1
|
van der Meijden E, Feltkamp M. The Human Polyomavirus Middle and Alternative T-Antigens; Thoughts on Roles and Relevance to Cancer. Front Microbiol 2018; 9:398. [PMID: 29568287 PMCID: PMC5852106 DOI: 10.3389/fmicb.2018.00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Approximately 15–20% of human cancer is related to infection, which renders them potentially preventable by antimicrobial or antiviral therapy. Human polyomaviruses (PyVs) are relevant in this regard, as illustrated by the involvement of Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma. The polyomavirus Small and Large tumor antigen (ST and LT) have been extensively studied with respect to their role in oncogenesis. Recently it was shown that a number of human PyVs, including MCPyV and the trichodysplasia spinulosa polyomavirus (TSPyV), express additional T-antigens called Middle T (MT) and alternative T (ALT). ALT is encoded by ORF5, also known as the alternative T open reading frame (ALTO), which also encodes the second exon of MT, and overlaps out-of-frame with the second exon of LT. Previously, MT was considered unique for oncogenic rodent polyomaviruses, and ALT was still unknown. In this mini-review, we want to point out there are important reasons to explore the involvement of MT and ALT in human cellular transformation. First, just like their rodent equivalents, MT and ALT probably disrupt cellular pathways that control signaling and proliferation. Second, expression of the MT and ALT-encoding ORF5/ALTO characterizes a monophyletic polyomavirus clade that includes human and animal PyVs with known oncogenic potential. And third, ORF5/ALTO is subject to strong positive selection aimed specifically at a short linear motif within MT and ALT that overlaps completely with the RB-binding motif in LT. The latter suggests tight interplay between these T-antigens with possible consequences for cell transformation.
Collapse
Affiliation(s)
- Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling. J Virol 2017; 91:JVI.01774-16. [PMID: 27852846 DOI: 10.1128/jvi.01774-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023] Open
Abstract
Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control. IMPORTANCE The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel aspects of mammalian cell regulation. The importance of PI3K activity and tyrosine phosphorylation are two examples of insights coming from MT. This study describes new mutants unable to transform like the wild type that point to novel regulation of PI3K signaling. Previous mutants were defective in PI3K because they failed to bind the enzyme and bring the activity to the membrane. These mutants recruit PI3K activity like the wild type, but fail to elevate the cellular level of PIP3, the product used to signal downstream of PI3K. As a result, they fail to activate either Akt or Rac1, explaining the transformation defect.
Collapse
|
3
|
Transformation by Polyomavirus Middle T Antigen Involves a Unique Bimodal Interaction with the Hippo Effector YAP. J Virol 2016; 90:7032-7045. [PMID: 27194756 PMCID: PMC4984622 DOI: 10.1128/jvi.00417-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Murine polyomavirus has repeatedly provided insights into tumorigenesis, revealing key control mechanisms such as tyrosine phosphorylation and phosphoinositide 3-kinase (PI3K) signaling. We recently demonstrated that polyomavirus small T antigen (ST) binds YAP, a major effector of Hippo signaling, to regulate differentiation. Here we characterize YAP as a target of middle T antigen (MT) important for transformation. Through a surface including residues R103 and D182, wild-type MT binds to the YAP WW domains. Mutation of either R103 or D182 of MT abrogates YAP binding without affecting binding to other signaling molecules or the strength of PI3K or Ras signaling. Either genetic abrogation of YAP binding to MT or silencing of YAP via short hairpin RNA (shRNA) reduced MT transformation, suggesting that YAP makes a positive contribution to the transformed phenotype. MT targets YAP both by activating signaling pathways that affect it and by binding to it. MT signaling, whether from wild-type MT or the YAP-binding MT mutant, promoted YAP phosphorylation at S127 and S381/397 (YAP2/YAP1). Consistent with the known functions of these phosphorylated serines, MT signaling leads to the loss of YAP from the nucleus and degradation. Binding of YAP to MT brings it together with protein phosphatase 2A (PP2A), leading to the dephosphorylation of YAP in the MT complex. It also leads to the enrichment of YAP in membranes. Taken together, these results indicate that YAP promotes MT transformation via mechanisms that may depart from YAP's canonical oncogenic transcriptional activation functions. IMPORTANCE The highly conserved Hippo/YAP pathway is important for tissue development and homeostasis. Increasingly, changes in this pathway are being associated with cancer. Middle T antigen (MT) is the primary polyomavirus oncogene responsible for tumor formation. In this study, we show that MT signaling promotes YAP phosphorylation, loss from the nucleus, and increased turnover. Notably, MT genetics demonstrate that YAP binding to MT is important for transformation. Because MT also binds PP2A, YAP bound to MT is dephosphorylated, stabilized, and localized to membranes. Taken together, these results indicate that YAP promotes MT transformation via mechanisms that depart from YAP's canonical oncogenic transcriptional activation functions.
Collapse
|
4
|
Garren SB, Kondaveeti Y, Duff MO, Carmichael GG. Global Analysis of Mouse Polyomavirus Infection Reveals Dynamic Regulation of Viral and Host Gene Expression and Promiscuous Viral RNA Editing. PLoS Pathog 2015; 11:e1005166. [PMID: 26407100 PMCID: PMC4583464 DOI: 10.1371/journal.ppat.1005166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
Mouse polyomavirus (MPyV) lytically infects mouse cells, transforms rat cells in culture, and is highly oncogenic in rodents. We have used deep sequencing to follow MPyV infection of mouse NIH3T6 cells at various times after infection and analyzed both the viral and cellular transcriptomes. Alignment of sequencing reads to the viral genome illustrated the transcriptional profile of the early-to-late switch with both early-strand and late-strand RNAs being transcribed at all time points. A number of novel insights into viral gene expression emerged from these studies, including the demonstration of widespread RNA editing of viral transcripts at late times in infection. By late times in infection, 359 host genes were seen to be significantly upregulated and 857 were downregulated. Gene ontology analysis indicated transcripts involved in translation, metabolism, RNA processing, DNA methylation, and protein turnover were upregulated while transcripts involved in extracellular adhesion, cytoskeleton, zinc finger binding, SH3 domain, and GTPase activation were downregulated. The levels of a number of long noncoding RNAs were also altered. The long noncoding RNA MALAT1, which is involved in splicing speckles and used as a marker in many late-stage cancers, was noticeably downregulated, while several other abundant noncoding RNAs were strongly upregulated. We discuss these results in light of what is currently known about the MPyV life cycle and its effects on host cell growth and metabolism. Mouse polyomavirus (MPyV) is a small 5.3kb circular double-stranded DNA virus capable of causing tumors in a variety of tissues in immunocompromised mice. It has been a subject of study for over 60 years, yielding insights into a number of processes including tumorigenesis, cell cycle signaling, and transformation. This study serves to provide a global view of the MPyV infection by utilizing Illumina sequencing to observe changes in total RNA from both the virus and the host cell as well as applying new methods to more directly confirm the extent of A-to-I editing of viral RNA by host ADAR enzymes. This allows for a simultaneous observation of both host and viral transcriptional changes that occur as a result of early gene expression and the viral switch from early to late genes that occurs coincident with the initiation of DNA replication.
Collapse
Affiliation(s)
- Seth B. Garren
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
| | - Michael O. Duff
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
| | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gluschnaider U, Hertz R, Ohayon S, Smeir E, Smets M, Pikarsky E, Bar-Tana J. Long-Chain Fatty Acid Analogues Suppress Breast Tumorigenesis and Progression. Cancer Res 2014; 74:6991-7002. [DOI: 10.1158/0008-5472.can-14-0385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhou AY, Ichaso N, Adamarek A, Zila V, Forstova J, Dibb NJ, Dilworth SM. Polyomavirus middle T-antigen is a transmembrane protein that binds signaling proteins in discrete subcellular membrane sites. J Virol 2011; 85:3046-54. [PMID: 21228238 PMCID: PMC3067864 DOI: 10.1128/jvi.02209-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/03/2011] [Indexed: 01/28/2023] Open
Abstract
Murine polyomavirus middle T-antigen (MT) induces tumors by mimicking an activated growth factor receptor. An essential component of this action is a 22-amino-acid hydrophobic region close to the C terminus which locates MT to cell membranes. Here, we demonstrate that this sequence is a transmembrane domain (TMD) by showing that a hemagglutinin (HA) tag added to the MT C terminus is exposed on the outside of the cells, with the N terminus inside. To determine whether this MT TMD is inserted into the endoplasmic reticulum (ER) membrane, we added the ER retention signal KDEL to the MT C terminus (MTKDEL). This mutant protein locates only in the ER, demonstrating that MT does insert into membranes solely at this location. In addition, this ER-located MT failed to transform. Examination of the binding proteins associated with the MTKDEL protein demonstrated that it associates with PP2A and c-Src but fails to interact with ShcA, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLC-γ1), despite being tyrosine phosphorylated. Additional mutant and antibody studies show that MT binding to PP2A is probably required for MT to efficiently exit the ER and migrate to the plasma membrane though the TMD also plays a role in this relocation. Overall, these data, together with previous publications, illustrate that MT associates with signaling proteins at different sites in its maturation pathway. MT binds to PP2A in the cytoplasm, to c-Src at the endoplasmic reticulum, and to ShcA, PI3K, and PLC-γ1 at subsequent locations en route to the plasma membrane.
Collapse
Affiliation(s)
- Alice Y. Zhou
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Natalia Ichaso
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Adam Adamarek
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Vojtech Zila
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Jitka Forstova
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Nicholas J. Dibb
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Stephen M. Dilworth
- Cell Transformation Group, Section of Investigative Medicine, IRDB Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom, Department of Genetics and Microbiology, Charles University in Prague, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
7
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
8
|
Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol 2009; 19:218-28. [PMID: 19505649 PMCID: PMC2694755 DOI: 10.1016/j.semcancer.2009.03.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 01/09/2023]
Abstract
Simian Virus 40 (SV40) and Mouse Polyoma Virus (PY) are small DNA tumor viruses that have been used extensively to study cellular transformation. The SV40 early region encodes three tumor antigens, large T (LT), small T (ST) and 17KT that contribute to cellular transformation. While PY also encodes LT and ST, the unique middle T (MT) generates most of the transforming activity. SV40 LT mediated transformation requires binding to the tumor suppressor proteins Rb and p53 in the nucleus and ST binding to the protein phosphatase PP2A in the cytoplasm. SV40 LT also binds to several additional cellular proteins including p300, CBP, Cul7, IRS1, Bub1, Nbs1 and Fbxw7 that contribute to viral transformation. PY MT transformation is dependent on binding to PP2A and the Src family protein tyrosine kinases (PTK) and assembly of a signaling complex on cell membranes that leads to transformation in a manner similar to Her2/neu. Phosphorylation of MT tyrosine residues activates key signaling molecules including Shc/Grb2, PI3K and PLCgamma1. The unique contributions of SV40 LT and ST and PY MT to cellular transformation have provided significant insights into our understanding of tumor suppressors, oncogenes and the process of oncogenesis.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
- Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Michele M. Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
9
|
Ramqvist T, Dalianis T. Murine polyomavirus tumour specific transplantation antigens and viral persistence in relation to the immune response, and tumour development. Semin Cancer Biol 2009; 19:236-43. [DOI: 10.1016/j.semcancer.2009.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/26/2022]
|
10
|
Schaffhausen BS, Roberts TM. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 2009; 384:304-16. [PMID: 19022468 PMCID: PMC2676342 DOI: 10.1016/j.virol.2008.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/30/2008] [Indexed: 01/16/2023]
Abstract
Middle T antigen (MT) is the principal oncogene of murine polyomavirus. Its study has led to the discovery of the roles of tyrosine kinase and phosphoinositide 3-kinase (PI3K) signaling in mammalian growth control and transformation. MT is necessary for viral transformation in tissue culture cells and tumorigenesis in animals. When expressed alone as a transgene, MT causes tumors in a wide variety of tissues. It has no known catalytic activity, but rather acts by assembling cellular signal transduction molecules. Protein phosphatase 2A, protein tyrosine kinases of the src family, PI3K, phospholipase Cgamma1 as well as the Shc/Grb2 adaptors are all assembled on MT. Their activation sets off a series of signaling cascades. Analyses of virus mutants as well as transgenic animals have demonstrated that the effects of a given signal depend not only tissue type, but on the genetic background of the host animal. There remain many opportunities as we seek a full molecular understanding of MT and apply some of its lessons to human cancer.
Collapse
Affiliation(s)
- Brian S. Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Polyomavirus middle T antigen induces the transcription of osteopontin, a gene important for the migration of transformed cells. J Virol 2008; 82:4946-54. [PMID: 18337582 DOI: 10.1128/jvi.02650-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Middle T antigen (MT) is the principal oncoprotein of murine polyomavirus. Experiments on the acute immediate effects of MT expression on cellular RNA levels showed that expression of osteopontin (OPN) was strongly induced by MT expression. Osteopontin is a protein known to be associated with cancer. It has a role in tumor progression and invasion. Protein analysis confirmed that MT induced the secretion of OPN into the extracellular medium. Expression of antisense OPN RNA had no effect on the growth of MT-transformed cells. However, it had a strong effect on the ability of MT transformants to migrate or to fill a wound. Analysis of MT mutants implicated both the SHC and phosphatidylinositol 3-kinase pathways in OPN induction. Reporter assays showed that MT regulated the OPN promoter through two of its PEA3 (polyoma enhancer activator 3) sites. As critical PEA3 sites are also part of the polyomavirus enhancer, the same signaling important for viral replication also contributes to virally induced metastatic potential.
Collapse
|
12
|
Dahl J, Chen HI, George M, Benjamin TL. Polyomavirus small T antigen controls viral chromatin modifications through effects on kinetics of virus growth and cell cycle progression. J Virol 2007; 81:10064-71. [PMID: 17626093 PMCID: PMC2045420 DOI: 10.1128/jvi.00821-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G(2) and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominantly in G(2). These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.
Collapse
Affiliation(s)
- Jean Dahl
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
Chen L, Wang X, Fluck MM. Independent contributions of polyomavirus middle T and small T to the regulation of early and late gene expression and DNA replication. J Virol 2006; 80:7295-307. [PMID: 16840310 PMCID: PMC1563708 DOI: 10.1128/jvi.00679-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that murine polyomavirus mutants that lack both middle T (MT) and small T (ST) functions have a severe pleiotropic defect in early and late viral gene expression as well as genome amplification. The respective contribution of MT and ST to this phenotype was unclear. This work separates the roles of MT and ST in both permissive mouse cells and nonpermissive rat cells. It demonstrates for the first time a role for both proteins. To gain insight into the signaling pathways that might be required, we focused on MT and its mutants. The results show that each of the major MT signaling connections, Shc, phosphatidylinositol 3'-kinase, and phospholipase C gamma1, could contribute in an additive way. Unexpectedly, a mutant lacking all these connections because the three major tyrosines had been converted to phenylalanine retained some activity. A mutant in which all six MT C-terminal tyrosines had been mutated was inactive. This suggests a novel signaling pathway for MT that uses the minor tyrosines. What is common to ST and the individual MT signaling pathways is the ability to signal to the polyomavirus enhancer, in particular to the crucial AP-1 and PEA3/ets binding sites. This connection explains the pleiotropy of MT and ST effects on transcription and DNA replication.
Collapse
Affiliation(s)
- Li Chen
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
14
|
Abstract
Most cancer researchers take for granted some of the basic concepts about the molecular changes that underlie tumorigenesis. These include the principles that tyrosine kinases and the phosphorylation of phosphatidylinositol by phosphatidylinositol 3-kinases are important in the signalling pathways that control proliferation and apoptosis, and hence cancer formation. However, how many know that a small DNA mouse virus was crucial in establishing both of these tenets?
Collapse
Affiliation(s)
- Stephen M Dilworth
- Stephen Dilworth is at the Department of Metabolic Medicine, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
15
|
Abstract
Because oncogenic DNA viruses establish persistent infections in humans, continuous immunosurveillance for neoplastic cells is required to prevent virus-induced tumors. Antigen-specific CD8+ T lymphocytes are critical in vivo effectors for eliminating virus-infected and virus-transformed cells. Investigation into the induction, regulation, and maintenance of CD8+ T cells specific for these viruses is hindered by the lack of tractable animal models that mimic natural infection. Resistance to tumors induced by polyoma virus, a persistent natural mouse DNA virus, is mediated by polyoma-specific CD8+ T cells. Mice susceptible to polyoma virus tumorigenesis mount a smaller, albeit still considerable, expansion of anti-polyoma CD8+ T cells; importantly, these antiviral CD8+ T cells lack cytotoxic activity while retaining the phenotype of cytotoxic T lymphocyte (CTL) effectors. In this review, we will discuss potential in vivo mechanisms that regulate the functional competence of anti-polyoma CD8+ T cells, particularly in the context of chronic antigenic stimulation provided by persistent viral infections and tumors.
Collapse
Affiliation(s)
- J M Moser
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
16
|
Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 2001; 65:288-318 ; second and third pages, table of contents. [PMID: 11381103 PMCID: PMC99028 DOI: 10.1128/mmbr.65.2.288-318.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.
Collapse
Affiliation(s)
- K A Gottlieb
- Department of Molecular Biology and Biochemistry, Biological Sciences II, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
17
|
Wiradjaja F, Ooms LM, Whisstock JC, McColl B, Helfenbaum L, Sambrook JF, Gething MJ, Mitchell CA. The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem 2001; 276:7643-53. [PMID: 11116155 DOI: 10.1074/jbc.m010471200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has four inositol polyphosphate 5-phosphatase (5-phosphatase) genes, INP51, INP52, INP53, and INP54, all of which hydrolyze phosphatidylinositol (4,5)-bisphosphate. INP54 encodes a protein of 44 kDa which consists of a 5-phosphatase domain and a C-terminal leucine-rich tail, but lacks the N-terminal SacI domain and proline-rich region found in the other three yeast 5-phosphatases. We report that Inp54p belongs to the family of tail-anchored proteins and is localized to the endoplasmic reticulum via a C-terminal hydrophobic tail. The hydrophobic tail comprises the last 13 amino acids of the protein and is sufficient to target green fluorescent protein to the endoplasmic reticulum. Protease protection assays demonstrated that the N terminus of Inp54p is oriented toward the cytoplasm of the cell, with the C terminus of the protein also exposed to the cytosol. Null mutation of INP54 resulted in a 2-fold increase in secretion of a reporter protein, compared with wild-type yeast or cells deleted for any of the SacI domain-containing 5-phosphatases. We propose that Inp54p plays a role in regulating secretion, possibly by modulating the levels of phosphatidylinositol (4,5)-bisphosphate on the cytoplasmic surface of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- F Wiradjaja
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
da Costa SR, Wang Y, Vilalta PM, Schönthal AH, Hamm-Alvarez SF. Changes in cytoskeletal organization in polyoma middle T antigen-transformed fibroblasts: involvement of protein phosphatase 2A and src tyrosine kinases. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:253-68. [PMID: 11093247 DOI: 10.1002/1097-0169(200012)47:4<253::aid-cm1>3.0.co;2-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The major transforming activity of polyomavirus, middle T antigen, targets several cellular regulatory effectors including protein phosphatase 2A and src tyrosine kinases. Although transformed cells exhibit profound morphological changes, little is known about how middle T antigen-induced changes in the cellular regulatory environment specifically affect the cytoskeleton. We have investigated these changes in 10T(1/2) mouse fibroblasts transformed with polyoma middle T antigen. Immunofluorescence microscopy revealed that expression of middle T antigen (Pym T cells) depleted the stable (acetylated) microtubule array and increased the sensitivity of dynamic (tyrosinated) microtubules to nocodazole-induced disassembly. These effects were associated with a modest but statistically significant (P</=0.05) increase in recovery of protein phosphatase 2A activity with microtubules. Middle T antigen expression also depleted the normal cellular complement of actin stress fibers and focal adhesions, in parallel with changes in the distribution of src tyrosine kinases. Herbimycin A promoted recovery of paxillin and phosphotyrosine into nascent focal adhesion sites, in addition to restoring normal src tyrosine kinase distribution. However, herbimycin A did not restore actin stress fibers or parental-type microtubules to Pym T cells. We suggest that regulation of the microtubule array by middle T antigen may occur through direct effects including redistribution of protein phosphatase 2A as well as indirect effects such as altered interactions with actin-based stress fibers.
Collapse
Affiliation(s)
- S R da Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
19
|
Felici A, Giorgio M, Krauzewicz N, Della Rocca C, Santoro M, Rovere P, Manni I, Amati P, Pozzi L. Medullary thyroid carcinomas in transgenic mice expressing a Polyoma carboxyl-terminal truncated middle-T and wild type small-T antigens. Oncogene 1999; 18:2387-95. [PMID: 10327060 DOI: 10.1038/sj.onc.1202578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare human tumor affecting the calcitonin-secreting c-cells of the thyroid. Here we report that two independent strains of transgenic mice expressing a Polyomavirus (Py) truncated middle-T antigen (deltaMT), consisting of the amino-terminal 304 amino acids, and the full length Py small-T antigen, developed multifocal bilateral MTCs with 100% penetrance. Occasionally one strain also developed mammary and bone tumors. Furthermore, offspring from both transgenic lines displayed pronounced waviness of the whiskers and fur, previously associated with defective epidermal growth factor receptor signaling. Transgene transcription, driven by the homologous early promoter/enhancer, and the corresponding translation products were detected in tumors and in many other organs which did not develop pathologies. The subcellular distribution of deltaMT and its interactions with the adapter proteins of the SHC family have also been analysed. Our study describes a novel murine model of MTC and provides evidence that the N-terminal 304 amino acid fragment of Py middle-T antigen, possibly in co-operation with small-T antigen, acts as a potent oncogene in c-cells of the thyroid.
Collapse
Affiliation(s)
- A Felici
- Centro di Ricerca Sperimentale, Istituto Regina Elena, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wilson CS, Moser JM, Altman JD, Jensen PE, Lukacher AE. Cross-Recognition of Two Middle T Protein Epitopes by Immunodominant Polyoma Virus-Specific CTL. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We recently identified the immunodominant epitope for polyoma virus-specific CTL as the Dk-associated peptide MT389–397 derived from the middle T (MT) viral oncoprotein. Another Dk-restricted peptide corresponding to residues 236–244 of MT was recognized by nearly all MT389–397-reactive CTL clones, but required concentrations at least 2 logs higher to sensitize syngeneic target cells for lysis. Except for identity at the three putative Dk-peptide anchor residues, MT236–244 shares no homology with MT389–397. Using a novel europium-based class I MHC-peptide binding immunoassay, we determined that MT236–244 bound Dk 2–3 logs less well than MT389–397. Infection with a mutant polyoma virus whose MT is truncated just before the MT389–397 epitope or immunization with MT389–397 or MT236–244 peptides elicited CTL that recognized both MT389–397 and MT236–244. Importantly, infection with a polyoma virus lacking MT389–397 and mutated in an MT236–244 Dk anchor position induced polyoma virus-specific CTL recognizing neither MT389–397 nor MT236–244 epitopes. Despite predominant usage of the Vβ6 gene segment, MT389–397/MT236–244 cross-reactive CTL clones possess diverse complementarity-determining region 3β domains; this is functionally reflected in their heterogeneous recognition patterns of alanine-monosubstituted MT389–397 peptides. Using Dk/MT389–397 tetramers, we directly visualized MT236–244 peptide-induced TCR down-modulation of virtually all MT389–397-specific CD8+ T cells freshly explanted from polyoma-infected mice, suggesting that a single TCR recognizes both Dk-restricted epitopes. The availability of immunodominant epitope-specific CTL capable of recognizing a second epitope in MT, a viral protein essential for tumorigenesis, may serve to amplify the CTL response to the immunodominant epitope and prevent the emergence of immunodominant epitope-loss viruses and virus-induced tumors.
Collapse
Affiliation(s)
| | - Janice M. Moser
- *Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - John D. Altman
- †Departments of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Peter E. Jensen
- *Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Aron E. Lukacher
- *Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
21
|
Mullane KP, Ratnofsky M, Culleré X, Schaffhausen B. Signaling from polyomavirus middle T and small T defines different roles for protein phosphatase 2A. Mol Cell Biol 1998; 18:7556-64. [PMID: 9819441 PMCID: PMC109336 DOI: 10.1128/mcb.18.12.7556] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 09/10/1998] [Indexed: 12/25/2022] Open
Abstract
Polyomavirus causes a broad spectrum of tumors as the result of the action of its early proteins. This work compares signaling from middle T antigen (MT), the major transforming protein, to that from small T antigen (ST). The abilities of MT mutants to promote cell cycle progression in serum-starved NIH 3T3 cells were compared. Transformation-defective mutants lacking association with SHC or with phosphatidylinositol 3-kinase (PI3-K) retained the ability to induce DNA synthesis as measured by bromodeoxyuridine incorporation. Only when both interactions were lost in the Y250F/Y315F double mutant was MT inactive. ST promoted cell cycle progression in a manner dependent on its binding of protein phosphatase 2A (PP2A). Since the Y250F/Y315F MT mutant was wild type for PP2A binding yet unable to promote cell cycle progression, while ST was capable of promoting cell cycle progression, these experiments revealed a functional difference in MT and ST signaling via PP2A. Assays testing the abilities of MT and ST to induce the c-fos promoter and to activate c-jun kinase led to the same conclusion. ST, but not Y250F/Y315F MT, was able to activate the c-fos promoter through its interaction with PP2A. In contrast, MT, but not ST, was able to activate c-jun kinase by virtue of its interaction with PP2A.
Collapse
Affiliation(s)
- K P Mullane
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
22
|
Yi X, Freund R. Deletion of proline-rich domain in polyomavirus T antigens results in virus partially defective in transformation and tumorigenesis. Virology 1998; 248:420-31. [PMID: 9721249 DOI: 10.1006/viro.1998.9246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyomavirus productively infects mouse cells, transforms rat fibroblasts in culture, and induces a broad spectrum of tumors when inoculated into newborn mice. The expression of large, middle, and small T antigen are necessary for virus growth and oncogenic transformation. We have generated a small deletion in a region common to both large and middle T antigen that encodes three consecutive prolines. In this report we characterize this mutant virus in terms of its ability to replicate in mouse cells, transform rat fibroblasts, and induce tumors in the mouse. We find that the virus immortalizes primary cells and that viral DNA replication is not impaired, indicating that these functions of large T antigen are not altered. However, the ability of the virus to transform rat fibroblasts is defective. The mutant virus makes fewer foci and the foci are weaker in appearance. The mutant middle T still associates with PI 3-kinase and shc, suggesting that the overall structure of the protein has not been disrupted. When inoculated into newborn C3H mice, the mutant virus induces fewer overall tumors with a longer latency than wild-type virus. These results indicate that this proline-rich domain in middle T antigen is important for oncogenesis in a wide variety of tissues and cell types.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Antigens, Viral, Tumor/chemistry
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/physiology
- Base Sequence
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Cells, Cultured
- Defective Viruses/physiology
- Embryo, Mammalian/cytology
- Fibroblasts/physiology
- Molecular Sequence Data
- Phosphatidylinositol 3-Kinases/metabolism
- Polyomavirus/physiology
- Proline/physiology
- Proteins/metabolism
- Rats
- Sequence Deletion
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Virus Replication
Collapse
Affiliation(s)
- X Yi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
23
|
Culleré X, Rose P, Thathamangalam U, Chatterjee A, Mullane KP, Pallas DC, Benjamin TL, Roberts TM, Schaffhausen BS. Serine 257 phosphorylation regulates association of polyomavirus middle T antigen with 14-3-3 proteins. J Virol 1998; 72:558-63. [PMID: 9420259 PMCID: PMC109408 DOI: 10.1128/jvi.72.1.558-563.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Accepted: 10/07/1997] [Indexed: 02/05/2023] Open
Abstract
Polyomavirus middle T antigen (MT) is phosphorylated on serine residues. Partial proteolytic mapping and Edman degradation identified serine 257 as a major site of phosphorylation. This was confirmed by site-directed mutagenesis. Isoelectric focusing of immunoprecipitated MT from transfected 293T cells showed that phosphorylation on wild-type MT occurred at near molar stoichiometry at S257. MT was previously shown to be associated with 14-3-3 proteins, which have been connected to cell cycle regulation and signaling. The association of 14-3-3 proteins with MT depended on the serine 257 phosphorylation site. This has been demonstrated by comparing wild-type and S257A mutant MTs expressed with transfected 293T cells or with Sf9 cells infected with recombinant baculoviruses. The 257 site is not critical for transformation of fibroblasts in vitro, since S257A and S257C mutant MTs retained the ability to form foci or colonies in agar. The tumor profile of a virus expressing S257C MT showed a striking deficiency in the induction of salivary gland tumors. The basis for this defect is uncertain. However, differences in activity for the wild type and mutant MT lacking the 14-3-3 binding site have been observed in transient reporter assays.
Collapse
Affiliation(s)
- X Culleré
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yi X, Peterson J, Freund R. Transformation and tumorigenic properties of a mutant polyomavirus containing a middle T antigen defective in Shc binding. J Virol 1997; 71:6279-86. [PMID: 9261344 PMCID: PMC191900 DOI: 10.1128/jvi.71.9.6279-6286.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polyomavirus middle T antigen is phosphorylated on several tyrosine residues which act as binding sites for cellular proteins, including phosphatidylinositol 3-kinase, Shc, and phospholipase C-gamma. In this report we describe the transforming properties and tumor-inducing ability of a polyomavirus that contains a single-site mutation in middle T antigen which changes a tyrosine residue at amino acid position 250 to serine. This mutation disrupts the association of middle T with the transforming protein Shc. The mutant virus is weakly transforming, inducing foci which are smaller and of different morphology than those of the wild type. Although the virus induced tumors in close to 100% of inoculated mice, the spectrum of tumors and their morphology were altered compared to those of wild-type virus. The mutant virus induced a reduced frequency of kidney and thymic tumors. Both the mammary gland and the thymic tumors that were induced were histologically distinct from those induced by wild-type polyomavirus. These results demonstrate that the signal transduction pathway that is deregulated by the middle T-Shc association is important for full transformation of cells in culture and for tumor induction in some target tissues in the mouse-polyomavirus system.
Collapse
Affiliation(s)
- X Yi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
25
|
Vasudevan C, Freund R, Gorga FR. The elevation of cellular phosphatidic acid levels caused by polyomavirus transformation can be disassociated from the activation of phospholipase D. Virology 1997; 233:392-401. [PMID: 9217062 DOI: 10.1006/viro.1997.8630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Middle T (mT), the oncogene of murine polyomavirus, causes transformation of rat fibroblasts by activating a number of signal transducing pathways usually used by polypeptide growth factors and their receptors. Here, we report data regarding the activation of signal transducing pathways involving phospholipase D (PL-D). The hydrolysis of phospholipids by PL-D produces phosphatidic acid (PA), a compound with multiple biological effects. The PA content of cells expressing wild-type mT, introduced via a number of different methods, is approximately 50% higher than their untransformed counterparts. This increase in cellular PA content is associated with an approximately 65% increase in PL-D activity in cells expressing wild-type mT. We have also examined the effects of a number of site-directed mutants of mT, on both cellular PA levels and on PL-D activity. Mutants that do not produce mT (Py808A) or that produce a truncated, nonmembrane bound mT (Py1387T) have PA levels similar to that of control cells. Cells expressing the 322YF mutant of mT (which abolishes interaction of mT with phospholipase C gamma1) show increases in both PA levels and PL-D activity that are similar to those seen with wild-type mT. Expression of mutants that abolish the interaction of mT with either shc or with phosphatidylinositol 3-kinase (250YS and 315YF, respectively) cause an increase in PL-D activity comparable to that seen with wild-type mT. However, the PA content of cells expressing these mutants is not elevated. These results suggest that mT causes activation of cellular PL-D, but this activation alone is not sufficient to cause an increase in cellular PA content. Therefore, wild-type mT must affect another, as yet unknown, step in PA metabolism.
Collapse
Affiliation(s)
- C Vasudevan
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | |
Collapse
|
26
|
Dahl J, Freund R, Blenis J, Benjamin TL. Studies of partially transforming polyomavirus mutants establish a role for phosphatidylinositol 3-kinase in activation of pp70 S6 kinase. Mol Cell Biol 1996; 16:2728-35. [PMID: 8649380 PMCID: PMC231263 DOI: 10.1128/mcb.16.6.2728] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infection of mouse fibroblasts by wild-type polyomavirus results in increased phosphorylation of ribosomal protein S6 (D.A. Talmage, J. Blenis, and T.L. Benjamin, Mol. Cell. Biol. 8:2309-2315, 1988). Here we identify pp70 S6 kinase (pp70S6K) as a target for signal transduction events leading from polyomavirus middle tumor antigen (mT). Two partially transforming virus mutants altered in different mT signalling pathways have been studied to elucidate the pathway leading to S6 phosphorylation. An upstream role for mT-phosphatidylinositol 3-kinase (PI3K) complexes in pp70S6K activation is implicated by the failure of 315YF, a mutant unable to promote PI3K binding, to elicit a response. This conclusion is supported by studies using wortmannin, a known inhibitor of PI3K. In contrast, stable interaction of mT with Shc, a protein thought to be involved upstream of Ras, is dispensable for pp70S6K activation. 250YS, a mutant mT which retains a binding site for PI3K but lacks one for Shc, stimulates pp70S6K to wild-type levels. Mutants 315YF and 250YS induce partial transformation of rats fibroblasts with distinct phenotypes, as judged from morphological and growth criteria. Neither mutant induces growth in soft agar, indicating that an increase in S6 phosphorylation, while necessary for cell cycle progression in normal mitogenesis, is not sufficient for anchorage-independent cell growth. In the polyomavirus systems, the latter requires integration of signals from mT involving both Shc and PI3K.
Collapse
Affiliation(s)
- J Dahl
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
27
|
Radha V, Nambirajan S, Swarup G. Association of Lyn tyrosine kinase with the nuclear matrix and cell-cycle-dependent changes in matrix-associated tyrosine kinase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:352-9. [PMID: 8612602 DOI: 10.1111/j.1432-1033.1996.00352.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nuclear matrix isolated from HeLa cells and Rat2 fibroblasts harbors tyrosine kinase and tyrosine phosphatase activities. Polypeptides of 53, 56 and 60 kDa, associated with this subnuclear structure, were phosphorylated at tyrosine in vivo. By immunoblot and immunolabelling experiments, we identified one of the nuclear-matrix-associated tyrosine kinases as Lyn, a Src family member. Lyn was distributed as foci throughout the matrix. The p56 and p53 isoforms of Lyn remained firmly associated with the nuclear matrix after a variety of matrix preparation procedures, and were not detectable in the chromatin fraction of the nucleus. The tyrosine kinase activity associated with the nuclear matrix showed cell-cycle-dependent changes, maximum activity being observed at the G1/S transition phase. Polyoma-virus-transformed rat fibroblast cells showed sixfold higher tyrosine kinase activity in the nuclear matrix preparations compared to that in untransformed cells. These observations are consistent with the suggestion that tyrosine kinase activity associated with the nuclear matrix may be an important determinant of cellular proliferation.
Collapse
Affiliation(s)
- V Radha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
28
|
Urich M, el Shemerly MY, Besser D, Nagamine Y, Ballmer-Hofer K. Activation and nuclear translocation of mitogen-activated protein kinases by polyomavirus middle-T or serum depend on phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:29286-92. [PMID: 7493960 DOI: 10.1074/jbc.270.49.29286] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several cellular signal transduction pathways activated by middle-T in polyomavirus-transformed cells are required for viral oncogenicity. Here we focus on the role of phosphatidylinositol 3-kinase (PI 3-kinase) and Ras and address the question how these signaling molecules cooperate during cell cycle activation. Ras activation is mediated through association with SHC.GRB2.SOS and leads to increased activity of several members of the mitogen-activated protein (MAP) kinase family, while activation of PI 3-kinase results in the generation of D3-phosphorylated phosphatidylinositides whose downstream targets remain elusive. PI 3-kinase activation might also ensue as a direct consequence of Ras activation. Oncogenicity of middle-T requires stimulation of both Ras- and PI 3-kinase-dependent pathways. Mutants of middle-T incapable to bind either SHC.GRB2.SOS or PI 3-kinase are not oncogenic. Sustained activation and nuclear localization of one of the MAP kinases, ERK1, was observed in wild type but not in mutant middle-T-expressing cells. Wortmannin, an inhibitor of PI 3-kinase, prevented MAP kinase activation and nuclear localization in middle-T-transformed cells. PI 3-kinase activity was also required for activation of the MAP kinase pathway in normal serum-stimulated cells, generalizing the concept that signaling through MAP kinases requires not only Ras-but also PI 3-kinase-mediated signals.
Collapse
Affiliation(s)
- M Urich
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Jäntti J, Keränen S, Toikkanen J, Kuismanen E, Ehnholm C, Söderlund H, Olkkonen VM. Membrane insertion and intracellular transport of yeast syntaxin Sso2p in mammalian cells. J Cell Sci 1994; 107 ( Pt 12):3623-33. [PMID: 7706411 DOI: 10.1242/jcs.107.12.3623] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the syntaxin family are suggested to play a key role in determining the specificity of intracellular membrane fusion events. They belong to the class of membrane proteins which are devoid of N-terminal signal sequence and have a C-terminal membrane anchor. Sso2p is a syntaxin homologue involved in the Golgi to plasma membrane vesicular transport in yeast. The protein was transiently expressed in BHK-21 cells using the Semliki Forest virus vector, and its localization and mode of membrane insertion were studied. By immunofluorescence and immuno-EM we show that Sso2p is transported to its final location, the plasma membrane, along the biosynthetic pathway. Experiments with synchronized Sso2p synthesis or expression of the protein in the presence of brefeldin A indicate endoplasmic reticulum as the initial membrane insertion site. During a 20 degrees C temperature block Sso2p accumulated in the Golgi complex and was chased to the plasma membrane by a subsequent 37 degrees C incubation in the presence of cycloheximide. The in vitro translated protein was able to associate with dog pancreatic microsomes post-translationally. A truncated form of Sso2p lacking the putative membrane anchor was used to show that this sequence is necessary for the membrane insertion in vivo and in vitro. The results show that this syntaxin-like protein does not directly associate with its target membrane but uses the secretory pathway to reach its cellular location, raising interesting questions concerning regulation of SNARE-type protein function.
Collapse
Affiliation(s)
- J Jäntti
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
Li M, Garcea RL. Identification of the threonine phosphorylation sites on the polyomavirus major capsid protein VP1: relationship to the activity of middle T antigen. J Virol 1994; 68:320-7. [PMID: 8254743 PMCID: PMC236291 DOI: 10.1128/jvi.68.1.320-327.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorylation of the polyomavirus major capsid protein VP1 was examined after in vivo 32P labeling of virus-infected cells. Two phosphorylated peptide fragments of VP1 were identified by protease digestion, high-performance liquid chromatography purification, mass spectrometry, and N-terminal sequencing. The peptides from residues 58 to 78 and residues 153 to 173 were phosphorylated on threonine. Site-directed mutations were introduced at these threonine sites, and mutant viruses were reconstructed. A threonine-to-glycine change at residue 63 (mutant G63) and a threonine-to-alanine change at residue 156 (mutant A156) resulted in viruses defective in phosphorylation of the respective peptides after in vivo labeling. Growth of the mutant G63 virus was similar to that of the wild-type virus, but the mutant A156 was inefficient in assembly of 240S viral particles. Polyomavirus nontransforming host range (hr-t) mutants are defective in VP1 threonine phosphorylation when grown in nonpermissive cells (R. L. Garcea, K. Ballmer-Hofer, and T. L. Benjamin, J. Virol. 54:311-316, 1985). Proteolytic mapping of VP1 peptides after in vivo labeling from hr-t mutant virus infections demonstrated that both residues T-63 and T-156 were affected. These results suggest that the block in virion assembly in hr-t mutant viruses is associated with a defect in phosphorylation of threonine 156.
Collapse
Affiliation(s)
- M Li
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | |
Collapse
|
31
|
Evidence that the middle T antigen of polyomavirus interacts with the membrane skeleton. Mol Cell Biol 1993. [PMID: 8393136 DOI: 10.1128/mcb.13.8.4703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transforming protein of polyomavirus, middle T antigen, is associated with cellular membranes. We have examined the subcellular location of the middle T antigen in two different cell types by fractionation and detergent phase partitioning. Middle T antigen expressed in human cells by a recombinant adenovirus was detected primarily in the membrane skeleton. Sucrose gradient fractionation revealed that the middle T antigen was associated with complexes with molecular weights of 500,000 to 1,000,000. Several markers for cytoskeleton cofractionate with these complexes, including actin, tubulin, and vimentin. Electron micrographs of membrane skeleton prepared from cells expressing middle T antigen demonstrated that this material contained primarily fibrous structures and was clearly devoid of bilayer membranes. These structures were distinct from the filamentous structures observed in fractions enriched for cytoskeleton. Consistent with a role for membrane skeleton localization in transformation, middle T antigen was detected exclusively in fractions enriched for membrane skeleton in middle T antigen-transformed Rat-2 cells. Our results may resolve the apparent difference between middle T antigen localization as determined by immunomicroscopy and that determined by subcellular fractionation.
Collapse
|
32
|
Andrews DW, Gupta J, Abisdris G. Evidence that the middle T antigen of polyomavirus interacts with the membrane skeleton. Mol Cell Biol 1993; 13:4703-13. [PMID: 8393136 PMCID: PMC360096 DOI: 10.1128/mcb.13.8.4703-4713.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transforming protein of polyomavirus, middle T antigen, is associated with cellular membranes. We have examined the subcellular location of the middle T antigen in two different cell types by fractionation and detergent phase partitioning. Middle T antigen expressed in human cells by a recombinant adenovirus was detected primarily in the membrane skeleton. Sucrose gradient fractionation revealed that the middle T antigen was associated with complexes with molecular weights of 500,000 to 1,000,000. Several markers for cytoskeleton cofractionate with these complexes, including actin, tubulin, and vimentin. Electron micrographs of membrane skeleton prepared from cells expressing middle T antigen demonstrated that this material contained primarily fibrous structures and was clearly devoid of bilayer membranes. These structures were distinct from the filamentous structures observed in fractions enriched for cytoskeleton. Consistent with a role for membrane skeleton localization in transformation, middle T antigen was detected exclusively in fractions enriched for membrane skeleton in middle T antigen-transformed Rat-2 cells. Our results may resolve the apparent difference between middle T antigen localization as determined by immunomicroscopy and that determined by subcellular fractionation.
Collapse
Affiliation(s)
- D W Andrews
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
33
|
Cayla X, Ballmer-Hofer K, Merlevede W, Goris J. Phosphatase 2A associated with polyomavirus small-T or middle-T antigen is an okadaic acid-sensitive tyrosyl phosphatase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:281-6. [PMID: 8389702 DOI: 10.1111/j.1432-1033.1993.tb17922.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Papovavirus tumor antigens have been shown to associate with the cellular phosphoserine/threonine-specific protein phosphatase 2A (PP2A). We were interested in the consequences that T-antigen association might have on PP2A activity and so studies of the phosphatase activity in immunoprecipitates, prepared from polyoma virus-transformed or polyoma virus-infected mouse 3T3 fibroblasts, were performed. The phosphoserine/threonine phosphatase activity, measured with phosphorylase a as the substrate, showed all the characteristics of PP2A. It was stimulated by polycations, inhibited by fluoride or p-nitrophenyl phosphate, sensitive to okadaic acid and microcystin and insensitive to inhibitor-1 and inhibitor-2. Phosphotyrosyl phosphatase (PTPase) activity was associated with the middle-T/small-T-associated complex when reduced, carboxamidomethylated and maleylated lysozyme, phosphorylated exclusively on tyrosyl residues, was used as the substrate. This PTPase activity was as sensitive to okadaic acid as was the phosphorylase phosphatase activity; it could be inhibited by phosphorylase a and did not dephosphorylate poly(Glu80Tyr20). The level of middle-T/small-T-associated PTPase activity relative to the phosphorylase phosphatase activity was tenfold higher than that of the purified dimeric PP2A. A similar activity ratio was observed with the purified phosphatase after stimulation with a cellular protein, designated phosphotyrosyl phosphatase activator. These results suggest that the same enzyme may possess dual specificity. In contrast to the cellular trimeric PP2A, containing the 55-kDa putative regulatory subunit, the middle-T/small-T-associated enzyme had low activity towards a retinoblastoma peptide phosphorylated by p34cdc2. These results indicate how middle-T/small-T might effect the activity of PP2A in polyoma virus-transformed cells.
Collapse
Affiliation(s)
- X Cayla
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
34
|
Dilworth SM, Horner VP. Novel monoclonal antibodies that differentiate between the binding of pp60c-src or protein phosphatase 2A by polyomavirus middle T antigen. J Virol 1993; 67:2235-44. [PMID: 7680389 PMCID: PMC240352 DOI: 10.1128/jvi.67.4.2235-2244.1993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fourteen pGEX plasmids that express defined regions of polyomavirus middle T antigen in bacteria have been constructed. These polypeptides have been used to generate 18 new monoclonal antibodies directed against the unique portion of middle T and to map the approximate position of the antibody recognition sites onto the protein sequence. All of the antibodies effectively immunoprecipitate middle T and the associated 60- and 35-kDa components of protein phosphatase 2A. Four of the antibodies, however, do not react with middle T when it is bound to pp60c-src. These four probably bind to amino acids 203 to 218 of the middle T protein sequence, which are encoded by the mRNA immediately 3' to the splice junction that creates the C-terminal unique region. This suggests that additional middle T sequences are required for middle T's interaction with pp60c-src than are needed for its binding to protein phosphatase 2A. The antibodies localize this extra region and provide a means of distinguishing between these two associations.
Collapse
Affiliation(s)
- S M Dilworth
- Department of Chemical Pathology, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
35
|
Functional asymmetry of the regions juxtaposed to the membrane-binding sequence of polyomavirus middle T antigen. Mol Cell Biol 1992. [PMID: 1406680 DOI: 10.1128/mcb.12.11.5050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional importance of the two clusters of positively charged amino acids which flank the hydrophobic membrane-anchoring sequence of polyomavirus middle T (mT) protein has been investigated by using site-directed mutagenesis. A clear asymmetry was apparent. No effect on transformation was seen following multiple alterations or complete removal of the cluster at the carboxyl end of the protein. In contrast, a single substitution replacing the first arginine amino terminal to the hydrophobic stretch with glutamic acid, but not with lysine, histidine, or methionine, produced a partially transformation-defective mutant with a novel phenotype. This mutant failed to confer anchorage-independent growth on F111 established rat embryo fibroblasts but induced foci with altered morphology compared with wild-type mT. Biochemical studies on this mutant revealed that F111 clones expressing levels of mutant mT equivalent to those of wild-type controls showed a 65% reduction in pp60c-src activation and an 87% reduction in mT-associated phosphatidylinositol 3-kinase activity. However, F111 clones expressing seven times more mutant mT than did wild-type controls showed equal or greater levels of kinase activities yet remained incompletely transformed. Possible mechanisms involving this transformation-sensitive region of mT are discussed.
Collapse
|
36
|
Dahl J, Thathamangalam U, Freund R, Benjamin TL. Functional asymmetry of the regions juxtaposed to the membrane-binding sequence of polyomavirus middle T antigen. Mol Cell Biol 1992; 12:5050-8. [PMID: 1406680 PMCID: PMC360438 DOI: 10.1128/mcb.12.11.5050-5058.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The functional importance of the two clusters of positively charged amino acids which flank the hydrophobic membrane-anchoring sequence of polyomavirus middle T (mT) protein has been investigated by using site-directed mutagenesis. A clear asymmetry was apparent. No effect on transformation was seen following multiple alterations or complete removal of the cluster at the carboxyl end of the protein. In contrast, a single substitution replacing the first arginine amino terminal to the hydrophobic stretch with glutamic acid, but not with lysine, histidine, or methionine, produced a partially transformation-defective mutant with a novel phenotype. This mutant failed to confer anchorage-independent growth on F111 established rat embryo fibroblasts but induced foci with altered morphology compared with wild-type mT. Biochemical studies on this mutant revealed that F111 clones expressing levels of mutant mT equivalent to those of wild-type controls showed a 65% reduction in pp60c-src activation and an 87% reduction in mT-associated phosphatidylinositol 3-kinase activity. However, F111 clones expressing seven times more mutant mT than did wild-type controls showed equal or greater levels of kinase activities yet remained incompletely transformed. Possible mechanisms involving this transformation-sensitive region of mT are discussed.
Collapse
Affiliation(s)
- J Dahl
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
37
|
Yoakim M, Hou W, Liu Y, Carpenter CL, Kapeller R, Schaffhausen BS. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase. J Virol 1992; 66:5485-91. [PMID: 1380095 PMCID: PMC289106 DOI: 10.1128/jvi.66.9.5485-5491.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins.
Collapse
Affiliation(s)
- M Yoakim
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | | | |
Collapse
|
38
|
Druker BJ, Roberts TM. Generation of a large library of point mutations in polyoma middle T antigen. Nucleic Acids Res 1991; 19:6855-61. [PMID: 1662365 PMCID: PMC329320 DOI: 10.1093/nar/19.24.6855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polyoma middle T antigen (MTAg) transforms cells by associating with and activating a variety of intracellular proteins, including src family members and a phosphatidylinositol-3 kinase. In order to assist in the study of the relative importance of the various associated biochemical activities for transformation by polyomavirus MTAg, a library of MTAg mutants was constructed. Chemically mutagenized MTAg DNA was purified from wild-type DNA by separation on denaturing gradient gels and placed into a recombinant retrovirus vector. Utilizing the resultant library of MTAg-expressing retroviruses, fibroblast cell lines expressing retroviruses, fibroblast cell lines expressing individual MTAg mutants were generated and screened for a non-transformed morphology. Of the first seven non-transformed clones tested, all express the MTAg protein. We estimate that approximately 24% of the G418-resistant colonies contain a transformation-defective MTAg mutant. A more thorough evaluation of one such clone revealed four single base-pair changes as compared to wild-type. Further genetic dissection of this mutant reveals that substituting leucine for proline at amino acid 248 results in a completely transformation defective MTAg. The utility of this mutagenesis and screening procedure as well as the description of several new MTAg mutants is described. This library of mutations should be of general interest for studying the transforming ability of MTAg.
Collapse
Affiliation(s)
- B J Druker
- Division of Cellular and Molecular Biology, Dana-Faber Cancer Institute, Boston, MA
| | | |
Collapse
|
39
|
A hydrophobic protein sequence can override a nuclear localization signal independently of protein context. Mol Cell Biol 1991. [PMID: 1656223 DOI: 10.1128/mcb.11.10.5137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 T antigen is specifically targeted to the nucleus by the signal Pro-Lys-Lys-128-Lys-Arg-Lys-Val. We have previously described the isolation of a simian virus 40 T-antigen mutant, 676FS, which retains a wild-type nuclear localization signal but fails to accumulate properly in the nucleus and interferes with the nuclear localization of heterologous proteins. Here we report that the hydrophobic carboxy-terminal sequence novel to 676FS T antigen overrides the nuclear localization signal if fused to other proteins, thereby anchoring the proteins in the cytoplasm. We discuss possible mechanisms by which missorting of such a fusion protein could interfere with the nuclear transport of heterologous proteins.
Collapse
|
40
|
van Zee K, Appel F, Fanning E. A hydrophobic protein sequence can override a nuclear localization signal independently of protein context. Mol Cell Biol 1991; 11:5137-46. [PMID: 1656223 PMCID: PMC361531 DOI: 10.1128/mcb.11.10.5137-5146.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Simian virus 40 T antigen is specifically targeted to the nucleus by the signal Pro-Lys-Lys-128-Lys-Arg-Lys-Val. We have previously described the isolation of a simian virus 40 T-antigen mutant, 676FS, which retains a wild-type nuclear localization signal but fails to accumulate properly in the nucleus and interferes with the nuclear localization of heterologous proteins. Here we report that the hydrophobic carboxy-terminal sequence novel to 676FS T antigen overrides the nuclear localization signal if fused to other proteins, thereby anchoring the proteins in the cytoplasm. We discuss possible mechanisms by which missorting of such a fusion protein could interfere with the nuclear transport of heterologous proteins.
Collapse
Affiliation(s)
- K van Zee
- Institute for Biochemistry, Munich, Germany
| | | | | |
Collapse
|
41
|
Mumby MC, Walter G. Protein phosphatases and DNA tumor viruses: transformation through the back door? CELL REGULATION 1991; 2:589-98. [PMID: 1663787 PMCID: PMC361850 DOI: 10.1091/mbc.2.8.589] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellular transformation by many oncogenic viruses is mediated by alterations in signal transduction pathways that control normal growth and proliferation. Common targets for many transforming viruses are pathways regulated by protein phosphorylation. The biochemical control of proteins in these pathways is a dynamic process that is regulated by the relative activities of protein kinases and phosphatases. Although there are numerous examples of viral oncogenes that encode protein kinases (Hunter, 1991), until recently there has been no evidence linking altered phosphatase activity to transformation. In this review we describe a novel mechanism, utilized by small DNA tumor viruses, in which viral oncogenes bind to and regulate a cellular protein serine/threonine phosphatase. The currently available evidence indicates that alteration of phosphatase activity and subsequent changes in phosphorylation levels is an important step in transformation by these viruses.
Collapse
Affiliation(s)
- M C Mumby
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | |
Collapse
|
42
|
Courtneidge SA, Goutebroze L, Cartwright A, Heber A, Scherneck S, Feunteun J. Identification and characterization of the hamster polyomavirus middle T antigen. J Virol 1991; 65:3301-8. [PMID: 1709702 PMCID: PMC240988 DOI: 10.1128/jvi.65.6.3301-3308.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hamster polyomavirus (HaPV) is associated with lymphoid and hair follicle tumors in Syrian hamsters. The early region of HaPV has the potential to encode three polypeptides (which are related to the mouse polyomavirus early proteins) and can transform fibroblasts in vitro. We identified the HaPV middle T antigen (HamT) as a 45-kDa protein. Like its murine counterpart, HamT was associated with serine/threonine phosphatase, phosphatidylinositol-3 kinase, and protein tyrosine kinase activities. However, whereas mouse middle T antigen associates predominantly with pp60c-src and pp62c-yes, HamT was associated with a different tyrosine kinase, p59fyn. The ability of HaPV to cause lymphoid tumors may therefore reside in its ability to associate with p59fyn, a potentially important tyrosine kinase in lymphocytes.
Collapse
Affiliation(s)
- S A Courtneidge
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Freund R, Garcea RL, Sahli R, Benjamin TL. A single-amino-acid substitution in polyomavirus VP1 correlates with plaque size and hemagglutination behavior. J Virol 1991; 65:350-5. [PMID: 1845896 PMCID: PMC240524 DOI: 10.1128/jvi.65.1.350-355.1991] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The plaque size and hemagglutination characteristics of five cloned wild-type strains of polyomavirus were determined. The strains fell into two groups, those with large or small plaques, each with distinctive hemagglutination behavior at different temperatures and pHs. The nucleotide sequence of VP1, the major capsid protein of the virus, was determined for each of the viral strains. The PTA (large-plaque) and RA (small-plaque) strains differed only at residue 92 of VP1, where there is a glutamic acid or glycine, respectively (R. Freund, A. Calderone, C. J. Dawe, and T. L. Benjamin, J. Virol. 65:335-341, 1991). The same amino acid difference in VP1 correlated with plaque size and hemagglutination properties of the other sequenced viruses. Mutagenesis converting amino acid 92 from glutamic acid to glycine converted the plaque size and hemagglutination behavior of the large-plaque PTA strain to that of a small-plaque strain. Furthermore, PTA and RA VP1 proteins produced in Escherichia coli behaved as their parental viruses did in hemagglutination assays. These results demonstrate that amino acid residue 92 of VP1 is involved in determining the plaque size and hemagglutination behavior of polyomavirus and strongly suggest that this region of the VP1 polypeptide interacts directly with cell receptors.
Collapse
Affiliation(s)
- R Freund
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
44
|
Freund R, Calderone A, Dawe CJ, Benjamin TL. Polyomavirus tumor induction in mice: effects of polymorphisms of VP1 and large T antigen. J Virol 1991; 65:335-41. [PMID: 1845894 PMCID: PMC240522 DOI: 10.1128/jvi.65.1.335-341.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
By testing recombinants between "high tumor" (inducing a high incidence of tumors) and "low tumor" (inducing a low incidence of tumors) strains of polyomavirus, we have previously shown that the key determinant(s) for induction of a high tumor profile resides in coding regions of the high tumor strain (R. Freund, G. Mandel, G. G. Carmichael, J. P. Barncastle, C. J. Dawe, and T. L. Benjamin, J. Virol. 61:2232-2239, 1987). Three single-amino-acid differences between the PTA (high tumor) and RA (low tumor) virus strains have now been identified by DNA sequencing, one each in the large T antigen, in the region common to the middle and small T antigens, and in the major capsid protein VP1. Further tests of appropriate recombinants and oligonucleotide-induced mutants show that VP1 of PTA is the major determinant for induction of a high tumor profile, including all tumors of epithelial origin. The differential effect of the VP1s of PTA and RA on the tumor profile is discussed in terms of a likely contribution of the polymorphic region of VP1 to binding of receptors and infection of different cell types in the animal. The polymorphism in the large T antigen has a more restricted action, which is seen only when tested in virus carrying the VP1 type of PTA; the PTA large T antigen then promotes more rapid growth of tumors of salivary gland and thymus than the RA large T antigen.
Collapse
Affiliation(s)
- R Freund
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
45
|
Wyss A, Kaech S, Ballmer-Hofer K. Myristylation of pp60c-src is not required for complex formation with polyomavirus middle-T antigen. J Virol 1990; 64:5163-6. [PMID: 2168992 PMCID: PMC248010 DOI: 10.1128/jvi.64.10.5163-5166.1990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Middle-T antigen (middle-T), the transforming gene product of polyomavirus, associates with several cellular tyrosine kinases, such as pp60c-src. Complex formation leads to kinase activation and is essential for cell transformation. Middle-T-associated as well as uncomplexed pp60c-src is predominantly found in the plasma membrane. We transfected mouse 3T3 fibroblasts with a mutated c-src gene (2Ac-src), allowing the expression of a protein containing alanine instead of glycine in position 2 of the primary translation product. Contrary to the wild-type c-src gene product, pp60c-src(2A) was not myristylated and accumulated in the cytoplasm instead of being transferred to cellular membranes. The mutant protein was able to associate with middle-T and was activated similarly to the wild-type c-src gene product. Both wild-type and 2A mutant protein were membrane associated upon complex formation with middle-T. This finding suggests that the putative carboxy-terminal membrane anchor sequence of middle-T is sufficient to hold middle-T-associated pp60c-src(2A) in the plasma membrane.
Collapse
Affiliation(s)
- A Wyss
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
46
|
Druker BJ, Ling LE, Cohen B, Roberts TM, Schaffhausen BS. A completely transformation-defective point mutant of polyomavirus middle T antigen which retains full associated phosphatidylinositol kinase activity. J Virol 1990; 64:4454-61. [PMID: 2166824 PMCID: PMC247915 DOI: 10.1128/jvi.64.9.4454-4461.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By using a random mutagenesis procedure combined with a recombinant retrovirus vector, mutants of polyomavirus middle T antigen (MTAg) were generated. Three new MTAg mutants with various degrees of transformation competence were more thoroughly characterized. All of the mutants produced a stable MTAg, as assessed by metabolic labeling or immunoblotting, and each mutant possessed wild-type levels of associated tyrosine kinase activity and associated phosphatidylinositol-3 (PI-3) kinase activity. One of these mutants, with a substitution of leucine for proline at amino acid 248 of MTAg (248m) was completely transformation defective, as measured in a focus-forming assay. Furthermore, the pattern of phosphorylation of 248m in vivo was identical to that of wild-type MTAg, and the kinetics of association of MTAg with an 85-kilodalton protein, the putative PI kinase, was not altered. Similarly, the pattern of PI derivatives obtained in an in vitro kinase assay was not altered by the substitution at amino acid 248. Since the single base pair mutation at amino acid 248 resulted in an MTAg that was completely transformation defective despite possessing wild-type levels of kinase activities, this suggests that neither tyrosine kinase nor PI-3 kinase activity nor the combination of both are sufficient for transformation by MTAg.
Collapse
Affiliation(s)
- B J Druker
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
47
|
Abstract
An 85,000-molecular-weight polypeptide (85K polypeptide) has previously been identified as a common substrate for tyrosine phosphorylation upon polyomavirus middle T transformation or upon platelet-derived growth factor stimulation of 3T3 cells. In each case, pp85 has an associated phosphatidylinositol kinase activity. The tissue distribution of pp85 was determined by middle T blotting experiments; the highest levels were found in brain, lung, and spleen tissues. High-resolution examination of 85K by isoelectric focusing demonstrated that there are at least 10 different forms. These were resolved into two families, 85K and 86K; the ratio of the two families changed in different cells. Similar forms were found for pp85 associated with pp60v-src. Individual species within each family differed by phosphorylation. Analysis of pp85 and pp86 by immunoprecipitation with anti-phosphotyrosine antibody showed increasing phosphorylation in response to middle T or pp60v-src transformation. The association of middle T with pp85 and pp60c-src was examined in pulse-chase experiments. Association of middle T with pp60c-src was slow and was accompanied by progressive modification of middle T. pp85 formed a dissociable complex with middle T within 2.5 min.
Collapse
|
48
|
Cohen B, Liu YX, Druker B, Roberts TM, Schaffhausen BS. Characterization of pp85, a target of oncogenes and growth factor receptors. Mol Cell Biol 1990; 10:2909-15. [PMID: 2160590 PMCID: PMC360653 DOI: 10.1128/mcb.10.6.2909-2915.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An 85,000-molecular-weight polypeptide (85K polypeptide) has previously been identified as a common substrate for tyrosine phosphorylation upon polyomavirus middle T transformation or upon platelet-derived growth factor stimulation of 3T3 cells. In each case, pp85 has an associated phosphatidylinositol kinase activity. The tissue distribution of pp85 was determined by middle T blotting experiments; the highest levels were found in brain, lung, and spleen tissues. High-resolution examination of 85K by isoelectric focusing demonstrated that there are at least 10 different forms. These were resolved into two families, 85K and 86K; the ratio of the two families changed in different cells. Similar forms were found for pp85 associated with pp60v-src. Individual species within each family differed by phosphorylation. Analysis of pp85 and pp86 by immunoprecipitation with anti-phosphotyrosine antibody showed increasing phosphorylation in response to middle T or pp60v-src transformation. The association of middle T with pp85 and pp60c-src was examined in pulse-chase experiments. Association of middle T with pp60c-src was slow and was accompanied by progressive modification of middle T. pp85 formed a dissociable complex with middle T within 2.5 min.
Collapse
Affiliation(s)
- B Cohen
- Department of Biochemistry, Tufts University Health Sciences Campus, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
49
|
Cook DN, Hassell JA. The amino terminus of polyomavirus middle T antigen is required for transformation. J Virol 1990; 64:1879-87. [PMID: 2157858 PMCID: PMC249341 DOI: 10.1128/jvi.64.5.1879-1887.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In polyomavirus-transformed cells, pp60c-src is activated by association with polyomavirus middle T antigen. These complexes have a higher tyrosine kinase activity compared with that of unassociated pp60c-src. Genetic analyses have revealed that the carboxy-terminal 15 amino acids of pp60c-src and the amino-terminal half of middle T antigen are required for this association and consequent activation of the tyrosine kinase. To define in greater detail the borders of the domain in middle T antigen required for activation of pp60c-src, we constructed a set of unidirectional amino-terminal deletion mutants of middle T antigen. Analysis of these mutants revealed that the first six amino acids of middle T antigen are required for it to activate the kinase activity of pp60c-src and to transform Rat-1 fibroblasts. Analysis of a series of insertion and substitution mutants confirmed these observations and further revealed that mutations affecting the first four amino acids of middle T antigen reduced or abolished its capacity to activate the kinase activity of pp60c-src and to transform Rat-1 cells in culture. Our results suggest that the first four amino acids of middle T antigen constitute part of a domain required for activation of the pp60c-src tyrosyl kinase activity and for consequent cellular transformation.
Collapse
Affiliation(s)
- D N Cook
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
50
|
Affiliation(s)
- T Dalianis
- Department of Virology, Stockholm City Council, Sweden
| |
Collapse
|