1
|
Lv Y, Chen C, Han M, Tian C, Song F, Feng S, Xu M, Zhao Z, Zhou H, Su W, Zhong J. CXCL2: a key player in the tumor microenvironment and inflammatory diseases. Cancer Cell Int 2025; 25:133. [PMID: 40197328 PMCID: PMC11978139 DOI: 10.1186/s12935-025-03765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
CXCL2 (C-X-C Motif Chemokine Ligand 2), a constituent of the C-X-C chemokine subfamily, serves as a powerful chemotactic factor for neutrophils, facilitating leukocyte recruitment and movement while initiating an inflammatory response. Recent investigations have demonstrated the pivotal involvement of CXCL2 in carcinogenesis. Within the tumor microenvironment, CXCL2 modulates cellular activity primarily via its interaction with the CXCR2 receptor. The activation of signaling pathways, including ERK/MAPK, NF-κB/MAPK, PI3K/AKT, and JAK/STAT3, highlights CXCL2's inclination to promote tumorigenesis. Furthermore, the role of CXCL2 encompasses inflammatory conditions like lung inflammation, atherosclerosis, and obesity. This article examines the structural characteristics, biological roles, and molecular foundation of CXCL2 in carcinogenesis and inflammatory disorders.
Collapse
Affiliation(s)
- Yuanhao Lv
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Caizheng Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Chenfei Tian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Fuyang Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Sijia Feng
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Miaoming Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Ziyin Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
- Henan Province Engineering Technology Research Center of Tumor diagnostic biomarkers and RNA interference drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
2
|
Bai J, Zhang X, Meng W, Xu H, Liu Y, Zhong Y, Lin X, Wang J, Fan D, Lv G, Gu Y. Dioscin decreases M2 polarization via inhibiting a positive feedback loop between RBM47 and NF-κB in glioma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155417. [PMID: 38518642 DOI: 10.1016/j.phymed.2024.155417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.
Collapse
Affiliation(s)
- Jialing Bai
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Xinxiang Zhang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Wanyao Meng
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Hui Xu
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yating Liu
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yichen Zhong
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Xiangdan Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, PR China
| | - Jiahong Wang
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Di Fan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, PR China
| | - Gang Lv
- Department of Sports Medicine and Joint Surgery. The First Affiliated Hospital, China Medical University, Shen yang, 110001, Liaoning Province, PR China
| | - Yanting Gu
- Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
3
|
Bonasia CG, Inrueangsri N, Bijma T, Mennega KP, Wilbrink R, Arends S, Abdulahad WH, Bos NA, Rutgers A, Heeringa P. Circulating immune profile in granulomatosis with polyangiitis reveals distinct patterns related to disease activity. J Autoimmun 2024; 146:103236. [PMID: 38692171 DOI: 10.1016/j.jaut.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Granulomatosis with polyangiitis (GPA) is an autoimmune disorder characterized by recurrent relapses that can cause severe tissue damage and life-threatening organ dysfunction. Multiple immune cells and cytokines/chemokines are involved in the different stages of the disease. Immune profiling of patients may be useful for tracking disease activity, however, reliable immune signatures for GPA activity are lacking. In this study, we examined circulating immune profiles in GPA patients during active and remission disease states to identify potential immune patterns associated with disease activity. The distribution and phenotypic characteristics of major circulating immune cells, and the profiles of circulating cytokines/chemokines, were studied on cryopreserved peripheral blood mononuclear cells from GPA patients (active, n = 20; remission, n = 20) and healthy controls (n = 20) leveraging a 40-color optimized multicolor immunofluorescence panel (OMIP-69) and in serum using a 46-plex Luminex multiplex assay, respectively. Deep phenotyping uncovered a distinct composition of major circulating immune cells in active GPA and GPA in remission, with the most significant findings emerging within the monocyte compartment. Our detailed analysis revealed circulating monocyte diversity beyond the conventional monocyte subsets. We identified eight classical monocyte populations, two intermediate monocyte populations, and one non-classical monocyte population. Notably, active GPA had a higher frequency of CD45RA+CCR5+CCR6-CCR7+/lowCD127-HLA-DR+CD2- classical monocytes and a lower frequency of CD45RA-CCR5-/lowCCR6-CCR7-CD127-HLA-DR+CD2+/- classical monocytes, which both strongly correlated with disease activity. Furthermore, serum levels of CXCL1, CXCL2, and CCL20, all linked to monocyte biology, were elevated in active GPA and correlated strongly with disease activity. These findings shed light on the circulating immune profile of GPA and may lead to immune signature profiles for assessing disease activity. Monocytes in particular may be studied further as potential markers for monitoring GPA.
Collapse
Affiliation(s)
- C G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - N Inrueangsri
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - T Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - K P Mennega
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - R Wilbrink
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - S Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - W H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - N A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - A Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - P Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands.
| |
Collapse
|
4
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
5
|
Han Y, Xing X, Zhou L, Huang S, Lin Z, Hong G, Chen J. GL13K-modified titanium regulates osteogenic differentiation via the NF-κB pathway. Int Immunopharmacol 2024; 126:111279. [PMID: 38056197 DOI: 10.1016/j.intimp.2023.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
The osteoimmune response plays a crucial regulatory role in the osseointegration of dental implants. Previous studies found the antimicrobial peptide coating (GL13K) could activate the immunomodulatory potential of macrophages (Raw 264.7) and promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). To further investigate the mechanism of interaction between immunomodulation and differentiation, a co-culture model of the representative cells (Raw 264.7 and BMSCs) was constructed to mimic the immune microenvironment. In this system, GL13K coating of titanium implant effectively inhibited the polarization of the inflammatory M1 type and promoted the polarization of the anti-inflammatory M2 type. Furthermore, the inhibited NF-κB signaling pathway and Mip-2 gene expression were found and validated by bioinformatics analysis and virus-induced gene silencing, which significantly affected the tissue repair process. It can be concluded that the GL13K coating had the potential to establish a localized immune microenvironment conducive to osteogenic differentiation through cellular interactions. Subsequent investigations would be dedicated to a thorough examination of the osseointegration effects of GL13K coating.
Collapse
Affiliation(s)
- Yu Han
- Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Xiaojie Xing
- Stomatological Key Lab of Fujian College and University, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Lin Zhou
- Department of Oral Mucosa Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Shiying Huang
- Institute of Stomatology, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Zhaonan Lin
- Institute of Stomatology, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Miyagi, Japan.
| | - Jiang Chen
- Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou 350001, People's Republic of China.
| |
Collapse
|
6
|
Silva IS, Almeida AD, Lima Filho ACM, Fernandes-Braga W, Barra A, Oliveira HMC, Cassali GD, Capettini LSA, Menezes GB, Alvarez-Leite JI, Leite MF, Klein A. Platelet-activating factor and protease-activated receptor 2 cooperate to promote neutrophil recruitment and lung inflammation through nuclear factor-kappa B transactivation. Sci Rep 2023; 13:21637. [PMID: 38062077 PMCID: PMC10703791 DOI: 10.1038/s41598-023-48365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.
Collapse
Affiliation(s)
- Irismara Sousa Silva
- Laboratory of Inflammation and Proteases, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Aline D Almeida
- Laboratory of Inflammation and Proteases, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Weslley Fernandes-Braga
- Laboratory of Atherosclerosis and Nutritional Biochemistry (LABIN-UFMG), Department of Biochemistry and Immunology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Ayslan Barra
- Laboratory of Inflammation and Proteases, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luciano S A Capettini
- Laboratory of Vascular Biology, Department of Pharmacology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo B Menezes
- Department of Morphology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Laboratory of Atherosclerosis and Nutritional Biochemistry (LABIN-UFMG), Department of Biochemistry and Immunology, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Maria F Leite
- Department of Physiology and Biophysics, ICB/UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - André Klein
- Laboratory of Inflammation and Proteases, Department of Pharmacology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Qiu Y, Tang J, Zhao Q, Jiang Y, Liu YN, Liu WJ. From Diabetic Nephropathy to End-Stage Renal Disease: The Effect of Chemokines on the Immune System. J Diabetes Res 2023; 2023:3931043. [PMID: 37287620 PMCID: PMC10243947 DOI: 10.1155/2023/3931043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), and there is growing evidence to support the role of immunity in the progression of DN to ESRD. Chemokines and chemokine receptors (CCRs) can recruit immune cells to sites of inflammation or injury. Currently, no studies have reported the effect of CCRs on the immune environment during the progression of DN to ESRD. Methods Differentially expressed genes (DEGs) from the GEO database were identified in DN patients versus ESRD patients. GO and KEGG enrichment analyses were performed using DEGs. A protein-protein interaction (PPI) network was constructed to identify hub CCRs. Differentially expressed immune cells were screened by immune infiltration analysis, and the correlation between immune cells and hub CCRs was also calculated. Result In this study, a total of 181 DEGs were identified. Enrichment analysis showed that chemokines, cytokines, and inflammation-related pathways were significantly enriched. Combining the PPI network and CCRs, four hub CCRs (CXCL2, CXCL8, CXCL10, and CCL20) were identified. These hub CCRs showed an upregulation trend in DN patients and a downregulation trend in ESRD patients. Immune infiltration analysis identified a variety of immune cells that underwent significant changes during disease progression. Among them, CD56bright natural killer cell, effector memory CD8 T cell, memory B cell, monocyte, regulatory T cell, and T follicular helper cell were significantly associated with all hub CCR correlation. Conclusion The effect of CCRs on the immune environment may contribute to the progression of DN to ESRD.
Collapse
Affiliation(s)
- Yuheng Qiu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yuhua Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Ning Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Chan CYK, Yuen VWH, Chiu DKC, Goh CC, Thu KL, Cescon DW, Soria-Bretones I, Law CT, Cheu JWS, Lee D, Tse APW, Tan KV, Zhang MS, Wong BPY, Wong CM, Khong PL, Ng IOL, Bray MR, Mak TW, Yau TCC, Wong CCL. Polo-like kinase 4 inhibitor CFI-400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity. Hepatology 2023; 77:729-744. [PMID: 35302667 DOI: 10.1002/hep.32461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κβ cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.
Collapse
Affiliation(s)
- Cerise Yuen-Ki Chan
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China
| | - Vincent Wai-Hin Yuen
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China
| | | | - Chi-Ching Goh
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research , Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - David W Cescon
- The Campbell Family Institute for Breast Cancer Research , Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Isabel Soria-Bretones
- The Campbell Family Institute for Breast Cancer Research , Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Cheuk-Ting Law
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China
| | - Jacinth Wing-Sum Cheu
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China
| | - Derek Lee
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China
| | - Aki Pui-Wah Tse
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China
| | - Kel Vin Tan
- Department of Diagnostic Radiology , The University of Hong Kong , Hong Kong SAR , China
| | - Misty Shuo Zhang
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China
| | - Bowie Po-Yee Wong
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China
| | - Chun-Ming Wong
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,State Key Laboratory of Liver Research , The University of Hong Kong , Hong Kong SAR , China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology , The University of Hong Kong , Hong Kong SAR , China
| | - Irene Oi-Lin Ng
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,State Key Laboratory of Liver Research , The University of Hong Kong , Hong Kong SAR , China
| | - Mark R Bray
- The Campbell Family Institute for Breast Cancer Research , Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Tak Wah Mak
- Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China.,The Campbell Family Institute for Breast Cancer Research , Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Thomas Chung-Cheung Yau
- State Key Laboratory of Liver Research , The University of Hong Kong , Hong Kong SAR , China.,Department of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Carmen Chak-Lui Wong
- Department of Pathology , The University of Hong Kong , Hong Kong SAR , China.,Centre for Oncology and Immunology , Hong Kong Science Park , Hong Kong SAR , China.,State Key Laboratory of Liver Research , The University of Hong Kong , Hong Kong SAR , China.,Guangdong-Hong Kong Joint Laboratory for RNA Medicine , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
9
|
Yang M, Jalava P, Wang XF, Bloom MS, Leskinen A, Hakkarainen H, Roponen M, Komppula M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu YJ, Dong GH. Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157382. [PMID: 35843314 DOI: 10.1016/j.scitotenv.2022.157382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sources and chemical components of urban air particles exhibit seasonal variations that may affect their hazardousness to human health. Our aims were to investigate winter and spring variation in particulate matter (PM) sources, components and toxicological responses of different PM size fractions from samples collected in Guangzhou, China. Four size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, and PM0.2) were collected separately during winter (December 2017 and January 2018) and spring (March 2018). All PM samples were analyzed for chemical components and characterized by source. RAW 264.7 macrophages were exposed to four doses of PM samples for 24 h. Cytotoxicity, oxidation, cell cycle, genotoxicity and inflammatory parameters were tested. PM concentrations were higher in the winter samples and caused more severe cytotoxicity and oxidative damage than to PM in the spring samples. PM in winter and spring led to increases in cell cycle and genotoxicity. The trends of size-segregated PM components were consistent in winter and spring samples. Metallic elements and PAHs were found in the largest concentrations in winter PM, but ions were found in the largest concentrations in spring PM. metallic elements, PAHs and ions in size-segregated PM samples were associated with most toxicological endpoints. Soil dust and biomass burning were the main sources of PM in winter, whereas traffic exhaust and biomass burning was the main source with of spring PM. Our results suggest that the composition of PM samples from Guangzhou differed during winter and spring, which led to strong variations in toxicological responses. The results demonstrate the importance of examining a different particle sizes, compositions and sources across different seasons, for human risk assessment.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Harrington EO, Kumar A, Leandre V, Wilson ZS, Guarino B, Braza J, Lefort CT, Klinger JR. Natriuretic peptide receptor-C mediates the inhibitory effect of atrial natriuretic peptide on neutrophil recruitment to the lung during acute lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L438-L449. [PMID: 35943160 PMCID: PMC9529260 DOI: 10.1152/ajplung.00477.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Atrial natriuretic peptide (ANP) protects against acute lung injury (ALI), but the receptor that mediates this effect is not known. Transgenic mice with 0 (knockout), 1 (heterozygote), or 2 (wild-type) functional copies of Npr3, the gene that encodes for natriuretic peptide receptor-C (NPR-C), were treated with intravenous infusion of ANP or saline vehicle before oropharyngeal aspiration of Pseudomonas aeruginosa (PA103) or saline vehicle. Lung injury was assessed 4 h following aspiration by measurement of lung wet/dry (W/D) weight, whole lung leukocyte and cytokine levels, and protein, leukocyte, and cytokine concentration in bronchoalveolar lavage fluid (BALF). PA103 induced acute lung injury as evidenced by increases in lung W/D ratio and protein concentration in BALF. The severity of PA103-induced lung injury did not differ between NPR-C genotypes. Treatment with intravenous ANP infusion reduced PA103-induced increases in lung W/D and BALF protein concentration in all three NPRC genotypes. PA103 increased the percentage of leukocytes that were neutrophils and cytokine levels in whole lung and BALF in NPR-C wild-type and knockout mice. This effect was blunted by ANP in wild-type mice but not in the NPR-C knockout mice. NPR-C does not mediate the protective effect of ANP on endothelial cell permeability in settings of PA103-induced injury but may mediate the effect of ANP on inhibition of the recruitment of neutrophils to the lung and thereby attenuate the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Elizabeth O Harrington
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ashok Kumar
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
| | - Verida Leandre
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | - Zachary S Wilson
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | - Brianna Guarino
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
| | - Craig T Lefort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - James R Klinger
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Goodla L, Xue X. The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells 2022; 11:2313. [PMID: 35954156 PMCID: PMC9367504 DOI: 10.3390/cells11152313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death in cancer patients in the USA, whereas the major cause of CRC deaths is hepatic metastases. The liver is the most common site of metastasis in patients with CRC due to hepatic portal veins receiving blood from the digestive tract. Understanding the cellular and molecular mechanisms of hepatic metastases is of dire need for the development of potent targeted therapeutics. Immuno-signaling molecules including cytokines and chemokines play a pivotal role in hepatic metastases from CRC. This brief review discusses the involvement of three representative cytokines (TNF-α, IL-6 and IL-1β), a lipid molecule PGE2 and two chemokines (CXCL1 and CXCL2) in the process of CRC liver metastases.
Collapse
Affiliation(s)
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| |
Collapse
|
12
|
Chaurasia R, Salovey A, Guo X, Desir G, Vinetz JM. Vaccination With Leptospira interrogans PF07598 Gene Family-Encoded Virulence Modifying Proteins Protects Mice From Severe Leptospirosis and Reduces Bacterial Load in the Liver and Kidney. Front Cell Infect Microbiol 2022; 12:926994. [PMID: 35837473 PMCID: PMC9274288 DOI: 10.3389/fcimb.2022.926994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular and cellular pathogenesis of leptospirosis remains poorly understood. Based on comparative bacterial genomics data, we recently identified the hypothetical PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis pathogenesis, we tested the hypothesis that VM protein immunization of mice would protect against lethal challenge infection and reduce bacterial load in key target organs. C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free, leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice receiving full length recombinant VM proteins were protected from lethal challenge infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial load in the liver and kidney. These experiments show that immunization with recombinant VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced key target organ infection in this animal model. These data support the role of leptospiral VM proteins as virulence factors and suggest the possibility that a VM protein-based, serovar-independent, pan-leptospirosis vaccine may be feasible.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aryeh Salovey
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaojia Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Gary Desir
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Joseph M. Vinetz,
| |
Collapse
|
13
|
Hamed O, Joshi R, Mostafa MM, Giembycz MA. α and β Catalytic Subunits of cAMP-dependent Protein Kinase Regulate Formoterol-induced Inflammatory Gene Expression Changes in Human Bronchial Epithelial Cells. Br J Pharmacol 2022; 179:4593-4614. [PMID: 35735057 DOI: 10.1111/bph.15901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND & PURPOSE It has been proposed that genomic mechanisms contribute to the adverse-effects that are often experienced by asthmatic subjects who take regular, inhaled β2 -adrenoceptor agonists as a monotherapy. Moreover, data from preclinical models of asthma suggest that these gene expression changes are mediated by β-arrestin-2 rather than PKA. Herein, we tested this hypothesis by comparing the genomic effects of formoterol, a β2 -adrenoceptor agonist, with forskolin in human primary bronchial epithelial cells (HBEC). EXPERIMENTAL APPROACH Gene expression changes were determined by RNA-sequencing. Gene silencing and genome editing were employed to explore the roles of β-arrestin-2 and PKA. KEY RESULTS The formoterol-regulated transcriptome in HBEC treated concurrently with TNFα, was defined by 1480 unique gene expression changes. TNFα-induced transcripts modulated by formoterol were annotated with enriched gene ontology terms related to inflammation and proliferation, notably "GO:0070374~positive regulation of ERK1 and ERK2 cascade", which is an established β-arrestin-2 target. However, expression of the formoterol- and forskolin-regulated transcriptomes were highly rank-order correlated and the effects of formoterol on TNFα-induced inflammatory genes were abolished by an inhibitor of PKA. Furthermore, formoterol-induced gene expression changes in BEAS-2B bronchial epithelial cell clones deficient in β-arrestin-2 were comparable to those expressed by their parental counterparts. Contrariwise, gene expression was partially inhibited in clones lacking the α-catalytic subunit (Cα) of PKA and abolished following the additional knockdown of the β-catalytic subunit (Cβ) paralogue. CONCLUSIONS The effects of formoterol on inflammatory gene expression in airway epithelia are mediated by PKA and involve the cooperation of PKA-Cα and PKA-Cβ.
Collapse
Affiliation(s)
- Omar Hamed
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Song Z, Chen B, Tsai CH, Wu D, Liu E, Hawkins IS, Phan A, Auman JT, Tao Y, Mei H. Differentiation Trajectory of Limbal Stem and Progenitor Cells under Normal Homeostasis and upon Corneal Wounding. Cells 2022; 11:cells11131983. [PMID: 35805068 PMCID: PMC9266118 DOI: 10.3390/cells11131983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Limbal stem cells (LSCs) reside discretely at limbus surrounded by niche cells and progenitor cells. The aim of this study is to identify the heterogeneous cell populations at limbus under normal homeostasis and upon wounding using single-cell RNA sequencing in a mouse model. Two putative LSC types were identified which showed a differentiation trajectory into limbal progenitor cell (LPC) types under normal homeostasis and during wound healing. They were designated as “putative active LSCs” and “putative quiescent LSCs”, respectively, because the former type actively divided upon wounding while the later type stayed at a quiescent status upon wounding. The “putative quiescent LSCs” might contribute to a barrier function due to their characteristic markers regulating vascular and epithelial barrier and growth. Different types of LPCs at different proliferative statuses were identified in unwounded and wounded corneas with distinctive markers. Four maturation markers (Aldh3, Slurp1, Tkt, and Krt12) were screened out for corneal epithelium, which showed an increased expression along the differentiation trajectory during corneal epithelial maturation. In conclusion, our study identified two different types of putative LSCs and several types of putative LPCs under normal homeostasis and upon wounding, which will facilitate the understanding of corneal epithelial regeneration and wound healing.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
- School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha 410081, China
| | - Brian Chen
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.C.); (D.W.)
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.C.); (D.W.)
- Division of Oral and Craniofacial Health Research, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily Liu
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
| | - Isha Sharday Hawkins
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
| | - Andrew Phan
- Department of Psychology and Neuroscience, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - James Todd Auman
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.T.A.); (Y.T.)
| | - Yazhong Tao
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.T.A.); (Y.T.)
| | - Hua Mei
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
15
|
Quincey A, Mohan S, Edderkaoui B. Monocyte Chemotactic Proteins Mediate the Effects of Hyperglycemia in Chondrocytes: In Vitro Studies. Life (Basel) 2022; 12:life12060836. [PMID: 35743867 PMCID: PMC9224901 DOI: 10.3390/life12060836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are secreted by a large variety of cells. They are involved in controlling cell trafficking, maturation, and differentiation. However, the specific responses and effects of chemokines on specific skeletal cell types under high glucose conditions have not been investigated. Chondrocytes play an important role in osteoarthritis and fracture healing. Delayed fracture healing is one of the major health complications caused by diabetes, so the goal of this study was to evaluate the response of several chemokines to high glucose conditions in chondrocyte cells and analyze their role in the catabolic effect of hyperglycemia. ATDC5 chondrocytes were cultured in normal and high glucose media, and mRNA expression levels of several chemokines and chondrocyte differentiation markers were quantified. Bindarit, a specific inhibitor of monocyte chemotactic proteins (MCPs), was used to determine the role of MCPs in mediating the effects of high glucose conditions in chondrocyte cells. High glucose treatment upregulated the expression of three Mcps, as well as the expression of matrix metalloproteinase 13 (Mmp13) and Osteocalcin (Oc). Furthermore, bindarit treatment downregulated Mmp13 and Oc but upregulated Collagen 2 (Col2) mRNA levels in chondrocytes treated with high glucose. Moreover, treatment of chondrocytes with ascorbic acid reduced the effect of high glucose conditions on the expression of chemokines and Mmps. These data together suggest that MCPs mediate the catabolic effect of high glucose in chondrocytes.
Collapse
Affiliation(s)
- Adam Quincey
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| |
Collapse
|
16
|
Go RE, Lee SM, Shin YJ, Kim MS, Park CM, Ko EB, Kim S, Choi KC. Time-dependent effect of inhaled cigarette smoke exposure in the bleomycin-induced lung injury rat model. ENVIRONMENTAL TOXICOLOGY 2022; 37:1231-1243. [PMID: 35112775 DOI: 10.1002/tox.23479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Cigarette smoke (CS) substances are known to induce diverse ailments such as cancer, decreased immunity, and lung diseases. Although some studies have been actively conducted to evaluate cigarette toxicity, the current animal exposure methods, that is, exposure of 28- or 90-days, require considerable research cost and lead to obscure results of the CS effects. In a previous study, we compared the effects of CS in a rat model of bleomycin (BLM) and lipopolysaccharide (LPS) induced lung disease. We determined that compared to the LPS-induced rat model, the BLM-induced rat model was more sensitive to alterations in secreting cytokines and total cell number. In the current study, we further confirmed the time-point of effective inhalation exposure by CS in the BLM-induced lung injury rat model. Using an automatic video instillator, rats were administered a single dose of 2.5 mg/kg BLM (day 1), and subsequently exposed to CS via inhalation (nose-only) 4 h/day, for 1, 2, 3, and 4 weeks. The bronchoalveolar lavage fluid (BALF) was obtained from the right lung lobes, total cell numbers were counted, and chemokine and cytokine expressions were evaluated using Enzyme-Linked Immunosorbent Assay. For the 1-week exposure, we observed a greater increase of neutrophils in the BLM + CS 300 μg/L group than in the BLM or CS 300 μg/L groups. Exposure of CS in the BLM-induced lung injury rat model enhanced the secretions of chemokines and cytokines, such as CCL2/MCP-1, CXCL2/MIP-2 and TNF-α, at 1 week. Immunohistochemistry and Hematoxylin and Eosin staining of lungs at 1-2 weeks after exposure clearly confirmed this tendency in the increased levels of CCL2/MCP-1 and TNF-α. Taken together, these results indicate that the rat model of BLM-induced lung injury is more sensitive to CS exposure than other rat models, and may be an appropriate model to evaluate the effect of CS exposure at 1-2 weeks.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sung-Moo Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Young-Jun Shin
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Chul-Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Eul-Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Soochong Kim
- Laboratory of Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
17
|
Gao Y, Li J, Cai G, Wang Y, Yang W, Li Y, Zhao X, Li R, Gao Y, Tuo W, Baldwin RL, Li CJ, Fang L, Liu GE. Single-cell transcriptomic and chromatin accessibility analyses of dairy cattle peripheral blood mononuclear cells and their responses to lipopolysaccharide. BMC Genomics 2022; 23:338. [PMID: 35501711 PMCID: PMC9063233 DOI: 10.1186/s12864-022-08562-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. Results We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. Conclusion This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08562-0.
Collapse
Affiliation(s)
- Yahui Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.
| | - Gaozhan Cai
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yujiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenjing Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Xiuxin Zhao
- Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Rongling Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Yundong Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
18
|
Ortiz-Bonilla CJ, Uccello TP, Gerber SA, Lord EM, Messing EM, Lee YF. Bladder Cancer Extracellular Vesicles Elicit a CD8 T Cell-Mediated Antitumor Immunity. Int J Mol Sci 2022; 23:ijms23062904. [PMID: 35328324 PMCID: PMC8949613 DOI: 10.3390/ijms23062904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) play crucial roles in mediating immune responses, as they carry and present functional MHC-peptide complexes that enable them to modulate antigen-specific CD8+ T-cell responses. However, the therapeutic potential and immunogenicity of TEV-based therapies against bladder cancer (BC) have not yet been tested. Here, we demonstrated that priming with immunogenic Extracellular Vesicles (EVs) derived from murine MB49 BC cells was sufficient to prevent MB49 tumor growth in mice. Importantly, antibody-mediated CD8+ T-cell depletion diminished the protective effect of MB49 EVs, suggesting that MB49 EVs elicit cytotoxic CD8+ T-cell-mediated protection against MB49 tumor growth. Such antitumor activity may be augmented by TEV-enhanced immune cell infiltration into the tumors. Interestingly, MB49 EV priming was unable to completely prevent, but significantly delayed, unrelated syngeneic murine colon MC-38 tumor growth. Cytokine array analyses revealed that MB49 EVs were enriched with pro-inflammatory factors that might contribute to increasing tumor-infiltrating immune cells in EV-primed MC-38 tumors. These results support the potential application of TEVs in personalized medicine, and open new avenues for the development of adjuvant therapies based on patient-derived EVs aimed at preventing disease progression.
Collapse
Affiliation(s)
- Carlos J. Ortiz-Bonilla
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Taylor P. Uccello
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
| | - Scott A. Gerber
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edith M. Lord
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Edward M. Messing
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Fen Lee
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence: ; Tel.: +1-(585)-275-9702
| |
Collapse
|
19
|
Experimental Arthritis Inhibits Adult Hippocampal Neurogenesis in Mice. Cells 2022; 11:cells11050791. [PMID: 35269413 PMCID: PMC8909078 DOI: 10.3390/cells11050791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund’s adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.
Collapse
|
20
|
Lyu YR, Yang WK, Lee SW, Kim SH, Kim DS, Son E, Jung IC, Park YC. Inhibitory effects of modified gamgil-tang in a particulate matter-induced lung injury mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114789. [PMID: 34728315 DOI: 10.1016/j.jep.2021.114789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The modified gamgil-tang (GGX) is a mixture of four herbal medicine including Platycodi Radix, Glycyrrhizae Radix, Lonicerae Flos and Mori Radicis Cortex which has been traditionally used to treat lung and airway diseases to relieve symptoms like sore throat, cough, and sputum in Korea. Its major component chlorogenic acid had been reported to have antioxidant, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antiviral, and anti-microbial activity. AIM OF THE STUDY To identify the inhibitory effect of GGX in a particulate matter (PM) induced lung injury mouse model. MATERIALS AND METHODS We evaluated NO production, the release of TNF-α and IFN-γ in PM-induced MH-S cells, and the number of neutrophils, immune cell subtypes, and the secretion of TNF-α, IL-17, CXCL-1, MIP-2 in the PM-stimulated mouse model to assess the inhibitory effect of GGX against PM. In addition, as exposure to PM increases respiratory symptoms, typically cough and sputum, we attempted to evaluate the antitussive and expectorant activities of GGX. RESULTS Our study provided evidence that GGX has inhibitory effects in PM-induced lung injury by inhibiting the increase in neutrophil and inflammatory mediators, deactivating T cells, and ameliorating lung tissue damage. Notably, GGX reduced PM-induced neutrophilic inflammation by attenuating the number of neutrophils and regulating the secretion of neutrophil-related cytokines and chemokines, such as TNF-α, IL-17, MIP2, and CXCL-1. In addition, GGX demonstrated an antitussive activity by significantly reducing citric acid-induced cough frequency and delaying the latent period and expectorant activities by the increased phenol red secretion compared to the control group. CONCLUSIONS GGX is expected to be an effective herbal remedy to prevent PM-induced respiratory disease.
Collapse
Affiliation(s)
- Yee Ran Lyu
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Su-Won Lee
- Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Eunjung Son
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Zhang X, Zhao W, Zhao Y, Zhao Z, Lv Z, Zhang Z, Ren H, Wang Q, Liu M, Qian M, Du B, Qin J. Inflammatory macrophages exacerbate neutrophil-driven joint damage through ADP/P2Y 1 signaling in rheumatoid arthritis. SCIENCE CHINA-LIFE SCIENCES 2021; 65:953-968. [PMID: 34480694 DOI: 10.1007/s11427-020-1957-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints and is associated with excessive immune cell infiltration. However, the complex interactions between the immune cell populations in the RA synovium remain unknown. Here, we demonstrate that inflammatory macrophages in the synovium exacerbate neutrophil-driven joint damage in RA through ADP/P2Y1 signaling. We show that extracellular ADP (eADP) and its receptors are obviously increased in synovial tissues of RA patients as well as collagen-induced arthritis (CIA) mice, and eADP enhances neutrophil infiltration into joints through macrophages producing the chemokine CXCL2, aggravating disease development. Accordingly, the arthritis mouse model had more neutrophils in inflamed joints following ADP injection, whereas P2Y1 deficiency and pharmacologic inhibition restored arthritis severity to basal levels, suggesting a dominant role of ADP/P2Y1 signaling in RA pathology. Moreover, cellular activity of ADP/P2Y1-mediated CXCL2 production was dependent on the Gαq/Ca2+-NF-κB/NFAT pathway in macrophages. Overall, this study reveals a non-redundant role of eADP as a trigger in the pathogenesis of RA through neutrophil recruitment and disrupted tissue homeostasis and function.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.,Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, China
| | - Wenxiang Zhao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Yihan Zhao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Zeda Zhao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Zhangsheng Lv
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Zhen Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Hua Ren
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Qin Wang
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, 201499, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Min Qian
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Bing Du
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| | - Juliang Qin
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
22
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
23
|
Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 2021; 146:155640. [PMID: 34252872 DOI: 10.1016/j.cyto.2021.155640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Chemokines are a group of cytokines with low molecular weight that principally direct chemotaxis of target cells. They have prominent roles in the pathogenesis systemic lupus erythematosus (SLE) and related complications particularly lupus nephritis. These molecules not only induce autoimmune responses in the organs of patients, but also can amplify the induced inflammatory responses. Although chemokine family has at least 46 identified members, the role of a number of these molecules have been more clarified in SLE patients or animal models of this disorder. In the current paper, we review the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Shahir
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Sararols P, Stévant I, Neirijnck Y, Rebourcet D, Darbey A, Curley MK, Kühne F, Dermitzakis E, Smith LB, Nef S. Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis Between Fetal and Adult Mouse Leydig Cells. Front Cell Dev Biol 2021; 9:695546. [PMID: 34262907 PMCID: PMC8273516 DOI: 10.3389/fcell.2021.695546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Leydig cells (LC) are the main testicular androgen-producing cells. In eutherian mammals, two types of LCs emerge successively during testicular development, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). Both display significant differences in androgen production and regulation. Using bulk RNA sequencing, we compared the transcriptomes of both LC populations to characterize their specific transcriptional and functional features. Despite similar transcriptomic profiles, a quarter of the genes show significant variations in expression between FLCs and ALCs. Non-transcriptional events, such as alternative splicing was also observed, including a high rate of intron retention in FLCs compared to ALCs. The use of single-cell RNA sequencing data also allowed the identification of nine FLC-specific genes and 50 ALC-specific genes. Expression of the corticotropin-releasing hormone 1 (Crhr1) receptor and the ACTH receptor melanocortin type 2 receptor (Mc2r) specifically in FLCs suggests a dual regulation of steroidogenesis. The androstenedione synthesis by FLCs is stimulated by luteinizing hormone (LH), corticotrophin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) whereas the testosterone synthesis by ALCs is dependent exclusively on LH. Overall, our study provides a useful database to explore LC development and functions.
Collapse
Affiliation(s)
- Pauline Sararols
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Annalucia Darbey
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael K Curley
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia.,Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
McKee HK, Kajiwara C, Yamaguchi T, Ishii Y, Shimizu N, Ohara A, Tateda K. Clostridioides difficile toxins enhanced the in vitro production of CXC chemokine ligand 2 and tumor necrosis factor-α via Toll-like receptors in macrophages. J Med Microbiol 2021; 70. [PMID: 33830910 DOI: 10.1099/jmm.0.001342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction. Clostridioides difficile infection (CDI) causes toxin-mediated enteropathy, such as antibiotic-associated diarrhoea and pseudomembranous colitis. Rho-glucosylating toxin A (TcdA) and toxin B (TcdB) have been clearly implicated in pathogenesis, whereas the virulence of binary toxin (CDT) is still debated.Hypothesis statement. We hypothesized that CDT is involved in the host immune response and plays a pivotal role in establishing virulence by modulating pro-inflammatory cytokine production; this is achieved through the integral Toll-like receptor (TLR) signalling pathways.Aim. The aim of the present study was to determine whether and how CDT impacts macrophages compared to TcdA or TcdB by examining the induction of CXC chemokine ligand 2 (CXCL2) and tumour necrosis factor-α (TNF-α), both of which are crucial in mediating local and systematic inflammatory responses.Methodology. RAW264.7 cells or transfected human embryonic kidney (HEK) 293 T cells were incubated with TcdA, TcdB, or CDT. In some experiments, a neutralizing antibody against TLR2 or TLR4, or myeloid differentiation 88 inhibitory peptide were added. The amount of CXCL2 and TNF-α secreted was then measured.Results. In RAW264.7 macrophages, CXCL2 and TNF-α were produced via the Toll-like receptor 2 (TLR2) or Toll-like receptor 4 (TLR4) pathway in a TcdA, TcdB, or CDT dose-dependent manner. Interleukin-8 secretion was induced in TLR4/MD2/CD14-transfected, but not in TLR2-transfected, HEK 293 T cells following TcdB or CDT exposure.Conclusion. Our results showed that C. difficile toxins, including CDT, enhanced macrophage-mediated CXCL2 and TNF-α production via TLR2 and TLR4, indicating that CDT affects host immune responses.
Collapse
Affiliation(s)
- Hiroe Konishi McKee
- Department of Pediatrics, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.,Department of Pediatrics, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Norikazu Shimizu
- Department of Pediatrics, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.,Department of Pediatrics, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Akira Ohara
- Department of Pediatrics, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| |
Collapse
|
26
|
Winkler A, Wrzos C, Haberl M, Weil MT, Gao M, Möbius W, Odoardi F, Thal DR, Chang M, Opdenakker G, Bennett JL, Nessler S, Stadelmann C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J Clin Invest 2021; 131:141694. [PMID: 33645550 DOI: 10.1172/jci141694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael Haberl
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Theres Weil
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Francesca Odoardi
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium.,Laboratory of Neuropathology, Institute of Pathology, Ulm University, Ulm, Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Program in Neuroscience, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|
27
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, Müller A, Fehrenbacher B, Gonzalez-Menendez I, Quintanilla-Martinez L, Schröder K, Brandes RP, Schaller M, Ruf W, Eichner M, Ghoreschi K, Röcken M, Pichler BJ, Kneilling M. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 2021; 11:470-490. [PMID: 33391487 PMCID: PMC7738859 DOI: 10.7150/thno.51462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important regulators of inflammation. The exact impact of ROS/RNS on cutaneous delayed-type hypersensitivity reaction (DTHR) is controversial. The aim of our study was to identify the dominant sources of ROS/RNS during acute and chronic trinitrochlorobenzene (TNCB)-induced cutaneous DTHR in mice with differently impaired ROS/RNS production. Methods: TNCB-sensitized wild-type, NADPH oxidase 2 (NOX2)- deficient (gp91phox-/-), myeloperoxidase-deficient (MPO-/-), and inducible nitric oxide synthase-deficient (iNOS-/-) mice were challenged with TNCB on the right ear once to elicit acute DTHR and repetitively up to five times to induce chronic DTHR. We measured ear swelling responses and noninvasively assessed ROS/RNS production in vivo by employing the chemiluminescence optical imaging (OI) probe L-012. Additionally, we conducted extensive ex vivo analyses of inflamed ears focusing on ROS/RNS production and the biochemical and morphological consequences. Results: The in vivo L-012 OI of acute and chronic DTHR revealed completely abrogated ROS/RNS production in the ears of gp91phox-/- mice, up to 90 % decreased ROS/RNS production in the ears of MPO-/- mice and unaffected ROS/RNS production in the ears of iNOS-/- mice. The DHR flow cytometry analysis of leukocytes derived from the ears with acute DTHR confirmed our in vivo L-012 OI results. Nevertheless, we observed no significant differences in the ear swelling responses among all the experimental groups. The histopathological analysis of the ears of gp91phox-/- mice with acute DTHRs revealed slightly enhanced inflammation. In contrast, we observed a moderately reduced inflammatory immune response in the ears of gp91phox-/- mice with chronic DTHR, while the inflamed ears of MPO-/- mice exhibited the strongest inflammation. Analyses of lipid peroxidation, 8-hydroxy-2'deoxyguanosine levels, redox related metabolites and genomic expression of antioxidant proteins revealed similar oxidative stress in all experimental groups. Furthermore, inflamed ears of wild-type and gp91phox-/- mice displayed neutrophil extracellular trap (NET) formation exclusively in acute but not chronic DTHR. Conclusions: MPO and NOX2 are the dominant sources of ROS/RNS in acute and chronic DTHR. Nevertheless, depletion of one primary source of ROS/RNS exhibited only marginal but conflicting impact on acute and chronic cutaneous DTHR. Thus, ROS/RNS are not a single entity, and each species has different properties at certain stages of the disease, resulting in different outcomes.
Collapse
|
30
|
Kim DG, Kwon YM, Kang IS, Kim C. Taurine chloramine selectively regulates neutrophil degranulation through the inhibition of myeloperoxidase and upregulation of lactoferrin. Amino Acids 2020; 52:1191-1199. [PMID: 32865666 DOI: 10.1007/s00726-020-02886-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Taurine is a free amino acid rich in neutrophils, and neutrophils play an important role in the forefront defense against infection. Upon neutrophil activation, taurine reacts with hypochlorous acid (HOCl/OCl-) produced by the myeloperoxidase (MPO) system and gets converted to taurine chloramine (Tau-Cl). Neutrophils have three types of granules, of which the primary granule MPO, secondary granule lactoferrin, and tertiary granule matrix metalloproteinase (MMP)-9 are released into the extracellular space by a process called degranulation. MPO produces hypochlorous acid to kill microorganisms, and the released MPO forms neutrophil extracellular traps (NETs) with released chromatin. Excessive secretion of MPO causes oxidative damage to the surrounding tissues. Lactoferrin exerts antioxidant activity, prevents pro-inflammatory pathway activation, sepsis, and tissue damages, and delays neutrophil apoptosis. Our experimental results show that neutrophils released small amount of granules in an inactive state, and phorbol 12-myristate 13-acetate (PMA) and N-formyl-methionine-leucyl-phenylalanine induced neutrophil degranulation. Tau-Cl inhibited the PMA-induced degranulation of MPO and formation of NETs. While Tau-Cl increased the degranulation of lactoferrin, it had no effect on MMP-9 degranulation. MPO negatively regulated the production of macrophage inflammatory protein (MIP)-2, which stimulates the degranulation and migration of neutrophils. Tau-Cl abrogated MIP-2 expression, suggestive of its inhibitory effect on MPO release. The increase in the intracellular level of MPO may negatively regulates MIP-2 expression, thereby contributing to the further regulation of neutrophil degranulation and migration. Here, we suggest that Tau-Cl selectively inhibits MPO degranulation and stimulates lactoferrin degranulation from neutrophils, thereby protecting inflamed tissues from oxidative damage induced by excessively released MPO.
Collapse
Affiliation(s)
- Dong Gye Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Young Min Kwon
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Korea.
| |
Collapse
|
31
|
Yianni V, Sharpe PT. Transcriptomic Profiling of Dental Pulp Pericytes: An RNAseq Approach. FRONTIERS IN DENTAL MEDICINE 2020. [DOI: 10.3389/fdmed.2020.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020; 11:483. [PMID: 32296423 PMCID: PMC7138053 DOI: 10.3389/fimmu.2020.00483] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.
Collapse
Affiliation(s)
- Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Vahkal B, Yegorov S, Onyilagha C, Donner J, Reddick D, Shrivastav A, Uzonna J, Good SV. Immune System Effects of Insulin-Like Peptide 5 in a Mouse Model. Front Endocrinol (Lausanne) 2020; 11:610672. [PMID: 33519716 PMCID: PMC7841425 DOI: 10.3389/fendo.2020.610672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Insulin-like peptide 5 (INSL5) is a peptide hormone with proposed actions in glucose homeostasis and appetite regulation via its cognate receptor, relaxin family peptide receptor 4 (RXFP4). Here, we look for evidence for their involvement in the immune system using a mouse model. METHODS In silico analyses: we queried public databases for evidence of expression of INSL5-RXFP4 in immune system tissues/cells (NCBI's SRA and GeoProfiles) and disorders (EMBO-EBI) and performed phylogenetic footprinting to look for evidence that they are regulated by immune-associated transcription factors (TFs). Experimental analyses: We characterized the expression and correlation of INSL5/RXFP4 and other immune system markers in central and peripheral immune organs from C57/bl6 mice in seven cohorts. We tested whether fluctuations in circulating INSL5 induce an immune response, by injecting mice with 30 μg/kg of INSL5 peptide in the peritoneum, and examining levels of immune markers and metabolic peptides in plasma. Lastly, we quantified the expression of Rxfp4 in T-cells, dendritic cells and cell lines derived from human and mouse and tested the hypothesis that co-incubation of ANA-1 cells in INSL5 and LPS alters cytokine expression. RESULTS We find Insl5 expression only in thymus (in addition to colon) where its expression was highly correlated with Il-7, a marker of thymocyte development. This result is consistent with our in silico findings that Insl5 is highly expressed in thymic DP, DN thymocytes and cortical TEC's, and with evidence that it is regulated by thymocyte-associated TF's. We find Rxfp4 expression in all immune organs, and moderately high levels in DCs, particularly splenic DCs, and evidence that it is regulated by immune-associated TF's, such as STAT's and GATA. Systemic effects: We observed significantly elevated concentrations of blood GLP-1, GIP, GCG and PYY following intraperitoneal injection of INSL5, and significantly altered expression of cytokines IL-5, IL-7, M-CSF, IL-15, IL-27 and MIP-2. Immune cell effects: Incubation of ANA-1 cells with INSL5 impeded cell growth and led to a transient elevation of IL-15 and sustained reduction in IL-1β, IL-6 and TNFα. CONCLUSION We propose that INSL5-RXFP4 play a novel role in both central and peripheral immune cell signaling.
Collapse
Affiliation(s)
- Brett Vahkal
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
- *Correspondence: Brett Vahkal, ; Sara V. Good,
| | - Sergey Yegorov
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | | | | | - Dean Reddick
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | | | - Jude Uzonna
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Sara V. Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
- *Correspondence: Brett Vahkal, ; Sara V. Good,
| |
Collapse
|
34
|
Skinner DD, Lane TE. CXCR2 Signaling and Remyelination in Preclinical Models of Demyelination. DNA Cell Biol 2020; 39:3-7. [PMID: 31851535 PMCID: PMC6978782 DOI: 10.1089/dna.2019.5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
The chemokine receptor CXCR2 is a receptor for CXC chemokines, including CXCL1 and CXCL2. CXCR2 is expressed by resident cells of the central nervous system, including neurons, microglia, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes. CXCR2 signaling is important in regulating OPC biology with regard to positional migration and myelination during development. More recently, studies have argued that CXCR2 is involved in controlling events related to remyelination after experimentally induced demyelination. This review examines the concept that targeting CXCR2 may offer a novel therapeutic target for promoting remyelination.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Thomas E. Lane
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
35
|
Al-Eitan LN, Al Momani RO, Al Momani KK, Al Warawrah AM, Aljamal HA, Alghamdi MA, Muhanna AM, Al-Qarqaz FA. Candidate Gene Analysis Of Alopecia Areata In Jordanian Population Of Arab Descent: A Case-Control Study. APPLICATION OF CLINICAL GENETICS 2019; 12:221-228. [PMID: 31819588 PMCID: PMC6877398 DOI: 10.2147/tacg.s226664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
Abstract
Background Alopecia areata (AA) is a non-cicatricial patchy hair loss on the scalp, face or other parts of the body. AA was found to be responsive to immunosuppressive therapies, a finding that supports an autoimmune basis for the disease. Several genetic studies have shown the significance of immunological factors as key genetic components in AA. Objective In this study, we aimed to investigate the genetic association of 7 single-nucleotide polymorphisms (SNPs) within five candidate genes including TAP1, CXCL1, CXCL2, HSPA1B, and TNFα with AA susceptibility in the Jordanian Arab population. Methods A case–control genetic association study conducted in 152 patients and 150 healthy individuals was performed using the sequenom MassARRAY system (iPLEX GOLD) to genotype the selected SNPs. Results rs1800629 SNP of the TNFα gene was significantly associated with AA in the heterozygous and rare homozygous genotypes (P=0.022 and P=0.0079, respectively) with no linkage of the TAP1, CXCL1, CXCL2 and HSPA1B variants. Conclusion This is the first study of its kind among the Jordanian population providing evidence of genetic association of the TNFα with AA susceptibility. Further genetic studies on Arab descent including other variants are required to clarify and strengthen the association of these genes with susceptibility to develop AA.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Rawan O Al Momani
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Khalid K Al Momani
- Department of Dermatology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman, Jordan
| | - Ahmad M Al Warawrah
- Department of Dermatology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman, Jordan
| | - Hanan A Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Alsharif M Muhanna
- Department of Dermatology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman, Jordan
| | - Firas A Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid, Jordan.,Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital, Irbid, Jordan
| |
Collapse
|
36
|
Luminari S, Donati B, Casali M, Valli R, Santi R, Puccini B, Kovalchuk S, Ruffini A, Fama A, Berti V, Fragliasso V, Zanelli M, Vergoni F, Versari A, Rigacci L, Merli F, Ciarrocchi A. A Gene Expression-based Model to Predict Metabolic Response After Two Courses of ABVD in Hodgkin Lymphoma Patients. Clin Cancer Res 2019; 26:373-383. [PMID: 31645353 DOI: 10.1158/1078-0432.ccr-19-2356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/12/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Early response to ABVD, assessed with interim FDG-PET (iPET), is prognostic for classical Hodgkin lymphoma (cHL) and supports the use of response adapted therapy. The aim of this study was to identify a gene-expression profile on diagnostic biopsy to predict iPET positivity (iPET+). EXPERIMENTAL DESIGN Consecutive untreated patients with stage I-IV cHL who underwent iPET after two cycles of ABVD were identified. Expression of 770 immune-related genes was analyzed by digital expression profiling (NanoString Technology). iPET was centrally reviewed according to the five-point Deauville scale (DS 1-5). An iPET+ predictive model was derived by multivariate regression analysis and assessed in a validation set identified using the same inclusion criteria. RESULTS A training set of 121 and a validation set of 117 patients were identified, with 23 iPET+ cases in each group. Sixty-three (52.1%), 19 (15.7%), and 39 (32.2%) patients had stage I-II, III, and IV, respectively. Diagnostic biopsy of iPET+ cHLs showed transcriptional profile distinct from iPET-. Thirteen genes were stringently associated with iPET+. This signature comprises two functionally stromal-related nodes. Lymphocytes/monocytes ratio (LMR) was also associated to iPET+. In the training cohort a 5-gene/LMR integrated score predicted iPET+ [AUC, 0.88; 95% confidence interval (CI), 0.80-0.96]. The score achieved a 100% sensitivity to identify DS5 cases. Model performance was confirmed in the validation set (AUC, 0.68; 95% CI, 0.52-0.84). Finally, iPET score was higher in patients with event versus those without. CONCLUSIONS In cHL, iPET is associated with a genetic signature and can be predicted by applying an integrated gene-based model on the diagnostic biopsy.
Collapse
Affiliation(s)
- Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Riccardo Valli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | | | - Alessia Ruffini
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Gruppo Amici Dell'Ematologia Foundation_GrADE, Reggio Emilia, Italy
| | - Angelo Fama
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Annibale Versari
- Nuclear Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Rigacci
- Hematology and Stem Cell Transplant AO San Camillo Forlanini, Roma, Italy
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
37
|
Yang Y, Zhou X, Li Y, Chen A, Liang W, Liang G, Huang B, Li Q, Jin D. CXCL2 attenuates osteoblast differentiation by inhibiting the ERK1/2 signaling pathway. J Cell Sci 2019; 132:jcs230490. [PMID: 31292171 DOI: 10.1242/jcs.230490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
The C-X-C motif chemokine ligand 2 (CXCL2), a member of the CXC receptor ligand family, is involved in various immune and inflammatory processes, but its effect(s) on bone formation have not yet been reported. We report here that CXCL2 is enriched in bone marrow and show abundant expression of CXCL2 in osteoblasts of osteoporotic mice. CXCL2 neutralization within the bone marrow by using antibody alleviated bone loss in mice, indicating a negative role of CXCL2 in bone formation. In line with this, CXCL2 overexpression attenuated proliferation, as well as differentiation, of osteoblasts in vitro By contrast, CXCL2 downregulation promoted osteoblast expansion and differentiation. Mechanistically, CXCL2 inhibits the ERK1/2 (MAPK3/1) signaling pathway in osteoblasts. Activation of ERK1/2 abolishes the inhibitory effect of CXCL2 in osteoblasts, whereas inactivation of ERK1/2 reverses the osteogenic role of CXCL2 inhibition. These results show that CXCL2 attenuates osteoblast differentiation through inhibition of the ERK1/2 signaling pathway. We demonstrate here that CXCL2 is a negative regulator of bone formation and clarify the responsible mechanisms. Therefore, pharmaceutical coordination of CXCL2 and of the pathways through which it is regulated in osteoblasts might be beneficial regarding bone formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Xinying Zhou
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Yuejun Li
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Ajuan Chen
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Wenquan Liang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Guojun Liang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Bin Huang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Qingchu Li
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Dadi Jin
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| |
Collapse
|
38
|
Mesenchymal Stem Cell-Conditioned Medium Induces Neutrophil Apoptosis Associated with Inhibition of the NF-κB Pathway in Endotoxin-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20092208. [PMID: 31060326 PMCID: PMC6540353 DOI: 10.3390/ijms20092208] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
The immunomodulatory effects of mesenchymal stem cells (MSCs) are established. However, the effects of MSCs on neutrophil survival in acute lung injury (ALI) remain unclear. The goal of this study was to investigate the effect of an MSC-conditioned medium (MSC-CM) on neutrophil apoptosis in endotoxin-induced ALI. In this study, an MSC-CM was delivered via tail vein injection to wild-type male C57BL/6 mice 4 h after an intratracheal injection of lipopolysaccharide (LPS). Twenty-four hours later, bronchoalveolar lavage fluid (BALF) and lung tissue were collected to perform histology, immunohistochemistry, apoptosis assay of neutrophil, enzyme-linked immunosorbent assays, and an electrophoretic mobility shift assay. Human neutrophils were also collected from patients with sepsis-induced acute respiratory distress syndrome (ARDS). Human neutrophils were treated in vitro with LPS, with or without subsequent MSC-CM co-treatment, and were then analyzed. Administration of the MSC-CM resulted in a significant attenuation of histopathological changes, the levels of interleukin-6 and macrophage inflammatory protein 2, and neutrophil accumulation in mouse lung tissues of LPS-induced ALI. Additionally, MSC-CM therapy enhanced the apoptosis of BALF neutrophils and reduced the expression of the anti-apoptotic molecules, Bcl-xL and Mcl-1, both in vivo and in vitro experiments. Furthermore, phosphorylated and total levels of nuclear factor (NF)-κB p65 were reduced in lung tissues from LPS + MSC-CM mice. Human MSC-CM also reduced the activity levels of NF-κB and matrix metalloproteinase-9 in the human neutrophils from ARDS patients. Thus, the results of this study suggest that the MSC-CM attenuated LPS-induced ALI by inducing neutrophil apoptosis, associated with inhibition of the NF-κB pathway.
Collapse
|
39
|
Ding J, Xu K, Zhang J, Lin B, Wang Y, Yin S, Xie H, Zhou L, Zheng S. Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma. BMB Rep 2019. [PMID: 30293547 PMCID: PMC6330937 DOI: 10.5483/bmbrep.2018.51.12.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C-X-C motif chemokine ligand 2 (CXCL2) is a small secreted protein that exhibits a structure similar to the proangiogenic subgroup of the CXC chemokine family. Recently, accumulating evidence suggests that chemokines play a pivotal role in cancer progression and carcinogenesis. We examined the expression levels of 7 types of ELR+ CXCLs messenger RNA (mRNA) in 264 clinical samples. We found that CXCL2 expression was stably down-regulated in 94% of hepatocellular carcinoma (HCC) specimens compared with paired adjacent normal liver tissues and some HCC cell lines. Moreover, CXCL2 overexpression profoundly attenuated HCC cell proliferation and growth and induced apoptosis in vitro. In animal studies, we found that overexpressing CXCL2 by lentivirus also apparently inhibited the size and weight of subcutaneous tumours in nude mice. Furthermore, we demonstrated that CXCL2 induced HCC cell apoptosis via both nuclear and mitochondrial apoptosis pathways. Our results indicate that CXCL2 negatively regulates the cell cycle in HCC cells via the ERK1/2 signalling pathway. These results provide new insights into HCC and may ultimately lead to the discovery of innovative therapeutic approaches of HCC. [BMB Reports 2018; 51(12): 630-635].
Collapse
Affiliation(s)
- Jun Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Jie Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Department of Hepatobiliary Surgical, First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R.China
| | - Bingyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis treatment of infectious diseases, Hangzhou, Zhejiang 310003, P.R.China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310003, P.R.China
| | - Shengyong Yin
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Lin Zhou
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003; Collaborative Innovation Center for Diagnosis treatment of infectious diseases, Hangzhou, Zhejiang 310003, P.R.China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003; Collaborative Innovation Center for Diagnosis treatment of infectious diseases, Hangzhou, Zhejiang 310003, P.R.China
| |
Collapse
|
40
|
Contributions of TolC Orthologs to Francisella tularensis Schu S4 Multidrug Resistance, Modulation of Host Cell Responses, and Virulence. Infect Immun 2019; 87:IAI.00823-18. [PMID: 30670554 DOI: 10.1128/iai.00823-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of tularemia. Previous studies with the attenuated live vaccine strain (LVS) identified a role for the outer membrane protein TolC in modulation of host cell responses during infection and virulence in the mouse model of tularemia. TolC is an integral part of efflux pumps that export small molecules and type I secretion systems that export a range of bacterial virulence factors. In this study, we analyzed TolC and its two orthologs, FtlC and SilC, present in the fully virulent F. tularensis Schu S4 strain for their contributions to multidrug efflux, suppression of innate immune responses, and virulence. We found that each TolC ortholog participated in multidrug efflux, with overlapping substrate specificities for TolC and FtlC and a distinct substrate profile for SilC. In contrast to their shared roles in drug efflux, only TolC functioned in the modulation of macrophage apoptotic and proinflammatory responses to Schu S4 infection, consistent with a role in virulence factor delivery to host cells. In agreement with previous results with the LVS, the Schu S4 ΔtolC mutant was highly attenuated for virulence in mice by both the intranasal and intradermal routes of infection. Unexpectedly, FtlC was also critical for Schu S4 virulence, but only by the intradermal route. Our data demonstrate a conserved and critical role for TolC in modulation of host immune responses and Francisella virulence and also highlight strain- and route-dependent differences in the pathogenesis of tularemia.
Collapse
|
41
|
IL-10 and CXCL2 in trigeminal ganglia in neuropathic pain. Neurosci Lett 2019; 703:132-138. [PMID: 30904573 DOI: 10.1016/j.neulet.2019.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 01/31/2023]
Abstract
Many trigeminal neuropathic pain patients suffer severe chronic pain. The neuropathic pain might be related with cross-excitation of the neighboring neurons and satellite glial cells (SGCs) in the sensory ganglia and increasing the pain signals from the peripheral tissue to the central nervous system. We induced trigeminal neuropathic pain by infraorbital nerve constriction injury (IONC) in Sprague-Dawley rats. We tested cytokine (CXCL2 and IL-10) levels in trigeminal ganglia (TGs) after trigeminal neuropathic pain induction, and the effect of direct injection of the anti-CXCL2 and recombinant IL-10 into TG. We found that IONC induced pain behavior. Additionally, IONC induced satellite glial cell activation in TG and cytokine levels of TGs were changed after IONC. CXCL2 levels increased on day 1 of neuropathic pain induction and decreased gradually, with IL-10 levels showing the opposite trend. Recombinant IL-10 or anti-CXCL2 injection into TG decreased pain behavior. Our results show that IL-10 or anti-CXCL2 are therapy options for neuropathic pain.
Collapse
|
42
|
Effects of cisplatin on photosensitizer-mediated photodynamic therapy in breast tumor-bearing nude mice. Obstet Gynecol Sci 2019; 62:112-119. [PMID: 30918879 PMCID: PMC6422844 DOI: 10.5468/ogs.2019.62.2.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/08/2022] Open
Abstract
Objective This study aimed to evaluate the potential effects of cisplatin on photodynamic therapy (PDT) in breast cancer using a breast tumor-bearing mouse model. Methods In this study, breast tumor (experimental mammary tumour-6 cell)-bearing nude mice were used as experimental animals. Photolon® (photosensitizer, 2.5 mg/kg body weight [BW]) was injected intraperitoneally; after 2 hours, the tumors were irradiated (660 nm, 80 J/cm2) using a diode laser tool. Cisplatin (3 mg/kg BW) was injected intraperitoneally 1 hour before the Photolon® injection. Results Tumor volume increased over time in the control group and was not different from that in the cisplatin group. In the PDT group, the tumor volume increased on day 3, but not on day 7. In the cisplatin+PDT group, tumor volume increased on day 3 but decreased on day 7. There was no significant difference in the levels of thiobarbituric acid reactive substance (TBARS) in tumor tissues between the control and cisplatin groups. The levels of TBARS in the cisplatin+PDT group were higher (47%) than those in the PDT group. Analysis of tumor tissue transcriptomes showed that the expression of genes related to the inflammatory response including CL and XCL genes increased, while that of Fn1 decreased in the cisplatin+PDT group compared with the PDT group. Conclusion These results suggest that cisplatin enhances the therapeutic effect of PDT in a breast tumor-bearing mouse model. However, further clinical studies involving patients with breast cancer is needed.
Collapse
|
43
|
Mentrup T, Theodorou K, Cabrera-Cabrera F, Helbig AO, Happ K, Gijbels M, Gradtke AC, Rabe B, Fukumori A, Steiner H, Tholey A, Fluhrer R, Donners M, Schröder B. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med 2019; 216:807-830. [PMID: 30819724 PMCID: PMC6446863 DOI: 10.1084/jem.20171438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/21/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
The intramembrane proteases SPPL2a/b control pro-atherogenic signaling of membrane-bound proteolytic fragments derived from the oxLDL receptor LOX-1. In mice deficient for these proteases, plaque development and fibrosis is enhanced. This highlights SPPL2a/b as crucial players of a novel athero-protective mechanism, which is conserved in humans. The lectin-like oxidized LDL receptor 1 (LOX-1) is a key player in the development of atherosclerosis. LOX-1 promotes endothelial activation and dysfunction by mediating uptake of oxidized LDL and inducing pro-atherogenic signaling. However, little is known about modulators of LOX-1–mediated responses. Here, we show that the function of LOX-1 is controlled proteolytically. Ectodomain shedding by the metalloprotease ADAM10 and lysosomal degradation generate membrane-bound N-terminal fragments (NTFs), which we identified as novel substrates of the intramembrane proteases signal peptide peptidase–like 2a and b (SPPL2a/b). SPPL2a/b control cellular LOX-1 NTF levels which, following self-association via their transmembrane domain, can activate MAP kinases in a ligand-independent manner. This leads to an up-regulation of several pro-atherogenic and pro-fibrotic targets including ICAM-1 and the connective tissue growth factor CTGF. Consequently, SPPL2a/b-deficient mice, which accumulate LOX-1 NTFs, develop larger and more advanced atherosclerotic plaques than controls. This identifies intramembrane proteolysis by SPPL2a/b as a novel atheroprotective mechanism via negative regulation of LOX-1 signaling.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kosta Theodorou
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Florencia Cabrera-Cabrera
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andreas O Helbig
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kathrin Happ
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Björn Rabe
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Akio Fukumori
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marjo Donners
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany .,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
44
|
Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J Clin Med 2018; 7:E511. [PMID: 30513926 PMCID: PMC6306801 DOI: 10.3390/jcm7120511] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong autoimmune, neurodegenerative, and neuroinflammatory component. Most of the common disease modifying treatments (DMTs) for MS modulate the immune response targeting disease associated T and B cells and while none directly target neutrophils, several DMTs do impact their abundance or function. The role of neutrophils in MS remains unknown and research is ongoing to better understand the phenotype, function, and contribution of neutrophils to both disease onset and stage of disease. Here we summarize the current state of knowledge of neutrophils and their function in MS, including in the rodent based MS model, and we discuss the potential effects of current treatments on these functions. We propose that neutrophils are likely to participate in MS pathogenesis and their abundance and function warrant monitoring in MS.
Collapse
Affiliation(s)
- Tonia Woodberry
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Sophie E Bouffler
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Rebecca L Buckland
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
45
|
Matsuo N, Azuma K, Hattori S, Ohtake J, Kawahara A, Ishii H, Tokito T, Yamada K, Shibata Y, Shimokawaji T, Kondo T, Kato T, Saito H, Yamada K, Sasada T, Hoshino T. Association between soluble immune mediators and tumor responses in patients with nonsmall cell lung cancer treated with anti-PD-1 inhibitor. Int J Cancer 2018; 144:1170-1179. [DOI: 10.1002/ijc.31923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Satoshi Hattori
- Division of Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine Faculty of Medicine; Osaka University; Suita Osaka Japan
| | - Junya Ohtake
- Cancer Vaccine Center; Kanagawa Cancer Center Research Institute; Yokohama Kanagawa Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology; Kurume University Hospital, Kurume; Fukuoka Japan
| | - Hidenobu Ishii
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Takaaki Tokito
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Kazuhiko Yamada
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Yuji Shibata
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Tadasuke Shimokawaji
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Tetsuro Kondo
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Terufumi Kato
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Haruhiro Saito
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Kouzo Yamada
- Department of Respiratory Medicine; Kanagawa Cancer Center; Yokohama Kanagawa Japan
| | - Tetsuro Sasada
- Cancer Vaccine Center; Kanagawa Cancer Center Research Institute; Yokohama Kanagawa Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine; Kurume University School of Medicine; Kurume, Fukuoka Japan
| |
Collapse
|
46
|
Collins LE, Troeberg L. Heparan sulfate as a regulator of inflammation and immunity. J Leukoc Biol 2018; 105:81-92. [PMID: 30376187 DOI: 10.1002/jlb.3ru0618-246r] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Heparan sulfate is found on the surface of most cell types, as well as in basement membranes and extracellular matrices. Its strong anionic properties and highly variable structure enable this glycosaminoglycan to provide binding sites for numerous protein ligands, including many soluble mediators of the immune system, and may promote or inhibit their activity. The formation of ligand binding sites on heparan sulfate (HS) occurs in a tissue- and context-specific fashion through the action of several families of enzymes, most of which have multiple isoforms with subtly different specificities. Changes in the expression levels of these biosynthetic enzymes occur in response to inflammatory stimuli, resulting in structurally different HS and acquisition or loss of binding sites for immune mediators. In this review, we discuss the multiple roles for HS in regulating immune responses, and the evidence for inflammation-associated changes to HS structure.
Collapse
Affiliation(s)
- Laura E Collins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Linda Troeberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Impact of Engineered Expression of Mitochondrial Association Factor 1b on Toxoplasma gondii Infection and the Host Response in a Mouse Model. mSphere 2018; 3:3/5/e00471-18. [PMID: 30333181 PMCID: PMC6193605 DOI: 10.1128/msphere.00471-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parasite Toxoplasma gondii currently infects approximately one-third of the world’s population and causes life-threatening toxoplasmosis in individuals with undeveloped or weakened immune systems. Current treatments are unable to cure T. gondii infection, leaving infected individuals with slow-growing tissue cysts for the remainder of their lives. Previous work has shown that expression of the parasite protein mitochondrial association factor 1 (MAF1b) is responsible for the association of T. gondii parasites with host mitochondria and provides a selective advantage during acute infection. Here we examine the impact of MAF1b expression during chronic T. gondii infection. We find that mice infected with MAF1b-expressing parasites have higher cyst burden and cytokine levels than their wild-type counterparts. A better understanding of the genes involved in establishing and maintaining chronic infection will aid in discovering effective therapeutics for chronically infected individuals. The opportunistic intracellular parasite Toxoplasma gondii causes a lifelong chronic infection capable of reactivating in immunocompromised individuals, which can lead to life-threatening complications. Following invasion of the host cell, host mitochondria associate with the parasitophorous vacuole membrane. This phenotype is T. gondii strain specific and is mediated by expression of a host mitochondrial association-competent (HMA+) paralog of the parasite protein mitochondrial association factor 1 (MAF1b). Previous work demonstrated that expression of MAF1b in strains that do not normally associate with host mitochondria increases their fitness during acute infection in vivo. However, the impact of MAF1b expression during chronic T. gondii infection is unclear. In this study, we assess the impact of MAF1b expression on cyst formation and cytokine production in mice. Despite generally low numbers of cysts generated by the in vitro culture-adapted strains used in this study, we find that parasites expressing MAF1b have higher numbers of cysts in the brains of chronically infected mice and that MAF1b+ cyst burden significantly increases during the course of chronic infection. Consistent with this, mice infected with MAF1b+ parasites have higher levels of the serum cytokines RANTES and VEGF (vascular endothelial growth factor) at day 57 postinfection, although this could be due to higher parasite burden at this time point rather than direct manipulation of these cytokines by MAF1b. Overall these data indicate that MAF1b expression may also be important in determining infection outcome during the chronic phase, either by directly altering the cytokine/signaling environment or by increasing proliferation during the acute and/or chronic phase. IMPORTANCE The parasite Toxoplasma gondii currently infects approximately one-third of the world’s population and causes life-threatening toxoplasmosis in individuals with undeveloped or weakened immune systems. Current treatments are unable to cure T. gondii infection, leaving infected individuals with slow-growing tissue cysts for the remainder of their lives. Previous work has shown that expression of the parasite protein mitochondrial association factor 1 (MAF1b) is responsible for the association of T. gondii parasites with host mitochondria and provides a selective advantage during acute infection. Here we examine the impact of MAF1b expression during chronic T. gondii infection. We find that mice infected with MAF1b-expressing parasites have higher cyst burden and cytokine levels than their wild-type counterparts. A better understanding of the genes involved in establishing and maintaining chronic infection will aid in discovering effective therapeutics for chronically infected individuals.
Collapse
|
48
|
Jain S, George PJ, Deng W, Koussa J, Parkhouse K, Hensley SE, Jiang J, Lu J, Liu Z, Wei J, Zhan B, Bottazzi ME, Shen H, Lustigman S. The parasite-derived rOv-ASP-1 is an effective antigen-sparing CD4 + T cell-dependent adjuvant for the trivalent inactivated influenza vaccine, and functions in the absence of MyD88 pathway. Vaccine 2018; 36:3650-3665. [PMID: 29764680 DOI: 10.1016/j.vaccine.2018.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Vaccination remains the most cost-effective biomedical approach for controlling influenza disease. In times of pandemics, however, these vaccines cannot be produced in sufficient quantities for worldwide use by the current manufacturing capacities and practices. What is needed is the development of adjuvanted vaccines capable of inducing an adequate or better immune response at a decreased antigen dose. Previously we showed that the protein adjuvant rOv-ASP-1 augments influenza-specific antibody titers and survival after virus challenge in both young adult and old-age mice when administered with the trivalent inactivated influenza vaccine (IIV3). In this study we show that a reduced amount of rOv-ASP-1, with 40-times less IIV3 can also induce protection. Apparently the potency of the rOv-ASP-1 adjuvanted IIV3 vaccine is independent of the IIV3-specific Th1/Th2 associated antibody responses, and independent of the presence of HAI antibodies. However, CD4+ T helper cells were indispensable for the protection. Further, rOv-ASP-1 with or without IIV3 elicited the increased level of various chemokines, which are known chemoattractant for immune cells, into the muscle 4 h after immunization, and significantly induced the recruitment of monocytes, macrophages and neutrophils into the muscles. The recruited monocytes had higher expression of the activation marker MHCII on their surface as well as CXCR3 and CCR2; receptors for IP-10 and MCP-1, respectively. These results show that the rOv-ASP-1 adjuvant allows substantial antigen sparing of IIV3 by stimulating at the site of injection the accumulation of chemokines and the recruitment of immune cells that can augment the activation of CD4+ T cell immune responses, essential for the production of antibody responses. Protection elicited by the rOv-ASP-1 adjuvanted IIV3 vaccine also appears to function in the absence of MyD88-signaling. Future studies will attempt to delineate the precise mechanisms by which the rOv-ASP-1 adjuvanted IIV3 vaccine works.
Collapse
Affiliation(s)
- Sonia Jain
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States
| | - Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 100045, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joseph Koussa
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, United States; Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jiu Jiang
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Jie Lu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 400715, China
| | - Zhuyun Liu
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States.
| |
Collapse
|
49
|
Ye Y, Zhang Y, Wang B, Walana W, Wei J, Gordon JR, Li F. CXCR1/CXCR2 antagonist G31P inhibits nephritis in a mouse model of uric acid nephropathy. Biomed Pharmacother 2018; 107:1142-1150. [PMID: 30257327 DOI: 10.1016/j.biopha.2018.07.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/07/2023] Open
Abstract
The prevalence of gout is relatively high worldwide, and many gout patients suffer from uric acid nephropathy (UAN) concomitantly. ELR-CXC chemokines such as CXCL8 and CXCL1 have a elevated expression in UAN. In this research, a mouse UAN model was established for a 12 week duration, and uric acid-related crystals were observed. CXCL8(3-72)K11R/G31P (G31P) is a mutant protein of CXCL8/interleukin 8 (IL-8), which has been reported to have therapeutic efficacy in both inflammatory diseases and malignancies for it acts as a selective antagonist towards CXCR1/CXCR2. In this study, G31P-treated mice showed declined production of the blood urea nitrogen (BUN) level and urine volume in UAN mice compared with G31P-untreated UAN counterparts. In addition, G31P effectively improved renal fibrosis, and reduced uric acid accumulation and leukocyte infiltration in UAN kidneys. Furthermore, the expressions of CXCL1 and CXCL2 were reduced and the activation of NOD-like receptors protein 3 (NLRP3) was inhibited by G31P treatment. This study has demonstrated that G31P attenuates inflammatory progression in chronic UAN, and plays a renoprotective function.
Collapse
Affiliation(s)
- Ying Ye
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Bing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Williams Walana
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Wei
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - John R Gordon
- Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
50
|
Yan D, Hamed O, Joshi T, Mostafa MM, Jamieson KC, Joshi R, Newton R, Giembycz MA. Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the Adverse and Therapeutic Effects of β2-Adrenoceptor Agonists. J Pharmacol Exp Ther 2018; 366:220-236. [PMID: 29653961 DOI: 10.1124/jpet.118.249292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
The contribution of gene expression changes to the adverse and therapeutic effects of β2-adrenoceptor agonists in asthma was investigated using human airway epithelial cells as a therapeutically relevant target. Operational model-fitting established that the long-acting β2-adrenoceptor agonists (LABA) indacaterol, salmeterol, formoterol, and picumeterol were full agonists on BEAS-2B cells transfected with a cAMP-response element reporter but differed in efficacy (indacaterol ≥ formoterol > salmeterol ≥ picumeterol). The transcriptomic signature of indacaterol in BEAS-2B cells identified 180, 368, 252, and 10 genes that were differentially expressed (>1.5- to <0.67-fold) after 1-, 2-, 6-, and 18-hour of exposure, respectively. Many upregulated genes (e.g., AREG, BDNF, CCL20, CXCL2, EDN1, IL6, IL15, IL20) encode proteins with proinflammatory activity and are annotated by several, enriched gene ontology (GO) terms, including cellular response to interleukin-1, cytokine activity, and positive regulation of neutrophil chemotaxis The general enriched GO term extracellular space was also associated with indacaterol-induced genes, and many of those, including CRISPLD2, DMBT1, GAS1, and SOCS3, have putative anti-inflammatory, antibacterial, and/or antiviral activity. Numerous indacaterol-regulated genes were also induced or repressed in BEAS-2B cells and human primary bronchial epithelial cells by the low efficacy LABA salmeterol, indicating that this genomic effect was neither unique to indacaterol nor restricted to the BEAS-2B airway epithelial cell line. Collectively, these data suggest that the consequences of inhaling a β2-adrenoceptor agonist may be complex and involve widespread changes in gene expression. We propose that this genomic effect represents a generally unappreciated mechanism that may contribute to the adverse and therapeutic actions of β2-adrenoceptor agonists in asthma.
Collapse
Affiliation(s)
- Dong Yan
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyla C Jamieson
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|