1
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2025; 32:16-24. [PMID: 39025983 PMCID: PMC11785524 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
2
|
Rawson JMO, Nikolaitchik OA, Yoo JA, Somoulay X, Brown MA, Mbuntcha Bogni FS, Pathak VK, Soheilian F, Slack RL, Sarafianos SG, Hu WS. Adaptation of HIV-1/HIV-2 Chimeras with Defects in Genome Packaging and Viral Replication. mBio 2022; 13:e0222022. [PMID: 36036631 PMCID: PMC9600866 DOI: 10.1128/mbio.02220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023] Open
Abstract
Frequent recombination is a hallmark of retrovirus replication. In rare cases, recombination occurs between distantly related retroviruses, generating novel viruses that may significantly impact viral evolution and public health. These recombinants may initially have substantial replication defects due to impaired interactions between proteins and/or nucleic acids from the two parental viruses. However, given the high mutation rates of retroviruses, these recombinants may be able to evolve improved compatibility of these viral elements. To test this hypothesis, we examined the adaptation of chimeras between two distantly related human pathogens: HIV-1 and HIV-2. We constructed HIV-1-based chimeras containing the HIV-2 nucleocapsid (NC) domain of Gag or the two zinc fingers of HIV-2 NC, which are critical for specific recognition of viral RNA. These chimeras exhibited significant defects in RNA genome packaging and replication kinetics in T cells. However, in some experiments, the chimeric viruses replicated with faster kinetics when repassaged, indicating that viral adaptation had occurred. Sequence analysis revealed the acquisition of a single amino acid substitution, S18L, in the first zinc finger of HIV-2 NC. This substitution, which represents a switch from a conserved HIV-2 residue to a conserved HIV-1 residue at this position, partially rescued RNA packaging and replication kinetics. Further analysis revealed that the combination of two substitutions in HIV-2 NC, W10F and S18L, almost completely restored RNA packaging and replication kinetics. Our study demonstrates that chimeras of distantly related retroviruses can adapt and significantly enhance their replication by acquiring a single substitution. IMPORTANCE Novel retroviruses can emerge from recombination between distantly related retroviruses. Most notably, HIV-1 originated from zoonotic transmission of a novel recombinant (SIVcpz) into humans. Newly generated recombinants may initially have significant replication defects due to impaired interactions between viral proteins and/or nucleic acids, such as between cis- and trans-acting elements from the two parental viruses. However, provided that the recombinants retain some ability to replicate, they may be able to adapt and repair the defective interactions. Here, we used HIV-1 and HIV-2 Gag chimeras as a model system for studying the adaptation of recombinant viruses. We found that only two substitutions in the HIV-2 NC domain, W10F and S18L, were required to almost fully restore RNA genome packaging and replication kinetics. These results illustrate the extremely flexible nature of retroviruses and highlight the possible emergence of novel recombinants in the future that could pose a significant threat to public health.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Jennifer A. Yoo
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Xayathed Somoulay
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Matthew A. Brown
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Franck S. Mbuntcha Bogni
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Ferri Soheilian
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ryan L. Slack
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| |
Collapse
|
3
|
García-de-Gracia F, Gaete-Argel A, Riquelme-Barrios S, Pereira-Montecinos C, Rojas-Araya B, Aguilera P, Oyarzún-Arrau A, Rojas-Fuentes C, Acevedo ML, Chnaiderman J, Valiente-Echeverría F, Toro-Ascuy D, Soto-Rifo R. CBP80/20-dependent translation initiation factor (CTIF) inhibits HIV-1 Gag synthesis by targeting the function of the viral protein Rev. RNA Biol 2021; 18:745-758. [PMID: 33103564 PMCID: PMC8078705 DOI: 10.1080/15476286.2020.1832375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Translation initiation of the human immunodeficiency virus type-1 (HIV-1) full-length RNA has been shown to occur through cap-dependent and IRES-driven mechanisms. Previous studies suggested that the nuclear cap-binding complex (CBC) rather than eIF4E drives cap-dependent translation of the full-length RNA and we have recently reported that the CBC subunit CBP80 supports the function of the viral protein Rev during nuclear export and translation of this viral transcript. Ribosome recruitment during CBC-dependent translation of cellular mRNAs relies on the activity CBP80/20 translation initiation factor (CTIF), which bridges CBP80 and the 40S ribosomal subunit through interactions with eIF3g. Here, we report that CTIF inhibits HIV-1 and HIV-2 Gag synthesis from the full-length RNA. Our results indicate that CTIF associates with HIV-1 Rev through its N-terminal domain and is recruited onto the full-length RNA ribonucleoprotein complex in order to interfere with Gag synthesis. We also demonstrate that CTIF induces the cytoplasmic accumulation of Rev impeding the association of the viral protein with CBP80. We finally show that Rev interferes with the association of CTIF with CBP80 indicating that CTIF and Rev compete for the CBC subunit.
Collapse
Affiliation(s)
- Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Aguilera
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aarón Oyarzún-Arrau
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica L. Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jonás Chnaiderman
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Labrecque M, Marchand C, Archambault D. Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Viruses 2020; 12:v12080900. [PMID: 32824614 PMCID: PMC7471974 DOI: 10.3390/v12080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the CAEV Rev protein. These signals are key actors in the nucleocytoplasmic shuttling of a lentiviral Rev protein. Several deletion and alanine substitution mutants were generated from a plasmid encoding the CAEV Rev wild-type protein that was fused to the enhanced green fluorescent protein (EGFP). Following cell transfection, images were captured by confocal microscopy and the fluorescence was quantified in the different cell compartments. The results showed that the NLS region is localized between amino acids (aa) 59 to 75, has a monopartite-like structure and is exclusively composed of arginine residues. The NoLS was found to be partially associated with the NLS. Finally, the CAEV Rev protein’s NES mapped between aa 89 to 101, with an aa spacing between the hydrophobic residues that was found to be unconventional as compared to that of other retroviral Rev/Rev-like proteins.
Collapse
Affiliation(s)
- Marlène Labrecque
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Claude Marchand
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
Akhlaq S, Panicker NG, Philip PS, Ali LM, Dudley JP, Rizvi TA, Mustafa F. A cis-Acting Element Downstream of the Mouse Mammary Tumor Virus Major Splice Donor Critical for RNA Elongation and Stability. J Mol Biol 2018; 430:4307-4324. [PMID: 30179605 DOI: 10.1016/j.jmb.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The mouse mammary tumor virus (MMTV) encodes a functional signal peptide, a cleavage product of envelope and Rem proteins. Signal peptide interacts with a 3' cis-acting RNA element, the Rem-responsive element (RmRE), to facilitate expression of both unspliced genomic (gRNA) and spliced mRNAs. An additional RmRE has been proposed at the 5' end of the genome, facilitating nuclear export of the unspliced gRNA, whereas the 3' RmRE could facilitate translation of all other mRNAs, including gRNA. RESULTS To address this hypothesis, a series of mutations were introduced into a 24-nt region found exclusively in the unspliced gRNA. Mutant clones using MMTV or human cytomegalovirus promoters were tested in both transient and stable transfections to determine their effect on gRNA nuclear export, stability, and translation. Nuclear export of the gRNA was affected only in a small mutant subset in stably transfected Jurkat T cells. Quantitative real-time RT-PCR of actinomycin D-treated cells expressing MMTV revealed that multiple mutants were severely compromised for RNA expression and stability. Both genomic and spliced nuclear RNAs were reduced, leading to abrogation of Gag and Env protein expressed from unspliced and spliced mRNAs, respectively. RT-PCRs with multiple primer pairs indicated failure to elongate genomic MMTV transcripts beyond ~500 nt compared to the wild type in a cell line-dependent manner. CONCLUSIONS MMTV contains a novel cis-acting element downstream of the major splice donor critical for facilitating MMTV gRNA elongation and stability. Presence of a mirror repeat within the element may represent important viral/host factor binding site(s) within MMTV gRNA.
Collapse
Affiliation(s)
- Shaima Akhlaq
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Neena G Panicker
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Pretty S Philip
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Lizna M Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Jaquelin P Dudley
- LaMontagne Center for Infectious Diseases, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX 78712, USA.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Characterization of Simian Immunodeficiency Virus Variants Anatomically Compartmentalized in Plasma and Milk in Chronically Infected African Green Monkeys. J Virol 2016; 90:8795-808. [PMID: 27466415 PMCID: PMC5021398 DOI: 10.1128/jvi.00701-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Unlike human immunodeficiency virus type 1 (HIV-1)-infected humans, African-origin, natural simian immunodeficiency virus (SIV) hosts, such as African green monkeys (AGMs), sustain nonpathogenic SIV infections and rarely vertically transmit SIV to their infants. Interestingly, chronically SIV-infected AGMs have anatomically compartmentalized SIV variants in plasma and milk, whereas humans and SIV-infected rhesus monkeys (RMs), Asian-origin nonnatural SIV hosts, do not exhibit this compartmentalization. Thus, it is possible that AGM SIV populations in milk have unique phenotypic features that contribute to the low postnatal transmission rates observed in this natural host species. In this study, we explored this possibility by characterizing the infectivity, tropism, and neutralization susceptibility of plasma and milk SIVsab env variants isolated from chronically SIVsab92018ivTF-infected AGMs. AGM plasma and milk SIVsab env pseudovirus variants exhibited similar infectivities, neutralization susceptibilities to autologous and heterologous plasma, and chemokine coreceptor usages for cell entry, suggesting similar abilities to initiate infection in a new host. We also assessed the cytokine milieu in SIV-infected AGM milk and compared it to that of SIV-infected RMs. MIP-1β, granulocyte colony-stimulating factor (G-CSF), interleukin-12/23 (IL-12/23), and IL-13 trended significantly higher in SIV-infected AGM milk than in that of RMs, while IL-18 and IL-6 trended significantly higher in SIV-infected RM milk than in that of AGMs. Taken together, our findings imply that nonviral maternal factors, such as the cytokine milieu, rather than unique characteristics of SIV populations in the milk contribute to the low postnatal transmission rates observed in AGMs. IMPORTANCE Due to the ongoing global incidence of pediatric HIV-1 infections, including many that occur via breastfeeding, development of effective vaccine strategies capable of preventing vertical HIV transmission through breastfeeding remains an important goal. Unlike HIV-1-infected humans, African green monkeys (AGMs), the natural SIV host species, sustain nonpathogenic SIV infections, rarely transmit the virus postnatally to their infants, and exhibit anatomically compartmentalized SIV populations in milk and plasma. Identifying unique features of the anatomically compartmentalized milk SIV populations could enhance our understanding of how AGMs may have evolved to avoid transmission through breastfeeding. While this study identified limited phenotypic distinctions between AGM plasma and milk SIV populations, potential differences in milk cytokine profiles of natural and nonnatural SIV hosts were observed. These findings imply the potential importance of nonviral factors in natural SIV host species, such as innate SIV/HIV immune factors in milk, as a means of naturally preventing vertical transmission.
Collapse
|
7
|
Lusvarghi S, Sztuba-Solinska J, Purzycka KJ, Pauly GT, Rausch JW, Grice SFJL. The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Nucleic Acids Res 2013; 41:6637-49. [PMID: 23640333 PMCID: PMC3711434 DOI: 10.1093/nar/gkt353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interaction between the viral protein Rev and the RNA motifs known as Rev response elements (RREs) is required for transport of unspliced and partially spliced human immunodeficiency virus (HIV)-1 and HIV-2 RNAs from the nucleus to the cytoplasm during the later stages of virus replication. A more detailed understanding of these nucleoprotein complexes and the host factors with which they interact should accelerate the development of new antiviral drugs targeting cis-acting RNA regulatory signals. In this communication, the secondary structures of the HIV-2 RRE and two RNA folding precursors have been identified using the SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing methodology together with a novel mathematical approach for determining the secondary structures of RNA conformers present in a mixture. A complementary chemical probing technique was also used to support these secondary structure models, to confirm that the RRE2 RNA undergoes a folding transition and to obtain information about the relative positioning of RRE2 substructures in three dimensions. Our analysis collectively suggests that the HIV-2 RRE undergoes two conformational transitions before assuming the energetically most favorable conformer. The 3D models for the HIV-2 RRE and folding intermediates are also presented, wherein the Rev-binding stem–loops (IIB and I) are located coaxially in the former, which is in agreement with previous models for HIV-1 Rev-RRE binding.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- HIV Drug Resistance Program, Reverse Transcriptase Biochemistry Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
8
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
9
|
Tazi J, Bakkour N, Marchand V, Ayadi L, Aboufirassi A, Branlant C. Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. FEBS J 2010; 277:867-76. [DOI: 10.1111/j.1742-4658.2009.07522.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
The bovine immunodeficiency virus rev protein: identification of a novel lentiviral bipartite nuclear localization signal harboring an atypical spacer sequence. J Virol 2009; 83:12842-53. [PMID: 19828621 DOI: 10.1128/jvi.01613-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine immunodeficiency virus (BIV) Rev protein (186 amino acids [aa] in length) is involved in the nuclear exportation of partially spliced and unspliced viral RNAs. Previous studies have shown that BIV Rev localizes in the nucleus and nucleolus of infected cells. Here we report the characterization of the nuclear/nucleolar localization signals (NLS/NoLS) of this protein. Through transfection of a series of deletion mutants of BIV Rev fused to enhanced green fluorescent protein and fluorescence microscopy analyses, we were able to map the NLS region between aa 71 and 110 of the protein. Remarkably, by conducting alanine substitution of basic residues within the aa 71 to 110 sequence, we demonstrated that the BIV Rev NLS is bipartite, maps to aa 71 to 74 and 95 to 101, and is predominantly composed of arginine residues. This is the first report of a bipartite Rev (or Rev-like) NLS in a lentivirus/retrovirus. Moreover, this NLS is atypical, as the length of the sequence between the motifs composing the bipartite NLS, e.g., the spacer sequence, is 20 aa. Further mutagenesis experiments also identified the NoLS region of BIV Rev. It localizes mainly within the NLS spacer sequence. In addition, the BIV Rev NoLS sequence differs from the consensus sequence reported for other viral and cellular nucleolar proteins. In summary, we conclude that the nucleolar and nuclear localizations of BIV Rev are mediated via novel NLS and NoLS motifs.
Collapse
|
11
|
Abstract
Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.
Collapse
Affiliation(s)
- H C T Groom
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E C Anderson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - A M L Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
12
|
Ouellet DL, Plante I, Barat C, Tremblay MJ, Provost P. Emergence of a complex relationship between HIV-1 and the microRNA pathway. Methods Mol Biol 2009; 487:415-33. [PMID: 19301659 DOI: 10.1007/978-1-60327-547-7_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent experimental evidences support the existence of an increasingly complex and multifaceted interaction between viruses and the microRNA-guided RNA silencing machinery of human cells. The discovery of small interfering RNAs (siRNAs), which are designed to mediate cleavage of specific messenger RNAs (mRNAs), prompted virologists to establish therapeutic strategies based on siRNAs with the aim to suppress replication of several viruses, including human immunodeficiency virus type 1 (HIV-1). It has been appreciated only recently that viral RNAs can also be processed endogenously by the microRNA-generating enzyme Dicer or recognized by cellular miRNAs, in processes that could be viewed as an adapted antiviral defense mechanism. Known to repress mRNA translation through recognition of specific binding sites usually located in their 3' untranslated region, miRNAs of host or viral origin may exert regulatory effects towards host and/or viral genes and influence viral replication and/or the host response to viral infection. This article summarizes our current state of knowledge on the relationship between HIV-1 and miRNA-guided RNA silencing, and discusses the different aspects of their interaction.
Collapse
Affiliation(s)
- Dominique L Ouellet
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Hammer D, Wild J, Ludwig C, Asbach B, Notka F, Wagner R. Fusion of Epstein-Barr virus nuclear antigen-1-derived glycine-alanine repeat to trans-dominant HIV-1 Gag increases inhibitory activities and survival of transduced cells in vivo. Hum Gene Ther 2008; 19:622-34. [PMID: 18533892 DOI: 10.1089/hum.2007.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trans-dominant human immunodeficiency virus type 1 (HIV-1) Gag derivatives have been shown to efficiently inhibit late steps of HIV-1 replication in vitro by interfering with Gag precursor assembly, thus ranking among the interesting candidates for gene therapy approaches. However, efficient antiviral activities of corresponding transgenes are likely to be counteracted in particular by cell-mediated host immune responses toward the transgene-expressing cells. To decrease this potential immunogenicity, a 24-amino acid Gly-Ala (GA) stretch derived from Epstein-Barr virus nuclear antigen-1 (EBNA1) and known to overcome proteasomal degradation was fused to a trans-dominant Gag variant (sgD1). To determine the capacity of this fusion polypeptide to repress viral replication, PM-1 cells were transduced with sgD1 and GAsgD1 transgenes, using retroviral gene transfer. Challenge of stably transfected permissive cell lines with various viral strains indicated that N-terminal GA fusion even enhanced the inhibitory properties of sgD1. Further studies revealed that the GA stretch increased protein stability by blocking proteasomal degradation of Gag proteins. Immunization of BALB/c mice with a DNA vaccine vector expressing sgD1 induced substantial Gag-specific immune responses that were, however, clearly diminished in the presence of GA. Furthermore, recognition of cells expressing the GA-fused transgene by CD8(+) T cells was drastically reduced, both in vitro and in vivo, resulting in prolonged survival of the transduced cells in recipient mice.
Collapse
Affiliation(s)
- Diana Hammer
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Watanabe D, Brockman MA, Ndung'u T, Mathews L, Lucas WT, Murphy CG, Felber BK, Pavlakis GN, Deluca NA, Knipe DM. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector. Virology 2006; 357:186-98. [PMID: 16996101 DOI: 10.1016/j.virol.2006.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/25/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli beta-galactosidase induced durable beta-gal-specific IgG and CD8(+) T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ni Y, Sun S, Oparaocha I, Humeau L, Davis B, Cohen R, Binder G, Chang YN, Slepushkin V, Dropulic B. Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J Gene Med 2005; 7:818-34. [PMID: 15693055 DOI: 10.1002/jgm.726] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A stable packaging cell line facilitates large-scale lentivirus vector manufacture. However, it has been difficult to produce clinical-scale HIV-1-based lentiviral vectors using a packaging cell line, in part due to toxicity of packaging genes, and gene silencing that occurs during the long culture period necessary for sequential addition of packaging constructs. METHODS To avoid these problems, we developed a three-level cascade gene regulation system designed to remove tetracycline transactivator (tTA) from cytomegalovirus immediate early promoter (CMV)-controlled expression to reduce cytotoxicity from constitutive expression of tTA and leaky expression of packaging genes. We also performed a one-step integration of the three packaging plasmids to shorten the culture time for clonal selection. RESULTS Although leaky expression of p24 and vector production still occurred despite the three-level regulation system, little cytotoxicity was observed and producer cells could be expanded for large-scale production. Producer cells yielded remarkably stable vector production over a period greater than 11 days with the highest titer 3.5 x 10(7) transducing units (TU)/ml and p24 300 ng/ml, yielding 2.2 x 10(11) TU and 1.8 milligram (mg) p24 from one cell factory. No replication-competent lentivirus (RCL) was detected. Long-term analysis demonstrated that, although the cells are genetically stable, partial gene silencing occurs after 2-3 months in culture; however, the one-step construct integration allowed prolonged vector production before significant gene silencing. Concentrated vector resulted in 90% transduction in CD4+ lymphocytes at 20 TU per cell. CD34+ progenitor cells were transduced at 41-46% efficiency, and long-term initiating culture (LTC-IC) was transduced at 45-51%. CONCLUSIONS These results demonstrate for the first time HIV-1-based lentiviral vector production on the large scale using a packaging cell line.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Clone Cells
- Cloning, Molecular
- Codon
- Enzyme-Linked Immunosorbent Assay
- Fusion Proteins, gag-pol/chemistry
- Fusion Proteins, gag-pol/genetics
- Gene Expression Regulation/drug effects
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Genetic Engineering
- Genetic Vectors/biosynthesis
- Genetic Vectors/genetics
- HIV-1/genetics
- HeLa Cells
- Humans
- Kinetics
- Lentivirus/genetics
- Membrane Glycoproteins/metabolism
- Models, Genetic
- Molecular Sequence Data
- Plasmids
- Tetracycline/pharmacology
- Transduction, Genetic
- Transfection
- Viral Envelope Proteins/metabolism
- Virion/metabolism
- Virus Replication
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Yajin Ni
- VIRxSYS Corporation, Gaithersburg, Maryland 20877 [correction] USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lesnik EA, Sampath R, Ecker DJ. Rev response elements (RRE) in lentiviruses: an RNAMotif algorithm-based strategy for RRE prediction. Med Res Rev 2002; 22:617-36. [PMID: 12369091 DOI: 10.1002/med.10027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lentiviruses (a sub-family of the retroviridae family) include primate and non-primate viruses associated with chronic diseases of the immune system and the central nervous system. All lentiviruses encode a regulatory protein Rev that is essential for post-transcriptional transport of the unspliced and incompletely spliced viral mRNAs from nuclei to cytoplasm. The Rev protein acts via binding to an RNA structural element known as the Rev responsive element (RRE). The RRE location and structure and the mechanism of the Rev-RRE interaction in primate and non-primate lentiviruses have been analyzed and compared. Based on structural data available for RRE of HIV-1, a two step computational strategy for prediction of putative RRE regions in lentivirus genomes has been developed. First, the RNAMotif algorithm was used to search genomic sequence for highly structured regions (HSR). Then the program RNAstructure, version 3.6 was used to calculate the structure and thermodynamic stability of the region of approximately 350 nucleotides encompassing the HSR. Our strategy correctly predicted the locations of all previously reported lentivirus RREs. We were able also to predict the locations and structures of potential RREs in four additional lentiviruses.
Collapse
Affiliation(s)
- Elena A Lesnik
- IBIS Therapeutics, 2292 Faraday Ave, Carlsbad, California 92008, USA
| | | | | |
Collapse
|
17
|
Dirac AMG, Huthoff H, Kjems J, Berkhout B. Requirements for RNA heterodimerization of the human immunodeficiency virus type 1 (HIV-1) and HIV-2 genomes. J Gen Virol 2002; 83:2533-2542. [PMID: 12237437 DOI: 10.1099/0022-1317-83-10-2533] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviruses are prone to recombination because they package two copies of the RNA genome. Whereas recombination is a frequent event within the human immunodeficiency virus type 1 (HIV-1) and HIV-2 groups, no HIV-1/HIV-2 recombinants have been reported thus far. The possibility of forming HIV-1/HIV-2 RNA heterodimers was studied in vitro. In both viruses, the dimer initiation site (DIS) hairpin is used to form dimers, but these motifs appear too dissimilar to allow RNA heterodimer formation. Multiple mutations were introduced into the HIV-2 DIS element to gradually mimic the HIV-1 hairpin. First, the loop-exposed palindrome of HIV-1 was inserted. This self-complementary sequence motif forms the base pair interactions of the kissing-loop (KL) dimer complex, but such a modification is not sufficient to permit RNA heterodimer formation. Next, the HIV-2 DIS loop size was shortened from 11 to 9 nucleotides, as in the HIV-1 DIS motif. This modification also results in the presentation of the palindromes in the same position within the hairpin loop. The change yielded a modest level of RNA heterodimers, which was not significantly improved by additional sequence changes in the loop and top base pair. No isomerization of the KL dimer to the extended duplex dimer form was observed for the heterodimers. These combined results indicate that recombination between HIV-1 and HIV-2 is severely restricted at the level of RNA dimerization.
Collapse
Affiliation(s)
- Annette M G Dirac
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands2
- Department of Molecular and Structural Biology, Aarhus University, , Denmark1
| | - Hendrik Huthoff
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands2
| | - Jørgen Kjems
- Department of Molecular and Structural Biology, Aarhus University, , Denmark1
| | - Ben Berkhout
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands2
| |
Collapse
|
18
|
Zaiss AK, Son S, Chang LJ. RNA 3' readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J Virol 2002; 76:7209-19. [PMID: 12072520 PMCID: PMC136337 DOI: 10.1128/jvi.76.14.7209-7219.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of reporter genes driven by the same human elongation factor 1alpha (EF1alpha) promoter in murine leukemia virus (MLV)- and human immunodeficiency virus type 1 (HIV-1)-based vectors was studied in either transfected or virally transduced cells. The HIV-1 vectors consistently expressed 3 to 10 times higher activity than the MLV vectors at both the RNA and protein levels. The difference was not attributable to transcriptional interference, alternative enhancer/silencer, or differential EF1alpha intron splicing. Based on nuclear run-on assays, both vectors exhibited similar EF1alpha transcriptional activity. The reduced RNA levels of MLV vectors could not be explained by the decrease in RNA half-lives. Southern analysis of proviral DNA indicated that both HIV-1 and MLV vectors efficiently propagated the EF1alpha intron in the transduced cells. To decipher the discrepancy in transgene expression between MLV and HIV-1 vectors, the role of RNA 3'-end processing was examined using a sensitive Cre/lox reporter assay. The results showed that MLV vectors, but not HIV-1 vectors, displayed high frequencies of readthrough of the 3' polyadenylation signal. Interestingly, the polyadenylation signal of a self-inactivating (SIN) HIV-1 vector was as leaky as that of the MLV vectors, suggesting a potential risk of oncogene activation by the lentiviral SIN vectors. Together, our results suggest that an efficient polyadenylation signal would improve both the efficacy and the safety of these vectors.
Collapse
Affiliation(s)
- Anne-Kathrin Zaiss
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | |
Collapse
|
19
|
Mautino MR, Morgan RA. Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 2002; 16:11-26. [PMID: 11839215 DOI: 10.1089/108729102753429361] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of vectors based on primate lentiviruses for gene therapy of human immunodeficiency virus type 1 (HIV-1) infection has many potential advantages over the previous murine retroviral vectors used for delivery of genes that inhibit replication of HIV-1. First, lentiviral vectors have the ability to transduce dividing and nondividing cells that constitute the targets of HIV-1 infection such as resting T cells, dendritic cells, and macrophages. Lentiviral vectors can also transfer genes to hematopoietic stem cells with a superior gene transfer efficiency and without affecting the repopulating capacity of these cells. Second, these vectors could be potentially mobilized in vivo by the wild-type virus to secondary target cells, thus expanding the protection to previously untransduced cells. And finally, lentiviral vector backbones have the ability to block HIV-1 replication by several mechanisms that include sequestration of the regulatory proteins Tat and Rev, competition for packaging into virions, and by inhibition of reverse transcription in heterodimeric virions with possible generation of nonfunctional recombinants between the vector and viral genomes. The inhibitory ability of lentiviral vectors can be further increased by expression of anti-HIV-1 genes. In this case, the lentiviral vector packaging system has to be modified to become resistant to the anti-HIV-1 genes expressed by the vector in order to avoid self-inhibition of the vector packaging system during vector production. This review focuses on the use of lentiviral vectors as the main agents to mediate inhibition of HIV-1 replication and discusses the different genetic intervention strategies for gene therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
20
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
21
|
Sweitzer TD, Love DC, Hanover JA. Regulation of nuclear import and export. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:77-94. [PMID: 10842747 DOI: 10.1016/s0070-2137(01)80003-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- T D Sweitzer
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Favaro JP, Maldarelli F, Arrigo SJ, Schmidt MG. Effect of rev on the cytoplasmic localization of intron-containing human immunodeficiency virus type 1 RNA. Virology 1999; 255:237-49. [PMID: 10069949 DOI: 10.1006/viro.1998.9584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) proteins are expressed from both intron-containing and completely spliced RNAs. Rev, an HIV-1 regulatory protein, is necessary for the expression of intron-containing RNAs. The effect of Rev on the subcellular localization of intron-containing HIV-1 RNA was examined by in situ RNA hybridization. In the presence of Rev, intron-containing HIV-1 RNA accumulated at the nuclear membrane and within the cytoplasm of transfected cells. In the absence of Rev, intron-containing HIV-1 RNA accumulated within the nucleus. In approximately 20% of the cells transfected in the absence of Rev, intron-containing HIV-1 RNA was also found in the cytoplasm. Differences in the subcytoplasmic localization of intron-containing HIV-1 RNA in the presence and absence of Rev were not observed using in situ RNA hybridization. To determine the effect of Rev on RNA localization within the cytoplasm, an extensive fractionation protocol involving both hypotonic and detergent lysis was used. In the presence of Rev, 40.9 +/- 4.6% of the cytoplasmic intron-containing HIV-1 RNA was released by hypotonic lysis. A similar fractionation profile was seen for several other translated viral and cellular RNAs. However, in the absence of Rev, only 16.5 +/- 5.1% of the cytoplasmic intron-containing HIV-1 RNA was released on hypotonic lysis (P < 0. 005). Thus the cytoplasmic fractionation pattern of this RNA was altered in the absence of Rev.
Collapse
Affiliation(s)
- J P Favaro
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, 29425-2230, USA
| | | | | | | |
Collapse
|
23
|
Favaro JP, Borg KT, Arrigo SJ, Schmidt MG. Effect of Rev on the intranuclear localization of HIV-1 unspliced RNA. Virology 1998; 249:286-96. [PMID: 9791020 DOI: 10.1006/viro.1998.9312] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Rev is a 19-kDa regulatory protein which binds to unspliced and partially spliced HIV-1 RNAs. Export, splicing, stability, and translation of HIV-1 RNAs are influenced by Rev. To further understand the effect of Rev on HIV-1 RNA splicing, the intranuclear localization of unspliced HIV-1 RNA and a cellular splicing factor was examined in the presence and absence of Rev. Splicing component-35 (SC-35) is an essential SR protein splicing factor which localizes into 20-40 nuclear granules (Fu, X. D., and Maniatis, T. Nature 343 (6257), 437-441, 1990). Laser scanning confocal microscopy was utilized to examine the colocalization of unspliced HIV-1 RNA and SC-35-containing granules. In the presence of Rev, many of the SC-35-containing granules were colocalized on their edges or completely colocalized with HIV-1 unspliced RNA speckles. In the absence of Rev, however, little colocalization of the unspliced HIV-1 RNA speckles and the SC-35-containing granules was observed. Quantitative RT-PCR was utilized to examine the effect of Rev on the level of fully spliced HIV-1 RNA. In the presence of Rev, a decrease in the level of fully spliced HIV-1 RNA was observed. Thus both the intranuclear localization and posttranscriptional processing of HIV-1 unspliced RNA are affected by Rev.
Collapse
Affiliation(s)
- J P Favaro
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, 29425-2230, USA
| | | | | | | |
Collapse
|
24
|
Kaye JF, Lever AM. Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation. J Virol 1998; 72:5877-85. [PMID: 9621049 PMCID: PMC110391 DOI: 10.1128/jvi.72.7.5877-5885.1998] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of human immunodeficiency virus types 1 (HIV-1) and 2 (HIV-2) to cross-package each other's RNA was investigated by cotransfecting helper virus constructs with vectors derived from both viruses from which the gag and pol sequences had been removed. HIV-1 was able to package both HIV-1 and HIV-2 vector RNA. The unspliced HIV-1 vector RNA was packaged preferentially over spliced RNA; however, unspliced and spliced HIV-2 vector RNA were packaged in proportion to their cytoplasmic concentrations. The HIV-2 helper virus was unable to package the HIV-1 vector RNA, indicating a nonreciprocal RNA packaging relationship between these two lentiviruses. Chimeric proviruses based on HIV-2 were constructed to identify the regions of the HIV-1 Gag protein conferring RNA-packaging specificity for the HIV-1 packaging signal. Two chimeric viruses were constructed in which domains within the HIV-2 gag gene were replaced by the corresponding domains in HIV-1, and the ability of the chimeric proviruses to encapsidate an HIV-1-based vector was studied. Wild-type HIV-2 was unable to package the HIV-1-based vector; however, replacement of the HIV-2 nucleocapsid by that of HIV-1 generated a virus with normal protein processing which could package the HIV-1-based vector. The chimeric viruses retained the ability to package HIV-2 genomic RNA, providing further evidence for a lack of reciprocity in RNA-packaging ability between the HIV-1 and HIV-2 nucleocapsid proteins. Inclusion of the p2 domain of HIV-1 Gag in the chimera significantly enhanced packaging.
Collapse
Affiliation(s)
- J F Kaye
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom.
| | | |
Collapse
|
25
|
Abstract
The nuclear export of intron-containing HIV-1 RNA is critically dependent on the activity of Rev, a virally encoded sequence-specific RNA-binding protein. Rev shuttles between the nucleus and the cytoplasm and harbors both a nuclear localization signal and a nuclear export signal. These essential peptide motifs have now been shown to function by accessing cellular signal-mediated pathways for nuclear import and nuclear export. HIV-1 Rev therefore represents an excellent system with which to study aspects of transport across the nuclear envelope.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/analysis
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV Infections/therapy
- HIV-1/chemistry
- Humans
- Karyopherins
- Molecular Sequence Data
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear
- Trans-Activators
- rev Gene Products, Human Immunodeficiency Virus
- Exportin 1 Protein
Collapse
Affiliation(s)
- V W Pollard
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.
| | | |
Collapse
|
26
|
Zou L, Barr MC, Hoose WA, Avery RJ. Characterization of the transcription map and Rev activity of a highly cytopathic feline immunodeficiency virus. Virology 1997; 236:266-78. [PMID: 9325234 DOI: 10.1006/viro.1997.8753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly cytopathic feline immunodeficiency virus, FIV-Oma, was previously isolated from a nondomestic cat. In this report, we describe experiments to characterize its transcription map and examine its Rev activity. The temporal progression of viral gene expression is similar to that of HIV-1. The splicing pattern of viral transcripts was determined by sequence analysis of RT-PCR-amplified viral cDNAs. In vitro transcription and translation of two putative rev cDNAs revealed that they encode at least one 22-kDa protein. The Rev-responsive element (RRE) of FIV-Oma, identified by computer-assisted RNA secondary structure analysis, was inserted into the intron of an HIV-1-derived reporter plasmid and used in a transient transfection assay for Rev activity. Cotransfection of the RRE construct with the two rev cDNA clones significantly increased the expression of the reporter gene linked to the RRE, indicating that both transcripts encode an active Rev protein. The Rev activity of FIV-Oma is 5 to 8 times higher than that of a domestic cat FIV isolate, FIV-PPR. Our experiments also demonstrate the heterologous interaction of FIV-PPR Rev with the FIV-Oma RRE, even though the RREs of the two viruses have very little nucleotide sequence identity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cats
- Chromosome Mapping
- Cytopathogenic Effect, Viral/genetics
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Genes, rev
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/pathogenicity
- Molecular Sequence Data
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Protein Biosynthesis
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- L Zou
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
27
|
Chenciner N, Randrianarison-Jewtoukoff V, Delpeyroux F, Hanania N, Pedroza Martins L, Stratford Perricaudet L, Perricaudet M, Wain-Hobson S. Enhancement of humoral immunity to SIVenv following simultaneous inoculation of mice by three recombinant adenoviruses encoding SIVenv/poliovirus chimeras, Tat and Rev. AIDS Res Hum Retroviruses 1997; 13:801-6. [PMID: 9171225 DOI: 10.1089/aid.1997.13.801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A means of inducing gene expression by simultaneous infection with three recombinant adenoviruses (Ad) is described. The simian immunodeficiency virus (SIV) envelope-coding region was placed under the control of the human immunodeficiency virus type 1 (HIV-1) Tat and Rev proteins provided in trans by distinct Ad vectors (Ad-tat; Ad-rev). Coinfection of cells with the three recombinant adenoviruses led to induction of high levels of SIV env mRNA and protein synthesis, while inoculation of mice elicited anti-Env antibodies. Insertion of the poliovirus VP1 neutralization epitope (C3) in the V1 hypervariable region of SIV envelope not only proved to be highly immunogenic for the poliovirus epitope but also enhanced the kinetics of anti-SIV Env antibody production. By contrast, insertion in V4 elicited no anti-C3 response and only normal anti-Env responses.
Collapse
Affiliation(s)
- N Chenciner
- Unite de Retrovirologie Moleculaire, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Favaro JP, Arrigo SJ. Characterization of Rev function using subgenomic and genomic constructs in T and COS cells. Virology 1997; 228:29-38. [PMID: 9024807 DOI: 10.1006/viro.1996.8374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of the human immunodeficiency type 1 (HIV-1) Rev protein on the splicing and cytoplasmic accumulation of HIV-1 RNAs was investigated in COS and T cells. Subgenomic and genomic constructs were used which expressed varying levels of complexity in their potential RNA constituents. Using all constructs, in both cell types, an inhibitory effect of Rev on the level of fully spliced HIV-1 RNAs could be demonstrated. An increase in the nuclear level of unspliced pre-mRNA was seen in the presence of Rev with genomic constructs. Thus, the inhibitory effect on splicing was not merely due to enhancement of nuclear export of the pre-mRNA with these constructs. In both cell types, a positive effect of Rev on the cytoplasmic accumulation of HIV-1 RNAs could also be seen. However, in T cells, the Rev-dependent RNAs were still capable of accumulating at a reduced level in the cytoplasmic fraction in the absence of Rev. The identity of the cell type, construct, and RNA species impacted on the phenotypic manifestation of Rev function.
Collapse
Affiliation(s)
- J P Favaro
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425-2230, USA
| | | |
Collapse
|
29
|
Palmeri D, Malim MH. The human T-cell leukemia virus type 1 posttranscriptional trans-activator Rex contains a nuclear export signal. J Virol 1996; 70:6442-5. [PMID: 8709278 PMCID: PMC190676 DOI: 10.1128/jvi.70.9.6442-6445.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Rex protein of human T-cell leukemia virus type 1 is required for the nuclear export of unspliced viral mRNA and, therefore, for virus replication. In this manuscript, we demonstrate that Rex shuttles between the nucleus and the cytoplasm and that its activation domain constitutes a nuclear export signal that specifies efficient transport to the cytoplasm. These findings are consistent with a model for Rex-mediated trans-activation in which Rex-viral mRNA complexes are targeted for nuclear export by the direct action of the activation domain.
Collapse
Affiliation(s)
- D Palmeri
- Graduate Group in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
30
|
Meyer BE, Meinkoth JL, Malim MH. Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus Rev proteins: identification of a family of transferable nuclear export signals. J Virol 1996; 70:2350-9. [PMID: 8642662 PMCID: PMC190077 DOI: 10.1128/jvi.70.4.2350-2359.1996] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human immunodeficiency virus type 1 Rev trans activator binds directly to unspliced viral mRNA in the nucleus and activates its transport to the cytoplasm. In additon to the sequences that confer RNA binding and nuclear localization, Rev has a carboxy-terminal region, the activation domain, whose integrity is essential for biological activity. Because it has been established that Rev constitutively exits and reenters the nucleus and that the activation domain is required for nuclear exit, it has been proposed that Rev's activation domain is a nuclear export signal (NES). Here, we used microinjection-based assays to demonstrate that the activation domain of human immunodeficiency virus type 1 Rev imparts rapid nuclear export after its transfer to heterologous substrates. NES- mediated export is specific, as it is sensitive both to inactivation by missense mutation and to selective inhibition by an excess of the wild-type, but not mutant, activation domain peptide. Examination of the Rev trans activators of two nonprimate lentiviruses, visna virus and equine infectious anemia virus, revealed that their activation domains are also potent NESs. Taken together, these data demonstrate that nuclear export can be determined by positively acting peptide motifs, namely, NESs, and suggest that Rev proteins activate viral RNA transport by providing export ribonucleoproteins with specific information that targets them to the cytoplasm.
Collapse
Affiliation(s)
- B E Meyer
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | |
Collapse
|
31
|
Miura T, Shibata R, Adachi A, Kuwata T, Chen J, Jin M, Ido E, Hayami M. Genetic complementation between replication-defective mutants of HIV-1 and SIVagm. Arch Virol 1996; 141:31-41. [PMID: 8629949 DOI: 10.1007/bf01718586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the functional complementation of essential genes for virus growth between HIV-1 and SIVagm derived from African green monkeys, we co-transfected replication-defective molecular clones containing mutations in gag, pol, env, tat or rev, and monitored transient complementation by reverse transcriptase assay (RT), cytopathic effect (CPE) and immunofluorescence assay (IFA). The following results were obtained: 1) No complementation was observed in combinations of the gag and pol mutants. 2) The rev mutant of HIV-1 was minimally complemented by other SIVagm mutants, although the rev mutant of SIVagm was significantly complemented by other HIV-1 mutants. 3) Among all combinations tested, the env mutant of HIV-1 was the most effectively complemented by SIVagm mutants. 4) CPE was mostly absent in combinations of the env mutant of SIVagm and the gag, pol, or tat mutants of HIV-1, although there were significant positive results in RT and IFA assays. These findings provided basic information about the functional compatibility of pathogenic HIV-1 and nonpathogenic SIVagm which will be useful for generating chimeras of these two viruses.
Collapse
Affiliation(s)
- T Miura
- Research Center for Immunodeficiency Viruses, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Saïb A, Koken MH, van der Spek P, Périès J, de Thé H. Involvement of a spliced and defective human foamy virus in the establishment of chronic infection. J Virol 1995; 69:5261-8. [PMID: 7636968 PMCID: PMC189359 DOI: 10.1128/jvi.69.9.5261-5268.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human foamy retrovirus (HFV) is found as two proviruses (HFV and delta HFV) which differ by a splice-induced deletion within the bel1 transactivator gene. The defective delta HFV (which lacks a functional Bel1 but harbors an intronless bet gene) is predominantly found in nonlytic infections in vitro as well as in vivo. Here, we show that infection of cell lines stably transduced by delta HFV DNA with the highly lytic HFV leads to chronic infections characterized by an absence of lysis, a balanced ratio of HFV to delta HFV, and a persistent Bet expression accompanied by a shutoff of structural genes. While this system only partially reflects the natural situation, in which target cells are infected by HFV and delta HFV simultaneously, it strongly suggests that delta HFV is a defective interfering retrovirus. Accordingly, previous or concomitant exposure to delta HFV viruses greatly enhances the formation of lysis-resistant clones in culture after HFV infection. The inability of delta HFV proviruses encoding a mutated bet gene to induce chronic infection suggests a role for Bet in this process. Through a specific, splice-induced, genomic deletion, resulting in a switch from Bel1 to Bet expression, the lytic properties of HFV are progressively lost. Such programmed inactivation of a key gene represents a new regulatory mechanism of gene expression in retroviruses.
Collapse
Affiliation(s)
- A Saïb
- Centre National de la Recherche Scientifique UPR43, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Simon JH, Southerling TE, Peterson JC, Meyer BE, Malim MH. Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. J Virol 1995; 69:4166-72. [PMID: 7769676 PMCID: PMC189153 DOI: 10.1128/jvi.69.7.4166-4172.1995] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The productive infection of many susceptible human cells, including lymphocytes and macrophages derived from peripheral blood, by the pathogenic lentivirus human immunodeficiency virus type 1 requires expression of the virally encoded vif (for virion infectivity factor) gene. Interestingly, this gene appears to have been conserved among all of the lentiviruses of primates and almost all of the lentiviruses of nonprimates. Using T cells constitutively expressing vif genes derived from diverse sources and virus replication assays, we show that the vif gene of a second primate lentivirus, simian immunodeficiency virus from macaques, complements vif-defective human immunodeficiency virus type 1 but that those of three distinct nonprimate lentiviruses do not. Although the molecular basis for Vif function has yet to be defined, the potential implications of this noted restriction of vif complementarity are discussed.
Collapse
Affiliation(s)
- J H Simon
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | | | |
Collapse
|
34
|
Wu X, Liu H, Xiao H, Kim J, Seshaiah P, Natsoulis G, Boeke JD, Hahn BH, Kappes JC. Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx. J Virol 1995; 69:3389-98. [PMID: 7745685 PMCID: PMC189051 DOI: 10.1128/jvi.69.6.3389-3398.1995] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vpr and Vpx proteins are packaged into virions through virus type-specific interactions with the Gag polyprotein precursor. To examine whether HIV-1 Vpr (Vpr1) and HIV-2 Vpx (Vpx2) could be used to target foreign proteins to the HIV particle, their open reading frames were fused in frame with genes encoding the bacterial staphylococcal nuclease (SN), an enzymatically inactive mutant of SN (SN*), and chloramphenicol acetyltransferase (CAT). Transient expression in a T7-based vaccinia virus system demonstrated the synthesis of appropriately sized Vpr1-SN/SN* and Vpx2-SN/SN* fusion proteins which, when coexpressed with their cognate p55Gag protein, were efficiently incorporated into virus-like particles. Packaging of the fusion proteins was dependent on virus type-specific determinants, as previously seen with wild-type Vpr and Vpx proteins. Particle-associated Vpr1-SN and Vpx2-SN fusion proteins were enzymatically active, as determined by in vitro digestion of lambda phage DNA. To determine whether functional Vpr1 and Vpx2 fusion proteins could be targeted to HIV particles, the gene fusions were cloned into an HIV-2 long terminal repeat/Rev response element-regulated expression vector and cotransfected with wild-type HIV-1 and HIV-2 proviruses. Western blot (immunoblot) analysis of sucrose gradient-purified virions revealed that both Vpr1 and Vpx2 fusion proteins were efficiently packaged regardless of whether SN, SN*, or CAT was used as the C-terminal fusion partner. Moreover, the fusion proteins remained enzymatically active and were packaged in the presence of wild-type Vpr and Vpx proteins. Interestingly, virions also contained smaller proteins that reacted with antibodies specific for the accessory proteins as well as SN and CAT fusion partners. Since similar proteins were absent from Gag-derived virus-like particles and from virions propagated in the presence of an HIV protease inhibitor, they must represent cleavage products produced by the viral protease. Taken together, these results demonstrate that Vpr and Vpx can be used to target functional proteins, including potentially deleterious enzymes, to the human or simian immunodeficiency virus particle. These properties may be exploitable for studies of HIV particle assembly and maturation and for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- X Wu
- Department of Medicine, University of Alabama at Birmingham 35294
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Endres CL, Bergquam E, Axthelm MK, Wong SW. Assessing genetic-based therapies for AIDS using the simian immunodeficiency virus. J Med Primatol 1995; 24:141-4. [PMID: 8751053 DOI: 10.1111/j.1600-0684.1995.tb00159.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A plasmid encoding the full-length infectious molecular proviral clone of SIVmac239 was generated. Virus derived from cells transfected with this clone replicated to high levels and was cytopathic for some transformed human CD4+ cell lines and primary rhesus macaque peripheral blood mononuclear cells. Since replication of SIV requires the functional expression of the viral encoded rev protein, transient co-transfection studies were initiated with the infectious proviral clone and a well-characterized trans-dominant negative HIV-1 rev mutant.
Collapse
Affiliation(s)
- C L Endres
- Division of Pathobiology and Immunology, Oregon Regional Primate Research Center, Beaverton, USA
| | | | | | | |
Collapse
|
36
|
Furuta RA, Sakai H, Kawamura M, Tokunaga K, Hatanaka M, Adachi A. Functionality of chimeric Rev proteins of HIV/SIV. Virus Genes 1995; 11:11-14. [PMID: 8808329 DOI: 10.1007/bf01701656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Studies on functional compatibility of various Rev proteins derived from all known human and simian immunodeficiency virus subgroups have shown that this essential gene product is not always exchangeable among the viruses. In an attempt to map the region of Rev proteins responsible for the observed nonreciprocal complementation, hybrid genomic Rev expression vectors were constructed by exchanging the first and second exons of rev genes, and were examined for their abilities to activate reporter clones by transfection. With one exception, the second coding exon of rev gene determined the functional specificity of Rev proteins.
Collapse
Affiliation(s)
- R A Furuta
- Department of Viral Oncology, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Elder JH, Phillips TR. Feline immunodeficiency virus as a model for development of molecular approaches to intervention strategies against lentivirus infections. Adv Virus Res 1995; 45:225-47. [PMID: 7793326 DOI: 10.1016/s0065-3527(08)60062-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J H Elder
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
38
|
Hope T, Pomerantz RJ. The human immunodeficiency virus type 1 Rev protein: a pivotal protein in the viral life cycle. Curr Top Microbiol Immunol 1995; 193:91-105. [PMID: 7648880 DOI: 10.1007/978-3-642-78929-8_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Hope
- Salk Institute, Infectious Disease Laboratory, San Diego, CA 92138-5800, USA
| | | |
Collapse
|
39
|
|
40
|
Jeang KT, Gatignol A. Comparison of regulatory features among primate lentiviruses. Curr Top Microbiol Immunol 1994; 188:123-44. [PMID: 7924423 DOI: 10.1007/978-3-642-78536-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K T Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
41
|
Fridell RA, Partin KM, Carpenter S, Cullen BR. Identification of the activation domain of equine infectious anemia virus rev. J Virol 1993; 67:7317-23. [PMID: 8230455 PMCID: PMC238195 DOI: 10.1128/jvi.67.12.7317-7323.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several members of the lentivirus family of complex retroviruses have been shown to encode proteins that are functionally equivalent to the Rev posttranscriptional regulatory protein of human immunodeficiency virus type 1 (HIV-1). Furthermore, the domain organization of HIV-1 Rev, featuring a highly basic N-terminal RNA binding domain and a leucin-rich C-terminal effector domain, has also been shown to be highly conserved among Rev proteins derived from not only the primate but also the ovine and caprine lentiviruses. Although it has therefore appeared highly probable that the lentivirus equine infectious anemia virus (EIAV) also encodes a Rev, the predicted amino acid sequence of this putative EIAV regulatory protein does not display any evident homology to the basic and leucine-rich motifs characteristic of other known Rev proteins. By fusion of different segments of the proposed EIAV Rev protein to the well-defined RNA binding domain of either HIV-1 or visna virus Rev, we have identified a segment of this EIAV protein that can efficiently substitute in cis for the otherwise essential activation motif. Interestingly, the minimal EIAV Rev activation motif identified in this study comprises approximately 18 amino acids located toward the protein N terminus that lack any evident similarity to the leucine-rich activation domains found in these other lentivirus Rev proteins. It therefore appears that the Rev protein of EIAV, while analogous in function to Rev proteins defined in lentiviruses of primate, ovine, and caprine origin, is nevertheless distinguished by an entirely novel domain organization.
Collapse
Affiliation(s)
- R A Fridell
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
42
|
Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 1993. [PMID: 8105371 DOI: 10.1128/mcb.13.10.6180] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although a great deal is known about the regulation of gene expression in terms of transcription, relatively little is known about the modulation of pre-mRNA processing. In this study, we exploited a genetically regulated system, human immunodeficiency virus type 1 (HIV-1) and its trans-activator Rev, to examine events that occur between the synthesis of pre-mRNA in the nucleus and the translation of mRNA in the cytoplasm. Unlike the majority of eukaryotic pre-mRNAs whose introns are efficiently recognized and spliced prior to nucleocytoplasmic transport, HIV-1 mRNAs containing functional introns must be exported to the cytoplasm for the expression of many viral proteins. Using human T cells containing stably integrated proviruses, we demonstrate that such incompletely spliced viral mRNAs are exported to the cytoplasm only in the presence of the Rev trans-activator. In the absence of Rev, these intron-containing RNAs are sequestered in the T-cell nucleus and either spliced or, more commonly, degraded. Because Rev does not inhibit the expression of fully spliced viral mRNA species in T cells, we propose that Rev, rather than inhibiting viral pre-mRNA splicing, is acting here both to prevent the nuclear degradation of HIV-1 pre-mRNAs and to induce their translocation to the cytoplasm. Taken together, these findings indicate that the cellular factors responsible for the nuclear retention of unspliced pre-mRNAs, although most probably splicing factors, do not invariably commit these RNAs to productive splicing and can, instead, program such transcripts for degradation.
Collapse
|
43
|
Malim MH, Cullen BR. Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 1993; 13:6180-9. [PMID: 8105371 PMCID: PMC364677 DOI: 10.1128/mcb.13.10.6180-6189.1993] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although a great deal is known about the regulation of gene expression in terms of transcription, relatively little is known about the modulation of pre-mRNA processing. In this study, we exploited a genetically regulated system, human immunodeficiency virus type 1 (HIV-1) and its trans-activator Rev, to examine events that occur between the synthesis of pre-mRNA in the nucleus and the translation of mRNA in the cytoplasm. Unlike the majority of eukaryotic pre-mRNAs whose introns are efficiently recognized and spliced prior to nucleocytoplasmic transport, HIV-1 mRNAs containing functional introns must be exported to the cytoplasm for the expression of many viral proteins. Using human T cells containing stably integrated proviruses, we demonstrate that such incompletely spliced viral mRNAs are exported to the cytoplasm only in the presence of the Rev trans-activator. In the absence of Rev, these intron-containing RNAs are sequestered in the T-cell nucleus and either spliced or, more commonly, degraded. Because Rev does not inhibit the expression of fully spliced viral mRNA species in T cells, we propose that Rev, rather than inhibiting viral pre-mRNA splicing, is acting here both to prevent the nuclear degradation of HIV-1 pre-mRNAs and to induce their translocation to the cytoplasm. Taken together, these findings indicate that the cellular factors responsible for the nuclear retention of unspliced pre-mRNAs, although most probably splicing factors, do not invariably commit these RNAs to productive splicing and can, instead, program such transcripts for degradation.
Collapse
Affiliation(s)
- M H Malim
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | |
Collapse
|
44
|
Atwood WJ, Berger JR, Kaderman R, Tornatore CS, Major EO. Human immunodeficiency virus type 1 infection of the brain. Clin Microbiol Rev 1993; 6:339-66. [PMID: 8269391 PMCID: PMC358293 DOI: 10.1128/cmr.6.4.339] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Direct infection of the central nervous system by human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, was not appreciated in the early years of the AIDS epidemic. Neurological complications associated with AIDS were largely attributed to opportunistic infections that arose as a result of the immunocompromised state of the patient and to depression. In 1985, several groups succeeded in isolating HIV-1 directly from brain tissue. Also that year, the viral genome was completely sequenced, and HIV-1 was found to belong to a neurotropic subfamily of retrovirus known as the Lentivirinae. These findings clearly indicated that direct HIV-1 infection of the central nervous system played a role in the development of AIDS-related neurological disease. This review summarizes the clinical manifestations of HIV-1 infection of the central nervous system and the related neuropathology, the tropism of HIV-1 for specific cell types both within and outside of the nervous system, the possible mechanisms by which HIV-1 damages the nervous system, and the current strategies for diagnosis and treatment of HIV-1-associated neuropathology.
Collapse
Affiliation(s)
- W J Atwood
- Section on Molecular Virology and Genetics, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
45
|
Krohn KJ, Hakkarainen K, Aavik E, Dewhurst S, Sadaie R, Mullins JI. Transcomplementation of simian immunodeficiency virus Rev with human T-cell leukemia virus type I Rex. J Virol 1993; 67:5681-4. [PMID: 8350422 PMCID: PMC237976 DOI: 10.1128/jvi.67.9.5681-5684.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.
Collapse
Affiliation(s)
- K J Krohn
- Institute of Biomedical Sciences, University of Tampere, Finland
| | | | | | | | | | | |
Collapse
|
46
|
Sakai H, Sakuragi J, Sakuragi S, Kawamura M, Adachi A. Compatibility of Tat and Rev transactivators in the primate lentiviruses. Arch Virol 1993; 129:1-10. [PMID: 8385908 DOI: 10.1007/bf01316880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primate immunodeficiency viruses carry a unique set of transacting regulator genes, which are essential for viral replication. The exchangeability of these Tat and Rev transactivators derived from viruses of the four major subgroups identified to date was assessed in transient transfection and infection assay systems. The human immunodeficiency virus type 1 (HIV-1), a major causative virus of human AIDS, efficiently activated the other viruses. In contrast, the tat and rev gene products of HIV-2, SIVAGM (virus of the African green monkey), and SIVMND (virus of the mandrill) did not fully transactivate the HIV-1. In particular, the rev of HIV-1 was not substantially replaced by those of the other viruses. The result that HIV-1 is distinct from the other immunodeficiency viruses with respect to the compatibility of two transactivators gives a firm functional basis for the unique phylogenetic position of HIV-1.
Collapse
Affiliation(s)
- H Sakai
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
47
|
Abstract
A 50-nucleotide (nt) untranslated region (coding gap sequence) that interrupts the amino acid coding sequence in T4 gene 60, plus an additional 5 nt upstream and another 3 nt downstream from the gap sequence, shows unusual folding patterns according to RNA structure prediction. A predicted highly stable and significant hairpin structure in the 5' half of the gap sequence and a plausible tertiary structural element computed in the 3' part of the gap sequence seem significant by statistical tests on the wild-type (wt) sequence. This feature is absent in insertion, deletion and substitution variants of the gap sequence, in which template activities are markedly lower than that of the wt. The proposed feature is consistent with currently available data showing that the translational bypass of the coding gap is correlated with a stop codon involved in a stem-loop structure folded in the gap sequence. We suggest that the role of this segment in 'ribosomal bypass' of a portion of the mRNA sequence is a property of its special folded structure.
Collapse
Affiliation(s)
- Le Shu-Yun
- Laboratory of Mathematical Biology, Division of Cancer Biology and Diagnosis Centers, National Cancer Institute, NIH, Frederick, MD 21702, USA
- Correspondence to: Dr. S.-Y. Le, Laboratory of Mathematical Biol., DCBDC, NCI, NIH, Bldg. 469, Rm. 151, Frederick, MD 21702, USA. Tel. (301)846-5576; Fax (301)846-5598.
| | - Chen Jih-Hsiang
- Biomedical Supercomputing Center, Program Resources Inc., DynCorp, NCI/FCRDC, Frederick, MD 21702, USA. Tel. (301)846-5773
| | - Jacob V. Maizel
- Laboratory of Mathematical Biology, Division of Cancer Biology and Diagnosis Centers, National Cancer Institute, NIH, Frederick, MD 21702, USA
| |
Collapse
|
48
|
Parmentier HK, van Wichen DF, Meyling FH, Goudsmit J, Schuurman HJ. Epitopes of human immunodeficiency virus regulatory proteins tat, nef, and rev are expressed in normal human tissue. THE AMERICAN JOURNAL OF PATHOLOGY 1992; 141:1209-16. [PMID: 1279980 PMCID: PMC1886654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of regulatory proteins tat, rev, and nef of human immunodeficiency virus type-1 (HIV-1) and tat of HIV-2 was studied in frozen sections of lymph nodes from HIV-1-infected individuals, and various tissues from uninfected persons. In HIV-1-positive lymph nodes, monoclonal antibodies to HIV-1-tat stained solitary cells in the germinal centers and interfollicular zones, and vascular endothelium. Staining by an anti-nef monoclonal antibody was restricted to follicular dendritic cells, whereas anti-rev antibody bound to fibriohistiocytes and high endothelial venules. The antibodies used labeled several cell types in tissues from uninfected individuals. Anti-HIV-1-tat antibodies labeled blood vessels and Hassall's corpuscles in skin and thymus; goblet cells in intestinal tissue and trachea; neural cells in brain and spinal cord; and zymogen-producing cells in pancreas. Anti-rev antibody stained high endothelial venules, Hassall's corpuscles and histiocytes. One anti-nef antibody solely stained follicular dendritic cells in spleen, tonsil, lymph node and Peyer's patches, whereas two other anti-nef antibodies bound to astrocytes, solitary cells in the interfollicular zones of lymph nodes, and skin cells. The current results hamper the immunohistochemical study for pathogenetic and diagnostic use of HIV regulatory protein expression in infected tissue specimens or cells.
Collapse
Affiliation(s)
- H K Parmentier
- Department of Pathology, University Hospital, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Phillips TR, Lamont C, Konings DA, Shacklett BL, Hamson CA, Luciw PA, Elder JH. Identification of the Rev transactivation and Rev-responsive elements of feline immunodeficiency virus. J Virol 1992; 66:5464-71. [PMID: 1323707 PMCID: PMC289103 DOI: 10.1128/jvi.66.9.5464-5471.1992] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Spliced messages encoded by two distinct strains of feline immunodeficiency virus (FIV) were identified. Two of the cDNA clones represented mRNAs with bicistronic capacity. The first coding exon contained a short open reading frame (orf) of unknown function, designated orf 2. After a translational stop, this exon contained the L region of the env orf. The L region resides 5' to the predicted leader sequence of env. The second coding exon contained the H orf, which began 3' to env and extended into the U3 region of the long terminal repeat. The in-frame splicing of the L and H orfs created the FIV rev gene. Site-directed antibodies to the L orf recognized a 23-kDa protein in infected cells. Immunofluorescence studies localized Rev to the nucleoli of infected cells. The Rev-responsive element (RRE) of FIV was initially identified by computer analysis. Three independent isolates of FIV were searched in their entirety for regions with unusual RNA-folding properties. An unusual RNA-folding region was not found at the Su-TM junction but instead was located at the end of env. Minimal-energy foldings of this region revealed a structure that was highly conserved among the three isolates. Transient expression assays demonstrated that both the Rev and RRE components of FIV were necessary for efficient reporter gene expression. Cells stably transfected with rev-deleted proviruses produced virion-associated reverse transcriptase activity only when FIV Rev was supplied in trans. Thus, FIV is dependent on a fully functional Rev protein and an RRE for productive infection.
Collapse
Affiliation(s)
- T R Phillips
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Complex retroviruses are distinguished by their ability to control the expression of their gene products through the action of virally encoded regulatory proteins. These viral gene products modulate both the quantity and the quality of viral gene expression through regulation at both the transcriptional and posttranscriptional levels. The most intensely studied retroviral regulatory proteins, termed Tat and Rev, are encoded by the prototypic complex retrovirus human immunodeficiency virus type 1. However, considerable information also exists on regulatory proteins encoded by human T-cell leukemia virus type I, as well as several other human and animal complex retroviruses. In general, these data demonstrate that retrovirally encoded transcriptional trans-activators can exert a similar effect by several very different mechanisms. In contrast, posttranscriptional regulation of retroviral gene expression appears to occur via a single pathway that is probably dependent on the recruitment of a highly conserved cellular cofactor. These two shared regulatory pathways are proposed to be critical to the ability of complex retroviruses to establish chronic infections in the face of an ongoing host immune response.
Collapse
Affiliation(s)
- B R Cullen
- Howard Hughes Medical Institute, Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|