1
|
Gupta S, Arnab S, Nguyen KL, Reed M, Fathi P, Tammen K, Turner E, Jones E, Fischer R, Mendelowitz D, Bethea JR. Sex-chromosome complement and Activin-A shape the therapeutic potential of TNFR2 activation in a model of MS and CNP. Proc Natl Acad Sci U S A 2025; 122:e2426771122. [PMID: 40378000 DOI: 10.1073/pnas.2426771122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) activation is a promising-therapeutic strategy for autoimmune disorders such as multiple sclerosis (MS) and chronic neuropathic pain (CNP). This study aimed to identify mechanisms governing the sex-specific efficacy of TNFR2 activation on abrogating pain and motor disease severity in mice experiencing experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. We find that the XX sex-chromosome complement is indispensable for TNFR2-mediated attenuation of EAE-associated motor disease. Mice with XY chromosomes experienced exacerbated motor disease severity, associated with an elevated magnitude of neurodegeneration and demyelination. Contrasting this, we show that TNFR2-mediated alleviation of EAE induced CNP is both sex and sex-chromosome independent. However, the alleviation of CNP following TNFR2 activation across two different neuropathic pain models (EAE and chronic constriction injury) was dependent on the gonadal hormone Activin-A. This suggests a shared mechanism through which gonadal-derived factors impact TNFR2-mediated pain relief, independent of sex hormones. These findings highlight the importance of considering sex chromosomes and sex-independent gonadal hormones in evaluating potential sex-specific differences in drug efficacy during therapeutic development.
Collapse
MESH Headings
- Animals
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Mice
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Female
- Male
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Activins/metabolism
- Activins/genetics
- Sex Chromosomes/genetics
- Neuralgia/genetics
- Neuralgia/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Sreejita Arnab
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Marisa Reed
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Payam Fathi
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Kelly Tammen
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Emma Turner
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Erin Jones
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20052
| | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052
| |
Collapse
|
2
|
Pegoretti V, Boerema A, Kats K, Dafauce Garcia JM, Fischer R, Kontermann RE, Pfizenmaier K, Laman JD, Eisel ULM, Baron W. Single intracerebroventricular TNFR2 agonist injection impacts remyelination in the cuprizone model. J Mol Med (Berl) 2025:10.1007/s00109-025-02549-6. [PMID: 40347238 DOI: 10.1007/s00109-025-02549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/06/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025]
Abstract
The development of therapeutics that enhances the regeneration of myelin sheaths following demyelination is predicted to prevent neurodegeneration. A promising target to enhance remyelination is the immunomodulatory cytokine tumor necrosis factor alpha (TNFα) and its receptors TNFR1 and TNFR2. TNFR2 on oligodendrocyte lineage cells and microglia coordinates different protective functions, such as proliferation of oligodendrocyte progenitor cells, survival of mature oligodendrocytes, and release of anti-inflammatory cytokines, in animal models of inflammation and demyelination. Here, we find in the cuprizone model that following demyelination, fewer axons are unmyelinated in the corpus callosum at an early stage of remyelination after single TNFR2 agonist delivery in the lateral ventricle, while astrocyte and microglia number and coverage are unchanged. Towards later stages of remyelination, TNFR2 agonist treatment maintains the number of oligodendrocyte lineage cells, and large caliber axons have thinner myelin. Hence, even short-term stimulation of TNFR2 has a positive impact on the remyelination processes. This study informs further on the beneficial implications of TNFR2 signaling on oligodendrocyte lineage cells and remyelination, emphasizing its potential therapeutic value for demyelinating diseases, including multiple sclerosis. KEY MESSAGES: Single TNFR2 agonist treatment in the lateral ventricle following cuprizone-induced demyelination impacts remyelination by: Leading to a lower percentage of unmyelinated axons at early stages. Preserving the number of oligodendrocyte lineage cells in the corpus callosum at later stages. Covering large calibre axons with thinner myelin sheaths at later stages.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology, Groningen, Institute of Evolutionary Life Science (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ate Boerema
- Department of Molecular Neurobiology, Groningen, Institute of Evolutionary Life Science (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kim Kats
- Department Biomedical Sciences, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Juan M Dafauce Garcia
- Department of Molecular Neurobiology, Groningen, Institute of Evolutionary Life Science (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany; Stuttgart Research Centre Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany; Stuttgart Research Centre Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany; Stuttgart Research Centre Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Jon D Laman
- Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen, Institute of Evolutionary Life Science (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Wia Baron
- Department Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen (UMCG), MS Center Noord Nederland (MSCNN), A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
3
|
Han J, Zhang X, Kang L, Guan J. Extracellular vesicles as therapeutic modulators of neuroinflammation in Alzheimer's disease: a focus on signaling mechanisms. J Neuroinflammation 2025; 22:120. [PMID: 40281600 PMCID: PMC12023694 DOI: 10.1186/s12974-025-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles, which contribute significantly to neuroinflammation, a central driver of disease pathogenesis. The activation of microglia and astrocytes, coupled with the complex interactions between Aβ and tau pathologies and the innate immune response, leads to a cascade of inflammatory events. This process triggers the release of pro-inflammatory cytokines and chemokines, exacerbating neuronal damage and fostering a cycle of chronic inflammation that accelerates neurodegeneration. Key signaling pathways, such as nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), are involved in regulating the production of these inflammatory mediators, offering potential therapeutic targets for AD. Recently, extracellular vesicles (EVs) have emerged as a promising tool for AD therapy, due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic agents. Despite challenges in standardizing EV-based therapies and ensuring their safety, EVs offer a novel approach to modulating neuroinflammation and promoting neuroregeneration. This review aims to highlight the intricate relationship between neuroinflammation, signaling pathways, and the emerging role of EV-based therapeutics in advancing AD treatment strategies.
Collapse
Affiliation(s)
- Jingnan Han
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| | - Jian Guan
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
4
|
Jaffery R, Zhao Y, Ahmed S, Schumacher JG, Ahn J, Shi L, Wang Y, Tan Y, Chen K, Tawbi H, Wang J, Schwarzschild MA, Peng W, Chen X. Soluble Immune Factor Profiles in Blood and CSF Associated with LRRK2 Mutations and Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644460. [PMID: 40196608 PMCID: PMC11974741 DOI: 10.1101/2025.03.20.644460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background and Objectives Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene are one of the most common genetic causes of Parkinson's disease (PD) and are linked to immune dysregulation in both the central nervous system and periphery. However, peripheral and central profiles of soluble immune factors associated with LRRK2 mutations and PD have not been comprehensively characterized. Using serum and CSF samples from the LRRK2 Cohort Consortium (LCC), this study aimed to probe a broad range of soluble immune biomarkers associated with LRRK2 mutations and PD. Methods We investigated the levels of soluble immune regulators in the serum (n=651) and cerebrospinal fluid (CSF, n=129) of LRRK2 mutation carriers and non-carriers, both with and without PD. A total of 65 cytokines, chemokines, growth factors, and soluble receptors were assessed by Luminex immunoassay. A multivariable robust linear model was used to determine levels associated with LRRK2 mutations and PD status, adjusting for age, sex, and sample cohort. Correlations were assessed using the Spearman correlation coefficient. LRRK2 G2019S knock-in mice were used to validate the associations identified in the LCC. Results In this extensive discovery cohort, we identified several elevated serum immune regulatory factors associated with LRRK2 mutations. In particular, serum stromal cell-derived factor-1 alpha (SDF-1 alpha) levels, as supported by findings in LRRK2 G2019S knock-in mice, and tumor necrosis factor receptor II (TNF-RII) were significantly increased after multiple comparison adjustment. In contrast, LRRK2 mutations were associated with reduced soluble immune markers, including BAFF, CD40-Ligand, I-TAC, MIP-3 alpha, NGF beta, and IL-27 in CSF. Those with clinically diagnosed PD, with or without LRRK2 mutations, did not show strong signals in serum but reduced inflammatory analytes in CSF, including MIF, MMP-1, CD30, Tweak, and SDF-1 alpha. In addition, we found that the serum levels of these soluble immune factors display varied correlations with their corresponding CSF levels. Discussion This study highlights distinct immune profiles associated with LRRK2 mutations and PD in the periphery and CNS. Serum levels of SDF-1alpha and TNF-RII were elevated in LRRK2 mutation carriers, while CSF immune markers were reduced. In PD, irrespective of LRRK2 status, reduced CSF inflammatory analytes and weak serum signals were observed. These results provide insight into immune dysregulation linked to LRRK2 mutations. If replicable in independent datasets, they offer potential avenues for biomarker and therapeutic exploration.
Collapse
Affiliation(s)
- Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Yuhang Zhao
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sarfraz Ahmed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jackson G. Schumacher
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jae Ahn
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Leilei Shi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yujia Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein Tawbi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Wang
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A. Schwarzschild
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Xiqun Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
5
|
Yin W, Fang F, Zhang Y, Xi L. Timing of transcutaneous acupoint electrical stimulation for postoperative recovery in geriatric patients with gastrointestinal tumors: study protocol for a randomized controlled trial. Front Med (Lausanne) 2025; 12:1497647. [PMID: 40109717 PMCID: PMC11919863 DOI: 10.3389/fmed.2025.1497647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/30/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose To develop a study protocol for determining the optimal timing of Transcutaneous Electrical Acupoint Stimulation (TEAS) to enhance postoperative recovery in elderly patients. The study aims to evaluate different timing strategies for TEAS administration and their effects on postoperative outcomes, with the goal of improving clinical practices and guiding future research. Methods A total of 266 geriatric patients who underwent radical resection of gastrointestinal tumors will be divided into seven groups: one control group (receiving standardized perioperative management), one sham intervention group (receiving TEAS treatment without electrical stimulation), and five intervention groups (receiving TEAS at different time intervals). The intervention groups will receive TEAS at bilateral Neiguan (PC6) and Zusanli (ST36) acupoints. The TEAS treatment will employ an altered frequency of 2/100 Hz with disperse-dense waveforms and an adjustable intensity, ensuring the stimulation remains below 10 mA and within a tolerable range for the patient. The device will output an asymmetrical biphasic pulse wave, with a pulse width of 0.2 ms ± 30%, based on electromagnetic compatibility basic performance testing. The primary outcome will assess changes in cognition, measured using neuropsychological tests administered preoperatively and 3 days postoperatively, as well as the Telephone Interview for Cognitive Status-Modified (TICS-m) at 1, 3, and 6 months postoperatively. Secondary outcomes will include preoperative and 3-day postoperative measurements of interleukin-6 (IL-6), S100 calcium-binding protein β (S100β), tumor necrosis factor alpha (TNF-α), insulin-like growth factor 1 (IGF-1), and C-reactive protein (CRP). Additional data will be collected on the time to postoperative exhaust, defecation, eating, and the first postoperative ambulation. Numeric Rating Scale (NRS) scores will be recorded before and on the third day after the operation, alongside Activities of Daily Living (ADL) and Braden scale scores, which will be assessed before the operation and at the time of discharge. Discussion This protocol aims to determine the optimal timing of TEAS for improving postoperative recovery in geriatric patients with gastrointestinal tumor. Clinical trial registration ClinicalTrials.gov, identifier NCT05482477.
Collapse
Affiliation(s)
- Weijuan Yin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fang Fang
- The Nursing Department, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yan Zhang
- Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Lijuan Xi
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
7
|
Boutou A, Roufagalas I, Politopoulou K, Tastsoglou S, Abouzeid M, Skoufos G, Verdu de Juan L, Ko JH, Kyrargyri V, Hatzigeorgiou AG, Barnum CJ, Tesi RJ, Bauer J, Lassmann H, Johnson MR, Probert L. Microglia regulate cortical remyelination via TNFR1-dependent phenotypic polarization. Cell Rep 2024; 43:114894. [PMID: 39446583 DOI: 10.1016/j.celrep.2024.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Microglia are strongly implicated in demyelinating neurodegenerative diseases with increasing evidence for roles in protection and healing, but the mechanisms that control CNS remyelination are poorly understood. Here, we show that microglia-specific deletion of tumor necrosis factor receptor 1 (TNFR1) and pharmacological inhibition of soluble TNF (solTNF) or downstream interleukin-1 receptor (IL-1R) allow maturation of highly activated disease-associated microglia with increased size and myelin phagocytosis capacity that accelerate cortical remyelination and motor recovery. Single-cell transcriptomic analysis of cortex at disease onset reveals that solTNF inhibition enhances reparative IL-10-responsive while preventing damaging IL-1-related signatures of disease-associated microglia. Longitudinal brain transcriptome analysis through disease reveals earlier recovery upon therapeutic loss of microglia TNFR1. The functional relevance of microglia inflammatory polarization pathways for disease is validated in vivo. Furthermore, disease-state microglia producing downstream IL-1/IL-18/caspase-11 targets are identified in human demyelinating lesions. Overall, redirecting disease microglia polarization by targeting cytokines is a potential approach for improving CNS repair in demyelinating disorders.
Collapse
Affiliation(s)
- Athena Boutou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Ilias Roufagalas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Katerina Politopoulou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Maya Abouzeid
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Laia Verdu de Juan
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Jeong Hun Ko
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Vasiliki Kyrargyri
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Michael R Johnson
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece.
| |
Collapse
|
8
|
Gunasekaran TI, Meena D, Lee AJ, Wu S, Dumitrescu L, Sperling R, Hohman TJ, Huang J, Dehghan A, Tzoulaki I, Mayeux R, Vardarajan B. Genome-wide scan of Flortaucipir PET levels finds JARID2 associated with cerebral tau deposition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.04.24314853. [PMID: 39417126 PMCID: PMC11482994 DOI: 10.1101/2024.10.04.24314853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Genetic research on Alzheimer's disease (AD) has primarily focused on amyloid-β (Aβ) pathogenesis, with fewer studies exploring tau pathology. Elucidating the genetic basis of tau pathology could identify novel pathways in AD. METHODS We conducted a genome-wide association study of tau standard uptake value ratios (SUVRs) from [18]F-flortaucipir positron emission tomography (PET) images to identify genetic variants underlying Tau pathology. Genetic data and tau-SUVRs from [18]F-flortaucipir PET images were acquired from the A4 (311 with preclinical AD) and ADNI (280 cognitively normal, 76 with mild cognitive impairment, and 19 AD patients) studies. Circulating plasma proteins in UK Biobank Pharma Proteomics Project (UKBPPP, N=54,129) were used to validate genetic findings. SNP genotypes were tested for association with Tau-SUVR levels adjusting for age, sex and population substructure variables. AD association of polygenic risk scores (PRS) of tau and amyloid-SUVRs were assessed. Causal effect of plasma protein levels on Tau pathology were tested using Mendelian randomization analyses. RESULTS GWAS of tau-SUVR revealed two significant loci: rs78636169 (P=5.76×10-10) in JARID2 and rs7292124 (P=2.20×10-8) near ISX. Gene-based analysis of tau deposition highlighted APOE (P=2.55×10-6), CTNNA3 (P=2.86×10-6) and JARID2 (P=1.23×10-4), a component of the PRC2 multi-protein complex which regulates gene expression. Mendelian randomization analysis of available circulating plasma proteins in the UK Biobank Pharma Proteomics Project (UKBPPP) identified LRRFIP1, a protein that binds with PRC2 multi-protein complex, as potentially causally linked to tau pathology. Genes associated with both amyloid and tau pathologies were enriched in endocytosis and signal transduction pathways. AD polygenic risk score (PRS) was associated with amyloid-SUVR but not with tau-SUVR. Amyloid-SUVR PRS had a notable association with AD clinical status, particularly in younger APOE-ε4 carriers, whereas tau-SUVR PRS showed a stronger association in older carriers. CONCLUSION We identified a novel potential therapeutic target, JARID2 in the PRC2 multi-protein complex, for tau pathology. Furthermore, gene pathway analysis clarified the distinct roles of Aβ and tau in AD progression, underscoring the complexity of genetic influences across different stages of the disease.
Collapse
Affiliation(s)
- Tamil Iniyan Gunasekaran
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Devendra Meena
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Annie J Lee
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
- Department of Neurology, The New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Siwei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jingxian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- BHF Centre of Excellence, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Richard Mayeux
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Badri Vardarajan
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, USA
| |
Collapse
|
9
|
Theeke LA, Liu Y, Wang S, Luo X, Navia RO, Xiao D, Xu C, Wang K, The Alzheimer and Disease Neuroimaging Initiative. Plasma Proteomic Biomarkers in Alzheimer's Disease and Cardiovascular Disease: A Longitudinal Study. Int J Mol Sci 2024; 25:10751. [PMID: 39409080 PMCID: PMC11477191 DOI: 10.3390/ijms251910751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The co-occurrence of Alzheimer's disease (AD) and cardiovascular diseases (CVDs) in older adults highlights the necessity for the exploration of potential shared risk factors. A total of 566 adults were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 111 individuals with AD, 383 with mild cognitive impairment (MCI), and 410 with CVD. The multivariable linear mixed model (LMM) was used to investigate the associations of AD and CVD with longitudinal changes in 146 plasma proteomic biomarkers (measured at baseline and the 12-month follow-up). The LMM showed that 48 biomarkers were linked to AD and 46 to CVD (p < 0.05). Both AD and CVD were associated with longitudinal changes in 14 biomarkers (α1Micro, ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL, PPP, TIM1, THP, TFF3, TM, and VEGF), and both MCI and CVD were associated with 12 biomarkers (ApoD, AXL, BNP, Calcitonin, CD40, C-peptide, pM, PPP, THP, TNFR2, TTR, and VEGF), suggesting intricate connections between cognitive decline and cardiovascular health. Among these, the Tamm Horsfall Protein (THP) was associated with AD, MCI, CVD, and APOE-ε4. This study provides valuable insights into shared and distinct biological markers and mechanisms underlying AD and CVD.
Collapse
Affiliation(s)
- Laurie A. Theeke
- Department of Community of Acute and Chronic Care, School of Nursing, The George Washington University, Ashburn, VA 20147, USA;
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Silas Wang
- Department of Statistics & Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06516, USA;
| | - R. Osvaldo Navia
- Department of Medicine and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, MA 02493, USA;
| | - Chun Xu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Kesheng Wang
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, 1601 Greene Street, Columbia, SC 29208, USA
| | | |
Collapse
|
10
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Rößler N, Smilovic D, Vuksic M, Jedlicka P, Deller T. Maintenance of Lognormal-Like Skewed Dendritic Spine Size Distributions in Dentate Granule Cells of TNF, TNF-R1, TNF-R2, and TNF-R1/2-Deficient Mice. J Comp Neurol 2024; 532:e25645. [PMID: 38943486 DOI: 10.1002/cne.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 07/01/2024]
Abstract
Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.
Collapse
MESH Headings
- Animals
- Dendritic Spines/metabolism
- Mice
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Mice, Knockout
- Dentate Gyrus/metabolism
- Dentate Gyrus/cytology
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Neurons/metabolism
- Male
- Microfilament Proteins/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/deficiency
Collapse
Affiliation(s)
- Nina Rößler
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Computer-Based Modelling, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Dinko Smilovic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Vuksic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Computer-Based Modelling, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Jong Huat T, Camats-Perna J, Newcombe EA, Onraet T, Campbell D, Sucic JT, Martini A, Forner S, Mirzaei M, Poon W, LaFerla FM, Medeiros R. The impact of astrocytic NF-κB on healthy and Alzheimer's disease brains. Sci Rep 2024; 14:14305. [PMID: 38906984 PMCID: PMC11192733 DOI: 10.1038/s41598-024-65248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Astrocytes play a role in healthy cognitive function and Alzheimer's disease (AD). The transcriptional factor nuclear factor-κB (NF-κB) drives astrocyte diversity, but the mechanisms are not fully understood. By combining studies in human brains and animal models and selectively manipulating NF-κB function in astrocytes, we deepened the understanding of the role of astrocytic NF-κB in brain health and AD. In silico analysis of bulk and cell-specific transcriptomic data revealed the association of NF-κB and astrocytes in AD. Confocal studies validated the higher level of p50 NF-κB and phosphorylated-p65 NF-κB in glial fibrillary acidic protein (GFAP)+-astrocytes in AD versus non-AD subjects. In the healthy mouse brain, chronic activation of astrocytic NF-κB disturbed the proteomic milieu, causing a loss of mitochondrial-associated proteins and the rise of inflammatory-related proteins. Sustained NF-κB signaling also led to microglial reactivity, production of pro-inflammatory mediators, and buildup of senescence-related protein p16INK4A in neurons. However, in an AD mouse model, NF-κB inhibition accelerated β-amyloid and tau accumulation. Molecular biology studies revealed that astrocytic NF-κB activation drives the increase in GFAP and inflammatory proteins and aquaporin-4, a glymphatic system protein that assists in mitigating AD. Our investigation uncovered fundamental mechanisms by which NF-κB enables astrocytes' neuroprotective and neurotoxic responses in the brain.
Collapse
Affiliation(s)
- Tee Jong Huat
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Judith Camats-Perna
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Estella A Newcombe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Josiah T Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alessandra Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Mehdi Mirzaei
- Clinical Medicine Department, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA.
| |
Collapse
|
13
|
Zhang W, Sun HS, Wang X, Dumont AS, Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci 2024; 47:461-474. [PMID: 38729785 DOI: 10.1016/j.tins.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Wang
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
14
|
Huang X, Huang S, Fu F, Song J, Zhang Y, Yue F. Characterization of preclinical Alzheimer's disease model: spontaneous type 2 diabetic cynomolgus monkeys with systemic pro-inflammation, positive biomarkers and developing AD-like pathology. Alzheimers Res Ther 2024; 16:52. [PMID: 38459540 PMCID: PMC10921774 DOI: 10.1186/s13195-024-01416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The key to the prevention and treatment of Alzheimer's disease (AD) is to be able to predict and diagnose AD at the preclinical or early stage, but the lack of a preclinical model of AD is the critical factor that causes this problem to remain unresolved. METHODS We assessed 18 monkeys in vivo evaluation of pro-inflammatory cytokines and AD pathological biomarkers (n = 9 / type 2 diabetic mellitus (T2DM) group, age 20, fasting plasma glucose (FPG) ≥ 100 mg/dL, and n = 9 / negative control (NC) group, age 17, FPG < 100 mg/dL). Levels of pro-inflammatory cytokines and AD pathological biomarkers was measured by ELISA and Simoa Technology, respectively. 9 monkeys evaluated ex vivo for AD-like pathology (n = 6 / T2DM group, age 22.17, FPG ≥ 126 mg/dL, and n = 3 / NC group, age 14.67, FPG < 100 mg/dL). To evaluate the pathological features of AD in the brains of T2DM monkeys, we assessed the levels of Aβ, phospho-tau, and neuroinflammation using immunohistochemistry, which further confirmed the deposition of Aβ plaques by Bielschowsky's silver, Congo red, and Thioflavin S staining. Synaptic damage and neurodegeneration were assessed by immunofluorescence. RESULTS We found not only increased levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) in peripheral blood (PB) and brain of T2DM monkeys but also changes in PB of AD pathological biomarkers such as decreased β-amyloid (Aβ) 42 and Aβ40 levels. Most notably, we observed AD-like pathological features in the brain of T2DM monkeys, including Aβ plaque deposition, p-tau from neuropil thread to pre-neurofibrillary tangles (NFTs), and even the appearance of extracellular NFT. Microglia were activated from a resting state to an amoeboid. Astrocytes showed marked hypertrophy and an increased number of cell bodies and protrusions. Finally, we observed impairment of the postsynaptic membrane but no neurodegeneration or neuronal death. CONCLUSIONS Overall, T2DM monkeys showed elevated levels of peripheral and intracerebral inflammation, positive AD biomarkers in body fluids, and developing AD-like pathology in the brain, including Aβ and tau pathology, glial cell activation, and partial synaptic damage, but no neuronal degeneration or death as compared to the healthy normal group. Hereby, we consider the T2DM monkeys with elevation of the peripheral pro-inflammatory factors and positive AD biomarkers can be potentially regarded as a preclinical AD model.
Collapse
Affiliation(s)
- Xinxin Huang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan University, Haikou, 570228, China
| | - Shanshan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan University, Haikou, 570228, China
| | - Fangyan Fu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan University, Haikou, 570228, China
| | - Junzhen Song
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan University, Haikou, 570228, China
| | - Yuling Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan University, Haikou, 570228, China
| | - Feng Yue
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
- Collaborative Innovation Center of One Health, Hainan University, Hainan University, Haikou, 570228, China.
| |
Collapse
|
15
|
Miao X, Wu Q, Du S, Xiang L, Zhou S, Zhu J, Chen Z, Wang H, Pan X, Fan Y, Zhang L, Qian J, Xing Y, Xie Y, Hu L, Xu H, Wang W, Wang Y, Huang Z. SARM1 Promotes Neurodegeneration and Memory Impairment in Mouse Models of Alzheimer's Disease. Aging Dis 2024; 15:390-407. [PMID: 37307837 PMCID: PMC10796105 DOI: 10.14336/ad.2023.0516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
Neuroinflammation plays a crucial role in the pathogenesis and progression of Alzheimer's disease (AD). The Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) has been shown to promote axonal degeneration and is involved in neuroinflammation. However, the role of SARM1 in AD remains unclear. In this study, we found that SARM1 was reduced in hippocampal neurons of AD model mice. Interestingly, conditional knockout (CKO) of SARM1 in the central nervous system (CNS, SARM1Nestin-CKO mice) delayed the cognitive decline in APP/PS1 AD model mice. Furthermore, SARM1 deletion reduced the Aβ deposition and inflammatory infiltration in the hippocampus and inhibited neurodegeneration in APP/PS1 AD model mice. Further investigation into the underlying mechanisms revealed that the signaling of tumor necrosis factor-α (TNF-α) was downregulated in the hippocampus tissues of APP/PS1;SARM1Nestin-CKO mice, thereby alleviating the cognitive decline, Aβ deposition and inflammatory infiltration. These findings identify unrecognized functions of SARM1 in promoting AD and reveal the SARM1-TNF-α pathway in AD model mice.
Collapse
Affiliation(s)
- Xuemeng Miao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Qian Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyao Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junzhe Zhu
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Zirun Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hui Wang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Xuyi Pan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiren Fan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lihan Zhang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Jingkang Qian
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yuxuan Xing
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiyang Xie
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lixin Hu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
16
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
Raffaele S, Thougaard E, Laursen CCH, Gao H, Andersen KM, Nielsen PV, Ortí-Casañ N, Blichfeldt-Eckhardt M, Koch S, Deb-Chatterji M, Magnus T, Stubbe J, Madsen K, Meyer M, Degn M, Eisel ULM, Wlodarczyk A, Fumagalli M, Clausen BH, Brambilla R, Lambertsen KL. Microglial TNFR2 signaling regulates the inflammatory response after CNS injury in a sex-specific fashion. Brain Behav Immun 2024; 116:269-285. [PMID: 38142915 PMCID: PMC11500189 DOI: 10.1016/j.bbi.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Estrid Thougaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Cathrine C H Laursen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Han Gao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, 510630 Guangzhou, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630 Guangzhou, China
| | - Katrine M Andersen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Pernille V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9713 AV, Netherlands
| | - Morten Blichfeldt-Eckhardt
- Department of Anaesthesiology, Vejle Hospital, 7100 Vejle, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Simon Koch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Milani Deb-Chatterji
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | | | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9713 AV, Netherlands
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Bettina H Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Roberta Brambilla
- BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami FL, USA.
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark.
| |
Collapse
|
18
|
Nguyen KL, Bhatt IJ, Gupta S, Showkat N, Swanson KA, Fischer R, Kontermann RE, Pfizenmaier K, Bracchi-Ricard V, Bethea JR. Tumor necrosis factor receptor 2 activation elicits sex-specific effects on cortical myelin proteins and functional recovery in a model of multiple sclerosis. Brain Res Bull 2024; 207:110885. [PMID: 38246200 PMCID: PMC10923072 DOI: 10.1016/j.brainresbull.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.
Collapse
MESH Headings
- Humans
- Male
- Female
- Mice
- Animals
- Multiple Sclerosis
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/therapeutic use
- Tumor Necrosis Factor Inhibitors/therapeutic use
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Myelin Proteins
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Knockout
Collapse
Affiliation(s)
- Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052, United States.
| | - Ishaan J Bhatt
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Shruti Gupta
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Nazaf Showkat
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Kathryn A Swanson
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | | | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20052, United States.
| |
Collapse
|
19
|
Thougaard E, Nielsen PV, Forsberg A, Phuong V, Velasco AM, Wlodarczyk A, Wajant H, Lang I, Mikkelsen JD, Clausen BH, Brambilla R, Lambertsen KL. Systemic treatment with a selective TNFR2 agonist alters the central and peripheral immune responses and transiently improves functional outcome after experimental ischemic stroke. J Neuroimmunol 2023; 385:578246. [PMID: 37988839 DOI: 10.1016/j.jneuroim.2023.578246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Ischemic stroke often leaves survivors with permanent disabilities and therapies aimed at limiting detrimental inflammation and improving functional outcome are still needed. Tumor necrosis factor (TNF) levels increase rapidly after ischemic stroke, and while signaling through TNF receptor 1 (TNFR1) is primarily detrimental, TNFR2 signaling mainly has protective functions. We therefore investigated how systemic stimulation of TNFR2 with the TNFR2 agonist NewSTAR2 affects ischemic stroke in mice. We found that NewSTAR2 treatment induced changes in peripheral immune cell numbers and transiently affected microglial numbers and neuroinflammation. However, this was not sufficient to improve long-term functional outcome after stroke in mice.
Collapse
Affiliation(s)
- Estrid Thougaard
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark.
| | - Pernille Vinther Nielsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, 5000 Odense C, Denmark.
| | - Amalie Forsberg
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark.
| | - Victoria Phuong
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark.
| | - Aitana Martínez Velasco
- Neurobiology Research Unit, University Hospital Rigshospitalet, Inge Lehmanns Vej 6, 2100 Copenhagen, Denmark
| | - Agnieszka Wlodarczyk
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark.
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, Würzburg 97080, Germany.
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, Würzburg 97080, Germany.
| | - Jens D Mikkelsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; Neurobiology Research Unit, University Hospital Rigshospitalet, Inge Lehmanns Vej 6, 2100 Copenhagen, Denmark; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Bettina Hjelm Clausen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark.
| | - Roberta Brambilla
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark; The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Lois Pope LIFE Center, Miami, FL 33136, USA.
| | - Kate Lykke Lambertsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, 5000 Odense C, Denmark.
| |
Collapse
|
20
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
21
|
Kumari S, Dhapola R, Sharma P, Singh SK, Reddy DH. Implicative role of Cytokines in Neuroinflammation mediated AD and associated signaling pathways: Current Progress in molecular signaling and therapeutics. Ageing Res Rev 2023; 92:102098. [PMID: 39492425 DOI: 10.1016/j.arr.2023.102098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Alzheimer's Disease (AD) is one of the most devastating age-related disorder causing significant social and economic burden worldwide. It affects the cognitive and social behavior of individuals and characterized by accumulation of Aβ, phosphorylated tau and cytokines formation. The synthesis and release of cytokines are regulated by specific groups of immune and non-immune cells in response to microglia or astrocyte activation through multiple pathways. Physiologically, microglia assert an anti-inflammatory, quiescent state with minimal cytokine expression and little phagocytic activity in motion to carry out their housekeeping role to eliminate pathogens, aggregated Aβ and tau protein. However, they develop a phagocytic nature and overexpress cytokine gene modules in response to certain stimuli in AD. Microglia and astrocytes upon chronic activation release an enormous amount of inflammatory cytokines due to interaction with formed Aβ and neurofibrillary tangle. Gut microbiota dysbiosis also stimulates the release of inflammatory cytokines contributing to AD pathogenesis. In addition, the dysregulation of few signaling pathways significantly influences the development of disease, and the pace of advancement also rises with age. This review sheds light on multiple pathways results into neuroinflammation triggered by activated cytokines worsening AD pathology and making it an appropriate target for AD treatment. This review also included drugs targeting different neuroinflammation pathways under clinical and preclinical studies that are found to be effective in attenuating the disease pathology.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India.
| |
Collapse
|
22
|
Siegmund D, Wajant H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat Rev Rheumatol 2023; 19:576-591. [PMID: 37542139 DOI: 10.1038/s41584-023-01002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|
24
|
Youn C, Pontaza C, Wang Y, Dikeman DA, Joyce DP, Alphonse MP, Wu MJ, Nolan SJ, Anany MA, Ahmadi M, Young J, Tocaj A, Garza LA, Wajant H, Miller LS, Archer NK. Neutrophil-intrinsic TNF receptor signaling orchestrates host defense against Staphylococcus aureus. SCIENCE ADVANCES 2023; 9:eadf8748. [PMID: 37327341 PMCID: PMC10275602 DOI: 10.1126/sciadv.adf8748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections and is a major health burden due to the emergence of antibiotic-resistant strains. To address the unmet need of alternative treatments to antibiotics, a better understanding of the protective immune mechanisms against S. aureus skin infection is warranted. Here, we report that tumor necrosis factor (TNF) promoted protection against S. aureus in the skin, which was mediated by bone marrow-derived immune cells. Furthermore, neutrophil-intrinsic TNF receptor (TNFR) signaling directed immunity against S. aureus skin infections. Mechanistically, TNFR1 promoted neutrophil recruitment to the skin, whereas TNFR2 prevented systemic bacterial dissemination and directed neutrophil antimicrobial functions. Treatment with a TNFR2 agonist showed therapeutic efficacy against S. aureus and Pseudomonas aeruginosa skin infections, which involved increased neutrophil extracellular trap formation. Our findings revealed nonredundant roles for TNFR1 and TNFR2 in neutrophils for immunity against S. aureus and can be therapeutically targeted for protection against bacterial skin infections.
Collapse
Affiliation(s)
- Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Daniel P. Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Sabrina J. Nolan
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Mohamed A. Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, El Buhouth Street, Dokki, 12622 Giza, Egypt
| | - Michael Ahmadi
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Jeremy Young
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Aron Tocaj
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Lund MC, Ellman DG, Nielsen PV, Raffaele S, Fumagalli M, Guzman R, Degn M, Brambilla R, Meyer M, Clausen BH, Lambertsen KL. Selective Inhibition of Soluble Tumor Necrosis Factor Alters the Neuroinflammatory Response following Moderate Spinal Cord Injury in Mice. BIOLOGY 2023; 12:845. [PMID: 37372129 DOI: 10.3390/biology12060845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Clinical and animal model studies have implicated inflammation and glial and peripheral immune cell responses in the pathophysiology of spinal cord injury (SCI). A key player in the inflammatory response after SCI is the pleiotropic cytokine tumor necrosis factor (TNF), which exists both in both a transmembrane (tmTNF) and a soluble (solTNF) form. In the present study, we extend our previous findings of a therapeutic effect of topically blocking solTNF signaling after SCI for three consecutive days on lesion size and functional outcome to study the effect on spatio-temporal changes in the inflammatory response after SCI in mice treated with the selective solTNF inhibitor XPro1595 and compared to saline-treated mice. We found that despite comparable TNF and TNF receptor levels between XPro1595- and saline-treated mice, XPro1595 transiently decreased pro-inflammatory interleukin (IL)-1β and IL-6 levels and increased pro-regenerative IL-10 levels in the acute phase after SCI. This was complemented by a decrease in the number of infiltrated leukocytes (macrophages and neutrophils) in the lesioned area of the spinal cord and an increase in the number of microglia in the peri-lesion area 14 days after SCI, followed by a decrease in microglial activation in the peri-lesion area 21 days after SCI. This translated into increased myelin preservation and improved functional outcomes in XPro1595-treated mice 35 days after SCI. Collectively, our data suggest that selective targeting of solTNF time-dependently modulates the neuroinflammatory response by favoring a pro-regenerative environment in the lesioned spinal cord, leading to improved functional outcomes.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Ditte Gry Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Pernille Vinther Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Stefano Raffaele
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Matilda Degn
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| |
Collapse
|
26
|
Sibilia F, Sheikh-Bahaei N, Mack WJ, Choupan J. Perivascular spaces in Alzheimer's disease are associated with inflammatory, stress-related, and hypertension biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543504. [PMID: 37333097 PMCID: PMC10274635 DOI: 10.1101/2023.06.02.543504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. Literature suggests that PVS may play a significant role in aging and neurological disorders, including Alzheimer's disease (AD). Cortisol, a stress hormone, has been implicated in the development and progression of AD. Hypertension, a common condition in older adults, has been found to be a risk factor for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of waste products from the brain and promoting neuroinflammation. This study aims to understand the potential interactions between PVS, cortisol, hypertension, and inflammation in the context of cognitive impairment. Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale using an automated segmentation approach. Levels of cortisol and angiotensin-converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were analyzed using advanced laboratory techniques. Main effect and interaction analyses were performed to examine the associations between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. In the centrum semiovale, higher levels of inflammation reduced cortisol associations with PVS volume fraction. For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a transmembrane receptor of TNF). There was also a significant inverse main effect of TNFr2. In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF receptor inducing apoptosis). These findings show for the first time the intricate relationships between PVS structure and the levels of stress-related, hypertension, and inflammatory biomarkers. This research could potentially guide future studies regarding the underlying mechanisms of AD pathogenesis and the potential development of novel therapeutic strategies targeting these inflammation factors.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc. Scarsdale, New York
| |
Collapse
|
27
|
Pegoretti V, Bauer J, Fischer R, Paro I, Douwenga W, Kontermann RE, Pfizenmaier K, Houben E, Broux B, Hellings N, Baron W, Laman JD, Eisel ULM. Sequential treatment with a TNFR2 agonist and a TNFR1 antagonist improves outcomes in a humanized mouse model for MS. J Neuroinflammation 2023; 20:106. [PMID: 37138340 PMCID: PMC10157968 DOI: 10.1186/s12974-023-02785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Iskra Paro
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Evelien Houben
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Bieke Broux
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Niels Hellings
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Wia Baron
- Department Biomedical Sciences of Cells and Systems (BSCS), Section Molecular Neurobiology, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Jon D Laman
- Department Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
28
|
Fiedler T, Fairless R, Pichi K, Fischer R, Richter F, Kontermann RE, Pfizenmaier K, Diem R, Williams SK. Co-modulation of TNFR1 and TNFR2 in an animal model of multiple sclerosis. J Neuroinflammation 2023; 20:100. [PMID: 37122019 PMCID: PMC10149004 DOI: 10.1186/s12974-023-02784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG35-55) in humanized TNFR1 knock-in mice. These were treated with a human-specific TNFR1-selective antagonistic antibody (H398) and a mouse-specific TNFR2 agonist (EHD2-sc-mTNFR2), both in combination and individually. Histopathological analysis of spinal cords was performed to investigate demyelination and inflammatory infiltration, as well as axonal and neuronal degeneration. Retinas were examined for any protective effects on retinal ganglion cell (RGC) degeneration and neuroprotective signalling pathways analysed by Western blotting. RESULTS TNFR modulation successfully ameliorated symptoms of EAE and reduced demyelination, inflammatory infiltration and axonal degeneration. Furthermore, the combinatorial approach of blocking TNFR1 and stimulating TNFR2 signalling increased RGC survival and promoted the phosphorylation of Akt and NF-κB, both known to mediate neuroprotection. CONCLUSION These results further support the potential of regulating the balance of TNFR signalling, through the co-modulation of TNFR1 and TNFR2 activity, as a novel therapeutic approach in treating inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Timon Fiedler
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kira Pichi
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- BioNtech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Fabian Richter
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Chédotal H, Narayanan D, Povlsen K, Gotfredsen CH, Brambilla R, Gajhede M, Bach A, Clausen MH. Small-molecule modulators of tumor necrosis factor signaling. Drug Discov Today 2023; 28:103575. [PMID: 37003513 DOI: 10.1016/j.drudis.2023.103575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine with a major role in immune system homeostasis and is involved in many inflammatory and autoimmune diseases, such as rheumatoid arthritis (RA), psoriasis, Alzheimer's disease (AD), and multiple sclerosis (MS). Thus, TNF and its receptors, TNFR1 and TNFR2, are relevant pharmacological targets. Biologics have been developed to block TNF-dependent signaling cascades, but they display serious side effects, and their pharmacological effectiveness decreases over time because of their immunogenicity. In this review, we present recent discoveries in small molecules targeting TNF and its receptors and discuss alternative strategies for modulating TNF signaling. Teaser: This review presents several recent and innovative strategies for the modulation of tumor necrosis factor function, with a focus on small molecules.
Collapse
Affiliation(s)
- Henri Chédotal
- Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Katrine Povlsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Charlotte H Gotfredsen
- Technical University of Denmark, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE - Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mads H Clausen
- Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
30
|
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2023; 24:ijms24065921. [PMID: 36982996 PMCID: PMC10051444 DOI: 10.3390/ijms24065921] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
31
|
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Ortí-Casañ N, Wajant H, Kuiperij HB, Hooijsma A, Tromp L, Poortman IL, Tadema N, de Lange JH, Verbeek MM, De Deyn PP, Naudé PJ, Eisel UL. Activation of TNF Receptor 2 Improves Synaptic Plasticity and Enhances Amyloid-β Clearance in an Alzheimer's Disease Mouse Model with Humanized TNF Receptor 2. J Alzheimers Dis 2023; 94:977-991. [PMID: 37355890 PMCID: PMC10578215 DOI: 10.3233/jad-221230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) is a master cytokine involved in a variety of inflammatory and neurological diseases, including Alzheimer's disease (AD). Therapies that block TNF-α proved ineffective as therapeutic for neurodegenerative diseases, which might be explained by the opposing functions of the two receptors of TNF (TNFRs): while TNFR1 stimulation mediates inflammatory and apoptotic pathways, activation of TNFR2 is related to neuroprotection. Despite the success of targeting TNFR2 in a transgenic AD mouse model, research that better mimics the human context is lacking. OBJECTIVE The aim of this study is to investigate whether stimulation of TNFR2 with a TNFR2 agonist is effective in activating human TNFR2 and attenuating AD neuropathology in the J20xhuTNFR2-k/i mouse model. METHODS Transgenic amyloid-β (Aβ)-overexpressing mice containing a human extracellular TNFR2 domain (J20xhuTNFR2-k/i) were treated with a TNFR2 agonist (NewStar2). After treatment, different behavioral tests and immunohistochemical analysis were performed to assess different parameters, such as cognitive functions, plaque deposition, synaptic plasticity, or microglial phagocytosis. RESULTS Treatment with NewStar2 in J20xhuTNFR2-k/i mice resulted in a drastic decrease in plaque load and beta-secretase 1 (BACE-1) compared to controls. Moreover, TNFR2 stimulation increased microglial phagocytic activity, leading to enhanced Aβ clearance. Finally, activation of TNFR2 rescued cognitive impairments and improved synaptic plasticity. CONCLUSION Our findings demonstrate that activation of human TNFR2 ameliorates neuropathology and improves cognitive functions in an AD mouse model. Moreover, our study confirms that the J20xhuTNFR2-k/i mouse model is suitable for testing human TNFR2-specific compounds.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Harald Wajant
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Annelien Hooijsma
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leon Tromp
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Isabelle L. Poortman
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Norick Tadema
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Julia H.E. de Lange
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Petrus J.W. Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Moorthy H, Datta LP, Samanta S, Govindaraju T. Multifunctional Architectures of Cyclic Dipeptide Copolymers and Composites, and Modulation of Multifaceted Amyloid-β Toxicity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56535-56547. [PMID: 36516435 DOI: 10.1021/acsami.2c16336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder primarily characterized by the β-amyloid (Aβ42) misfolding and aggregation-associated multifaceted amyloid toxicity encompassing oxidative stress, neuronal death, and severe cognitive impairment. Modulation of Aβ42 aggregation via various structurally anisotropic macromolecular systems is considered effective in protecting neuronal cells. In this regard, we have developed a cyclic dipeptide (CDP)-based copolymer (CP) and explored its material and biomedical properties. Owing to the structural versatility, CDP-CP forms solvent-dependent anisotropic architectures ranging from dense fibers and mesosheets to vesicles, which are shown to interact with dyes and nanoparticles and mimic synthetic protocells, providing a conceptually new approach to achieve advanced functional materials with the hierarchical organization. CP upon interaction with gold nanoparticles (GNP) and polyoxometalate (POM) generated faceted architectures (CP-GNP) and the nanocomposite (CP-POM), respectively. CP-GNP and CP-POM have shown remarkable ability to inhibit Aβ42 aggregation, dissolve the preformed aggregates, and scavenge reactive oxygen species (ROS) to ameliorate multifaceted amyloid toxicity. In cellulo studies show that CP-GNP and CP-POM protect neuronal cells from Aβ42-induced toxicity and reduce lipopolysaccharide (LPS)-activated neuroinflammation at sub-micromolar concentration. To our knowledge, this is the first report on the hierarchical organization of CDP-CP into 1D-to-2D architectures and their organic-inorganic hybrid nanocomposites to combat the multifaceted amyloid toxicity.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
34
|
Do amyloid fibrils induce inflammation, or does inflammation generate amyloid fibrils? Proc Natl Acad Sci U S A 2022; 119:e2213903119. [PMID: 36170251 PMCID: PMC9546591 DOI: 10.1073/pnas.2213903119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|