markers, specifically 17 microsatellite loci, nuclear DNA. Despite revealing intermediate levels of genetic diversity, we identified an effective population size of 11.5-17, well below the minimum values proposed for short-term subsistence. While no evidence of inbreeding was found, it is acknowledged as a potential risk based on the population's history. Additionally, we detected a historical bottleneck possibly influenced by arid periods affecting the region since the Pleistocene. While the evaluated population presents a unique opportunity for C. intermedius conservation, it also exposes a high risk of entering the extinction vortex. The primary action to be taken is to support the egg and hatchling ranching program, which successfully recovered most of the genetic diversity present in the population.
Collapse
Affiliation(s)
- Nicolás Castillo-Rodríguez
- Grupo de Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ana M. Saldarriaga-Gómez
- Grupo de Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Estación de Biología Tropical Roberto Franco, Universidad Nacional de Colombia, Villavicencio, Colombia
- Department of Biological Sciences, Fordham University, Bronx, New York, United Stated of America
| | | | - Mario Vargas-Ramírez
- Grupo de Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Estación de Biología Tropical Roberto Franco, Universidad Nacional de Colombia, Villavicencio, Colombia
| |
Collapse
|
17
|
Clarke JG, Smith AC, Cullingham CI. Genetic rescue often leads to higher fitness as a result of increased heterozygosity across animal taxa. Mol Ecol 2024; 33:e17532. [PMID: 39279498 DOI: 10.1111/mec.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Biodiversity loss has reached critical levels partly due to anthropogenic habitat loss and degradation. These landscape changes are damaging as they can fragment species distributions into small, isolated populations, resulting in limited gene flow, population declines and reduced adaptive potential. Genetic rescue, the translocation of individuals to increase genetic diversity and ultimately fitness, has produced promising results for fragmented populations but remains underutilized due to a lack of long-term data and monitoring. To promote a better understanding of genetic rescue and its potential risks and benefits over the short-term, we reviewed and analysed published genetic rescue attempts to identify whether genetic diversity increases following translocation, and if this change is associated with increased fitness. Our review identified 19 studies that provided genetic and fitness data from before and after the translocation; the majority of these were on mammals, and included experimental, natural and conservation-motivated translocations. Using a Bayesian meta-analytical approach, we found that on average, genetic diversity and fitness increased in populations post translocations, although there were some exceptions to this trend. Overall, genetic diversity was a positive predictor of population fitness, and in some cases this relationship extended three generations post-rescue. These data suggest a single translocation can have lasting fitness benefits, and support translocation as another tool to facilitate conservation success. Given the limited number of studies with long-term data, we echo the need for genetic monitoring of populations post-translocation to understand whether genetic rescue can also limit the loss of adaptive potential in the long-term.
Collapse
Affiliation(s)
- Julia G Clarke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Adam C Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
18
|
Salamon M, Astorg L, Paccard A, Chain F, Hendry A, Derry A, Barrett R. Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator. Evol Appl 2024; 17:e70004. [PMID: 39439433 PMCID: PMC11493756 DOI: 10.1111/eva.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod Amnicola limosus is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (Neogobius melanostomus, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of A. limosus to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F0 A. limosus sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.
Collapse
Affiliation(s)
| | - Louis Astorg
- Université du Québec à MontréalMontrealQuebecCanada
| | | | - Frederic Chain
- University of Massachusetts LowellLowellMassachusettsUSA
| | | | | | | |
Collapse
|
19
|
Wei S, Fan H, Zhou W, Huang G, Hua Y, Wu S, Wei X, Chen Y, Tan X, Wei F. Conservation genomics of the critically endangered Chinese pangolin. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2051-2061. [PMID: 38970727 DOI: 10.1007/s11427-023-2540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/07/2024] [Indexed: 07/08/2024]
Abstract
The Chinese pangolin (Manis pentadactyla, MP) has been extensively exploited and is now on the brink of extinction, but its population structure, evolutionary history, and adaptive potential are unclear. Here, we analyzed 94 genomes from three subspecies of the Chinese pangolin and identified three distinct genetic clusters (MPA, MPB, and MPC), with MPB further divided into MPB1 and MPB2 subpopulations. The divergence of these populations was driven by past climate change. For MPB2 and MPC, recent human activities have caused dramatic population decline and small population size as well as increased inbreeding, but not decrease in genomic variation and increase in genetic load probably due to strong gene flow; therefore, it is crucial to strengthen in situ habitat management for these two populations. By contrast, although human activities have a milder impact on MPA, it is at high risk of extinction due to long-term contraction and isolation, and genetic rescue is urgently needed. MPB1 exhibited a relatively healthy population status and can potentially serve as a source population. Overall, our findings provide novel insights into the conservation of the Chinese pangolin and biogeography of the mammals of eastern Asia.
Collapse
Affiliation(s)
- Shichao Wei
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Huizhong Fan
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Guangping Huang
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shibao Wu
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiao Wei
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, 530003, China
| | - Yiting Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xinyue Tan
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Fuwen Wei
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Silva GAA, Harder AM, Kirksey KB, Mathur S, Willoughby JR. Detectability of runs of homozygosity is influenced by analysis parameters and population-specific demographic history. PLoS Comput Biol 2024; 20:e1012566. [PMID: 39480880 PMCID: PMC11556709 DOI: 10.1371/journal.pcbi.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/12/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Wild populations are increasingly threatened by human-mediated climate change and land use changes. As populations decline, the probability of inbreeding increases, along with the potential for negative effects on individual fitness. Detecting and characterizing runs of homozygosity (ROHs) is a popular strategy for assessing the extent of individual inbreeding present in a population and can also shed light on the genetic mechanisms contributing to inbreeding depression. Here, we analyze simulated and empirical datasets to demonstrate the downstream effects of program selection and long-term demographic history on ROH inference, leading to context-dependent biases in the results. Through a sensitivity analysis we evaluate how various parameter values impact ROH-calling results, highlighting its utility as a tool for parameter exploration. Our results indicate that ROH inferences are sensitive to factors such as sequencing depth and ROH length distribution, with bias direction and magnitude varying with demographic history and the programs used. Estimation biases are particularly pronounced at lower sequencing depths, potentially leading to either underestimation or overestimation of inbreeding. These results are particularly important for the management of endangered species, as underestimating inbreeding signals in the genome can substantially undermine conservation initiatives. We also found that small true ROHs can be incorrectly lumped together and called as longer ROHs, leading to erroneous inference of recent inbreeding. To address these challenges, we suggest using a combination of ROH detection tools and ROH length-specific inferences, along with sensitivity analysis, to generate robust and context-appropriate population inferences regarding inbreeding history. We outline these recommendations for ROH estimation at multiple levels of sequencing effort, which are typical of conservation genomics studies.
Collapse
Affiliation(s)
- Gabriel A. A. Silva
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Avril M. Harder
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Kenneth B. Kirksey
- Walker College of Business, Appalachian State University, Boone, North Carolina, United States of America
| | - Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
21
|
Lok S, Lau TNH, Trost B, Tong AHY, Paton T, Wintle RF, Engstrom MD, Gunn A, Scherer SW. Chromosomal-level reference genome assembly of muskox (Ovibos moschatus) from Banks Island in the Canadian Arctic, a resource for conservation genomics. Sci Rep 2024; 14:21023. [PMID: 39284808 PMCID: PMC11405533 DOI: 10.1038/s41598-024-67270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
The muskox (Ovibos moschatus), an integral component and iconic symbol of arctic biocultural diversity, is under threat by rapid environmental disruptions from climate change. We report a chromosomal-level haploid genome assembly of a muskox from Banks Island in the Canadian Arctic Archipelago. The assembly has a contig N50 of 44.7 Mbp, a scaffold N50 of 112.3 Mbp, a complete representation (100%) of the BUSCO v5.2.2 set of 9225 mammalian marker genes and is anchored to the 24 chromosomes of the muskox. Tabulation of heterozygous single nucleotide variants in our specimen revealed a very low level of genetic diversity, which is consistent with recent reports of the muskox having the lowest genome-wide heterozygosity among the ungulates. While muskox populations are currently showing no overt signs of inbreeding depression, environmental disruptions are expected to strain the genomic resilience of the species. One notable impact of rapid climate change in the Arctic is the spread of emerging infectious and parasitic diseases in the muskox, as exemplified by the range expansion of muskox lungworms, and the recent fatal outbreaks of Erysipelothrix rhusiopathiae, a pathogen normally associated with domestic swine and poultry. As a genomics resource for conservation management of the muskox against existing and emerging disease modalities, we annotated the genes of the major histocompatibility complex on chromosome 2 and performed an initial assessment of the genetic diversity of this complex. This resource is further supported by the annotation of the principal genes of the innate immunity system, genes that are rapidly evolving and under positive selection in the muskox, genes associated with environmental adaptations, and the genes associated with socioeconomic benefits for Arctic communities such as wool (qiviut) attributes. These annotations will benefit muskox management and conservation.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Tara Paton
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | | | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- McLaughlin Centre, University of Toronto, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
22
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
23
|
Zhang J, Aunins AW, King TL, Cong Q, Shen J, Song L, Schuurman GW, Knutson RL, Grundel R, Hellmann J, Grishin NV. Range-wide population genomic structure of the Karner blue butterfly, Plebejus ( Lycaeides) samuelis. Ecol Evol 2024; 14:e70044. [PMID: 39279793 PMCID: PMC11392825 DOI: 10.1002/ece3.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
The Karner blue butterfly, Plebejus (Lycaeides) samuelis, is an endangered North American climate change-vulnerable species that has undergone substantial historical habitat loss and population decline. To better understand the species' genetic status and support Karner blue conservation, we sampled 116 individuals from 22 localities across the species' geographical range in Wisconsin (WI), Michigan (MI), Indiana (IN), and New York (NY). Using genomic analysis, we found that these samples were divided into three major geographic groups, NY, WI, and MI-IN, with populations in WI and MI-IN each further divided into three subgroups. A high level of inbreeding was revealed by inbreeding coefficients above 10% in almost all populations in our study. However, strong correlation between F ST and geographical distance suggested that genetic divergence between populations increases with distance, such that introducing individuals from more distant populations may be a useful strategy for increasing population-level diversity and preserving the species. We also found that Karner blue populations had lower genetic diversity than closely related species and had more alleles that were present only at low frequencies (<5%) in other species. Some of these alleles may negatively impact individual fitness and may have become prevalent in Karner blue populations due to inbreeding. Finally, analysis of these possibly deleterious alleles in the context of predicted three-dimensional structures of proteins revealed potential molecular mechanisms behind population declines, providing insights for conservation. This rich new range-wide understanding of the species' population genomic structure can contextualize past extirpations and help conserve and even enhance Karner blue genetic diversity.
Collapse
Affiliation(s)
- Jing Zhang
- Eugene McDermott Center for Human Growth and Development University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biophysics University of Texas Southwestern Medical Center Dallas Texas USA
- Harold C. Simmons Comprehensive Cancer Center University of Texas Southwestern Medical Center Dallas Texas USA
| | - Aaron W Aunins
- U.S. Geological Survey, Eastern Ecological Science Center at the Leetown Research Laboratory Kearneysville West Virginia USA
| | - Timothy L King
- U.S. Geological Survey, Eastern Ecological Science Center at the Leetown Research Laboratory Kearneysville West Virginia USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biophysics University of Texas Southwestern Medical Center Dallas Texas USA
- Harold C. Simmons Comprehensive Cancer Center University of Texas Southwestern Medical Center Dallas Texas USA
| | - Jinhui Shen
- Department of Biophysics University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biochemistry University of Texas Southwestern Medical Center Dallas Texas USA
| | - Leina Song
- Department of Biophysics University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biochemistry University of Texas Southwestern Medical Center Dallas Texas USA
| | - Gregor W Schuurman
- U.S. National Park Service, Climate Change Response Program Fort Collins Colorado USA
| | - Randy L Knutson
- U.S. National Park Service, Indiana Dunes National Park Porter Indiana USA
| | - Ralph Grundel
- U.S. Geological Survey, Great Lakes Science Center Chesterton Indiana USA
| | - Jessica Hellmann
- Department of Ecology, Evolution and Behavior, Institute on the Environment University of Minnesota Minneapolis Minnesota USA
| | - Nick V Grishin
- Department of Biophysics University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biochemistry University of Texas Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
24
|
Kristensen TN, Schönherz AA, Rohde PD, Sørensen JG, Loeschcke V. Selection for stress tolerance and longevity in Drosophila melanogaster have strong impacts on microbiome profiles. Sci Rep 2024; 14:17789. [PMID: 39090347 PMCID: PMC11294339 DOI: 10.1038/s41598-024-68753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
There is experimental evidence that microbiomes have a strong influence on a range of host traits. Understanding the basis and importance of symbiosis between host and associated microorganisms is a rapidly developing research field, and we still lack a mechanistic understanding of ecological and genetic pressures affecting host-microbiome associations. Here Drosophila melanogaster lines from a large-scale artificial selection experiment were used to investigate whether the microbiota differ in lines selected for different stress resistance traits and longevity. Following multiple generations of artificial selection all selection regimes and corresponding controls had their microbiomes assessed. The microbiome was interrogated based on 16S rRNA sequencing. We found that the microbiome of flies from the different selection regimes differed markedly from that of the unselected control regime, and microbial diversity was consistently higher in selected relative to control regimes. Several common Drosophila bacterial species showed differentially abundance in the different selection regimes despite flies being exposed to similar environmental conditions for two generations prior to assessment. Our findings provide strong evidence for symbiosis between host and microbiomes but we cannot reveal whether the interactions are adaptive, nor whether they are caused by genetic or ecological factors.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - Anna A Schönherz
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
25
|
Wang X, Reid K, Chen Y, Dudgeon D, Merilä J. Ecological genetics of isolated loach populations indicate compromised adaptive potential. Heredity (Edinb) 2024; 133:88-98. [PMID: 38961235 PMCID: PMC11286901 DOI: 10.1038/s41437-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Many endangered species live in fragmented and isolated populations with low genetic variability, signs of inbreeding, and small effective population sizes - all features elevating their extinction risk. The flat-headed loach (Oreonectes platycephalus), a small noemacheilid fish, is widely across southern China, but only in the headwaters of hillstreams; as a result, they are spatially isolated from conspecific populations. We surveyed single nucleotide polymorphisms in 16 Hong Kong populations of O. platycephalus to determine whether loach populations from different streams were genetically isolated from each other, showed low levels of genetic diversity, signs of inbreeding, and had small contemporary effective population sizes. Estimates of average observed heterozygosity (HO = 0.0473), average weighted nucleotide diversity (πw = 0.0546) and contemporary effective population sizes (Ne = 10.2 ~ 129.8) were very low, and several populations showed clear signs of inbreeding as judged from relatedness estimates. The degree of genetic differentiation among populations was very high (average FST = 0.668), even over short geographic distances (<1.5 km), with clear patterns of isolation by distance. These results suggest that Hong Kong populations of O. platycephalus have experienced strong genetic drift and loss of genetic variability because sea-level rise after the last glaciation reduced connectedness among paleodrainages, isolating populations in headwaters. All this, together with the fact that the levels of genetic diversity and contemporary effective population sizes within O. platycephalus populations are lower than most other freshwater fishes, suggests that they face high local extinction risk and have limited capacity for future adaptation.
Collapse
Affiliation(s)
- Xi Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - David Dudgeon
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Onorato DP, Cunningham MW, Lotz M, Criffield M, Shindle D, Johnson A, Clemons BCF, Shea CP, Roelke-Parker ME, Johnson WE, McClintock BT, Pilgrim KL, Schwartz MK, Oli MK. Multi-generational benefits of genetic rescue. Sci Rep 2024; 14:17519. [PMID: 39080286 PMCID: PMC11289468 DOI: 10.1038/s41598-024-67033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Genetic rescue-an increase in population fitness following the introduction of new alleles-has been proven to ameliorate inbreeding depression in small, isolated populations, yet is rarely applied as a conservation tool. A lingering question regarding genetic rescue in wildlife conservation is how long beneficial effects persist in admixed populations. Using data collected over 40 years from 1192 endangered Florida panthers (Puma concolor coryi) across nine generations, we show that the experimental genetic rescue implemented in 1995-via the release of eight female pumas from Texas-alleviated morphological, genetic, and demographic correlates of inbreeding depression, subsequently preventing extirpation of the population. We present unequivocal evidence, for the first time in any terrestrial vertebrate, that genetic and phenotypic benefits of genetic rescue remain in this population after five generations of admixture, which helped increase panther abundance (> fivefold) and genetic effective population size (> 20-fold). Additionally, even with extensive admixture, microsatellite allele frequencies in the population continue to support the distinctness of Florida panthers from other North American puma populations, including Texas. Although threats including habitat loss, human-wildlife conflict, and infectious diseases are challenges to many imperiled populations, our results suggest genetic rescue can serve as an effective, multi-generational tool for conservation of small, isolated populations facing extinction from inbreeding.
Collapse
Affiliation(s)
- Dave P Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 298 Sabal Palm Rd, Naples, FL, 34114, USA.
| | - Mark W Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, 32601, USA
| | - Mark Lotz
- Division of Habitat and Species Conservation, Florida Fish and Wildlife Conservation Commission, Naples, FL, 34114, USA
| | - Marc Criffield
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 298 Sabal Palm Rd, Naples, FL, 34114, USA
| | - David Shindle
- US Fish and Wildlife Service, Florida Ecological Services Field Office, Immokalee, FL, 34142, USA
| | - Annette Johnson
- Big Cypress National Preserve, National Park Service, Ochopee, FL, 34141, USA
| | - Bambi C F Clemons
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, 32601, USA
| | - Colin P Shea
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| | | | - Warren E Johnson
- Department of Biology, Loyola University of Maryland, Baltimore, MD, 21210, USA
| | - Brett T McClintock
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA, 98115, USA
| | - Kristine L Pilgrim
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Missoula, MT, 59801, USA
| | - Michael K Schwartz
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Missoula, MT, 59801, USA
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
27
|
Napolitano C, Clavijo C, Rojas-Bonzi V, Miño CI, González-Maya JF, Bou N, Giraldo A, Martino A, Miyaki CY, Aguirre LF, Cosacov A, Milián-García Y, Prosdocimi L, Ramírez-Bravo OE, Tovar LA, Velez-Zuazo X, Barrios M, Herrera-Fernández B, Montiel-Villalobos MG, Oliveira-Miranda MA, Pool M, Santos-Murgas A, Segovia-Salcedo MC, Cecchi F, Dans AJ, Dilchand N, Lima SMQ, Novas MC, Pelz-Serrano K, Pougy N, Rodríguez I, van der Meer L, Zapata-Ríos G. Understanding the conservation-genetics gap in Latin America: challenges and opportunities to integrate genetics into conservation practices. Front Genet 2024; 15:1425531. [PMID: 39040996 PMCID: PMC11261212 DOI: 10.3389/fgene.2024.1425531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction: Integrating genetic data into conservation management decisions is a challenging task that requires strong partnerships between researchers and managers. Conservation in Latin America is of crucial relevance worldwide given the high biodiversity levels and the presence of hotspots in this region. Methods: We conducted a survey across Latin America to identify gaps and opportunities between genetic researchers and conservation managers. We aimed to better understand conservation managers' points of view and how genetic research could help conservation practitioners to achieve their goals, by implementing genetic assessments that could effectively inform conservation practices. We distributed an online survey via four regional collaborating organizations and 32 focal points based in 20 Latin American countries. The target respondents were conservation managers of species or areas in Latin America. Results: We collected a total of 468 answered questionnaires from 21 Latin American countries. Most respondents (44%) were from an academic or research institution while non-academics were mainly from non-governmental institutions (30%) and government agencies (25%). Most respondents (65%) have performed or used genetic assessments in their managed area or species, either alone, in partnership, contracting someone else or using published results. For the majority of this group, the genetic results were relevant to their conservation management goals, helping to inform management decisions. Respondents that had not performed genetic assessments (35%) were mainly from the non-academic group, and their main barriers were limited access to funds, genetic lab facilities, and trained personnel to design studies and conduct lab work. Discussion: From the findings, we describe the current situation and provide a general diagnosis of the conservation-genetics gap in Latin America. We describe the gender gap, academic-practitioner co-development of conservation questions and projects, and the nationality and residency of Latin American conservation managers in relation to the countries where they work. We discuss opportunities to co-create research questions and co-develop studies based on conservation practitioners' needs. We offer recommendations for overcoming barriers to integrate genetic information into conservation actions, and advance agendas that fit the needs and realities of the highly heterogeneous, biodiverse and challenging Latin American region.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
- Institute of Ecology and Biodiversity, Concepción, Chile
- Cape Horn International Center, Puerto Williams, Chile
| | | | - Viviana Rojas-Bonzi
- Instituto de Investigación Biológica del Paraguay, Asuncion, Paraguay
- Wildlife Ecology and Conservation Department, University of Florida, Gainesville, FL, United States
| | - Carolina I. Miño
- Laboratorio de Genética Evolutiva - LGE, Instituto de Biología Subtropical - IBS, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Universidad Nacional de Misiones (UNaM), Posadas, Argentina
| | - José F. González-Maya
- Área de Biología de la Conservación, Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Bogotá, Colombia
| | - Nadia Bou
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alan Giraldo
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | - Angela Martino
- Centro de Investigaciones en Ecología y Zonas Aridas, Universidad Nacional Experimental Francisco de Miranda, Coro, Venezuela
| | - Cristina Yumi Miyaki
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luis F. Aguirre
- Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Andrea Cosacov
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Laura Prosdocimi
- Laboratorio de Ecología, Comportamiento y Mamíferos Marinos (LECyMM), Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - O. Eric Ramírez-Bravo
- Centro de Agroecología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Eco campus Valsequillo, San Pedro Zacachimalpa, Mexico
| | - Luis Antonio Tovar
- Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Ximena Velez-Zuazo
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC, United States
| | - Mercedes Barrios
- Centro de Datos para la Conservación, Centro de Estudios Conservacionistas, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - Bernal Herrera-Fernández
- Instituto Internacional de Conservación y Manejo de Vida Silvestre (ICOMVIS), Universidad Nacional, Heredia, Costa Rica
| | | | | | - Monique Pool
- Green Heritage Fund Suriname, Paramaribo, Suriname
| | - Alonso Santos-Murgas
- Departamento de Zoología, Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá. Estación Científica Coiba AIP, Ciudad del Saber, Panama
| | | | - Felipe Cecchi
- Grupo Antropología de la Conservación, Universidad de Los Lagos, Osorno, Chile
| | - Armando J. Dans
- Departamento de Ciencias Ambientales y Producción Sostenible, Universidad de las Regiones Autónomas de la Costa Caribe Nicaragüense, Bluefields, Nicaragua
| | - Nelanie Dilchand
- Aquatic and Terrestrial Pioneers Consulting Services, Georgetown, Guyana
| | - Sergio M. Q. Lima
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - María Caridad Novas
- División de Conservación, Departamento de Botánica, Jardín Botánico Nacional Dr. Rafael María Moscoso, Santo Domingo, Dominican Republic
| | - Karla Pelz-Serrano
- Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Nina Pougy
- Departamento de Desenvolvimento Científico, Museu do Amanhã, Instituto de Desenvolvimento e Gestão - IDG, Rio de Janeiro, Brazil
| | - Iris Rodríguez
- Escuela de Biología, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | | |
Collapse
|
28
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
29
|
Sexton JP, Clemens M, Bell N, Hall J, Fyfe V, Hoffmann AA. Patterns and effects of gene flow on adaptation across spatial scales: implications for management. J Evol Biol 2024; 37:732-745. [PMID: 38888218 DOI: 10.1093/jeb/voae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Gene flow can have rapid effects on adaptation and is an important evolutionary tool available when undertaking biological conservation and restoration. This tool is underused partly because of the perceived risk of outbreeding depression and loss of mean fitness when different populations are crossed. In this article, we briefly review some theory and empirical findings on how genetic variation is distributed across species ranges, describe known patterns of gene flow in nature with respect to environmental gradients, and highlight the effects of gene flow on adaptation in small or stressed populations in challenging environments (e.g., at species range limits). We then present a case study involving crosses at varying spatial scales among mountain populations of a trigger plant (Stylidium armeria: Stylidiaceae) in the Australian Alps to highlight how some issues around gene flow effects can be evaluated. We found evidence of outbreeding depression in seed production at greater geographic distances. Nevertheless, we found no evidence of maladaptive gene flow effects in likelihood of germination, plant performance (size), and performance variance, suggesting that gene flow at all spatial scales produces offspring with high adaptive potential. This case study demonstrates a path to evaluating how increasing sources of gene flow in managed wild and restored populations could identify some offspring with high fitness that could bolster the ability of populations to adapt to future environmental changes. We suggest further ways in which managers and researchers can act to understand and consider adaptive gene flow in natural and conservation contexts under rapidly changing conditions.
Collapse
Affiliation(s)
- Jason P Sexton
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Molly Clemens
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Hall
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Verity Fyfe
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Bonassin L, Pârvulescu L, Boštjančić LL, Francesconi C, Paetsch J, Rutz C, Lecompte O, Theissinger K. Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains. BMC Ecol Evol 2024; 24:78. [PMID: 38862896 PMCID: PMC11165767 DOI: 10.1186/s12862-024-02268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely. RESULTS Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins. CONCLUSION Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.
Collapse
Affiliation(s)
- Lena Bonassin
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Lucian Pârvulescu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Str. Pestalozzi 16A, 300115, Timisoara, Romania.
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Oituz 4, 300086, Timisoara, Romania.
| | - Ljudevit Luka Boštjančić
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Judith Paetsch
- Department of Biogeography, University of Trier, Behringstraße 21, D-54296, Geozentrum, Trier, Germany
| | - Christelle Rutz
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
| | - Odile Lecompte
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
| | - Kathrin Theissinger
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| |
Collapse
|
31
|
Prakash A, Capblancq T, Shallows K, Saville D, Landau D, Landress C, Jacobs T, Keller S. Bringing genomics to the field: An integrative approach to seed sourcing for forest restoration. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11600. [PMID: 38912128 PMCID: PMC11192164 DOI: 10.1002/aps3.11600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/25/2024]
Abstract
Premise Global anthropogenic change threatens the health and productivity of forest ecosystems. Assisted migration and reforestation are tools to help mitigate these impacts. However, questions remain about how to approach sourcing seeds to ensure high establishment and future adaptability. Methods Using exome-capture sequencing, we demonstrate a computational approach to finding the best n-sets from a candidate list of seed sources that collectively achieve high genetic diversity (GD) and minimal genetic load (GL), while also increasing evolvability in quantitative traits. The benefits of this three-part strategy (diversity-load-evolvability) are to increase near-term establishment success while also boosting evolutionary potential to respond to future stressors. Members of The Nature Conservancy and the Central Appalachian Spruce Restoration Initiative planted 58,000 seedlings across 255 acres. A subset of seedlings was monitored for establishment success and variation in growth. Results The results show gains in GD relative to GL and increases in quantitative genetic variation in seedling growth for pooled vs. single-source restoration. No single "super source" was observed across planting sites; rather, monitoring results demonstrate that pooling of multiple sources helps achieve higher GD:GL and evolvability. Discussion Our study shows the potential for integrating genomics into local-scale restoration and the importance of building partnerships between academic researchers and applied conservation managers.
Collapse
Affiliation(s)
- Anoob Prakash
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| | - Thibaut Capblancq
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
- Laboratoire d'Écologie Alpine, Université Grenoble‐Alpes, Université Savoie Mont Blanc, CNRSGrenobleFrance
| | - Kathryn Shallows
- Central Appalachians Program, The Nature ConservancyElkinsWest VirginiaUSA
| | - David Saville
- Appalachian Forest Restoration LLCMorgantownWest VirginiaUSA
| | - Deborah Landau
- Maryland/DC Chapter, The Nature ConservancyBethesdaMarylandUSA
| | - Chad Landress
- USDA Forest Service, Monongahela National ForestElkinsWest VirginiaUSA
| | - Tal Jacobs
- Clinch Valley Program, The Nature ConservancyAbingdonVirginiaUSA
| | - Stephen Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
32
|
Sopniewski J, Catullo RA. Estimates of heterozygosity from single nucleotide polymorphism markers are context-dependent and often wrong. Mol Ecol Resour 2024; 24:e13947. [PMID: 38433491 DOI: 10.1111/1755-0998.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Genetic diversity is frequently described using heterozygosity, particularly in a conservation context. Often, it is estimated using single nucleotide polymorphisms (SNPs); however, it has been shown that heterozygosity values calculated from SNPs can be biased by both study design and filtering parameters. Though solutions have been proposed to address these issues, our own work has found them to be inadequate in some circumstances. Here, we aimed to improve the reliability and comparability of heterozygosity estimates, specifically by investigating how sample size and missing data thresholds influenced the calculation of autosomal heterozygosity (heterozygosity calculated from across the genome, i.e. fixed and variable sites). We also explored how the standard practice of tri- and tetra-allelic site exclusion could bias heterozygosity estimates and influence eventual conclusions relating to genetic diversity. Across three distinct taxa (a frog, Litoria rubella; a tree, Eucalyptus microcarpa; and a grasshopper, Keyacris scurra), we found heterozygosity estimates to be meaningfully affected by sample size and missing data thresholds, partly due to the exclusion of tri- and tetra-allelic sites. These biases were inconsistent both between species and populations, with more diverse populations tending to have their estimates more severely affected, thus having potential to dramatically alter interpretations of genetic diversity. We propose a modified framework for calculating heterozygosity that reduces bias and improves the utility of heterozygosity as a measure of genetic diversity, whilst also highlighting the need for existing population genetic pipelines to be adjusted such that tri- and tetra-allelic sites be included in calculations.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Renee A Catullo
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
33
|
Wooldridge B, Orland C, Enbody E, Escalona M, Mirchandani C, Corbett-Detig R, Kapp JD, Fletcher N, Cox-Ammann K, Raimondi P, Shapiro B. Limited genomic signatures of population collapse in the critically endangered black abalone (Haliotis cracherodii). Mol Ecol 2024:e17362. [PMID: 38682494 PMCID: PMC11518883 DOI: 10.1111/mec.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.
Collapse
Affiliation(s)
- Brock Wooldridge
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Chloé Orland
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Joshua D. Kapp
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Nathaniel Fletcher
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Karah Cox-Ammann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Peter Raimondi
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Beth Shapiro
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| |
Collapse
|
34
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
35
|
Frei D, Mwaiko S, Seehausen O, Feulner PGD. Ecological disturbance reduces genomic diversity across an Alpine whitefish adaptive radiation. Evol Appl 2024; 17:e13617. [PMID: 38343775 PMCID: PMC10853656 DOI: 10.1111/eva.13617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 10/28/2024] Open
Abstract
Genomic diversity is associated with the adaptive potential of a population and thereby impacts the extinction risk of a species during environmental change. However, empirical data on genomic diversity of populations before environmental perturbations are rare and hence our understanding of the impact of perturbation on diversity is often limited. We here assess genomic diversity utilising whole-genome resequencing data from all four species of the Lake Constance Alpine whitefish radiation. Our data covers a period of strong but transient anthropogenic environmental change and permits us to track changes in genomic diversity in all species over time. Genomic diversity became strongly reduced during the period of anthropogenic disturbance and has not recovered yet. The decrease in genomic diversity varies between 18% and 30%, depending on the species. Interspecific allele frequency differences of SNPs located in potentially ecologically relevant genes were homogenized over time. This suggests that in addition to the reduction of genome-wide genetic variation, the differentiation that evolved in the process of adaptation to alternative ecologies between species might have been lost during the ecological disturbance. The erosion of substantial amounts of genomic variation within just a few generations in combination with the loss of potentially adaptive genomic differentiation, both of which had evolved over thousands of years, demonstrates the sensitivity of biodiversity in evolutionary young adaptive radiations towards environmental disturbance. Natural history collections, such as the one used for this study, are instrumental in the assessment of genomic consequences of anthropogenic environmental change. Historical samples enable us to document biodiversity loss against the shifting baseline syndrome and advance our understanding of the need for efficient biodiversity conservation on a global scale.
Collapse
Affiliation(s)
- David Frei
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Salome Mwaiko
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Ole Seehausen
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
36
|
Taylor HR, Costanzi J, Dicks KL, Senn HV, Robinson S, Dowse G, Ball AD. The genetic legacy of the first successful reintroduction of a mammal to Britain: Founder events and attempted genetic rescue in Scotland's beaver population. Evol Appl 2024; 17:e13629. [PMID: 38343777 PMCID: PMC10853653 DOI: 10.1111/eva.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 10/28/2024] Open
Abstract
Conservation translocations often inherently involve a risk of genetic diversity loss, and thus loss of adaptive potential, but this risk is rarely quantified or monitored through time. The reintroduction of beavers to Scotland, via the Scottish Beaver Trial in Knapdale, is an example of a translocation that took place in the absence of genetic data for the founder individuals and resulted in a small and suspected to be genetically depauperate population. In this study we use a high-density SNP panel to assess the genetic impact of that initial translocation and the effect of subsequent reinforcement translocations using animals from a different genetic source to the original founders. We demonstrate that the initial translocation did, indeed, lead to low genetic diversity (H o = 0.052) and high mean kinship (KING-robust = 0.159) in the Knapdale population compared to other beaver populations. We also show that the reinforcement translocations have succeeded in increasing genetic diversity (H o = 0.196) and reducing kinship (KING robust = 0.028) in Knapdale. As yet, there is no evidence of admixture between the two genetic lineages that are now present in Knapdale and such admixture is necessary to realise the full genetic benefits of the reinforcement and for genetic reinforcement and then rescue to occur; future genetic monitoring will be required to assess whether this has happened. We note that, should admixture occur, the Knapdale population will harbour combinations of genetic diversity not currently seen elsewhere in Eurasian beavers, posing important considerations for the future management of this population. We consider our results in the wider context of beaver conservation throughout Scotland and the rest of Britain, and advocate for more proactive genetic sampling of all founders to allow the full integration of genetic data into translocation planning in general.
Collapse
Affiliation(s)
- Helen R. Taylor
- Field ConservationRoyal Zoological Society of ScotlandEdinburghUK
| | - Jean‐Marc Costanzi
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
- Microbiology and Infection ControlAkershus University HospitalOsloNorway
| | - Kara L. Dicks
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| | - Helen V. Senn
- Field ConservationRoyal Zoological Society of ScotlandEdinburghUK
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| | | | | | - Alex D. Ball
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| |
Collapse
|
37
|
Schiebelhut LM, Guillaume AS, Kuhn A, Schweizer RM, Armstrong EE, Beaumont MA, Byrne M, Cosart T, Hand BK, Howard L, Mussmann SM, Narum SR, Rasteiro R, Rivera-Colón AG, Saarman N, Sethuraman A, Taylor HR, Thomas GWC, Wellenreuther M, Luikart G. Genomics and conservation: Guidance from training to analyses and applications. Mol Ecol Resour 2024; 24:e13893. [PMID: 37966259 DOI: 10.1111/1755-0998.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, California, USA
| | - Annie S Guillaume
- Geospatial Molecular Epidemiology group (GEOME), Laboratory for Biological Geochemistry (LGB), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arianna Kuhn
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Virginia Museum of Natural History, Martinsville, Virginia, USA
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Mark A Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Margaret Byrne
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Perth, Western Australia, Australia
| | - Ted Cosart
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| | - Brian K Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Leif Howard
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| | - Steven M Mussmann
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish & Wildlife Service, Dexter, New Mexico, USA
| | - Shawn R Narum
- Hagerman Genetics Lab, University of Idaho, Hagerman, Idaho, USA
| | - Rita Rasteiro
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Norah Saarman
- Department of Biology and Ecology Center, Utah State University, Logan, Utah, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Helen R Taylor
- Royal Zoological Society of Scotland, Edinburgh, Scotland
| | - Gregg W C Thomas
- Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Maren Wellenreuther
- Plant and Food Research, Nelson, New Zealand
- University of Auckland, Auckland, New Zealand
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| |
Collapse
|
38
|
Smeds L, Huson LSA, Ellegren H. Structural genomic variation in the inbred Scandinavian wolf population contributes to the realized genetic load but is positively affected by immigration. Evol Appl 2024; 17:e13652. [PMID: 38333557 PMCID: PMC10848878 DOI: 10.1111/eva.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
When populations decrease in size and may become isolated, genomic erosion by loss of diversity from genetic drift and accumulation of deleterious mutations is likely an inevitable consequence. In such cases, immigration (genetic rescue) is necessary to restore levels of genetic diversity and counteract inbreeding depression. Recent work in conservation genomics has studied these processes focusing on the genetic diversity of single nucleotide polymorphisms. In contrast, our knowledge about structural genomic variation (insertions, deletions, duplications and inversions) in endangered species is limited. We analysed whole-genome, short-read sequences from 212 wolves from the inbred Scandinavian population and from neighbouring populations in Finland and Russia, and detected >35,000 structural variants (SVs) after stringent quality and genotype frequency filtering; >26,000 high-confidence variants remained after manual curation. The majority of variants were shorter than 1 kb, with a distinct peak in the length distribution of deletions at 190 bp, corresponding to insertion events of SINE/tRNA-Lys elements. The site frequency spectrum of SVs in protein-coding regions was significantly shifted towards rare alleles compared to putatively neutral variants, consistent with purifying selection. The realized genetic load of SVs in protein-coding regions increased with inbreeding levels in the Scandinavian population, but immigration provided a genetic rescue effect by lowering the load and reintroducing ancestral alleles at loci fixed for derived SVs. Our study shows that structural variation comprises a common type of in part deleterious mutations in endangered species and that establishing gene flow is necessary to mitigate the negative consequences of loss of diversity.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Ecology and Genetics, Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - Lars S. A. Huson
- Department of Ecology and Genetics, Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Evolutionary BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
39
|
Wooldridge B, Orland C, Enbody E, Escalona M, Mirchandani C, Corbett-Detig R, Kapp JD, Fletcher N, Ammann K, Raimondi P, Shapiro B. Limited genomic signatures of population collapse in the critically endangered black abalone ( Haliotis cracherodii). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577275. [PMID: 38352393 PMCID: PMC10862700 DOI: 10.1101/2024.01.26.577275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the species' designation as critically endangered. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS is unknown. To address these uncertainties, we sequenced and analyzed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Genetic divergence between sites is minimal, and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Despite this, however, demographic inference confirms a severe population bottleneck beginning around the time of WS onset, highlighting the temporal offset that may occur between a population collapse and its potential impact on genetic diversity. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of genetic structure, uniform diversity, and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.
Collapse
Affiliation(s)
- Brock Wooldridge
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Chloé Orland
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Joshua D Kapp
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Nathaniel Fletcher
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Karah Ammann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Peter Raimondi
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Beth Shapiro
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| |
Collapse
|
40
|
Pegueroles C, Pascual M, Carreras C. Going beyond a reference genome in conservation genomics. Trends Ecol Evol 2024; 39:13-15. [PMID: 38040545 DOI: 10.1016/j.tree.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
The current biodiversity crisis demands scientifically based management. The generation of reference genomes is crucial in conservation, but is not enough to capture species diversity. By incorporating whole-genome sequencing (WGS) at the population level, Nigenda-Morales et al. provide key genomic information for the conservation of fin whale populations in the Pacific.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643. E08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Av. Diagonal 643. E08028, Barcelona, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643. E08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Av. Diagonal 643. E08028, Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643. E08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Av. Diagonal 643. E08028, Barcelona, Spain.
| |
Collapse
|
41
|
Stuart KC, Johnson RN, Major RE, Atsawawaranunt K, Ewart KM, Rollins LA, Santure AW, Whibley A. The genome of a globally invasive passerine, the common myna, Acridotheres tristis. DNA Res 2024; 31:dsae005. [PMID: 38366840 PMCID: PMC10917472 DOI: 10.1093/dnares/dsae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.
Collapse
Affiliation(s)
- Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Richard E Major
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
| | | | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
- School of Life and Environmental Sciences,University of Sydney, Sydney, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
42
|
Xu H, Hu T, Li X, Song L, Yang S, Meng L, Turlings TCJ, Li B. Adaptive changes in pheromone production and release under rearing conditions in stink bugs. PEST MANAGEMENT SCIENCE 2023. [PMID: 38145909 DOI: 10.1002/ps.7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Healthy cultures of arthropods are important for pest management programs (e.g. biocontrol). Little is known about how rearing conditions may affect pheromonal interactions. We investigated how rearing histories and densities affect pheromone emission/production in two stink bug species (Hemiptera: Heteroptera), the predatory bug Arma custos, a biocontrol agent, and the bean bug Riptortus pedestris, a pest on legume crops. RESULTS Nymphs from newly established laboratory colonies of both species produced higher amounts of the defense (dispersal) compound, 4-oxo-(E)-hexenal (OHE), in the presence of conspecific nymphs. Also, when two or more A. custos males were placed together, the dorsal abdominal glands (DAGs) ceased to release aggregation pheromone, whereas the metathoracic glands (MTGs) increased the emission of defensive odors. These changes resulted from exposure to conspecific pheromone odors, as confirmed by exposing bugs to pheromone standards. Hence, pheromone emissions in these stink bugs are readily changed in response to the odors of conspecifics, which may become a problem after long-term rearing. Indeed, an old laboratory colony of A. custos (~30 generations) exhibited less-developed DAGs and reduced pheromone production. Instead, males released significantly more defensive odors from the enlarged MTGs. Furthermore, long-term rearing conditions appeared to favor nymphs that were able to share space with conspecifics by releasing less OHE, which has not yet occurred in the new laboratory colonies. CONCLUSION Rearing density affects pheromone release in newly established laboratory colonies of stink bug species, whereas long-term rearing results in new pheromonal compositions coinciding with adaptive changes in gland development. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tingxia Hu
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xingpeng Li
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin, China
| | - Liwen Song
- Jilin Provincial Academy of Forestry Science, Changchun, China
| | - Shaohang Yang
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ted C J Turlings
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Baoping Li
- Key Laboratory of Soybean Disease and Pest Control, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Diaz‐Martin Z, De Vitis M, Havens K, Kramer AT, MacKechnie LM, Fant J. Species-specific effects of production practices on genetic diversity in plant reintroduction programs. Evol Appl 2023; 16:1956-1968. [PMID: 38143906 PMCID: PMC10739063 DOI: 10.1111/eva.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
Plant production practices can influence the genetic diversity of cultivated plant materials and, ultimately, their potential to adapt to a reintroduction site. A common step in the plant production process is the application of seed pretreatment to alleviate physiological seed dormancy and successfully germinate seeds. In production settings, the seeds that germinate more rapidly may be favored in order to fill plant quotas. In this study, we investigated how the application of cold-moist stratification treatments with different durations can lead to differences in the genetic diversity of the propagated plant materials. Specifically, we exposed seeds of three Viola species to two different cold stratification durations, and then we analyzed the genetic diversity of the resulting subpopulations through double-digestion restriction site-associated sequencing (ddRADseq). Our results show that, in two out of three species, utilizing a short stratification period will decrease the genetic diversity of neutral and expressed loci, likely due to the imposition of a genetic bottleneck and artificial selection. We conclude that, in some species, the use of minimal stratification practices in production may jeopardize the adaptive potential and long-term persistence of reintroduced populations and suggest that practitioners carefully consider the evolutionary implications of their production protocols. We highlight the need to consider the germination ecology of target species when selecting the length of dormancy-breaking pretreatments.
Collapse
Affiliation(s)
- Zoe Diaz‐Martin
- Department of BiologySpelman CollegeAtlantaGeorgiaUSA
- Chicago Botanic GardenNegaunee Institute for Plant Conservation Science and ActionGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | - Marcello De Vitis
- Chicago Botanic GardenNegaunee Institute for Plant Conservation Science and ActionGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
- Southeastern Grasslands InstituteAustin Peay State UniversityClarksvilleTennesseeUSA
| | - Kayri Havens
- Chicago Botanic GardenNegaunee Institute for Plant Conservation Science and ActionGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | - Andrea T. Kramer
- Chicago Botanic GardenNegaunee Institute for Plant Conservation Science and ActionGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Jeremie Fant
- Chicago Botanic GardenNegaunee Institute for Plant Conservation Science and ActionGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
44
|
Femerling G, van Oosterhout C, Feng S, Bristol RM, Zhang G, Groombridge J, P Gilbert MT, Morales HE. Genetic Load and Adaptive Potential of a Recovered Avian Species that Narrowly Avoided Extinction. Mol Biol Evol 2023; 40:msad256. [PMID: 37995319 DOI: 10.1093/molbev/msad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.
Collapse
Affiliation(s)
- Georgette Femerling
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Rachel M Bristol
- Mahe, Seychelles
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jim Groombridge
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - M Thomas P Gilbert
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Hernán E Morales
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Ghildiyal K, Nayak SS, Rajawat D, Sharma A, Chhotaray S, Bhushan B, Dutt T, Panigrahi M. Genomic insights into the conservation of wild and domestic animal diversity: A review. Gene 2023; 886:147719. [PMID: 37597708 DOI: 10.1016/j.gene.2023.147719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Supriya Chhotaray
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
46
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Chen S, Li W, Li W, Liu Z, Shi X, Zou Y, Liao W, Fan Q. Population genetics of Camellia granthamiana, an endangered plant species with extremely small populations in China. Front Genet 2023; 14:1252148. [PMID: 37867601 PMCID: PMC10585715 DOI: 10.3389/fgene.2023.1252148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Camellia, the largest genus of Theaceae, is well-known for having high economic values. Camellia granthamiana demonstrates large beautiful flowers with some primitive characters, such as multiple large and persistent bracteoles and sepals, was listed as Vulnerable species on the IUCN Red List. Methods: In this study, we investigated all possible records of the species, and sampled four natural populations and five cultivated individuals. By applying shallow-genome sequencing for nine individuals and RAD-seq sequencing for all the sampled 77 individuals, we investigated population genetic diversity and population structure of the species. Results and discussion: The results showed that the population sampled from Fengkai, previously identified as C. albogigias, possessed different plastid genome from other species possibly due to plastid capture; the species possesses strong population structure possibly due to the effect of isolation by distance, habitat fragmentation, and self-crossing tendency of the species, whose effective population size declined quickly in the past 4,000 years. Nevertheless, C. granthamiana maintains a medium level of genetic diversity within population, and significant differentiation was observed among the four investigated populations, it is anticipated that more populations are expected to be found and all these extant populations should be taken into instant protection.
Collapse
Affiliation(s)
- Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyan Li
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, China
| | - Wei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhongcheng Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianggang Shi
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yanli Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Shenzhen Academy of Environmental Sciences, Shenzhen, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Tesfa D, Feyissa T, Assefa K. Genetic diversity and population structure of selected tef core germplasm lines based on microsatellite markers. Mol Biol Rep 2023; 50:8603-8613. [PMID: 37653359 DOI: 10.1007/s11033-023-08732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Tef is an indigenous and important food, feed, and cash crop for smallholder Ethiopian farmers. Knowledge of the natural genetic composition of the crop provides the option to further exploit its genetic potential through breeding. However, there are insufficient reports on the genetic variability of Ethiopian tef using a medium-throughput marker system. Hence, the current study was designed to evaluate the genetic variability of released and core germplasm that was collected earlier. METHODS AND RESULTS Eighty-one tef genotypes collected from eight Ethiopian ecological zones and released varieties were targeted using 14 SSR markers. The study yielded a total of 122 alleles across the entire locus and population. The molecular variance analysis indicated the existence of large genetic differentiation (FIS and FIT = 0.87), with 86% and 13% of the total variation accounted for among genotypes within the population and across all genotypes used for this study, respectively. However, low genetic differentiation among the populations (FST = 0.014, which accounts for 1%) was observed. Multivariate analyses such as clustering and PCoA did not cluster genotypes into distinct groups according to their geographical areas of population. This is presumably due to gene flow among populations. CONCLUSION In conclusion, our findings show that there is significant genetic diversity within populations, particularly in the Jimma, Tigray, and released varieties, as well as the presence of private alleles and heterozygosity. The study also indicates the existence of genotypic admixture in the studied materials. The identification of private alleles and their differentiation will be helpful in selecting breeding materials and creating breeding plans.
Collapse
Affiliation(s)
- Derejaw Tesfa
- Debereziet Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia.
- Institute of Biotechnology, Addis Abeba University, Addis Abeba, Ethiopia.
| | - Tileye Feyissa
- Institute of Biotechnology, Addis Abeba University, Addis Abeba, Ethiopia
| | - Kebebew Assefa
- Debereziet Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| |
Collapse
|
49
|
Nistelberger HM, Roycroft E, Macdonald AJ, McArthur S, White LC, Grady PGS, Pierson J, Sims C, Cowen S, Moseby K, Tuft K, Moritz C, Eldridge MDB, Byrne M, Ottewell K. Genetic mixing in conservation translocations increases diversity of a keystone threatened species, Bettongia lesueur. Mol Ecol 2023. [PMID: 37715549 DOI: 10.1111/mec.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023]
Abstract
Translocation programmes are increasingly being informed by genetic data to monitor and enhance conservation outcomes for both natural and established populations. These data provide a window into contemporary patterns of genetic diversity, structure and relatedness that can guide managers in how to best source animals for their translocation programmes. The inclusion of historical samples, where possible, strengthens monitoring by allowing assessment of changes in genetic diversity over time and by providing a benchmark for future improvements in diversity via management practices. Here, we used reduced representation sequencing (ddRADseq) data to report on the current genetic health of three remnant and seven translocated boodie (Bettongia lesueur) populations, now extinct on the Australian mainland. In addition, we used exon capture data from seven historical mainland specimens and a subset of contemporary samples to compare pre-decline and current diversity. Both data sets showed the significant impact of population founder source (whether multiple or single) on the genetic diversity of translocated populations. Populations founded by animals from multiple sources showed significantly higher genetic diversity than the natural remnant and single-source translocation populations, and we show that by mixing the most divergent populations, exon capture heterozygosity was restored to levels close to that observed in pre-decline mainland samples. Relatedness estimates were surprisingly low across all contemporary populations and there was limited evidence of inbreeding. Our results show that a strategy of genetic mixing has led to successful conservation outcomes for the species in terms of increasing genetic diversity and provides strong rationale for mixing as a management strategy.
Collapse
Affiliation(s)
- Heidi M Nistelberger
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Emily Roycroft
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anna J Macdonald
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shelley McArthur
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Lauren C White
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Patrick G S Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer Pierson
- Australian Wildlife Conservancy, Subiaco, Western Australia, Australia
| | - Colleen Sims
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Saul Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Moseby
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Craig Moritz
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mark D B Eldridge
- Terrestrial Vertebrates, Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|
50
|
Watowich MM, Chiou KL, Graves B, tague MJM, Brent LJ, Higham JP, Horvath JE, Lu A, Martinez MI, Platt ML, Schneider-Crease IA, Lea AJ, Snyder-Mackler N. Best practices for genotype imputation from low-coverage sequencing data in natural populations. Mol Ecol Resour 2023:10.1111/1755-0998.13854. [PMID: 37602981 PMCID: PMC10879460 DOI: 10.1111/1755-0998.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Monitoring genetic diversity in wild populations is a central goal of ecological and evolutionary genetics and is critical for conservation biology. However, genetic studies of nonmodel organisms generally lack access to species-specific genotyping methods (e.g. array-based genotyping) and must instead use sequencing-based approaches. Although costs are decreasing, high-coverage whole-genome sequencing (WGS), which produces the highest confidence genotypes, remains expensive. More economical reduced representation sequencing approaches fail to capture much of the genome, which can hinder downstream inference. Low-coverage WGS combined with imputation using a high-confidence reference panel is a cost-effective alternative, but the accuracy of genotyping using low-coverage WGS and imputation in nonmodel populations is still largely uncharacterized. Here, we empirically tested the accuracy of low-coverage sequencing (0.1-10×) and imputation in two natural populations, one with a large (n = 741) reference panel, rhesus macaques (Macaca mulatta), and one with a smaller (n = 68) reference panel, gelada monkeys (Theropithecus gelada). Using samples sequenced to coverage as low as 0.5×, we could impute genotypes at >95% of the sites in the reference panel with high accuracy (median r2 ≥ 0.92). We show that low-coverage imputed genotypes can reliably calculate genetic relatedness and population structure. Based on these data, we also provide best practices and recommendations for researchers who wish to deploy this approach in other populations, with all code available on GitHub (https://github.com/mwatowich/LoCSI-for-non-model-species). Our results endorse accurate and effective genotype imputation from low-coverage sequencing, enabling the cost-effective generation of population-scale genetic datasets necessary for tackling many pressing challenges of wildlife conservation.
Collapse
Affiliation(s)
- Marina M. Watowich
- Department of Biology, University of Washington; Seattle, WA, 98195 USA
- Department of Biological Sciences, Vanderbilt University; Nashville, TN, 37235
| | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University; Tempe, AZ, 85281 USA
- School of Life Sciences, Arizona State University; Tempe, AZ, 85281 USA
| | - Brian Graves
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign; Urbana, IL 61801
| | - Michael J. Mon tague
- Department of Neuroscience, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J.N. Brent
- Centre for Research in Animal Behaviour, University of Exeter; Exeter EX4 4QG, UK
| | - James P. Higham
- Department of Anthropology, New York University; New York, NY 10003, USA
- New York Consortium in Evolutionary Primatology; New York, NY, 10016 USA
| | - Julie E. Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University; Durham, NC 27707, USA
- Research and Collections Section, North Carolina Museum of Natural Sciences; Raleigh, NC 27601, USA
- Department of Biological Sciences, North Carolina State University; Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University; Durham, NC 27708, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Melween I. Martinez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico; San Juan, PR 00936, USA
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
- Marketing Department, Wharton School of Business; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - India A. Schneider-Crease
- Center for Evolution and Medicine, Arizona State University; Tempe, AZ, 85281 USA
- School of Life Sciences, Arizona State University; Tempe, AZ, 85281 USA
- School of Human Evolution and Social Change, Arizona State University; Tempe, AZ, 85281 USA
| | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235, USA
- Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University; Tempe, AZ, 85281 USA
- School of Life Sciences, Arizona State University; Tempe, AZ, 85281 USA
- School of Human Evolution and Social Change, Arizona State University; Tempe, AZ, 85281 USA
- Neurodegenerative Disease Research Center, Arizona State University; Tempe, AZ, 85281 USA
| |
Collapse
|