1
|
Nair AV, Singh A, Rajmani RS, Chakravortty D. Salmonella Typhimurium employs spermidine to exert protection against ROS-mediated cytotoxicity and rewires host polyamine metabolism to ameliorate its survival in macrophages. Redox Biol 2024; 72:103151. [PMID: 38593631 PMCID: PMC11015157 DOI: 10.1016/j.redox.2024.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - R S Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Feng Y, Qi S, Yu X, Zhang X, Zhu H, Yu G. Supramolecular Modulation of Tumor Microenvironment through Pillar[5]arene-Based Host-Guest Recognition to Synergize Cancer Immunotherapy. J Am Chem Soc 2023; 145:18789-18799. [PMID: 37535445 DOI: 10.1021/jacs.3c03031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Despite the tremendous breakthrough of immunotherapy, the low response rate and resistance of immune checkpoint inhibitors (ICIs) toward solid tumors occur frequently. A highly hypoxic tumor microenvironment (TME) provides tumor cells with high concentrations of HIF-1α and polyamines to evade immune cell destruction. Reprogramming of an immunogenic TME has exhibited a brilliant future to boost immunotherapeutic performances. Herein, a supramolecular nanomedicine (TAPP) is developed on the basis of host-guest molecular recognition and metal coordination, showing the capability to remodel the immunosuppressive TME. Tamoxifen (Tmx) and Fe3+ are encapsulated into TAPP to achieve the combination of chemotherapy and chemodynamic therapy (CDT). Tmx directly downregulates HIF-1α, and a pillar[5]arene-based macrocyclic host successfully eliminates polyamines in tumors. Enhanced immunogenic cell death is achieved by Tmx and Fe3+, and the therapeutic efficacy is further synergized by immune checkpoint blockade (ICB) therapy. This supramolecular reprogramming modality encourages cytotoxic T lymphocyte infiltration, achieving pre-eminent immune response and long-term tumor suppression.
Collapse
Affiliation(s)
- Yunxuan Feng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Shaolong Qi
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyang Yu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xueyan Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Guocan Yu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
4
|
The RATIOnal Role of Polyamines in Epidermal Differentiation. J Invest Dermatol 2021; 141:2105-2107. [PMID: 34420674 DOI: 10.1016/j.jid.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022]
Abstract
Polyamines have been implicated in skin tumorigenesis; however, their role in epidermal homeostasis remains obscure. In a new article in the Journal of Investigative Dermatology, Rahim et al. (2021) report that keratinocyte differentiation requires a shift in polyamine ratios that is mediated by AMD1. Results suggest that targeting polyamine availability might be useful in the treatment of hyperproliferative skin disorders.
Collapse
|
5
|
Novita Sari I, Setiawan T, Seock Kim K, Toni Wijaya Y, Won Cho K, Young Kwon H. Metabolism and function of polyamines in cancer progression. Cancer Lett 2021; 519:91-104. [PMID: 34186159 DOI: 10.1016/j.canlet.2021.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Polyamines are essential for the proliferation, differentiation, and development of eukaryotes. They include spermine, spermidine, and the diamine precursor putrescine, and are low-molecular-weight, organic polycations with more than two amino groups. Their intracellular concentrations are strictly maintained within a specific physiological range through several regulatory mechanisms in normal cells. In contrast, polyamine metabolism is dysregulated in many neoplastic states, including cancer. In various types of cancer, polyamine levels are elevated, and crosstalk occurs between polyamine metabolism and oncogenic pathways, such as mTOR and RAS pathways. Thus, polyamines might have potential as therapeutic targets in the prevention and treatment of cancer. The molecular mechanisms linking polyamine metabolism to carcinogenesis must be unraveled to develop novel inhibitors of polyamine metabolism. This overview describes the nature of polyamines, their association with carcinogenesis, the development of polyamine inhibitors and their potential, and the findings of clinical trials.
Collapse
Affiliation(s)
- Ita Novita Sari
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| |
Collapse
|
6
|
Floyd KA, Lee CK, Xian W, Nametalla M, Valentine A, Crair B, Zhu S, Hughes HQ, Chlebek JL, Wu DC, Hwan Park J, Farhat AM, Lomba CJ, Ellison CK, Brun YV, Campos-Gomez J, Dalia AB, Liu J, Biais N, Wong GCL, Yildiz FH. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat Commun 2020; 11:1549. [PMID: 32214098 PMCID: PMC7096442 DOI: 10.1038/s41467-020-15331-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.
Collapse
Affiliation(s)
- Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Calvin K Lee
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Wujing Xian
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Mahmoud Nametalla
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Aneesa Valentine
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Benjamin Crair
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Hannah Q Hughes
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jennifer L Chlebek
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Daniel C Wu
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Ali M Farhat
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Charles J Lomba
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Courtney K Ellison
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, 355 Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Yves V Brun
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal, Pavillon Roger-Gaudry, 2900, boulevard Édouard-Montpetit, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Javier Campos-Gomez
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1918 University Blvd., MCLM 702, Birmingham, AL, 35233, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Nicolas Biais
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Gerard C L Wong
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA.
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
7
|
P De Koning H. The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Trop Med Infect Dis 2020; 5:E14. [PMID: 31963784 PMCID: PMC7157662 DOI: 10.3390/tropicalmed5010014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
With the incidence of sleeping sickness in decline and genuine progress being made towards the WHO goal of eliminating sleeping sickness as a major public health concern, this is a good moment to evaluate the drugs that 'got the job done': their development, their limitations and the resistance that the parasites developed against them. This retrospective looks back on the remarkable story of chemotherapy against trypanosomiasis, a story that goes back to the very origins and conception of chemotherapy in the first years of the 20 century and is still not finished today.
Collapse
Affiliation(s)
- Harry P De Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
8
|
Lozzi F, Lanna C, Mazzeo M, Garofalo V, Palumbo V, Mazzilli S, Diluvio L, Terrinoni A, Bianchi L, Campione E. Investigational drugs currently in phase II clinical trials for actinic keratosis. Expert Opin Investig Drugs 2019; 28:629-642. [PMID: 31232099 DOI: 10.1080/13543784.2019.1636030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Actinic keratoses (AKs) are limited areas of irregular epidermal growth on a background of excessive solar exposure. The entire sun-damaged skin is considered a field of cancerization with multiple visible and subclinical lesions. AK management requires field-directed therapies to block lesion relapse and prevent squamous cell carcinoma (SCC). AREAS COVERED In this review, we focused on phase II clinical trials for AKs, involving well-known agents and newer molecules such as proapoptotic drugs (VDA-1102, SR-T100, oleogel-S10, ICVT, eflornithine), immunomodulants (isotretinoin, tretinoin) and chemopreventive agents (nicotinamide, perillyl alcohol, liposomal T4N5). We used the website 'ClinicalTrials.Gov' as main reference. We selected and discussed completed and ongoing trials and analysed chemical structure and mechanism of action of the investigated molecules. EXPERT OPINION AK therapy should be tailored on the patient's profile considering first of all the age and site of the AKs, which are relevant parameters for local immune response. The new molecules could be combined to obtain a synergic effect blocking the different steps of skin tumorigenesis. Phase II trials highlight a new therapeutic opportunity to block selectively cell proliferation regulators and work both on the field of cancerization and on the AKs currently present.
Collapse
Affiliation(s)
- Flavia Lozzi
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Caterina Lanna
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Mauro Mazzeo
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Virginia Garofalo
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Vincenzo Palumbo
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Sara Mazzilli
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Laura Diluvio
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Alessandro Terrinoni
- b Department of Experimental Medicine and Biochemical Sciences , University of Rome "Tor Vergata" , Rome , Italy
| | - Luca Bianchi
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Elena Campione
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
9
|
Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J Biol Chem 2018; 293:18770-18778. [PMID: 30355737 DOI: 10.1074/jbc.tm118.003343] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a set of diseases characterized by uncontrolled cell growth. In certain cancers of the gastrointestinal tract, the adenomatous polyposis coli (APC) tumor suppressor gene is altered in either germline or somatic cells and causes formation of risk factors, such as benign colonic or intestinal neoplasia, which can progress to invasive cancer. APC is a key component of the WNT pathway, contributing to normal GI tract development, and APC alteration results in dysregulation of the pathway for production of polyamines, which are ubiquitous cations essential for cell growth. Studies with mice have identified nonsteroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, as potent inhibitors of colon carcinogenesis. Moreover, gene expression profiling has uncovered that NSAIDs activate polyamine catabolism and export. Several DFMO-NSAID combination strategies are effective and safe methods for reducing risk factors in clinical trials with patients having genetic or sporadic risk of colon cancer. These strategies affect cancer stem cells, inflammation, immune surveillance, and the microbiome. Pharmacotherapies consisting of drug combinations targeting the polyamine pathway provide a complementary approach to surgery and cytotoxic cancer treatments for treating patients with cancer risk factors. In this Minireview, we discuss the role of polyamines in colon cancer and highlight the mechanisms of select pharmacoprevention agents to delay or prevent carcinogenesis in humans.
Collapse
Affiliation(s)
- Eugene W Gerner
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and .,the Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona 85711
| | | | - Alfred Cohen
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and
| |
Collapse
|
10
|
Kim DJ, Lee MH, Liu K, Lim DY, Roh E, Chen H, Kim SH, Shim JH, Kim MO, Li W, Ma F, Fredimoses M, Bode AM, Dong Z. Herbacetin suppresses cutaneous squamous cell carcinoma and melanoma cell growth by targeting AKT and ODC. Carcinogenesis 2017; 38:1136-1146. [PMID: 29029040 PMCID: PMC5862242 DOI: 10.1093/carcin/bgx082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Herbacetin is a flavonol compound that is found in plants such as flaxseed and ramose scouring rush herb, it possesses a strong antioxidant capacity, and exerts anticancer effects on colon and breast cancer. However, the effect of herbacetin on skin cancer has not been investigated. Herein, we identified herbacetin as a dual V-akt murine thymoma viral oncogene homolog (AKT) and ornithine decarboxylase (ODC) inhibitor, and illustrated its anticancer effects in vitro and in vivo against cutaneous squamous cell carcinoma (SCC) and melanoma cell growth. To identify the direct target(s) of herbacetin, we screened several skin cancer-related protein kinases, and results indicated that herbacetin strongly suppresses both AKT and ODC activity. Results of cell-based assays showed that herbacetin binds to both AKT and ODC, inhibits TPA-induced neoplastic transformation of JB6 mouse epidermal cells, and suppresses anchorage-independent growth of cutaneous SCC and melanoma cells. The inhibitory activity of herbacetin was associated with markedly reduced NF-κB and AP1 reporter activity. Interestingly, herbacetin effectively attenuated TPA-induced skin cancer development and also exhibited therapeutic effects against solar-UV-induced skin cancer and melanoma growth in vivo. Our findings indicate that herbacetin is a potent AKT and ODC inhibitor that should be useful for preventing skin cancers.
Collapse
Affiliation(s)
- Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - KangDong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450008, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sung-Hyun Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Jung-Hyun Shim
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Myoung Ok Kim
- Center for Laboratory Animal Resources, School of Animal Biotechnology, Kyungpook National University, Dae-gu 700-842, Republic of Korea
| | - Wenwen Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Fayang Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
11
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
12
|
Nowotarski SL, Feith DJ, Shantz LM. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. CANCER GROWTH AND METASTASIS 2015; 8:17-27. [PMID: 26380554 PMCID: PMC4558889 DOI: 10.4137/cgm.s21219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Biochemistry, The Pennsylvania State University Berks College, Reading, PA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
13
|
Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 2014; 148:233-48. [PMID: 25292420 DOI: 10.1007/s10549-014-3156-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is a common disease that generally occurs in women over the age of 50, and the risk is especially high for women over 60 years of age. One of the major BC therapeutic problems is that tumors initially responsive to chemotherapeutic approaches can progress to more aggressive forms poorly responsive to therapies. Polyamines (PAs) are small polycationic alkylamines, naturally occurring and essential for normal cell growth and development in eukaryotes. The intracellular concentration of PA is maintained within strongly controlled contents, while a dysregulation occurs in BC cells. Polyamines facilitate the interactions of transcription factors, such as estrogen receptors with their specific response element, and are involved in the proliferation of ER-negative and highly invasive BC tumor cells. Since PA metabolism has a critical role in cell death and proliferation, it represents a potential target for intervention in BC. The goal of this study was to perform a literature search reviewing the association between PA metabolism and BC, and the current evidence supporting the BC treatment targeting PA metabolism. We here describe in vitro and in vivo models, as well as the clinical trials that have been utilized to unveil the relationship between PA metabolism and BC. Polyamine pathway is still an important target for the development of BC chemotherapy via enzyme inhibitors. Furthermore, a recent promising strategy in breast anticancer therapy is to exploit the self-regulatory nature of PA metabolism using PA analogs to affect PA homeostasis. Nowadays, antineoplastic compounds targeting the PA pathway with novel mechanisms are of great interest and high social impact for BC chemotherapy.
Collapse
|
14
|
Soe CZ, Codd R. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis. ACS Chem Biol 2014; 9:945-56. [PMID: 24483365 DOI: 10.1021/cb400901j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical conversions across the double bond(s) of the unsaturated macrocycles provides a new route to increased molecular diversity in this class of siderophore.
Collapse
Affiliation(s)
- Cho Z. Soe
- School of Medical Sciences
(Pharmacology) and Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rachel Codd
- School of Medical Sciences
(Pharmacology) and Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Abstract
Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion.
Collapse
|
16
|
Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 2013; 15:e3. [PMID: 23432971 DOI: 10.1017/erm.2013.3] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes, and a poorly characterised transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate and skin cancers, and altered levels of rate-limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway-specific drugs and ongoing clinical trials targeting polyamine biosynthesis.
Collapse
|
17
|
Prado R, Francis SO, Mason MN, Wing G, Gamble RG, Dellavalle R. Nonmelanoma skin cancer chemoprevention. Dermatol Surg 2011; 37:1566-78. [PMID: 21895847 DOI: 10.1111/j.1524-4725.2011.02108.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Renata Prado
- Department of Dermatology, School of Medicine, University of Colorado, Aurora, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Slaga TJ. Multistage skin carcinogenesis: a useful model for the study of the chemoprevention of cancer. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 55 Suppl 2:107-24. [PMID: 6385617 DOI: 10.1111/j.1600-0773.1984.tb02485.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skin carcinogenesis can be operationally and mechanistically divided into at least three stages; tumor initiation, stage I and stage II of promotion. Current information suggests that reactive intermediates of skin tumor initiators are mutagenic and bind convalently to DNA of epidermal stem cells (dark basal keratinocytes) leading to some irreversible alteration in the differentiation capacity of these cells. Inhibitors of skin tumor initiation by polycyclic aromatic hydrocarbons (PAH) decrease the level of the PAH diol-epoxide bound to specific DNA adducts. The tumor promoters have been shown to have many cellular and biochemical effects in the skin. Recent data suggests that free radicals may be important in skin tumor promotion. The first stage of promotion is partially irreversible and can be accomplished by a single treatment of a tumor promoter such as TPA or by non-promoting agents such as 4-0-methyl-TPA, calcium ionophore A23187, and hydrogen peroxide, as well as wounding. These agents increase the number of dark basal keratinocytes, which suggest that these cells are important in the first stage of promotion. Prostaglandin E2 was found to specifically enhance stage I of promotion whereas the protease inhibitor tosyl phenylalanine chloromethylketone (TPCK) specially inhibited stage I of promotion and the TPA-induced dark basal keratinocytes. The second stage of promotion is initially reversible but later becomes irreversible. The weak promoting agent mezerein is an effective stage II promoter. Polyamines and epidermal cell proliferation appear to be important events in stage II of promotion. Putrescine was found to specifically enhance stage II, whereas retinoic acid (RA), diflouromethylornithine (DFMO), and butylated hydroxyanisole (BHA) specially inhibited stage II of promotion and the mezerein-induced polyamine levels. Floucinolone acetonide (FA) was found to inhibit both stages but was more effective in counteracting stage I of promotion. Although, TPA can cause a decrease in the number of glucocorticoid receptors during promotion, FA can effectively prevent this loss. Recent data suggest that skin tumor promotion can be effectively inhibited by a combination of stage I and II inhibitors. Furthermore, skin carcinogenesis can be counteracted by a combination of low and nontoxic doses of BHA, TPCK, DFMO and vitamin E.
Collapse
|
19
|
Grape and wine polyphenols down-regulate the expression of signal transduction genes and inhibit the growth of estrogen receptor-negative MDA-MB231 tumors in nu/nu mouse xenografts. Nutr Res 2009; 28:702-13. [PMID: 19083478 DOI: 10.1016/j.nutres.2008.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 05/26/2008] [Accepted: 06/25/2008] [Indexed: 11/20/2022]
Abstract
The antitumor properties of the Merlot grape (and Merlot wine) polyphenols were evaluated in relation to their ability to modulate gene expression in developing tumors using an athymic nude mouse model transplanted with the estrogen receptor-negative MDA-MB231 cells. Groups of mice were fed a modified AIN 93G diet (Research Diets Inc, New Brunswick, NJ) with the experimental groups receiving 100 mg/kg body weight equivalent of polyphenols by gavage 3 times per week. After 1 week of acclimation and another week of polyphenol supplementation, MDA-MB231 cells were transplanted and the growth patterns of the tumors monitored. After 33 days of tumor growth, the animals were euthanized, the tumors isolated, and gene expression profiles analyzed using signal transduction and cell cycle arrays. The development of tumors was almost totally arrested in grape polyphenol-treated mice. Total polyphenols isolated from the wine were more effective in reducing tumor growth as compared with a hydrophobic polyphenol fraction isolated from the wine, showing a 50% and 60% reduction in tumor growth on day 33, respectively. Analysis of gene expression showed that genes such as CDK2, FAS, LEF1, PRKCE, and PTGS2, belonging to the NFkappaB, phospholipase C, and calcium signaling pathways, were down-regulated in tumors that developed in grape polyphenol-treated mice. Several genes related to cell cycle regulation, such as CDK5RAP1, RBBP8, and SERTAD1, were up-regulated in these tumors. Changes in the expression of these genes were less pronounced in tumors of wine polyphenol-treated mice. The study highlights the potential influences of dietary polyphenolic components on gene expression in estrogen receptor-negative tumors and its relation to inhibition of tumor growth.
Collapse
|
20
|
Pohjanpelto P, Hölttä E, Maiche A, Knuutila S. Effect of difluoromethylornithine on chromosomes in living organisms and in tissue culture cells. Hereditas 2008; 108:85-91. [PMID: 3131274 DOI: 10.1111/j.1601-5223.1988.tb00685.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
21
|
Miller TJ, Honchel R, Espandiari P, Knapton A, Zhang J, Sistare FD, Hanig JP. The utility of the K6/ODC transgenic mouse as an alternative short term dermal model for carcinogenicity testing of pharmaceuticals. Regul Toxicol Pharmacol 2007; 50:87-97. [PMID: 18069108 DOI: 10.1016/j.yrtph.2007.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022]
Abstract
The use of transgenic rodents may overcome many limitations of traditional cancer studies. Regulatory perspectives continue to evolve as new models are developed and validated. The transgenic mouse, K6/ODC, develops epidermal tumors when exposed to genotoxic carcinogens. In this study, K6/ODC mice were evaluated for model fitness and health robustness in a 36-week study to determine oncogenic risk of residual DNA in vaccines from neoplastic cell substrates. K6/ODC and C57BL/6 mice were treated with T24-H-ras expression plasmid, carrier vector DNA, or saline topically or by subcutaneous injection. One group of K6/ODC mice received 7,12-dimethylbenz-[a]anthracene [DMBA] dermally. Only DMBA-treated mice developed papillomas by six weeks, increasing in incidence to 25 weeks. By week 11, many K6/ODC mice showed severe dehydration and dermal eczema. By week 32, (6/8) surviving K6/ODC mice showed loss of mobility and balance. Microscopic evaluation of tissues revealed dermal/sebaceous gland hyperplasia, follicular dystrophy, splenic atrophy, and amyloid deposition/neutrophilic infiltration within liver, heart, and spleen, in all K6/ODC mice. Pathology was not detected in C57BL/6 mice. Progressive adverse health, decreased survival, and failure to develop papillomas to the H-ras plasmid suggest that K6/ODC mice may be an inappropriate alternative model for detection of oncogenic DNA and pharmaceutical carcinogenicity testing.
Collapse
Affiliation(s)
- T J Miller
- Division of Applied Pharmacology Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Feith DJ, Shantz LM, Shoop PL, Keefer KA, Prakashagowda C, Pegg AE. Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion-sensitive and promotion-resistant genetic backgrounds. Mol Carcinog 2007; 46:453-65. [PMID: 17219416 DOI: 10.1002/mc.20294] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated polyamine content and increased ornithine decarboxylase (ODC) activity have been associated with neoplastic growth in numerous animal models and human tissues. Antizyme (AZ) is a negative regulator of polyamine metabolism that inhibits ODC activity, stimulates ODC degradation, and suppresses polyamine uptake. Preliminary evidence, obtained from transgenic mice with tissue specific overexpression of AZ indicates that tumor development can be suppressed by AZ. To extend these studies, we have examined the effect of keratin 5 (K5)- or K6-driven AZ transgenes on 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical carcinogenesis of the skin, in promotion-resistant C57BL/6 and promotion-sensitive DBA/2 mice. On both genetic backgrounds, K6-AZ mice showed a reduction in tumor multiplicity, with 85% fewer tumors than wild-type controls on the C57BL/6 background and 50% fewer tumors on the DBA/2 background. K5-AZ mice developed 50% fewer tumors than controls on both backgrounds. The percent of mice with tumors and tumor size were also reduced in the K5-AZ and K6-AZ groups. Tumor and TPA-treated skin sections from K6-AZ mice exhibited the strongest AZ expression, with localization mainly in suprabasal keratinocytes. K6-AZ mice also had slightly reduced cell proliferation rates in tumors and TPA-treated skin. The lack of a more pronounced effect on cell proliferation is probably explained by the observation that AZ staining did not colocalize with proliferating cell nuclear antigen (PCNA), a marker for the proliferative compartment. These studies demonstrate a tumor-suppressive effect of AZ in C57BL/6 and DBA/2 mice, and confirm the importance of ODC and polyamines in tumor development.
Collapse
Affiliation(s)
- David J Feith
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gilmour SK. Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 2006; 224:249-56. [PMID: 17234230 PMCID: PMC2098876 DOI: 10.1016/j.taap.2006.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 12/31/2022]
Abstract
Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Susan K Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| |
Collapse
|
24
|
Wright TI, Spencer JM, Flowers FP. Chemoprevention of nonmelanoma skin cancer. J Am Acad Dermatol 2006; 54:933-46; quiz 947-50. [PMID: 16713450 DOI: 10.1016/j.jaad.2005.08.062] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 09/24/2004] [Accepted: 08/15/2005] [Indexed: 11/16/2022]
Abstract
UNLABELLED Skin cancer is the most common cancer in human beings. The increased incidence of skin cancer has brought much attention to the process by which these tumors develop and how they can be prevented. Efforts have been made to educate the public about the importance of protecting skin from excessive ultraviolet light. Despite this work, the incidence of skin cancer continues to increase. Available compounds may be useful in the chemoprevention of skin cancer. Chemoprevention is defined as oral or topical use of dietary or pharmacologic agents to inhibit or reverse the development of cancer. Potential agents included are the retinoids; difluoromethylornithine; T4 endonuclease V; polyphenolic antioxidants, such as (-)-epigallocatechin gallate, found in green tea and grape seed extract; silymarin; isoflavone genestein; nonsteroidal anti-inflammatory drugs; curcumin; lycopene; vitamin E; beta-carotene; and selenium. Many of these agents are available over the counter as topical or oral preparations. LEARNING OBJECTIVE At the conclusion of this activity, participants should be familiar with the chemopreventive agents and their efficacy, as well as any significant side effects associated with them.
Collapse
Affiliation(s)
- Tina I Wright
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | |
Collapse
|
25
|
Hayes CS, DeFeo K, Lan L, Paul B, Sell C, Gilmour SK. Elevated levels of ornithine decarboxylase cooperate with Raf/ERK activation to convert normal keratinocytes into invasive malignant cells. Oncogene 2006; 25:1543-53. [PMID: 16278677 DOI: 10.1038/sj.onc.1209198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ornithine decarboxylase (ODC) overexpression coupled with activated Ras is fully sufficient to oncogenically transform primary keratinocytes. To determine the Ras effector pathways that represent the minimal essential contribution to full oncogenic transformation in this context, we evaluated the cooperativity of different Ras effector mutants with overexpressed ODC in an in vivo tracheal xenotransplantation assay for epithelial cell invasiveness. Primary keratinocytes, isolated from either K6/ODC transgenic mouse skin (expressing increased ODC) or from normal littermate skin were infected with retrovirus producing an activated RasV12 or partial loss-of-function effector mutants of RasV12 that selectively induce only the Raf/ERK, RalGDS, or the PI3-kinase signaling pathway. Whereas keratinocytes expressing a fully activated RasV12 are not invasive in tracheal xenotransplants, ODC-overexpressing keratinocytes acquire an invasive phenotype with additional expression of either RasV12 or activation of the Raf/ERK pathway. Independent of a mutated ras, elevated levels of ODC activate the Akt/mTOR signaling pathway as well as the Rho/Rac pathway in primary keratinocytes. Thus, Raf/ERK signaling is sufficient to cooperate with increased ODC activity in the conversion of normal keratinocytes to invasive cells. In order to promote invasiveness in keratinocytes, elevated levels of ODC may cooperate with Raf/ERK via activation of the Akt and Rho/Rac signaling pathway.
Collapse
Affiliation(s)
- C S Hayes
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | | | | | | | | | | |
Collapse
|
26
|
Parris G. The cell clone ecology hypothesis and the cell fusion model of cancer progression and metastasis (II): three pathways for spontaneous cell-cell fusion and escape from the intercellular matrix. Med Hypotheses 2006; 67:172-6. [PMID: 16516400 DOI: 10.1016/j.mehy.2006.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 01/12/2006] [Indexed: 12/15/2022]
Abstract
The two-stage initiation-progression model of cancer is widely accepted. Initiation appears to result most often from accumulation of damage to the DNA expressed as multiple mutations in the phenotype. Unsymmetrical chromosome segregation during mitosis of normal or mutated cells produces aneuploid cells and also contributes to the evolution of neoplasia. However, it has been pointed out (Parris GE. Med Hypotheses 2005;65:993-4 and 2006;66:76-83) that DNA damage and loss of chromosomes are much more likely to lead the mutant clones of cells to extinction than to successful expansion (e.g., an example of Muller's Ratchet). It was argued that aneuploid neoplasia represent new parasite species that successfully evolve to devour their hosts by incorporating sex-like redistribution of chromosomes through spontaneous or virus-catalyzed cell-cell fusion into their life-cycle. Spontaneous cell-cell fusion is generally blocked by the intercellular matrix to which the cells are bound via surface adhesion molecules (frequently glycoproteins, e.g., CD44). In order for progression of matrix-contained neoplasia toward clinically significant cancer to occur, the parasite cells must escape from the matrix and fuse. Release from the matrix also allows the parasite cells to invade adjacent tissues and metastasize to remote locations. Both invasion and metastasis likely involve fusion of the migrating parasite cells with fusion-prone blast cells. There are at least three pathways through which parasite cells can be liberated from the confining matrix: (i) Their adhesion molecules may be modified (e.g., by hyper-glycosylation) so that they can no longer grip the matrix. (ii) Their adhesion molecules or matrix may be saturated with other ligands (e.g., polyamines). (iii) Their adhesion molecules may be cleaved from the cell surface or the matrix itself may be cleaved (e.g., by MMPs or ADAMs). It is hypothesized that mobilization of parasite cells and cell-cell fusion go hand-in-hand in the progression of neoplasia to clinically significant cancer through invasion and metastasis. The latency between tumor recognition and exposure to mutagens and the increased incidence of cancer with age can probably be related to slow breakdown of the intercellular matrix that provides a barrier to cell-cell fusion.
Collapse
|
27
|
Toninello A, Pietrangeli P, De Marchi U, Salvi M, Mondovì B. Amine oxidases in apoptosis and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1765:1-13. [PMID: 16225993 DOI: 10.1016/j.bbcan.2005.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 02/02/2023]
Abstract
Amine oxidases, the major enzymes of biogenic amines metabolism, are considered to be biological regulators, especially for cell growth and differentiation. A primary involvement of amine oxidases in cancer growth inhibition and progression, especially by means of aldehydes, H(2)O(2) and other reactive oxygen species, the amine oxidase-mediated products of biogenic amines oxidation, has been demonstrated. Amine oxidases are involved in cancer growth inhibition because of the higher content in tumour cells of biogenic amines in comparison to normal cells. The cytotoxic effect can be explained by a damage to cell membranes and/or nuclei or, indirectly, through modulation of membrane permeability transition and therefore apoptosis. The oxidation products of biogenic amines appears to be also carcinogenic, while acrolein, produced from the oxidation of spermine and spermidine, should be a key compound both carcinogenic and cytotoxic. The cancer inhibition/promotion effect of amine oxidases could be explained by taking into consideration the full pattern of the enzyme content of the cell. The balance of amine oxidases and antioxidant enzymes appear to be a crucial point for cancer inhibition or progression. A long lasting imbalance of these enzymes appears to be carcinogenic, while, for a short time, amine oxidases are cytotoxic for cancer cells.
Collapse
Affiliation(s)
- Antonio Toninello
- Department of Biological Chemistry University of Padua and C.N.R. Institute of Neuroscience, Unit for the Study of Biomembranes, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | | | |
Collapse
|
28
|
Lan L, Hayes CS, Laury-Kleintop L, Gilmour SK. Suprabasal induction of ornithine decarboxylase in adult mouse skin is sufficient to activate keratinocytes. J Invest Dermatol 2005; 124:602-14. [PMID: 15737202 DOI: 10.1111/j.0022-202x.2005.23620.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To study the effects of de novo induction of ornithine decarboxylase (ODC) activity in adult, quiescent skin, we generated transgenic mice in which the suprabasal expression of an inducible form of the ODC protein fused to a modified estrogen receptor ligand-binding domain (ODCER) is driven by an involucrin promoter. After topical treatment with the inducing agent 4-hydroxytamoxifen (4OHT), ODC activity and putrescine levels were dramatically increased in the epidermis but not in the dermis of transgenic mice. 4OHT treatment stimulated both proliferation as measured by bromodeoxyuridine incorporation in basal epidermal cells and differentiation shown by increased expression of differentiation markers. Furthermore, induction of ODC activity did not rescue primary epidermal keratinocyte cultures isolated from ODCER2 mice from a calcium-triggered DNA synthesis block, as measured by [3H]thymidine incorporation. In vivo induction of epidermal ODC enzyme activity significantly stimulated the vascularization of ODCER transgenic skin. Increased expression of interleukin-1beta and keratin 6, markers of keratinocyte activation seen in wound healing, was also observed in 4OHT-treated transgenic skin. These results suggest that de novo suprabasal induction of ODC activity in adult mouse skin activates keratinocytes and stimulates vascularization in the dermal layer in a manner similar to skin undergoing wound healing.
Collapse
Affiliation(s)
- Li Lan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Numerous studies have linked overexpression of ornithine decarboxylase (Odc) gene with enhanced susceptibility to mouse skin tumorigenesis. However, there is little experimental evidence suggesting that modest reductions in Odc expression might reduce tumor susceptibility. To address this issue, here we report the use of the Odc(+/-) haploinsufficiency model, in which one copy of the murine Odc gene has been inactivated by a homologous recombination. Compared with Odc(+/+) mice, Odc(+/-) mice exhibit reduced epidermal ODC enzyme activity and polyamine accumulation following treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Furthermore, following chronic TPA treatment, the characteristic hyperplastic response of the epidermis was diminished in Odc(+/-) mice. Finally, when subjected to a two-stage initiation-promotion protocol, substantially fewer skin papillomas developed in Odc(+/-) mice compared with wild-type littermates. These results support the concept that differences in tissue polyamine levels, resulting from either overexpression or reductions in ODC, are important modifiers of tumor susceptibility.
Collapse
Affiliation(s)
- Yongjun Guo
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | | |
Collapse
|
30
|
Abstract
The amino-acid-derived polyamines have long been associated with cell growth and cancer, and specific oncogenes and tumour-suppressor genes regulate polyamine metabolism. Inhibition of polyamine synthesis has proven to be generally ineffective as an anticancer strategy in clinical trials, but it is a potent cancer chemoprevention strategy in preclinical studies. Clinical trials, with well-defined goals, are now underway to evaluate the chemopreventive efficacy of inhibitors of polyamine synthesis in a range of tissues.
Collapse
|
31
|
Afaq F, Saleem M, Aziz MH, Mukhtar H. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion markers in CD-1 mouse skin by oleandrin. Toxicol Appl Pharmacol 2004; 195:361-9. [PMID: 15020199 DOI: 10.1016/j.taap.2003.09.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 09/17/2003] [Indexed: 01/02/2023]
Abstract
Oleandrin, derived from the leaves of Nerium oleander, has been shown to possess anti-inflammatory and tumor cell growth-inhibitory effects. Here, we provide evidence that oleandrin could possess anti-tumor promoting effects. We determined the effect of topical application of oleandrin to CD-1 mice against l2-O-tetradecanoylphorbol-13-acetate (TPA), a widely studied skin tumor promoter, -induced conventional and novel markers of skin tumor promotion. Topical application of oleandrin (2 mg per mouse) 30 min before TPA (3.2 nmol per mouse) application onto the skin afforded significant inhibition, in a time-dependent manner, against TPA-mediated increase in cutaneous edema and hyperplasia, epidermal ornithine decarboxylase (ODC) activity and ODC and cyclooxgenase-2 (COX-2) protein expression. In search for novel markers of skin tumor promotion, we found that TPA application to mouse skin resulted, as an early event, in an increased expression of phosphatidyinositol 3-kinase (PI3K), phosphorylation of Akt at threonine308 and activation of nuclear factor kappa B (NF-kappaB). Topical application of oleandrin before TPA application to mouse skin resulted in significant reduction in TPA-induced expression of PI3K and phosphorylation of Akt, and inhibition of NF-kappaB activation. NF-kappaB is a eukaryotic transcription factor that is critically involved in regulating the expression of specific genes that participate in inflammation, apoptosis and cell proliferation. Employing Western blot analysis, we found that oleandrin application to mouse skin resulted in inhibition of TPA-induced activation of NF-kappaB, IKKalpha and phosphorylation and degradation of IkappaBalpha. Our data suggest that oleandrin could be a useful anti-tumor promoting agent because it inhibits several biomarkers of TPA-induced tumor promotion in an in vivo animal model. One might envision the use of chemopreventive agents such as oleandrin in an emollient or patch for chemoprevention or treatment of skin cancer.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Dermatology, Medical Sciences Centre, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
32
|
Jänne J, Alhonen L, Pietilä M, Keinänen TA. Genetic approaches to the cellular functions of polyamines in mammals. ACTA ACUST UNITED AC 2004; 271:877-94. [PMID: 15009201 DOI: 10.1111/j.1432-1033.2004.04009.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The polyamines putrescine, spermidine and spermine are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive. Pharmacological interventions have demonstrated convincingly that a steady supply of these compounds is a prerequisite for cell proliferation to occur. The last decade has witnessed the appearance of a substantial number of studies, in which genetic engineering of polyamine metabolism in transgenic rodents has been employed to unravel their cellular functions. Transgenic activation of polyamine biosynthesis through an overexpression of their biosynthetic enzymes has assigned specific roles for these compounds in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase, as achieved through targeted disruption of their genes, is not compatible with murine embryogenesis. Finally, the first reports of human diseases apparently caused by mutations or rearrangements of the genes involved in polyamine metabolism have appeared.
Collapse
Affiliation(s)
- Juhani Jänne
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
33
|
Einspahr JG, Bowden GT, Alberts DS. Skin cancer chemoprevention: strategies to save our skin. Recent Results Cancer Res 2003; 163:151-64; discussion 264-6. [PMID: 12903851 DOI: 10.1007/978-3-642-55647-0_14] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
There are over 1 million cases of skin cancer diagnosed yearly in the United States. The majority of these are nonmelanoma (NMSCs) and are associated with chronic exposure to ultraviolet light (UV). Actinic keratosis (AK) has been identified as a precursor for SCC, but not for BCC. AKs are far more common than SCC, making them excellent targets for chemoprevention. Cancer chemoprevention can prevent or delay the occurrence of cancer in high-risk populations using dietary or chemical interventions. We have developed strategies that have rational mechanisms of action and demonstrate activity in preclinical models of skin cancer. Promising agents proceed to phase I-III trials in subjects at high risk of skin cancer. UV light induces molecular signaling pathways and results in specific genetic alterations (i.e., mutation of p53) that are likely critical to skin cancer development. UVB-induced changes serve as a basis for the development of novel agents. Targets include inhibition of polyamine or prostaglandin synthesis, specific retinoid receptors, and components of the Ras and MAP kinase signaling pathways. Agents under study include: epigallocatechin gallate (EGCG), a green tea catechin with antioxidant and sunscreen activity, as well as UVB signal transduction blocking activity; perillyl alcohol, a monoterpene derived from citrus peel that inhibits Ras farnesylation; difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase and polyamines; retinoids that target retinoid X receptors and AP-1 activity; and nonsteroidal anti-inflammatory agents that inhibit cylooxygenase and prostaglandin synthesis. We performed a series of Phase I-II trials in subjects with multiple AK. For example, a phase II randomized trial of topical DFMO reduced AK number, suppressed polyamines, and reduced p53 protein. Our goal is to develop agents for use in combination and/or incorporation into sunscreens to improve chemoprevention efficacy and reduce skin cancer incidence.
Collapse
Affiliation(s)
- Janine G Einspahr
- Arizona Cancer Center, University of Arizona, P.O. Box 245024, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
34
|
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376:1-14. [PMID: 13678416 PMCID: PMC1223767 DOI: 10.1042/bj20031327] [Citation(s) in RCA: 705] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 01/30/2023]
Abstract
Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
Collapse
Affiliation(s)
- Heather M Wallace
- Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
35
|
Martinez ME, O'Brien TG, Fultz KE, Babbar N, Yerushalmi H, Qu N, Guo Y, Boorman D, Einspahr J, Alberts DS, Gerner EW. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci U S A 2003; 100:7859-64. [PMID: 12810952 PMCID: PMC164678 DOI: 10.1073/pnas.1332465100] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Indexed: 12/29/2022] Open
Abstract
Most sporadic colon adenomas acquire mutations in the adenomatous polyposis coli gene (APC) and show defects in APC-dependent signaling. APC influences the expression of several genes, including the c-myc oncogene and its antagonist Mad1. Ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, is a transcriptional target of c-myc and a modifier of APC-dependent tumorigenesis. A single-nucleotide polymorphism exists in intron 1 of the human ODC gene, which lies between two myc-binding domains. This region is known to affect ODC transcription, but no data exist on the relationship of this polymorphism to risk of colorectal neoplasia in humans. We show that individuals homozygous for the minor ODC A-allele who reported using aspirin are approximately 0.10 times as likely to have an adenoma recurrence as non-aspirin users homozygous for the major G-allele. Mad1 selectively suppressed the activity of the ODC promoter containing the A-allele, but not the G-allele, in a human colon cancer-derived cell line (HT29). Aspirin (>or=10 microM) did not affect ODC allele-specific promoter activity but did activate polyamine catabolism and lower polyamine content in HT29 cells. We propose that the ODC polymorphism and aspirin act independently to reduce the risk of adenoma recurrence by suppressing synthesis and activating catabolism, respectively, of colonic mucosal polyamines. These findings confirm the hypothesis that the ODC polymorphism is a genetic marker for colon cancer risk, and support the use of ODC inhibitors and aspirin, or other nonsteroidal antiinflammatory drugs (NSAIDs), in combination as a strategy for colon cancer prevention.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Arizona Cancer Center, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wheeler DL, Reddig PJ, Dreckschmidt NE, Leitges M, Verma AK. Protein kinase Cdelta-mediated signal to ornithine decarboxylase induction is independent of skin tumor suppression. Oncogene 2002; 21:3620-30. [PMID: 12032864 DOI: 10.1038/sj.onc.1205451] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 02/15/2002] [Accepted: 02/21/2002] [Indexed: 11/09/2022]
Abstract
Protein Kinase Cdelta (PKCdelta), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is among the PKC isoforms expressed in mouse epidermis. We reported that FVB/N transgenic mice that overexpress ( approximately eightfold) PKCdelta protein in basal epidermal cells are resistant to skin tumor formation by the 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion protocol. However, despite being resistant to skin tumor promotion by TPA, PKCdelta transgenic mice elicited a 3-4-fold increase in TPA-induced epidermal ODC activity and putrescine levels than their wild-type littermates. PKCdelta was observed to be the key component of the TPA signal transduction pathways to the induction of mouse epidermal ODC activity. To determine if TPA-induced ODC activity and associated putrescine levels in PKCdelta transgenic mice contributed to PKCdelta-mediated suppression of skin tumor promotion by TPA, the irreversible inhibitor of ODC, alpha-difluoromethylornithine (DFMO), was used. PKCdelta transgenic mice and their wild-type littermates were initiated with 100 nmol DMBA and then promoted twice weekly with 5 nmol TPA. The experimental group was given 0.5% DFMO in their drinking water, while the control group was given tap water. After 25 weeks, the number of papillomas (>2 mm) per mouse was counted. The DFMO treatment did not affect the skin tumor multiplicity of PKCdelta transgenic mice. These results indicate that PKCdelta-induced ODC activity is not involved in PKCdelta-mediated tumor suppression. Thus, the signaling pathways via PKCdelta to epidermal ODC induction and skin tumor suppression appear to be independent.
Collapse
Affiliation(s)
- Deric L Wheeler
- Department of Human Oncology, Medical School, University of Wisconsin, Madison, Wisconsin, WI 53792, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The incidence of skin cancer has been rising in recent years with significant effects on public health. Primary prevention has proven inadequate in impacting the incidence of skin cancer, thus stimulating the development of chemopreventive strategies. The majority of skin cancer chemoprevention studies focus on occurrence of new nonmelanoma skin cancers (NMSC) in individuals with a previous NMSC, or on reduction in the number of premalignant skin lesions such as actinic keratoses (AK). Dysplastic nevi, a likely precursor of melanoma, are also potential targets for chemoprevention strategies. Premalignant lesions are especially attractive as endpoints since they are more common than frank cancer, resulting in reduced sample size, length, and cost of clinical trials. Development of new agents that affect the pathogenesis of skin cancer will be discussed, from elucidation of molecular targets to implementation of trials designed to determine the effects of chemopreventive interventions on human skin cancer.
Collapse
Affiliation(s)
- Janine G Einspahr
- Arizona Cancer Center, University of Arizona, 1515, North Campbell Avenue, Tucson 85724, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Colorectal cancer is the third most incident cancer in the United States and is second only to lung cancer as a cause of cancer-related mortality. Colorectal cancer develops through a multistep process characterized by histopathological precursor lesions and molecular genetic alterations. This sequential process of tumorigenesis provides opportunities for the development and testing of both primary and secondary prevention strategies. This review focuses on chemoprevention, which is defined as the use of natural or synthetic agents to reverse the process of carcinogenesis. Epidemiological studies have consistently shown that chronic intake of nonsteroidal anti-inflammatory drugs (NSAIDs), principally aspirin, can reduce the incidence of colorectal adenomas and carcinomas. Evaluation of NSAIDs, including newer selective cyclo-oxygenase-2 inhibitors, in carcinogen-induced and genetically manipulated animal models of colorectal cancer demonstrates that these drugs are effective chemopreventive agents. In humans, the NSAID sulindac has been studied in familial adenomatous polyposis patients and was found to regress colorectal adenomas in a placebo-controlled trial. More recently, the selective cyclo-oxygenase-2 inhibitor Celebrex was also shown to be effective in familial adenomatous polyposis and was approved by the Food and Drug Administration as a adjuct to usual care in these patients. NSAIDs, as well as other chemopreventive agents, are currently being studied in patients at increased risk of colorectal cancer, including those with sporadic adenomas. The outcome of these studies has the potential to impact patient management practices. However, chemopreventive agents cannot be recommeded at present for average-risk individuals or for those with sporadic colorectal neoplasia. In addition to demonstrating efficacy, chemopreventive agents must be safe and well tolerated for chronic administration and should be relatively cost-effective. Although still in its infancy, the field of chemoprevention is an exciting and rapidly advancing area of investigation. Chemopreventive strategies, if effective, offer the promise of producing a paradigm shift in our current approach to colorectal cancer.
Collapse
Affiliation(s)
- Karin Gwyn
- Department of Gastrointestinal Medicine and Nutrition, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
39
|
Zhao B, Butler AP. Core promoter involvement in the induction of rat ornithine decarboxylase by phorbol esters. Mol Carcinog 2001; 32:92-9. [PMID: 11746821 DOI: 10.1002/mc.1068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of ornithine decarboxylase (ODC) is an important oncogenic event in tumorigenesis. Although ODC was one of the first genes described whose product is inducible by 12-O-tetradecanoylphorbol-13-acetate (TPA), the mechanisms of ODC transcriptional regulation have remained elusive. In this study, we systematically analyzed the rat ODC core promoter region for novel TPA response elements. Analysis of linker scanning mutants of the ODC promoter from the TATA box to the transcription start site demonstrated that mutation of the TATA box reduced the TPA induction ratio by 40%, while the basal ODC promoter activity was not significantly changed. A novel region between nt - 20 to - 10 was shown to be critical for both basal promoter activity and induction by TPA. Random mutagenesis of this region showed that conversion of the GC-rich wild-type sequence into a T-rich sequence could either substantially increase the basal promoter activity and decrease the TPA induction ratio or dramatically reduce the basal promoter activity, depending on the T content. Mutant R5, containing an ATTT sequence at nt - 15 to - 12, caused a more than twofold increase of basal promoter activity and 80% reduction of TPA induction ratio. We suggest that this region interacts with components of the general transcription machinery and that the strength of this interaction is mediated by the T-content in this region.
Collapse
Affiliation(s)
- B Zhao
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
40
|
Jansen AP, Dreckschmidt NE, Verwiebe EG, Wheeler DL, Oberley TD, Verma AK. Relation of the induction of epidermal ornithine decarboxylase and hyperplasia to the different skin tumor-promotion susceptibilities of protein kinase C alpha, -delta and -epsilon transgenic mice. Int J Cancer 2001; 93:635-43. [PMID: 11477572 DOI: 10.1002/ijc.1395] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To define the in vivo role of individual PKC isoforms in mouse skin carcinogenesis, we previously characterized FVB/n transgenic mice that over-expressed epitope-tagged PKC delta (T7-PKC delta) or PKC epsilon (T7-PKC epsilon) isoforms under the regulation of the human K14 promoter. In continuation of our prior PKC isoform specificity studies, we now report the generation of FVB/n transgenic mice with K14-regulated, epitope-tagged PKC alpha (T7-PKC alpha). T7-PKC alpha transgenic mice (line 115) express 8-fold more PKC alpha protein than wild-type mice. Using high-resolution immunogold cytochemistry, we determined that transgenic over-expression of T7-PKC alpha did not alter the subcellular localization of PKC alpha but that the density of PKC alpha staining increased. PKC alpha localized primarily to the cytoskeleton (tonofilaments, tight junctions) and cell membranes, with modest but definite nuclear labeling also identified. Also, PKC alpha over-expression did not alter the immunoreactive protein levels of other PKC isoforms (delta, epsilon, eta, zeta, mu) in the epidermis. Skin tumor-promotion susceptibility was compared among all 3 lines of T7-PKC transgenic mice (alpha, delta and epsilon). While T7-PKC alpha had no effect on skin tumor promotion by TPA, T7-PKC delta reduced papilloma burden by 76% compared to wild-type controls. T7-PKC epsilon further reduced papilloma burden to 93% compared to wild-type controls but still resulted in the development of squamous-cell carcinoma. To find potential mechanisms of PKC-associated differences in tumor promotion, the induction of known downstream effectors of tumor promotion, ornithine decarboxylase (ODC) activity and epidermal hyperplasia, was determined. Despite long-term papilloma inhibition in both PKC delta and PKC epsilon transgenic mice, the induction of ODC by TPA was not attenuated in PKC delta and epsilon mouse lines. Both PKC transgenic and wild-type mice exhibited sustained hyperplasia after repeated TPA treatments. However, TPA-induced epidermal hyperplasia in T7-PKC epsilon mice was significantly increased (52%) compared with T7-PKC alpha, T7-PKC delta and wild-type mice. TPA-induced ODC activity and the resultant accumulation of polyamines may play different roles (e.g., induction of apoptosis vs. proliferation) in the pathways leading to the induction of cancer in PKC alpha, PKC delta and PKC epsilon transgenic mice.
Collapse
Affiliation(s)
- A P Jansen
- Department of Human Oncology, Medical School, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
41
|
Yano T, Yano Y, Horikawa S, Satoh H, Hagiwara K, Ichikawa T, Otani S. Inhibition of expression of ornithine decarboxylase by c-myc antisense oligonucleotide at the promotion stage of lung tumorigenesis in mice. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:90-2. [PMID: 11676205 DOI: 10.1254/jjp.87.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regulation of ornithine decarboxylase (ODC) expression at a promotion stage of lung carcinogenesis is a key clue to suppress the cancer. In this study, we investigated that the ODC induction at the promotion stage of lung carcinogenesis in mice could be inhibited through the suppression of the expression of c-myc, a transcription factor for ODC. The treatment with c-myc antisense oligonucleotide decreased the carcinogen-elevated level of pulmonary ODC protein at the promotion stage, but the sense oligonucleotide had no influence on the level. Overall, it is possible that the induction of ODC in the carcinogenic process of lung is regulated at its transcriptional level.
Collapse
Affiliation(s)
- T Yano
- Division of Applied Food Research, National Institute of Health and Nutrition, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pietilä M, Parkkinen JJ, Alhonen L, Jänne J. Relation of skin polyamines to the hairless phenotype in transgenic mice overexpressing spermidine/spermine N-acetyltransferase. J Invest Dermatol 2001; 116:801-5. [PMID: 11348473 DOI: 10.1046/j.1523-1747.2001.01330.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently generated a transgenic mouse line with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase. Phenotypic changes in these animals included permanent loss of hair at the age of 3 wk. We have now further explored development of hair loss during early postnatal life. The first hair cycle appeared to be completed normally in the transgenic animals. At postnatal day 15, although macroscopically indistinguishable from their syngenic littermates, the transgenic animals already showed microscopically signs of hair follicle degeneration. Wild-type mice started their second anagen phase at day 27, whereas the transgenic animals did not display functional hair follicles at that time. Hair follicles were replaced by dermal cysts and epidermal utriculi. Analysis of skin polyamines revealed that the transgenic animals continuously overaccumulated putrescine. The view that an overaccumulation of putrescine was related to the disturbed hair follicle development was strengthened by the finding that doubly transgenic mice overexpressing, both spermidine/spermine N1-acetyltransferase and ornithine decarboxylase and with extremely high levels of putrescine in the skin, showed distinctly more severe skin changes compared with the singly transgenic animals. Interest ingly, in spite of their hairless phenotype, the spermidine/spermine N1-acetyltransferase transgenic mice, were significantly more resistant to the development of papillomas in response to the two-stage skin carcinogenesis. Analysis of skin polyamines indicated that the syngenic mice tripled their spermidine content when exposed to promotion, whereas the transgenic animals showed only modest changes. These results suggest that putrescine plays a pivotal part in normal hair follicle development.
Collapse
Affiliation(s)
- M Pietilä
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|
43
|
Tsuji T, Usui S, Aida T, Tachikawa T, Hu GF, Sasaki A, Matsumura T, Todd R, Wong DT. Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 2001; 20:24-33. [PMID: 11244502 DOI: 10.1038/sj.onc.1204051] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Revised: 10/19/2000] [Accepted: 10/23/2000] [Indexed: 11/09/2022]
Abstract
The hamster ornithine decarboxylase antizyme (ODC-Az) cDNA was transfected into the hamster malignant oral keratinocyte cell line, HCPC-1. Ectopic expression of ODC-Az resulted in the reversion of malignant phenotypes and alteration of DNA methylation status of CCGG sites. The phenotypes examined include ODC enzymatic activity, doubling time, morphological change, anchorage dependent growth, tumorigenicity in nude mice, induction of epithelial differentiation marker protein (involucrin), and change of cell cycle position. Comparison of CCGG DNA methylation status of the ODC-Az and control vector transfectants revealed a significant increase in demethylation of 5-methyl cytosines (m5C) of CCGG sites in the ODC-Az transfectants. Ectopic expression of ODC-Az gene in hamster malignant oral keratinocytes led to reduce ODC activity and the subsequent demethylation of 5-methyl cytosines, presumably via the ODC/ polyamines/ decarboxylated S-adenosylmethionine (dc-AdoMet) pathways. Our data suggest that ODC-Az shared the same pathway of polyamines/ dc-AdoMet/DNA methyltransferase (DNA MTase). We propose that ODC-Az mediates a novel mechanism in tumor suppression by DNA demethylation and presumably re-activation of key cellular genes silenced by DNA hypermethylation during cancer development. Oncogene (2001) 20, 24 - 33.
Collapse
Affiliation(s)
- T Tsuji
- Department of Oral Medicine and Diagnostic Sciences, Division of Oral Pathology, Harvard School of Dental Medicine, Boston, Massachusetts, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Megosh LC, Gilmour SK, Sawicki JA, O'Brien TG. K6/ODC transgenic mice as a sensitive model for carcinogen identification. Toxicol Lett 2000; 116:27-35. [PMID: 10906419 DOI: 10.1016/s0378-4274(00)00196-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ornithine decarboxylase (ODC), an important enzyme in the polyamine biosynthetic pathway, is aberrantly regulated in many epithelial tumors of rodents and humans. In murine skin, it has been shown that ODC overexpression provides a sufficient condition for tumor promotion. Therefore, we hypothesized that K6/ODC transgenic mice in which ODC overexpression was targeted to hair follicle keratinocytes might provide a sensitive model for identifying genotoxic carcinogens. Ten known carcinogens or noncarcinogens have been tested in the model so far and results are highly concordant with 2-year rodent bioassays (100% concordant). More importantly, each of two chemicals tested that is recognized as a human carcinogen was identified as a carcinogen in K6/ODC transgenic mice. In addition, 7, 12-dimethylbenz(a)anthracene (DMBA) dose response studies indicated that even at a very low dose, 2 nmol, a high percentage of mice (50%) had already developed tumors 8 weeks after treatment. We conclude that the K6/ODC transgenic mouse model is very sensitive to topical application of genotoxic carcinogens and could therefore be a useful mouse model for carcinogen identification and chemical risk assessment.
Collapse
Affiliation(s)
- Y Chen
- ODC Mouse Group Inc., Drexel Hill, PA 19026, USA.
| | | | | | | | | |
Collapse
|
45
|
Takahashi Y, Mai M, Nishioka K. α-Difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int J Cancer 2000. [DOI: 10.1002/(sici)1097-0215(20000115)85:2%3c243::aid-ijc15%3e3.0.co;2-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Takahashi Y, Mai M, Nishioka K. α-Difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int J Cancer 2000. [DOI: 10.1002/(sici)1097-0215(20000115)85:2<243::aid-ijc15>3.0.co;2-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Jansen AP, Colburn NH, Verma AK. Tumor promoter-induced ornithine decarboxylase gene expression occurs independently of AP-1 activation. Oncogene 1999; 18:5806-13. [PMID: 10523861 DOI: 10.1038/sj.onc.1202965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activator protein 1 (AP-1) transactivation and ornithine decarboxylase (ODC) activity have been established as essential downstream effectors of mouse skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). Previous studies have shown that inhibition of either AP-1 transactivation or ODC activity suppressed tumor promoter-induced transformation. By utilizing the JB6 mouse epidermal cell system, the present study determined whether TPA-induced ODC gene expression and activity is independent of AP-1 transactivation. In three independent JB6 (P+) clones, stably expressing dominant negative c-jun, TPA-induced ODC gene expression and activity were similar compared to JB6 P+ cells expressing vector-control alone, while AP-1-dependent transcription was inhibited. Transformation-insensitive JB6 (P-) cells, which lack TPA-inducible c-jun expression, also exhibited similar induction of ODC activity by TPA. alpha-Difluoromethylornithine, an irreversible inhibitor of ODC, attenuated, at an equivalent IC50, both TPA-induced ODC activity and anchorage-independent growth of JB6 P+ cells, despite no inhibition of AP-1 transactivation. Taken together, the results presented indicate that TPA-induced ODC gene expression and activity are independent of AP-1 transactivation. Because inhibition of either AP-1 or ODC precludes TPA-induced transformation, and because ODC is independent of AP-1, we propose that there are at least two pathways to transformation. Each pathway is required but not sufficient for transformation.
Collapse
Affiliation(s)
- A P Jansen
- Department of Human Oncology, Medical School, University of Wisconsin, Madison, Wisconsin, WI 53792, USA
| | | | | |
Collapse
|
48
|
Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 1999; 3:565-77. [PMID: 10360173 DOI: 10.1016/s1097-2765(00)80350-0] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The protooncogene c-myc regulates cell growth, differentiation, and apoptosis, and its aberrant expression is frequently observed in human cancer. However, the consequences of activating c-Myc in an adult tissue, in which these cellular processes are part of normal homeostasis, remain unknown. In order to achieve this, we have targeted expression of a switchable form of the c-Myc protein to the skin epidermis, a well characterized homeostatic tissue. We show that activation of c-MycER in adult suprabasal epidermis rapidly triggers proliferation and disrupts differentiation of postmitotic keratinocytes. Sustained activation of c-Myc is sufficient to induce papillomatosis together with angiogenesis--changes that resemble hyperplastic actinic keratosis, a commonly observed human precancerous epithelial lesion. All these premalignant changes spontaneously regress upon deactivation of c-MycER.
Collapse
Affiliation(s)
- S Pelengaris
- Imperial Cancer Research Fund, London, United Kingdom.
| | | | | | | | | |
Collapse
|
49
|
Panteleyev AA, Paus R, Ahmad W, Sundberg JP, Christiano AM. Molecular and functional aspects of the hairless (hr) gene in laboratory rodents and humans. Exp Dermatol 1998; 7:249-67. [PMID: 9832313 DOI: 10.1111/j.1600-0625.1998.tb00295.x-i1] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many years, hairless and rhino mouse mutants have provided a useful and extensively exploited model for studying different aspects of skin physiology, including skin aging, pharmacokinetic evaluation of drug activity and cutaneous absorption, skin carcinogenesis, and skin toxicology. Interestingly, however, hairless and rhino mice have rarely been studied for their primary cellular defect - hairlessness - and thus, the hairless gene itself and its physiological functions have been largely overlooked for decades. The recent identification of the human homolog of the hairless gene on human Chromosome 8p12 confirmed the clinical significance of the phenomenon of "hairlessness" in humans, which was predicted on the basis of similarities between hairless mice and a congenital hair disorder characterized by atrichia with papules. Mutations in the hairless gene of mice provide instructive models for further studies of hr gene function, and may facilitate insights into the pathophysiology of different human disorders associated with the disruption of hr gene activity. We provide an overview of current data on the structure and expression patterns of the hr gene, and of mutations at the hairless locus in mice and humans, including the genetic basis of different alleles, the pathology of hairlessness, reproductive and immunological defects, and susceptibility to dioxin toxicity. On the basis of our current understanding of hairlessness, we speculate on the putative functions of the hr gene product in skin physiology, and particularly, in hair follicle biology.
Collapse
Affiliation(s)
- A A Panteleyev
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
50
|
Meyskens FL, Gerner EW, Emerson S, Pelot D, Durbin T, Doyle K, Lagerberg W. Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst 1998; 90:1212-8. [PMID: 9719082 DOI: 10.1093/jnci/90.16.1212] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Polyamines (e.g., putrescine, spermidine, and spermine) are required for optimal cell growth. Inhibition of polyamine synthesis suppresses carcinogen-induced epithelial cancers, including colon cancer, in animal models. In a short-term phase IIa trial, we determined that low doses of alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (an enzyme involved in polyamine synthesis), reduced the polyamine content of normal-appearing rectal mucosa of subjects with a prior history of resected colon polyps. In a follow-up study, we have attempted to determine the lowest dose of DFMO that can suppress the polyamine content of rectal mucosa over a course of 1 year with no or minimal side effects. METHODS Participants were randomly assigned to daily oral treatment with a placebo or one of three doses (0.075, 0.20, or 0.40 g/m2) of DFMO. Baseline and serial determinations of polyamine levels in rectal mucosa and extensive symptom monitoring (including audiometric measurements, since DFMO causes some reversible hearing loss at higher doses) were performed over a 15-month period. RESULTS DFMO treatment reduced putrescine levels in a dose-dependent manner. Following 6 months of treatment, doses of 0.20 and 0.40 g/m2 per day reduced putrescine levels to approximately 34% and 10%, respectively, of those observed in the placebo group. Smaller decreases were seen in spermidine levels and spermidine:spermine ratios. Polyamine levels increased toward baseline values after discontinuation of DFMO. Although there were no statistically significant differences among the dose groups with respect to clinically important shifts in audiometric thresholds and nonaudiologic side effects, statistically significant higher dropout and discontinuation rates were observed in the highest dose group. CONCLUSIONS Polyamine levels in rectal mucosa can be continuously suppressed by daily oral doses of DFMO that produce few or no side effects. A dose of 0.20 g/m2 can be used safely in combination phase IIb or single-agent phase III chemoprevention trials.
Collapse
Affiliation(s)
- F L Meyskens
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, USA.
| | | | | | | | | | | | | |
Collapse
|