1
|
Supriya L, Dake D, Woch N, Gupta P, Gopinath K, Padmaja G, Muthamilarasan M. Sugar sensors in plants: Orchestrators of growth, stress tolerance, and hormonal crosstalk. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154471. [PMID: 40048883 DOI: 10.1016/j.jplph.2025.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Sugars, vital metabolites for cellular health, play a central role in regulating diverse intracellular pathways that control plant growth and development. They also enhance stress responses, enabling plants to endure adverse conditions. A few intracellular molecules involved in sensing the intracellular sugar content and concomitantly facilitating appropriate response (growth or survivability) are known as sugar sensors. Among the numerous sugar sensors identified in plants, this review focuses on four extensively studied sugar sensors, namely hexokinase (HXK), Sucrose non-fermenting 1-related kinase-1 (Snf1-related kinase-1 or SnRK1), Target of rapamycin (TOR), and trehalose 6-phosphate (T6P). This review explores the multifaceted functions of these sugar sensors, highlighting their critical role in balancing energy metabolism and coordinating physiological processes under optimal and adverse conditions. By analyzing their involvement in plant growth, development, and stress response, this review underscores the significance of these sensors throughout the plant life cycle. Furthermore, this review highlights the intricate interplay among these sugar sensors, demonstrating how their activities are finely tuned and interdependent. We also examined the crosstalk between these sugar sensors and phytohormones, fine-tuning plant responses to environmental stimuli. Altogether, this review elucidates the significance of sugar sensors as integrators of metabolic and hormonal signals, providing a comprehensive understanding of their pivotal roles in plant biology. This knowledge paves the way for potential agricultural innovations to enhance crop productivity and resilience in the face of climate change.
Collapse
Affiliation(s)
- Laha Supriya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Dake
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Nyanthanglo Woch
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Prodosh Gupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kodetham Gopinath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Gudipalli Padmaja
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Fakher B, Jakada BH, Greaves JG, Wang L, Niu X, Cheng Y, Zheng P, Aslam M, Qin Y, Wang X. Identification and expression analysis of pineapple sugar transporters reveal their role in the development and environmental response. FRONTIERS IN PLANT SCIENCE 2022; 13:964897. [PMID: 36352877 PMCID: PMC9638087 DOI: 10.3389/fpls.2022.964897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In plants, sugars are required for several essential functions, including growth, storage, signaling, defense and reproduction. Sugar transporters carry out the controlled movement of sugars from source (leaves) to sink (fruits and roots) tissues and determine the overall development of the plant. Various types of sugar transporter families have been described in plants, including sucrose transporters (SUC/SUT), monosaccharide transporter (MST) and SWEET (from "Sugar Will Eventually be Exported Transporters"). However, the information about pineapple sugar transporters is minimal. This study systematically identified and classified 45 MST and 4 SUC/SUT genes in the pineapple genome. We found that the expression patterns of sugar transporter genes have a spatiotemporal expression in reproductive and vegetative tissues indicating their pivotal role in reproductive growth and development. Besides, different families of sugar transporters have a diel expression pattern in photosynthetic and non-photosynthetic tissues displaying circadian rhythm associated participation of sugar transporters in the CAM pathway. Moreover, regulation of the stress-related sugar transporters during cold stress indicates their contribution to cold tolerance in pineapple. Heterologous expression (yeast complementation assays) of sugar transporters in a mutant yeast strain suggested that SUT1/2 have the ability to transport sucrose, and STP13, STP26, pGlcT-L2 and TMT4 are able to transport glucose, whereas SWEET11/13 transport both sucrose and fructose. The information provided here would help researchers further explore the underlying molecular mechanism involved in the sugar metabolism of pineapple.
Collapse
Affiliation(s)
- Beenish Fakher
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Joseph G. Greaves
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoping Niu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| |
Collapse
|
3
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|
4
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
5
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
6
|
Wróbel-Marek J, Godel-Jędrychowska K, Kurczyńska E. Analysis of the Distribution of Symplasmic Tracers During Zygotic and Somatic Embryogenesis. Methods Mol Biol 2022; 2457:351-365. [PMID: 35349153 DOI: 10.1007/978-1-0716-2132-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) are membraneous channels that span cell walls of adjacent cells to establish the symplasm. These connections are unique to plants and enable the cell-to-cell exchange of information via the symplasm. However, not every plant cell is connected to its neighbor. Absence of PD and lack of communication (symplasmic isolation) are important regulators of cell differentiation. To determine cell-to-cell symplasmic connectivity, the distribution of fluorescent tracers can be analyzed. Here, we describe in detail the entire procedure for conducting such analysis using fluorescence and confocal microscopy to study molecular fluxes in fluorescence recovery after photobleaching (FRAP) experiments. Studies using fluorochromes and fluorescent-labeled dextrans successfully inform the degree of symplasmic connectivity between cells in zygotic and somatic embryos. Small molecules, such as water and ions, travel through PD but also transcription factors and different types of RNA. Studies of symplasmic communication are important to determine the spatio-temporal correlation between cell differentiation and the exchange of information between cells. This information is necessary to determine the role of symplasmic communication during embryogenesis, which is a very important stage in plant development and morphogenesis.
Collapse
Affiliation(s)
- Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
7
|
Dmitrieva VA, Domashkina VV, Ivanova AN, Sukhov VS, Tyutereva EV, Voitsekhovskaja OV. Regulation of plasmodesmata in Arabidopsis leaves: ATP, NADPH and chlorophyll b levels matter. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5534-5552. [PMID: 33974689 DOI: 10.1093/jxb/erab205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
In mature leaves, cell-to-cell transport via plasmodesmata between mesophyll cells links the production of assimilates by photosynthesis with their export to sink organs. This study addresses the question of how signals derived from chloroplasts and photosynthesis influence plasmodesmata permeability. Cell-to-cell transport was analyzed in leaves of the Arabidopsis chlorophyll b-less ch1-3 mutant, the same mutant complemented with a cyanobacterial CAO gene (PhCAO) overaccumulating chlorophyll b, the trxm3 mutant lacking plastidial thioredoxin m3, and the ntrc mutant lacking functional NADPH:thioredoxin reductase C. The regulation of plasmodesmata permeability in these lines could not be traced back to the reduction state of the thioredoxin system or the types and levels of reactive oxygen species produced in chloroplasts; however, it could be related to chloroplast ATP and NADPH production. The results suggest that light enables plasmodesmata closure via an increase in the ATP and NADPH levels produced in photosynthesis, providing a control mechanism for assimilate export based on the rate of photosynthate production in the Calvin-Benson cycle. The level of chlorophyll b influences plasmodesmata permeability via as-yet-unidentified signals. The data also suggest a role of thioredoxin m3 in the regulation of cyclic electron flow around photosystem I.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Valentina V Domashkina
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra N Ivanova
- Laboratory of Plant Anatomy, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Research Park, St. Petersburg State University, St. Petersburg, Russia
| | - Vladimir S Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Grzyb M, Wróbel-Marek J, Kurczyńska E, Sobczak M, Mikuła A. Symplasmic Isolation Contributes to Somatic Embryo Induction and Development in the Tree Fern Cyathea delgadii Sternb. PLANT & CELL PHYSIOLOGY 2020; 61:1273-1284. [PMID: 32374847 PMCID: PMC7377347 DOI: 10.1093/pcp/pcaa058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
In this report, we describe studies on symplasmic communication and cellular rearrangement during direct somatic embryogenesis (SE) in the tree fern Cyathea delgadii. We analyzed changes in the symplasmic transport of low-molecular-weight fluorochromes, such as 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) and fluorescein (delivered to cells as fluorescein diacetate, FDA), within stipe explants and somatic embryos originating from single epidermal cells and developing during 16-d long culture. Induction of SE is preceded by a restriction in fluorochrome distribution between certain explant cells. Microscopic analysis showed a series of cellular changes like a decrease in vacuole size, increase in vacuole numbers, and increased density of cytoplasm and deposition of electron-dense material in cell walls that may be related with embryogenic transition. In somatic embryos, the limited symplasmic communication between cells was observed first in linear tri-cellular embryos. Further development of the fern embryo was associated with the formation of symplasmic domains corresponding to the four segments of the plant body. Using symplasmic tracers, we provided evidence that the changes in plasmodesmata permeability are corelated with somatic-to-embryogenic transition and somatic embryo development.
Collapse
Affiliation(s)
- Małgorzata Grzyb
- Department of Conservative Plant Biology, Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, Warsaw 02-973, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Mirosław Sobczak
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw 02-787, Poland
| | - Anna Mikuła
- Department of Conservative Plant Biology, Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, Warsaw 02-973, Poland
| |
Collapse
|
9
|
Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 2020; 117:5049-5058. [PMID: 32051250 PMCID: PMC7060719 DOI: 10.1073/pnas.1919196117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Department of Biology, Northwest University, 710069 Xi'an, China
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Snigdha Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Elena A Shemyakina
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Howard M Goodman
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
| |
Collapse
|
10
|
O’Lexy R, Kasai K, Clark N, Fujiwara T, Sozzani R, Gallagher KL. Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3715-3728. [PMID: 29901781 PMCID: PMC6022669 DOI: 10.1093/jxb/ery171] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Both plants and animals must contend with changes in their environment. The ability to respond appropriately to these changes often underlies the ability of the individual to survive. In plants, an early response to environmental stress is an alteration in plasmodesmatal permeability with accompanying changes in cell to cell signaling. However, the ways in which plasmodesmata are modified, the molecular players involved in this regulation, and the biological significance of these responses are not well understood. Here, we examine the effects of nutrient scarcity and excess on plasmodesmata-mediated transport in the Arabidopsis thaliana root and identify two CALLOSE SYNTHASES and two β-1,3-GLUCANASES as key regulators of these processes. Our results suggest that modification of plasmodesmata-mediated signaling underlies the ability of the plant to maintain root growth and properly partition nutrients when grown under conditions of excess nutrients.
Collapse
Affiliation(s)
- Ruthsabel O’Lexy
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Koji Kasai
- Department of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Natalie Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Toru Fujiwara
- Department of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Kimberly L Gallagher
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Correspondence:
| |
Collapse
|
11
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Dmitrieva VA, Ivanova AN, Tyutereva EV, Evkaikina AI, Klimova EA, Voitsekhovskaja OV. Chlorophyllide-a-Oxygenase (CAO) deficiency affects the levels of singlet oxygen and formation of plasmodesmata in leaves and shoot apical meristems of barley. PLANT SIGNALING & BEHAVIOR 2017; 12:e1300732. [PMID: 28272988 PMCID: PMC5437820 DOI: 10.1080/15592324.2017.1300732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
In plants, organogenesis and specification of cell layers and tissues rely on precise symplastic delivery of regulatory molecules via plasmodesmata. Accordingly, abundance and aperture of plasmodesmata at individual cell boundaries should be controlled by the plant. Recently, studies in Arabidopsis established reactive oxygen species as major regulators of plasmodesmata formation and gating. We show that in a barley mutant deficient in the synthesis of chlorophyll b, the numbers of plasmodesmata in leaves and in the shoot apical meristem are significantly higher than in the corresponding wild type, probably due to redox imbalance in the mutant. The resulting disturbance of symplasmic transport is likely to be the reason for the observed delayed floral transition in these mutants.
Collapse
Affiliation(s)
- Valeria A. Dmitrieva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
| | - Alexandra N. Ivanova
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
| | - Elena V. Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
| | - Anastasiia I. Evkaikina
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
| | - Ekaterina A. Klimova
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
| | - Olga V. Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St.-Petersburg, Russia
- CONTACT Olga V. Voitsekhovskaja Plant Ecological Physiology, Komarov Botanical Institute RAS, ul. Professora Popova, 2, Saint Petersburg, 197376, Russia
| |
Collapse
|
13
|
Gallagher KL, Sozzani R, Lee CM. Intercellular protein movement: deciphering the language of development. Annu Rev Cell Dev Biol 2015; 30:207-33. [PMID: 25288113 DOI: 10.1146/annurev-cellbio-100913-012915] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.
Collapse
Affiliation(s)
- Kimberly L Gallagher
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; ,
| | | | | |
Collapse
|
14
|
The cytosol must flow: intercellular transport through plasmodesmata. Curr Opin Cell Biol 2015; 35:13-20. [PMID: 25847870 DOI: 10.1016/j.ceb.2015.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 01/20/2023]
Abstract
Plant cells are connected across cell walls by nanoscopic channels called plasmodesmata (PD), which allow plant cells to share resources and exchange signaling molecules. Several protein components of PD membranes have been identified, and recent advances in superresolution live-cell microscopy are illuminating PD ultrastructure. Restricting transport through PD is crucial for morphogenesis, since hormones and hundreds of transcription factors regularly move through PD, and this transport must stop to allow cells to begin differentiating. Chloroplasts and mitochondria regulate PD function through signal transduction networks that coordinate plant physiology and development. Recent discoveries on the relationships of land plants and their algal relatives suggest that PD have evolved independently in several lineages, emphasizing the importance of cytosolic bridges in multicellular biology.
Collapse
|
15
|
Kitagawa M, Fujita T. A model system for analyzing intercellular communication through plasmodesmata using moss protonemata and leaves. JOURNAL OF PLANT RESEARCH 2015; 128:63-72. [PMID: 25516502 DOI: 10.1007/s10265-014-0690-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Plant growth, development, and environmental responses require the proper regulation of intercellular movement of signals and nutrients. For this, plants have specialized cytoplasmic channels, the plasmodesmata (PD), which allow the symplasmic movement of micro- and macromolecules between neighboring cells. Internal and external signals spatio-temporally regulate the movement of molecules through the PD to control plant development and environmental responses. Although some aspects of targeted movement of molecules have been revealed, the mechanisms of non-targeted, diffusible flow of molecules through PD, and its regulation and function, remain poorly understood, particularly at the cellular level. Previously, we developed a system to quantitatively analyze non-targeted movement of a photoconvertible fluorescent protein, Dendra2, at the single-cell level in the filamentous protonemata tissue of the moss Physcomitrella patens. In protonemata, one-dimensional intercellular communication can be easily observed and quantitatively analyzed at the cellular level. In this review, we describe how protonemata and leaves of P. patens can be used to study symplasmic movement through PD, and discuss how this system can help improve our understanding of PD regulation and function in development and environmental responses in plants.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan,
| | | |
Collapse
|
16
|
Sager R, Lee JY. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6337-58. [PMID: 25262225 PMCID: PMC4303807 DOI: 10.1093/jxb/eru365] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways.
Collapse
Affiliation(s)
- Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
17
|
Wigoda N, Moshelion M, Moran N. Is the leaf bundle sheath a "smart flux valve" for K+ nutrition? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:715-722. [PMID: 24629888 DOI: 10.1016/j.jplph.2013.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Evidence has started to accumulate that the bundle sheath regulates the passage of water, minerals and metabolites between the mesophyll and the conducting vessels of xylem and phloem within the leaf veins which it envelops. Although potassium (K(+)) nutrition has been studied for several decades, and much is known about the uptake and recirculation of K(+) within the plant, the potential regulatory role of bundle sheath with regard to K(+) fluxes has just begun to be addressed. Here we have collected some facts and ideas about these processes.
Collapse
Affiliation(s)
- Noa Wigoda
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Menachem Moshelion
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Moran
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Braun DM, Wang L, Ruan YL. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1713-35. [PMID: 24347463 DOI: 10.1093/jxb/ert416] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less information about phloem loading in monocots. Maize and rice are major dietary staples, which have previously been proposed to use different cellular routes to transport sucrose from photosynthetic cells into the translocation stream. The anatomical, physiological, and genetic evidence supporting these conflicting hypotheses is examined. Upon entering sink cells, sucrose often is degraded into hexoses for a wide range of metabolic and storage processes, including biosynthesis of starch, protein, and cellulose, which are all major constituents for food, fibre, and fuel. Sucrose, glucose, fructose, and their derivate, trehalose-6-phosphate, also serve as signalling molecules to regulate gene expression either directly or through cross-talk with other signalling pathways. As such, sugar transport and metabolism play pivotal roles in plant development and realization of crop yield that needs to be increased substantially to meet the projected population demand in the foreseeable future. This review will discuss the current understanding of the control of carbon partitioning from the cellular to whole-plant levels, focusing on (i) the pathways employed for phloem loading in source leaves, particularly in grasses, and the routes used in sink organs for phloem unloading; (ii) the transporter proteins responsible for sugar efflux and influx across plasma membranes; and (iii) the key enzymes regulating sucrose metabolism, signalling, and utilization. Examples of how sugar transport and metabolism can be manipulated to improve crop productivity and stress tolerance are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
19
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
20
|
Kitagawa M, Fujita T. Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2. JOURNAL OF PLANT RESEARCH 2013; 126:577-85. [PMID: 23381037 PMCID: PMC4194024 DOI: 10.1007/s10265-013-0547-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/23/2012] [Indexed: 05/26/2023]
Abstract
Cell-to-cell transport of molecules in plants must be properly regulated for plant growth and development. One specialized mechanism that plants have evolved involves transport through plasmodesmata (PD), but when and how transport of molecules via PD is regulated among individual cells remains largely unknown, particularly at the single-cell level. Here, we developed a tool for quantitatively analyzing cell-to-cell transport via PD at a single-cell level using protonemata of Physcomitrella patens and a photoconvertible fluorescent protein, Dendra2. In the filamentous protonemal tissues, one-dimensional intercellular communication can be observed easily. Using this system, we found that Dendra2 was directionally transported toward the apex of the growing protonemata. However, this directional transport could be eliminated by incubation in the dark or treatment with a metabolic inhibitor. Thus, we propose that directional transport of macromolecules can occur via PD in moss protonemata, and may be affected by the photosynthetic and metabolic activity of cells.
Collapse
Affiliation(s)
- Munenori Kitagawa
- />Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810 Japan
| | - Tomomichi Fujita
- />Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
21
|
Turnbull CGN, Lopez-Cobollo RM. Heavy traffic in the fast lane: long-distance signalling by macromolecules. THE NEW PHYTOLOGIST 2013; 198:33-51. [PMID: 23398598 DOI: 10.1111/nph.12167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/21/2012] [Indexed: 05/05/2023]
Abstract
The two major vascular conduits in plants, the xylem and phloem, theoretically provide opportunities for the long-distance translocation of almost any type of water-borne molecule. This review focuses on the signalling functions conveyed by the movement of macromolecules. Here, a signal is defined as the communication of information from source to destination, where it modifies development, physiology or defence through altered gene expression or by direct influences on other cellular processes. Xylem and phloem sap both contain diverse classes of proteins; in addition, phloem contains many full-length and small RNA species. Only a few of these mobile molecules have proven functions in signalling. The transduction of signals typically depends on connection to appropriate signalling pathways. Incoming protein signals require specific detection systems, generally via receptors. Mobile RNAs require either the translation or presence of a homologous target. Given that phloem sieve elements are enucleate and lack translation machinery, RNA function requires subsequent unloading at least into adjacent companion cells. The binding of RNA by proteins in ribonucleoprotein complexes enables the translocation of some signals, with evidence for both sequence-specific and size-specific binding. Several examples of long-distance macromolecular signalling are highlighted, including the FT protein signal which regulates flowering time and other developmental switches.
Collapse
Affiliation(s)
- Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
22
|
Wu S, Gallagher KL. Transcription factors on the move. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:645-51. [PMID: 23031575 DOI: 10.1016/j.pbi.2012.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/01/2012] [Accepted: 09/11/2012] [Indexed: 05/23/2023]
Abstract
Mobile transcription factors play essential roles in plant development including the control of cell identity and tissue patterning, as well as organ initiation and the induction of major developmental switches. Within the past few years, the molecules and cellular structures that regulate the movement of these signals have emerged. Here we cover some of the major findings of the past two years as they relate to the intercellular movement of multiple different families of transcription factors.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
23
|
Liang D, White RG, Waterhouse PM. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. PLANT PHYSIOLOGY 2012; 159:984-1000. [PMID: 22582134 PMCID: PMC3387722 DOI: 10.1104/pp.112.197129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Collapse
Affiliation(s)
- Dacheng Liang
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | |
Collapse
|
24
|
Moreau M, Azzopardi M, Clément G, Dobrenel T, Marchive C, Renne C, Martin-Magniette ML, Taconnat L, Renou JP, Robaglia C, Meyer C. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. THE PLANT CELL 2012; 24:463-81. [PMID: 22307851 PMCID: PMC3315227 DOI: 10.1105/tpc.111.091306] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/04/2012] [Accepted: 01/15/2012] [Indexed: 05/19/2023]
Abstract
The conserved Target of Rapamycin (TOR) kinase forms high molecular mass complexes and is a major regulator of cellular adaptations to environmental cues. The Lethal with Sec Thirteen 8/G protein β subunit-like (LST8/GβL) protein is a member of the TOR complexes, and two putative LST8 genes are present in Arabidopsis thaliana, of which only one (LST8-1) is significantly expressed. The Arabidopsis LST8-1 protein is able to complement yeast lst8 mutations and interacts with the TOR kinase. Mutations in the LST8-1 gene resulted in reduced vegetative growth and apical dominance with abnormal development of flowers. Mutant plants were also highly sensitive to long days and accumulated, like TOR RNA interference lines, higher amounts of starch and amino acids, including proline and glutamine, while showing reduced concentrations of inositol and raffinose. Accordingly, transcriptomic and enzymatic analyses revealed a higher expression of genes involved in nitrate assimilation when lst8-1 mutants were shifted to long days. The transcriptome of lst8-1 mutants in long days was found to share similarities with that of a myo-inositol 1 phosphate synthase mutant that is also sensitive to the extension of the light period. It thus appears that the LST8-1 protein has an important role in regulating amino acid accumulation and the synthesis of myo-inositol and raffinose during plant adaptation to long days.
Collapse
Affiliation(s)
- Manon Moreau
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
- Laboratoire de Génétique et Biophysique des Plantes, Unité Mixte de Recherche 7225, Commissariat à l'Energie Atomique–Institut de Biologie Environnementale et Biotechnologie–Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche Scientifique, Université Aix Marseille, Faculté des Sciences de Luminy, 13009 Marseille, France
| | - Marianne Azzopardi
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
| | - Thomas Dobrenel
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
| | - Chloé Marchive
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
| | - Charlotte Renne
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
| | - Marie-Laure Martin-Magniette
- Unité Mixte de Recherche 518, Institut National de la Recherche Agronomique AgroParisTech, 75005 Paris, France
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, Université Evry Val d'Essonne, Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Ludivine Taconnat
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, Université Evry Val d'Essonne, Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, Université Evry Val d'Essonne, Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, Unité Mixte de Recherche 7225, Commissariat à l'Energie Atomique–Institut de Biologie Environnementale et Biotechnologie–Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche Scientifique, Université Aix Marseille, Faculté des Sciences de Luminy, 13009 Marseille, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, 78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
25
|
Burch-Smith TM, Zambryski PC. Plasmodesmata paradigm shift: regulation from without versus within. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:239-60. [PMID: 22136566 DOI: 10.1146/annurev-arplant-042811-105453] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cells are surrounded by cellulosic cell walls, creating a potential challenge to resource sharing and information exchange between individual cells. To overcome this, plants have evolved channels called plasmodesmata that provide cytoplasmic continuity between each cell and its immediate neighbors. We first review plasmodesmata basics-their architecture, their origin, the types of cargo they transport, and their molecular components. The bulk of this review discusses the regulation of plasmodesmata formation and function. Historically, plasmodesmata research has focused intensely on uncovering regulatory or structural proteins that reside within or immediately adjacent to plasmodesmata. Recent findings, however, underscore that plasmodesmata are exquisitely sensitive to signals far removed from the plasmodesmal channel itself. Signals originating from molecules and pathways that regulate cellular homeostasis-such as reactive oxygen species, organelle-organelle signaling, and organelle-nucleus signaling-lead to astonishing alterations in gene expression that affect plasmodesmata formation and function.
Collapse
Affiliation(s)
- Tessa M Burch-Smith
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
26
|
Besnard F, Vernoux T, Hamant O. Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cell Mol Life Sci 2011; 68:2885-906. [PMID: 21655916 PMCID: PMC11115100 DOI: 10.1007/s00018-011-0732-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 11/27/2022]
Abstract
In multicellular organisms, the coordination of cell behaviors largely relies on biochemical and biophysical signals. Understanding how such signals control development is often challenging, because their distribution relies on the activity of individual cells and, in a feedback loop, on tissue behavior and geometry. This review focuses on one of the best-studied structures in biology, the shoot apical meristem (SAM). This tissue is responsible for the production of all the aerial parts of a plant. In the SAM, a population of stem cells continuously produces new cells that are incorporated in lateral organs, such as leaves, branches, and flowers. Organogenesis from stem cells involves a tight regulation of cell identity and patterning as well as large-scale morphogenetic events. The gene regulatory network controlling these processes is highly coordinated in space by various signals, such as plant hormones, peptides, intracellular mobile factors, and mechanical stresses. Many crosstalks and feedback loops interconnecting these pathways have emerged in the past 10 years. The plant hormone auxin and mechanical forces have received more attention recently and their role is more particularly detailed here. An integrated view of these signaling networks is also presented in order to help understanding how robust shape and patterning can emerge from these networks.
Collapse
Affiliation(s)
- Fabrice Besnard
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
- Laboratoire Joliot Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
27
|
Turnbull C. Long-distance regulation of flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4399-413. [PMID: 21778182 DOI: 10.1093/jxb/err191] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
One of the great mysteries of plant science appears to have been resolved with the discovery that the protein FT can act as a phloem-mobile florigen hormone. The collective evidence from several laboratories, many from studies on photoperiod response, indicates that FT and its homologues are universal signalling molecules for flowering plants. Duplication and divergence of FT-like proteins reveals an increased complexity of function in certain taxonomic groups including grasses and legumes. There are additional components of long-distance flowering time control, such as a role for gibberellins in some species but probably not others. Cytokinins and sugars are further putative signals. Vernalization processes and responses are generally considered to occur in shoot meristems, but systemic responses to cold have been reported several times. Finally, there is increasing evidence that FT does not act purely to switch on flowering, but in addition, has broader roles in seasonal developmental switches such as bud dormancy and tuberization, and in the regulation of meristem determinacy and compound leaf development. This review seeks to highlight recent progress in systemic floral signalling, and to indicate areas in need of further research.
Collapse
Affiliation(s)
- Colin Turnbull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
28
|
Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC. Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. PROTOPLASMA 2011; 248:61-74. [PMID: 21174132 PMCID: PMC3025111 DOI: 10.1007/s00709-010-0252-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/16/2010] [Indexed: 05/19/2023]
Abstract
Plasmodesmata (PD) structure and function vary temporally and spatially during all stages of plant development. PD that originate during, or post, cell division are designated as primary or secondary according to classical terminology. PD structure may be simple, twinned, or branched. Studies of PD during leaf, root, and embryo development have lead to the generalization that cells in less mature tissues contain predominantly simple PD. New quantitative analyses reveal that twinned and branched PD also occur in immature tissues. New data also highlight the versatility of viral movement proteins as tags for labeling PD in immature tissues as well as PD in mature tissues. A summary of the formation and function of primary, secondary, and branched PD during leaf, trichome, embryo, apical meristem, vascular cambium, and root development underscores the remarkable and indispensible plant-specific intercellular communication system that is mediated by PD.
Collapse
Affiliation(s)
- Tessa M. Burch-Smith
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Solomon Stonebloom
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Patricia C. Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
29
|
Werner D, Gerlitz N, Stadler R. A dual switch in phloem unloading during ovule development in Arabidopsis. PROTOPLASMA 2011; 248:225-35. [PMID: 21153670 DOI: 10.1007/s00709-010-0223-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/12/2010] [Indexed: 05/18/2023]
Abstract
Developing flowers are important sinks in Arabidopsis thaliana. Their energy demand is covered by assimilates which are synthesized in source leaves and transported via the vasculature. Assimilates are unloaded either symplastically through plasmodesmata or apoplastically by specific transport proteins. Here we studied the pathway of phloem unloading and post-phloem transport in developing gynoecia. Using phloem-mobile fluorescent tracers, we show that phloem unloading into cells of ovule primordia followed a symplastic pathway. Subsequently, the same tracers could not move out of phloem cells into mature ovules anymore. A further change in the mode of phloem unloading occurred after anthesis. In open flowers as well as in outgrowing siliques, the phloem was again unloaded via the symplast. This observed onset of symplastic phloem unloading was accompanied by a change in frequency of MP17-GFP-labeled plasmodesmata. We could also show that the change in cell-cell connectivity was independent of fertilization and increasing sink demand. The presented results indicate that symplastic connectivity is highly regulated and varies not only between different sink tissues but also between different developmental stages.
Collapse
Affiliation(s)
- Dagmar Werner
- Lehrstuhl Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | | | | |
Collapse
|
30
|
|
31
|
Ehlers K, van Bel AJE. Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. PLANTA 2010; 231:371-85. [PMID: 19936780 DOI: 10.1007/s00425-009-1046-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/20/2009] [Indexed: 05/19/2023]
Abstract
Frequency, density and branching of plasmodesmata were counted in successive tangential and transverse walls in the cambial zone of tomato stems in order to examine development of the plasmodesmal network in a chronological order. Coincident with progress of cell development, plasmodesmal connectivity increased, both at the xylem- and phloem-side. In transverse walls, the number of secondary plasmodesmata enhanced considerably. The same held for tangential walls, with a superimposed plasmodesmal doubling during the first phase of phloem development. This plasmodesmal doubling was interpreted to result from the deposition of wall material between branched plasmodesmal strands. Structural plasmodesmal development was correlated with production of hydroxyl radicals which control local cell wall alterations. Successive phases of plasmodesmal deployment and modification were distinguished which may coincide with differential functional capacities as documented by intracellular injection of fluorochromes. Diffusion-driven symplasmic transport appeared to be transiently interrupted during cell maturation.
Collapse
Affiliation(s)
- Katrin Ehlers
- Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390 Giessen, Germany.
| | | |
Collapse
|
32
|
Lucas WJ, Ham BK, Kim JY. Plasmodesmata - bridging the gap between neighboring plant cells. Trends Cell Biol 2009; 19:495-503. [PMID: 19748270 DOI: 10.1016/j.tcb.2009.07.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 12/15/2022]
Abstract
Land plants have developed highly sophisticated intercellular channels called plasmodesmata (PD) that mediate the cell-to-cell trafficking of signaling molecules, including non-cell autonomous proteins (NCAPs) and RNAs. Until recently, the biological significance of this position-dependent intercellular signaling system was underestimated, as only a limited number of endogenous NCAPs had been discovered. However, identification of an ever-increasing population of NCAPs suggests that the PD communication pathway is involved in diverse biological processes, ranging from development to pathogen defense. The identification of components involved in plasmodesmal structure and associated signaling molecules is now yielding novel insights into the evolution and function of PD in mediating the trafficking of non-cell-autonomous information macromolecules. Important future challenges are to build a detailed model for the plasmodesmal supramolecular complex and to further elucidate the molecular and cellular aspects of this novel plant cell-to-cell communication pathway.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
33
|
Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 2009; 4:655-9. [PMID: 19218459 DOI: 10.1073/pnas.0808717106] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell-to-cell transport in plants occurs through cytoplasmic channels called "plasmodesmata" and is regulated by developmental and environmental factors. Callose deposition modulates plasmodesmal transport in vivo, but little is known about the mechanisms that regulate this process. Here we report a genetic approach to identify mutants affecting plasmodesmal transport. We isolated 5 mutants, named gfp arrested trafficking (gat), affected in GFP unloading from the phloem into the meristem. gat1 mutants were seedling lethal and carried lesions in an m-type thioredoxin that is expressed in non-green plastids of meristems and organ primordia. Callose and hydrogen peroxide accumulated in gat1 mutants, and WT plants subjected to oxidative conditions phenocopied the gat1 trafficking defects. Ectopic expression of GAT1 in mature leaves increased plasmodesmal permeability and led to a delay in senescence and flowering time. We propose a role for the GAT1 thioredoxin in the redox regulation of callose deposition and symplastic permeability that is essential for meristem maintenance in Arabidopsis.
Collapse
|
34
|
Bayer E, Thomas C, Maule A. Symplastic domains in the Arabidopsis shoot apical meristem correlate with PDLP1 expression patterns. PLANT SIGNALING & BEHAVIOR 2008; 3:853-5. [PMID: 19704520 PMCID: PMC2634395 DOI: 10.4161/psb.3.10.6020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 05/18/2023]
Abstract
Symplastic domains in plants are defined by spatial limitations on cell-to-cell communication through plasmodesmata (Pds) and establish tissue boundaries necessary for metabolic and developmental programming. With the exception of the physical closure of Pds by callose, the cues and the processes for creating symplastic domains remain poorly understood. Recently, we identified a novel family of eight proteins, called Pd-located protein 1 (PDLP1). These proteins span the plasma membrane within Pds and likely form part of a signal transduction system that perceives external signals to regulate molecular trafficking between cells. For two members of this family that have high expression in the shoot apex we show that they have defined and partially overlapping tissue-specific expression patterns that correlate in part with previously defined symplastic domains. The importance of non-cell-autonomous proteins in shoot development and of the spatial rules that govern leaf and floral development highlight the need to have a clearer understanding of symplastic domains.
Collapse
Affiliation(s)
- Emmanuelle Bayer
- John Innes Centre; Norwich Research Park; Colney, Norwich United Kingdom
| | | | | |
Collapse
|
35
|
[Phloem, transport between organs and long-distance signalling]. C R Biol 2008; 331:334-46. [PMID: 18472079 DOI: 10.1016/j.crvi.2008.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem.
Collapse
|
36
|
Abstract
Plasmodesmata provide routes for communication and nutrient transfer between plant cells by interconnecting the cytoplasm of adjacent cells. A simple fluorescent tracer-loading assay was developed to monitor patterns of cell to cell transport via plasmodesmata specifically during embryogenesis. A developmental transition in plasmodesmatal size exclusion limit was found to occur at the torpedo stage of embryogenesis in Arabidopsis; at this time, plasmodesmata are downregulated, allowing transport of small (approximately 0.5 kDa) but not large (approximately 10 kDa) tracers. This assay system was used to screen for embryo defective mutants, designated increased size exclusion limit of plasmodesmata that maintain dilated plasmodesmata at the torpedo stage.
Collapse
Affiliation(s)
- Insoon Kim
- Department of Biology, Sungshin Women's University, Korea
| | | |
Collapse
|
37
|
Ruan YL. Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:1-10. [PMID: 32689326 DOI: 10.1071/fp06234] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/21/2006] [Indexed: 05/24/2023]
Abstract
Higher plants comprise mixtures of some 40 different cell types, and this often complicates the interpretation of data obtained at the tissue level. Studies for a given cell type may provide novel insights into the mechanisms underlying defined cellular and developmental processes. In this regard, the cotton fibre represents an excellent single-cell model to study the control of rapid cell elongation and cellulose synthesis. These single cells, initiated from the ovule epidermis at anthesis, typically elongate to ~3-5 cm in the tetraploid species before they switch to intensive secondary cell wall cellulose synthesis. By maturity, more than 94% of fibre weight is cellulose. To unravel the mechanisms of fibre elongation and cellulose synthesis, two hypotheses have been examined: (a) that sucrose degradation and utilisation mediated by sucrose synthase (Sus) may play roles in fibre development and (b) that symplastic isolation of the fibre cells may be required for their rapid elongation. Reverse genetic and biochemical analyses have revealed the critical role that Sus plays in fibre initiation and early elongation. Late in development, plasma-membrane and cell wall association of Sus protein seems to be involved in rapid cellulose synthesis. Cell biology and gene expression studies showed a temporary closure of fibre plasmodesmata (PD), probably due to the deposition of callose, at the rapid phase of elongation. The duration of the PD closure correlates positively with the final fibre length attained. These data support the view that PD closure may be required for fibres to achieve extended elongation. The branching of PD towards the secondary cell wall stage is postulated to function as a molecule sieve for tight control of macromolecule trafficking into fibres to sustain intensive cellulose synthesis.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.Email
| |
Collapse
|
38
|
Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP. A shift of Phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. PLANT PHYSIOLOGY 2006; 142:220-32. [PMID: 16861573 PMCID: PMC1557625 DOI: 10.1104/pp.106.081430] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It remains unclear whether the phloem unloading pathway alters to adapt to developmental transition in fleshy fruits that accumulate high level of soluble sugars. Using a combination of electron microscopy, transport of the phloem-mobile symplasmic tracer carboxyfluorescein, movement of the companion cell-expressed and the green fluorescent protein-tagged viral movement protein, and assays of the sucrose cleavage enzymes, the pathway of phloem unloading was studied in the berries of a hybrid grape (Vitis vinifera x Vitis labrusca). Structural investigations showed that the sieve element-companion cell complex is apparently symplasmically connected through plasmodesmata with surrounding parenchyma cells throughout fruit development, though a small portion of plasmodesmata are apparently blocked in the ripening stage. Both carboxyfluorescein and the green fluorescent protein-tagged viral movement protein were released from the functional phloem strands during the early and middle stages of fruit development, whereas the two symplasmic tracers were confined to the phloem strands during the late stage. This reveals a shift of phloem unloading from symplasmic to apoplasmic pathway during fruit development. The turning point of the phloem unloading pathways was further shown to be at or just before onset of ripening, an important developmental checkpoint of grape berry. In addition, the levels of both the expression and activities of cell wall acid invertase increased around the onset of ripening and reached a high level in the late stage, providing further evidence for an operation of the apoplasmic unloading pathway after onset of ripening. These data demonstrate clearly the occurrence of an adaptive shift of phloem unloading pathway to developmental transition from growing phase to ripening in grape berry.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 100094 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Carraro N, Peaucelle A, Laufs P, Traas J. Cell differentiation and organ initiation at the shoot apical meristem. PLANT MOLECULAR BIOLOGY 2006; 60:811-26. [PMID: 16724254 DOI: 10.1007/s11103-005-2761-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 09/02/2005] [Indexed: 05/09/2023]
Abstract
Plants continuously generate organs at the flanks of their shoot apical meristems (SAMs). The patterns in which these organs are initiated, also called patterns of phyllotaxis, are highly stereotypic and characteristic for a particular species or developmental stage. This stable, predictable behaviour of the meristem has led to the idea that organ initiation must be based on simple and robust mechanisms. This conclusion is less evident, however, if we consider the very dynamic behaviour of the individual cells. How dynamic cellular events are coordinated and how they are linked to the regular patterns of organ initiation is a major issue in plant developmental biology.
Collapse
Affiliation(s)
- Nicola Carraro
- Laboratoire de Biologie Cellulaire, INRA, Institut Jean-Pierre Bourgin, Route de Saint Cyr, 78026, Versailles, cedex, France
| | | | | | | |
Collapse
|
40
|
Lough TJ, Lucas WJ. Integrative plant biology: role of phloem long-distance macromolecular trafficking. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:203-32. [PMID: 16669761 DOI: 10.1146/annurev.arplant.56.032604.144145] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent studies have revealed the operation of a long-distance communication network operating within the vascular system of higher plants. The evolutionary development of this network reflects the need to communicate environmental inputs, sensed by mature organs, to meristematic regions of the plant. One consequence of such a long-distance signaling system is that newly forming organs can develop properties optimized for the environment into which they will emerge, mature, and function. The phloem translocation stream of the angiosperms contains, in addition to photosynthate and other small molecules, a variety of macromolecules, including mRNA, small RNA, and proteins. This review highlights recent progress in the characterization of phloem-mediated transport of macromolecules as components of an integrated long-distance signaling network. Attention is focused on the role played by these proteins and RNA species in coordination of developmental programs and the plant's response to both environmental cues and pathogen challenge. Finally, the importance of developing phloem transcriptome and proteomic databases is discussed within the context of advances in plant systems biology.
Collapse
|
41
|
Cantrill LC, Overall RL, Goodwin PB. Changes in macromolecular movement accompany organogenesis in thin cell layers of Torenia fournieri. PLANTA 2005; 222:933-46. [PMID: 16034596 DOI: 10.1007/s00425-005-0034-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/25/2005] [Indexed: 05/03/2023]
Abstract
A range of fluorescently labelled probes of increasing molecular weight was used to monitor diffusion via the symplast in regenerating thin cell layer (TCL) explants of Torenia fournieri. An increase in intercellular movement of these molecules was associated with the earliest stages of vegetative shoot regeneration, with the movement of a 10 kDa dextran (FD 10000) observed between epidermal cells prior to the appearance of the first cell divisions. A low frequency of dextran movement in thin cell layers maintained under non-regenerating conditions was also observed, indicating a possible wound induced increase in intercellular movement. Dextran movement between epidermal cells reached a peak by day 4 of culture and then declined as cell division centres (CDCs) formed, became meristematic regions and finally emerged as adventitious shoots. Within CDCs, testing with small fluorescent probes (CF: carboxyfluorescein, mw 376 Da and F(Glu)3: fluorescein-triglutamic acid, mw 799 Da) revealed a mosaic of cell isolation and regions of maintained symplastic linkage. Within shoots, surface cells of the presumptive apical meristem permitted the intercellular movement of 10 kDa dextrans but epidermal cells of the surrounding leaf primordia did not permit dextran movement. In some cases, intercellular movement of CF was maintained within leaf primordia. Symplastic movement of labelled dextrans during regeneration in Torenia thin cell layers represents a significant increase in the basal size exclusion limit (SEL) of this tissue and reveals the potential for intercellular trafficking of developmentally related endogenous macromolecules.
Collapse
Affiliation(s)
- Laurence C Cantrill
- School of Biological Sciences A12, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
42
|
Tooke F, Ordidge M, Chiurugwi T, Battey N. Mechanisms and function of flower and inflorescence reversion. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2587-99. [PMID: 16131510 DOI: 10.1093/jxb/eri254] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.
Collapse
Affiliation(s)
- Fiona Tooke
- Department of Plant Sciences, Cambridge University, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
43
|
Haywood V, Yu TS, Huang NC, Lucas WJ. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:49-68. [PMID: 15773853 DOI: 10.1111/j.1365-313x.2005.02351.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phloem translocation stream contains a population of RNA molecules, suggesting plants use RNA to integrate developmental processes, at the whole-plant level. In the present study, we analyzed the role of long-distance trafficking in the delivery of transcripts from two members of the GRAS family, namely CmGAIP and GAI. These two homologs were chosen because of their involvement as transcriptional regulators in GA signaling. A combination of pumpkin, tomato and Arabidopsis was employed to examine the processes involved in long-distance delivery, to sink tissues, of RNA for engineered dominant gain-of-function pumpkin (Cmgaip) and Arabidopsis (DeltaDELLA-gai) genes. Our studies demonstrate that gai RNA entry into functional sieve elements occurs via a selective process. Both engineered mutant gai transcripts were able to exit the scion phloem and traffic cell to cell into the shoot apex. Delivery of Cmgaip and DeltaDELLA-gai RNA mediated highly reproducible changes in leaf phenotype in transgenic tomato lines grown under greenhouse conditions. Phenotypic analysis indicated that tomato leaflet morphology was influenced quite late in development. In addition, tissue sink strength did not appear to dictate gai RNA delivery, suggesting complexity in the process underlying macromolecular trafficking. These results establish that the molecular properties of the Cmgaip and DeltaDELLA-gai transcripts are compatible with the tomato cell-to-cell and long-distance macromolecular trafficking systems. An important conclusion, based on our work, is that control over GAI RNA delivery, via the phloem, may be regulated by sequence motifs conserved between plant families. We propose that RNA delivery via the phloem allows for flexibility in fine tuning of developmental programs to ensure newly developing leaves are optimized for performance under the prevailing environmental conditions.
Collapse
Affiliation(s)
- Valerie Haywood
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
44
|
Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC. Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 2005; 102:2227-31. [PMID: 15668382 PMCID: PMC548566 DOI: 10.1073/pnas.0409193102] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for intercellular trafficking of macromolecules through plasmodesmata (PD) during plant development. Here we study the ability of PD to traffic proteins during embryogenesis and early seedling development in Arabidopsis. Transgenic lines that induce GFP expression only in meristems, MSG (meristem-specific GFP), were used to monitor GFP movement. Cell-to-cell movement of different-sized GFP reporters reveals that embryos and young seedlings traffic proteins at least 54 kDa in size. Although 27-kDa soluble GFP (1 x sGFP) freely moves between cells throughout the entire embryo during all stages analyzed, 2 x sGFP movement becomes more restricted as development proceeds. After germination, cells near the apical meristem in seedlings show a higher size exclusion limit (SEL), whereas the SEL becomes more restricted as surrounding tissues develop identities. Although 1 x sGFP moves throughout leaf primordia, as the leaf develops only the basal part of leaf petioles, main vascular tissues, and leaf veins (not blades) allow 1 x sGFP movement. Although previous studies showed that embryos allow movement of small symplastic tracers (0.5 kDa), the present data demonstrate that the embryo constitutes a single symplast that allows transport of macromolecules as well. Even 2 x sGFP moves from its site of expression at the apical meristem in embryos and seedlings, yet the extent of movement is more limited than 1 x sGFP. Thus, PD have distinct SELs in different subregions of the embryo and seedling. These studies support the general concept that PD in younger tissues are more dilated and less restrictive than PD in older (nonvascular) tissues.
Collapse
Affiliation(s)
- Insoon Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
45
|
Ruan YL, Xu SM, White R, Furbank RT. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. PLANT PHYSIOLOGY 2004; 136:4104-13. [PMID: 15557097 PMCID: PMC535841 DOI: 10.1104/pp.104.051540] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 05/18/2023]
Abstract
Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J. Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific beta-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | |
Collapse
|
46
|
Ingram GC. Between the sheets: inter-cell-layer communication in plant development. Philos Trans R Soc Lond B Biol Sci 2004; 359:891-906. [PMID: 15306405 PMCID: PMC1693377 DOI: 10.1098/rstb.2003.1356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of plant meristems and embryos are arranged in an organized, and sometimes extremely beautiful, layered pattern. This pattern is maintained by the controlled orientation of cell divisions within layers. However, despite this layered structure, cell behaviour during plant development is not lineage dependent, and does not occur in a mosaic fashion. Many studies, both classical and recent, have shown that plant cell identity can be re-specified according to position, allowing plants to show remarkable developmental plasticity. However, the layered structure of meristems and the implications of this during plant development, remain subjects of some speculation. Of particular interest is the question of how cell layers communicate, and how communication between cell layers could allow coordinated developmental processes to take place. Recent research has uncovered several examples both of the molecular mechanisms by which cell layers can communicate, and of how this communication can infringe on developmental processes. A range of examples is used to illustrate the diversity of mechanisms potentially implicated in cell-layer communication during plant development.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
47
|
Zambryski P. Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. ACTA ACUST UNITED AC 2004; 164:165-8. [PMID: 14734529 PMCID: PMC2172327 DOI: 10.1083/jcb.200310048] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant cells communicate with each other via channels called plasmodesmata (PD). PD are not passive channels, but critical players in gene regulation, controlling intercellular transport of macromolecules between particular cells during development.
Collapse
Affiliation(s)
- Patricia Zambryski
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Abstract
The evolution of intercellular communication had an important role in the increasing complexity of both multicellular and supracellular organisms. Plasmodesmata, the intercellular organelles of the plant kingdom, establish an effective pathway for local and long-distance signalling. In higher plants, this pathway involves the trafficking of proteins and various forms of RNA that function non-cell-autonomously to affect developmental programmes.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
49
|
Heinlein M, Epel BL. Macromolecular Transport and Signaling Through Plasmodesmata. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:93-164. [PMID: 15219782 DOI: 10.1016/s0074-7696(04)35003-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmodesmata (Pd) are channels in the plant cell wall that in conjunction with associated phloem form an intercellular communication network that supports the cell-to-cell and long-distance trafficking of a wide spectrum of endogenous proteins and ribonucleoprotein complexes. The trafficking of such macromolecules is of importance in the orchestration of non-cell autonomous developmental and physiological processes. Plant viruses encode movement proteins (MPs) that subvert this communication network to facilitate the spread of infection. These viral proteins thus represent excellent experimental keys for exploring the mechanisms involved in intercellular trafficking and communication via Pd.
Collapse
Affiliation(s)
- Manfred Heinlein
- Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | |
Collapse
|
50
|
Abstract
In Arabidopsis thaliana, the initiation of flowering is carried out by four genetic pathways: gibberellin, autonomous, vernalization, and light-dependent pathways. These processes are integrated by the function of the genes FD, FE, FWA, PDF2, SOC1, and FT at the integration pathway. The integrated signal of the floral induction is transmitted to the floral meristem identity genes LFY and AP1, and floral morphogenesis is performed.
Collapse
Affiliation(s)
- Yoshibumi Komeda
- Laboratory of Plant Science, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|