1
|
Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 2014; 103:2211-30. [PMID: 24985412 DOI: 10.1002/jps.24068] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/12/2022]
Abstract
Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications.
Collapse
Affiliation(s)
- Naeema Mayet
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, 2193, South Africa
| | | | | | | | | | | | | |
Collapse
|
2
|
Garlick JA, Elias J, Taichman LB. Histochemical Detection of a Gene Transferred by Retrovirus Vector in Cultured Human Keratinocytes. J Histotechnol 2013. [DOI: 10.1179/his.1992.15.4.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Transgenic expression of cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin prolongs xenogeneic skin graft survival without extensive immunosuppression in rat burn wounds. ACTA ACUST UNITED AC 2008; 65:154-62. [PMID: 18580521 DOI: 10.1097/ta.0b013e31812f6f74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND We sought to establish a transgenic animal line skin-specifically overexpressing cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) as a reproducible source of xenogeneic skin grafts with extended survival for wound coverage. We tested this strategy in mice based on a previously established transgenic mouse line that stably and skin-specifically expresses CTLA4Ig for lifetimes and generations. METHODS CTLA4Ig expression was examined by immunohistochemical assay, and its bio-activity was tested by mixed lymphocyte reaction. The survival of transgenic mouse skin grafted onto rat burn wounds was observed. The impact of transgenic skin grafting on recipient immunity was evaluated by inspecting the survival of the wild-type skin grafted along with transgenic skin onto a separate wound on the same rat. The circulatory CTLA4Ig protein in recipient was detected by sandwich enzyme-linked immunosorbent assay, and its impact on recipient lymphocyte response against donor antigen was tested by mixed lymphocyte reaction. RESULTS The transgenic CTLA4Ig protein suppressed lymphocyte proliferation in vitro, and the transgenic skin graft survival was remarkably prolonged compared with the wild-type skin derived from the same mouse strain. The survival of the wild-type skin grafted along with transgenic skin exhibited no significant difference from that grafted alone. Circulatory CTLA4Ig protein was detected in recipients, however, no significantly reduced recipient lymphocyte response against donor antigen was observed. CONCLUSION transgenic expression of CTLA4Ig may be a potential and safe method to prolong xenogenic skin graft survival in burn wounds, and transgenic animal lines can be established as a reproducible source of skin grafts with extended survival for wound coverage.
Collapse
|
4
|
Peroni CN, Cecchi CR, Rosauro CW, Nonogaki S, Boccardo E, Bartolini P. Secretion of mouse growth hormone by transduced primary human keratinocytes: prospects for an animal model of cutaneous gene therapy. J Gene Med 2008; 10:734-43. [PMID: 18389487 DOI: 10.1002/jgm.1196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Keratinocytes are a very attractive vehicle for ex vivo gene transfer and systemic delivery because proteins secreted by these cells may reach the circulation via a mechanism that mimics the natural process. METHODS An efficient retroviral vector (LXSN) encoding the mouse growth hormone gene (mGH) was used to transduce primary human keratinocytes. Organotypic raft cultures were prepared with these genetically modified keratinocytes and were grafted onto immunodeficient dwarf mice (lit/scid). RESULTS Transduced keratinocytes presented a high and stable in vitro secretion level of up to 11 microg mGH/10(6)cells/day. Conventional epidermal sheets made with these genetically modified keratinocytes, however, showed a drop in secretion rates of > 80% due to detachment of the epithelium from its substratum. Substitution of conventional grafting methodologies with organotypic raft cultures completely overcame this problem. The stable long-term grafting of such cultures onto lit/scid mice could be followed for more than 4 months, and a significant weight increase over the control group was observed in the first 40 days. Circulating mGH levels revealed a peak of 21 ng/ml just 1 h after grafting but, unfortunately, these levels rapidly fell to baseline values. CONCLUSIONS mGH-secreting primary human keratinocytes presented the highest in vitro expression and peak circulatory levels reported to date for a form of GH with this type of cells. Together with previous data showing that excised implants can recover a remarkable fraction of their original in vitro mGH secretion efficiency in culture, the factors that might still hamper the success of this promising model of cutaneous gene therapy are discussed.
Collapse
Affiliation(s)
- Cibele Nunes Peroni
- Biotechnology Department, National Nuclear Energy Commission (IPEN), Cidade Universitária, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Treatment of chronic wounds remains difficult, in spite of better understanding of pathophysiologic principles and greater adherence to recognized standards of care. Even with recent advances stemming from breakthroughs in recombinant growth factors and bioengineered skin, up to almost 50% of chronic wounds that have been present for more than a year remain resistant to treatment. Because of these realities, there is excitement in the use of stem cells to offset impaired healing. Early data appear encouraging, but much work remains to be done. Although pilot studies suggest that multipotent adult stem cells can accelerate wound repair or even reconstitute the wound bed, the answers will need to come from randomized clinical trials. Thus far, considerable focus has been placed on bone marrow-derived mesenchymal stem cells, and there are now promising approaches for introducing them into the wound. It might turn out, however, that other types of stem cells will be more effective, including those derived from hair follicles or, perhaps, subsets of bone marrow-derived cultured cells. Still, proper wound care and adherence to basic principles cannot be bypassed, even by the most sophisticated approaches.
Collapse
Affiliation(s)
- Jisun Cha
- Department of Dermatology, Roger Williams Medical Center Providence, RI 02908, USA
| | | |
Collapse
|
6
|
Bickenbach JR, Stern MM. Plasticity of epidermal stem cells: survival in various environments. ACTA ACUST UNITED AC 2007; 1:71-7. [PMID: 17132878 DOI: 10.1385/scr:1:1:071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The keratinocyte cell compartment in the continuously renewing epidermis of the skin is maintained by undifferentiated, self-renewing stem cells. We show that a small subpopulation of epidermal stem cells (EpiSCs) have the capacity to integrate into multiple tissues. These EpiSCs can change their phenotype in direct response of changes in cytokines in vitro, changes in cocultured cells, after injection into damaged environments in vivo. These changes appear to be unrelated to the age of the EpiSC. Even though we can isolate these cells and show that the age of thses cells appears to be irrelevant to this multipotent function, we still do not know how such cells are defined within a tissue or what the life span of a multipotent stem cell is.
Collapse
Affiliation(s)
- Jackie R Bickenbach
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
7
|
|
8
|
Bickenbach JR, Stern MM, Grinnell KL, Manuel A, Chinnathambi S. Epidermal stem cells have the potential to assist in healing damaged tissues. J Investig Dermatol Symp Proc 2006; 11:118-23. [PMID: 17069019 DOI: 10.1038/sj.jidsymp.5650009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homeostasis of continuously renewing tissues, such as the epidermis, is maintained by somatic undifferentiated, self-renewing stem cells, which are thought to persist throughout life. Through a series of labeling experiments, we previously showed that stem cells from mouse skin did not divide often, but they did divide at a steady rate in vivo. Using our recently redefined sorting method, we isolated epidermal stem and transit amplifying (TA) cells from mouse skin. When injected into a developing blastocyst or into damaged tissues, the stem cells, but not the TA cells, could participate in the formation of new tissues. We hypothesize that all tissues contain reserved undifferentiated stem cells that are primed to react if needed. These reserve stem cells could restore the tissue in which they reside or they could be called upon to help restore another tissue that was severely damage.
Collapse
Affiliation(s)
- Jackie R Bickenbach
- Department of Anatomy and Cell Biology, Caver College of Medicine, The University of Iowa, Iowa City, Iowa 52240, USA.
| | | | | | | | | |
Collapse
|
9
|
Kong DF, Goldschmidt-Clermont PJ. Tiny Solutions for Giant Cardiac Problems. Trends Cardiovasc Med 2005; 15:207-11. [PMID: 16182130 DOI: 10.1016/j.tcm.2005.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/17/2022]
Abstract
Health care nanotechnology research has "domesticated" molecular and cellular processes to serve our needs. This paper introduces current cardiovascular therapies for nanotechnologists unfamiliar with the field or current developments. Although early in its development, cell-based disease therapy capitalizes on existing biologic systems to implement nanoscale functionality. We propose that the most efficient development pathway for nanomedicine is to merge biomolecular and cellular techniques with the nanotechnology knowledge base.
Collapse
Affiliation(s)
- David F Kong
- Division of Cardiology, Department of Medicine and Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
10
|
Liang L, Chinnathambi S, Stern M, Tomanek-Chalkley A, Manuel TD, Bickenbach JR. As epidermal stem cells age they do not substantially change their characteristics. J Investig Dermatol Symp Proc 2004; 9:229-37. [PMID: 15369218 DOI: 10.1111/j.1087-0024.2004.09309.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
In this study, we ask the basic question: do stem cells age? We demonstrated that epidermal stem cells isolated from neonatal mice had the capacity to form multiple cell lineages during development. Here we demonstrate the cell lineages are clonal, and that epidermal stem cells isolated from the footpad epithelium of old mice have similar capabilities. Using Hoechst dye exclusion and cell size, we isolated viable homogenous populations of epidermal stem and transit-amplifying (TA) cells from GFP-transgenic mice, and injected these cells into 3.5-d blastocysts. Only the stem-injected blastocysts produced mice with GFP+ cells in their tissues. Furthermore, aged and young stem cells showed similar gene and protein expression profiles that showed some differences from the TA cell profiles. These data suggest that there may be a fundamental difference between somatic stem and TA cells, and that an epidermal stem cell placed in a developmental environment can alter its fate determination no matter what its age.
Collapse
Affiliation(s)
- Luchuan Liang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
11
|
Capt A, Spirito F, Guyon R, André C, Ortonne JP, Meneguzzi G. Cloning of laminin gamma2 cDNA and chromosome mapping of the genes for the dog adhesion ligand laminin 5. Biochem Biophys Res Commun 2003; 312:1256-65. [PMID: 14652009 DOI: 10.1016/j.bbrc.2003.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Overexpression of the gamma2 chain of laminin-5 has been linked to tumor invasion and an unfavorable prognostic value, but the role of this adhesion molecule in cancer progression remains unclear. Because dog models of human cancers provide the opportunity of clarifying the relation between laminin-5 and tumor malignancy we have isolated and characterized the cDNA of dog gamma2 chain. Comparative analysis of the nucleotide sequence revealed high identity between the dog and the human gamma2, including the intermolecular molecule binding sites and the regulatory promoter sequences. Moreover, expression of a recombinant human gamma2 chain in dog keratinocytes results in assembly and secretion of hybrid laminin-5 molecules, which underscore the functional relevance of the gamma2 conserved domains. We have also determined the syntenic location of the dog laminin-5 loci on CFA7. Our study provides a basis for therapeutical approaches of epithelial cancers of gamma2 using dogs as large animal models.
Collapse
|
12
|
Devin CJ, Lee YCG, Light RW, Lane KB. Pleural space as a site of ectopic gene delivery: transfection of pleural mesothelial cells with systemic distribution of gene product. Chest 2003; 123:202-8. [PMID: 12527623 DOI: 10.1378/chest.123.1.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES Successful ectopic gene therapy requires the transfection of the cells at the ectopic site, with local and systemic delivery of the gene product. This study aimed to evaluate the pleural mesothelial surface as a potential site for ectopic gene therapy. DESIGN A secreted placental alkaline phosphatase (PALP) plasmid was injected bilaterally into the pleural spaces of seven rabbits via a chest tube, while an irrelevant reporter plasmid was injected into seven control rabbits. Blood was collected at baseline and at 24, 48, and 72 h after the injections. Pleural fluid was collected by lavage at 24, 48, and 72 h after the injections. The PALP level was measured by chemiluminesence. MEASUREMENTS AND RESULTS Significant expressions of PALP proteins were observed in the serum of the treatment rabbits, with a threefold increase over baseline at 24 h, a ninefold increase at 48 h, and a twofold increase at 72 h. The serum PALP levels in the control rabbits remained at baseline levels at all time points. The pleural fluid PALP levels peaked at 24 h and decreased over the next 72 h. Mimicking the in vivo pattern, pleural mesothelial cells transfected in vitro demonstrated a similar increase in PALP levels. CONCLUSIONS The results of the present short-term pilot study suggest that pleural mesothelial cells can be successfully transfected with plasmids, with increases in both the local and systemic levels of the gene product. The pleural space should be further evaluated for ectopic gene therapy.
Collapse
Affiliation(s)
- Clinton J Devin
- Pulmonary and Critical Care Division, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
13
|
Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 2002; 20:21-31. [PMID: 11796919 DOI: 10.1634/stemcells.20-1-21] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that several types of somatic stem cells have the remarkable capacity to differentiate into other types of tissues. We demonstrate here that stem cells from the skin, the largest organ of the body, have the capacity to form multiple cell lineages during development. Using our recently developed sorting technique, we isolated viable homogeneous populations of somatic epidermal stem and transient amplifying cells from the skin of 3-day old transgenic mice, who carried the enhanced green fluorescent protein transgene, and injected stem, TA, or unsorted basal epidermal cells into 3.5-day C57BL/6 blastocysts. Only the stem-injected blastocysts produced mice with GFP(+) cells in their tissues. We found GFP(+) cells in ectodermal, mesenchymal, and neural-crest-derived tissues in E13.5 embryos, 13-day-old neonates, and 60-day-old adult mice, proving that epidermal stem cells survived the blastocyst injection and multiplied during development. Furthermore, the injected stem cells altered their epidermal phenotype and expressed the appropriate proteins for the tissues into which they developed, demonstrating that somatic epidermal stem cells have the ability to produce cells of different lineages during development. These data suggest that somatic epidermal stem cells may show a generalized plasticity expected only of embryonic stem cells and that environmental (extrinsic) factors may influence the lineage pathway for somatic stem cells. Thus, the skin could be a source of easily accessible stem cells that are able to be reprogrammed to form multiple cell lineages.
Collapse
Affiliation(s)
- Luchuan Liang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
14
|
Andree C, Voigt M, Wenger A, Erichsen T, Bittner K, Schaefer D, Walgenbach KJ, Borges J, Horch RE, Eriksson E, Stark GB. Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system. TISSUE ENGINEERING 2001; 7:757-66. [PMID: 11749732 DOI: 10.1089/107632701753337708] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have developed a matrix-mediated transfection system to deliver plasmids to human keratinocytes. The matrix is a soluble, self-hardening fibrin matrix (Tissucol), Baxter) that has been used clinically. Recently it has been shown that full thickness burn wounds can be successfully treated with a keratinocyte fibrin glue suspension. Further, it has been demonstrated that hEGF transfected cells accelerate wound healing. In this study, we inoculated the matrix with the hEGF expression plasmid and resuspended the matrix with either cultured or noncultured human keratinocytes. We obtained successful transfection rates of these cells (up to a 100-fold increase compared to controls containing no EGF expression plasmid) in vitro. After transplantation to full thickness wounds on athymic mice we were able to show a 180-fold increase in EGF concentration compared to controls, which persisted over the entire 7-day monitored period, decreasing from 180 to 20 pg/mL at day seven. This unique approach indicates the possible utility to combine a matrix for cell transplantation with a transfection system to release therapeutic proteins in vitro and in vivo.
Collapse
Affiliation(s)
- C Andree
- Department of Plastic Surgery, University Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dunnwald M, Tomanek-Chalkley A, Alexandrunas D, Fishbaugh J, Bickenbach JR. Isolating a pure population of epidermal stem cells for use in tissue engineering. Exp Dermatol 2001; 10:45-54. [PMID: 11168579 DOI: 10.1034/j.1600-0625.2001.100106.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Continuously renewing tissues, such as the epidermis, are maintained by stem cells that slowly proliferate and remain in the tissue for life. Although it has been known for decades that epithelial stem cells can be identified as label-retaining cells (LRCs) by long term retention of a nuclear label, isolating a pure population of stem cells has been problematic. Using a Hoechst and propidium iodide dye combination and specifically defined gating, we sorted mouse epidermal basal cells into three fractions, which we have now identified as stem, transient amplifying (TA), and non-proliferative basal cells. More than 90% of freshly isolated stem cells showed a G0/G1 cell cycle profile, while greater than 20% of the TA cells were actively dividing. Both stem and TA cells retained proliferative capacity, but the stem cells formed larger, more expandable colonies in culture. Both populations could be transduced with a retroviral vector and used to bioengineer an epidermis. However, only the epidermis from the stem cell population continued to grow and express the reporter gene for 6 months in organotypic culture. The epidermis from the transient amplifying cell fraction completely differentiated by 2 months. This novel sorting method yields pure viable epithelial stem cells that can be used to bioengineer a tissue and to test permanent recombinant gene expression.
Collapse
Affiliation(s)
- M Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
16
|
Bevan S, Martin R, Mckay IA. The production and applications of genetically modified skin cells. Biotechnol Genet Eng Rev 2000; 16:231-56. [PMID: 10819081 DOI: 10.1080/02648725.1999.10647977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S Bevan
- Blond McIndoe Centre, Queen Victoria Hospital, East Grinstead, West Sussex, UK
| | | | | |
Collapse
|
17
|
Wei MQ, Lejnieks DV, Ramesh N, Lau S, Seppen J, Osborne WR. Sustained gene expression in transplanted skin fibroblasts in rats. Gene Ther 1999; 6:840-4. [PMID: 10505109 DOI: 10.1038/sj.gt.3300878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retrovirus-mediated gene transfer into adult skin fibroblasts has provided measurable amounts of therapeutic proteins in animal models. However, the major problem emerging from these experiments was a limited time of vector encoded gene expression once transduced cells were engrafted. We hypothesized that sustained transduced gene expression in quiescent fibroblasts in vivo might be obtained by using a fibronectin (Fn) promoter. Fibronectin plays a key role in cell adhesion, migration and wound healing and is up-regulated in quiescent fibroblasts. Retroviral vectors containing human adenosine deaminase (ADA) cDNA linked to rat fibronectin promoter (LNFnA) or viral LTR promoter (LASN) were compared for their ability to express ADA from transduced primary rat skin fibroblasts in vivo. Skin grafts formed from fibroblasts transduced with LNFnA showed strong human ADA enzyme activity from 1 week to 3 months. In contrast, skin grafts containing LASN-transduced fibroblasts tested positive for human ADA for weeks 1 and 2, were faintly positive at week 3 and showed no human ADA expression at 1, 2 and 3 months. Thus, a fibronectin promoter provided sustained transduced gene expression at high levels for at least 3 months in transplanted rat skin fibroblasts, perhaps permitting the targeting of this tissue for human gene therapy.
Collapse
Affiliation(s)
- M Q Wei
- Department of Pediatrics, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
18
|
Terskikh VV, Vasiliev AV. Cultivation and transplantation of epidermal keratinocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 188:41-72. [PMID: 10208010 DOI: 10.1016/s0074-7696(08)61565-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transplantation of autologous cultured keratinocytes is the most advanced area of tissue engineering which has clinical application in restoration of skin lesions. In vitro, disaggregated keratinocytes undergo activation and after adhesion and histogenic aggregation form three-dimensional epithelial sheets suitable for grafting on prepared wounds that provide a reparative environment. Epidermal stem cells survive and proliferate in culture, retaining their potential to differentiate and to produce neoepidermis. Reconstructed skin is physiologically compatible to split-thickness autografts. Autotransplantation of cultured keratinocytes is a promising technique for gene therapy. In many cases allografting of cultured keratinocytes promotes wound healing by stimulation of epithelialization. Banking of cryopreserved keratinocytes is a significant improvement in usage of cultured keratinocytes for wound healing. Skin substitutes reconstructed in vitro that have morphological, biochemical, and functional features of the native tissue are of interest as model systems that enable extrapolation to situations in vivo.
Collapse
Affiliation(s)
- V V Terskikh
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
19
|
Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach J. Epithelial stem cells in the skin: definition, markers, localization and functions. Exp Dermatol 1999; 8:80-8. [PMID: 10206725 DOI: 10.1111/j.1600-0625.1999.tb00351.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, cutaneous epithelial stem cells have attained a genuine celebrity status. They are considered the key resource for epidermal and skin appendage regeneration, and are proposed as a preferential target of cutaneous gene therapy. Follicular epithelial stem cells may also give rise to a large variety of epithelial tumors, and cutaneous epithelial stem cells likely are crucial targets for physical or chemical agents (including carcinogens) that damage the skin and its appendages. However, as this Controversies feature illustrates, few experts can agree on how exactly to define and identify these elusive cells, or on where precisely in the skin they are localized. Given their potential importance in skin biology, pathology and future dermatological therapy, it is, therefore, timely to carefully reconsider the basic questions: What exactly is a stem cell, and how can we reliably identify epithelial stem cells? How many different kinds are there, and how do they differ functionally? Where exactly in the skin epithelium is each of the putative stem cell subpopulations located, and can we selectively manipulate any of them?
Collapse
Affiliation(s)
- G Cotsarelis
- M8 Stellar-Chance Laboratories, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
20
|
Pellegrini G, Bondanza S, Guerra L, De Luca M. Cultivation of human keratinocyte stem cells: current and future clinical applications. Med Biol Eng Comput 1998; 36:778-90. [PMID: 10367472 DOI: 10.1007/bf02518885] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cultured human keratinocytes have a wide spectrum of clinical applications. Clinical results reported by several investigators are, however, contradictory. In this review, the authors discuss the biological and surgical issues which play a key role in the clinical outcome of cultured epidermal autografts used for the treatment of massive full-thickness burns. The importance of cultivation of epidermal stem cells and of their transplantation onto a wound bed prepared with donor dermis is emphasised. The paper also reviews recent data showing that: (i) cultured epidermal autografts bearing melanocytes can be used for the treatment of stable vitiligo; (ii) keratinocytes isolated from other lining epithelia, such as oral, urethral and corneal epithelia, can be cultivated and grafted onto patients suffering from disabling epithelial defects; (iii) keratinocyte stem cells can be stably transduced with retroviral vectors and are therefore attractive targets for the gene therapy of genodermatoses.
Collapse
Affiliation(s)
- G Pellegrini
- Laboratory of Tissue Engineering, I.D.C.-IRCCS, Istituto Dermopatico dell'Immacolata, Pomezia, Roma, Italy.
| | | | | | | |
Collapse
|
21
|
Abstract
Continuously renewing epithelia contain small undifferentiated stem cells capable of self-renewal and maintenance of the differentiating cell population. In murine epidermis stem cells have been identified as label-retaining cells (LRCs) by long-term retention of tritiated thymidine or BrdU. It has been suggested that epidermal stem cells adhere to basement membranes through differential expression of specific integrins. To determine whether we could use a specific integrin to enrich for murine epidermal stem cells, we tested adherence of LRCs to several substrates. Regardless of the substrate used, approximately 10% of total basal cells and 100% of LRCs adhered in 10 min. In our medium specifically formulated for murine keratinocytes, rapidly adherent stem cells formed large colonies and could be used to form a structurally complete epidermis in organotypic culture. They showed a fivefold greater transient transfection efficiency than total basal cells, and when individual adherent cells were transduced with a retroviral vector, they formed large clones. Although these stem cells grew more slowly than the total basal cell population, they could be subcultured more times. Our results indicate that murine epidermal stem cells can be selected by rapid attachment to a substrate, but not by one specific integrin, and that they can be expanded in culture if the appropriate conditions are maintained.
Collapse
Affiliation(s)
- J R Bickenbach
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, 52242-1109, USA.
| | | |
Collapse
|
22
|
White SJ, Page SM, Margaritis P, Brownlee GG. Long-term expression of human clotting factor IX from retrovirally transduced primary human keratinocytes in vivo. Hum Gene Ther 1998; 9:1187-95. [PMID: 9625258 DOI: 10.1089/hum.1998.9.8-1187] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A persistent obstacle that has hampered gene transfer experiments is the short-term nature of transgene expression in vivo. In this article we present evidence for sustained expression from primary human keratinocytes, using the retroviral vector MFG. Primary keratinocytes were transduced in culture with the MFG retroviral vector containing the coding region from factor IX cDNA. Transduced keratinocytes, which secreted on average 830 ng of factor IX/10(6) cells/24 hr in tissue culture, were used to form a bilayered skin equivalent and grafted onto nude mice under a silicone transplantation chamber. Between 0.1 and 2.75 ng of human factor IX per milliliter was found in mouse plasma for more than 1 year, suggesting that keratinocyte stem cells were both transduced and grafted. The results show, for the first time, that long-term expression is obtainable in retrovirally transduced keratinocytes after transplantation.
Collapse
Affiliation(s)
- S J White
- Chemical Pathology Unit, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
23
|
Mackenzie IC. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J Invest Dermatol 1997; 109:377-83. [PMID: 9284108 DOI: 10.1111/1523-1747.ep12336255] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been suggested that the number and position of epidermal stem cells are related to the units of columnar structure in the upper epidermal strata and that the cells of each unit are derived from a single stem cell. Studies of cell lineage in developing tissues have been facilitated by the use of retroviral transduction to provide inherited expression of a histochemically demonstrable foreign gene product. To provide direct evidence about the clonal nature of epidermal units, murine epidermal keratinocytes were transduced with a replication-deficient retroviral vector carrying the beta-galactosidase gene. Subepidermal injection of virus in vivo led to infrequent transduction with only transient presence of beta-gal-staining keratinocytes within the epidermis. Transduction of keratinocytes in vitro and transplantation back to in vivo sites permitted demonstration of the transduced gene in clusters of cells within the reformed epidermis throughout a 12-wk period. The epidermis redeveloped an ordered columnar structure with restriction of transduced cells to individual columnar units. This clonal appearance is compatible with derivation of each epidermal unit from a single stem cell but is not compatible with a random pattern of cell proliferation. Transduced epidermal sheets that were recombined with oral mucosal connective tissue also redeveloped normal columnar structure with restriction of beta-gal staining to individual columnar units. These data suggest that the establishment of an epidermal stem cell pattern related to units of structure is an intrinsic property of the epithelium and is not dependent on regionally-specific connective tissue influences.
Collapse
Affiliation(s)
- I C Mackenzie
- School of Dentistry, University of Michigan, Ann Arbor 48109-1078, U.S.A
| |
Collapse
|
24
|
Abstract
We are investigating whether skin-targeted gene therapy may be used to treat hemophilia B by transplanting keratinocytes transduced by factor IX-expressing retroviral vectors. No pre-clinical animal model for keratinocyte-mediated gene therapy has shown long-term efficacy in vivo. It remains unclear whether this short-term expression is due to promoter shut-off or a reduced survival of grafted genetically modified cells. The purpose of this study was to determine the fate of primary human keratinocytes superficially grafted to nude mice in a silicone transplantation chamber. In addition, vectors containing keratinocyte-specific enhancers from the human papilloma virus-16 (HPV-16) and human keratin 5 and 14 genes were used upstream of the cytomegaloviral (CMV) immediate-early promoter/enhancer to control factor IX cDNA expression to avoid promoter shut-off. Factor IX was secreted by cultured keratinocytes after transduction by each of these chimeric promoter/enhancer vectors, although the levels varied according to the particular construct used. Keratinocytes transduced by the vector containing the HPV-16 enhancer were grafted into nude mice, and human factor IX was detected in plasma at 0.02-9 ng per ml for 4-5 wk for the duration of graft survival. The HPV-16 enhancer may be a useful addition to expression vectors for keratinocyte gene therapy. The transplantation chamber can be adapted to grafting retrovirally transduced keratinocytes for gene transfer studies.
Collapse
Affiliation(s)
- S M Page
- Sir William Dunn School of Pathology, University of Oxford, U.K
| | | |
Collapse
|
25
|
Choate KA, Khavari PA. Sustainability of keratinocyte gene transfer and cell survival in vivo. Hum Gene Ther 1997; 8:895-901. [PMID: 9195211 DOI: 10.1089/hum.1997.8.8-895] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The epidermis is an attractive site for therapeutic gene delivery because it is accessible and capable of delivering polypeptides to the systemic circulation. A number of difficulties, however, have emerged in attempts at cutaneous gene delivery, and central among these is an inability to sustain therapeutic gene production. We have examined two major potential contributing factors, viral vector stamina and involvement of long-lived epidermal progenitor cells. Human keratinocytes were either untreated or transduced with a retroviral vector for beta-galactosidase (beta-Gal) at > 99% efficiency and then grafted onto immunodeficient mice to regenerate human epidermis. Human epidermis was monitored in vivo after grafting for clinical and histologic appearance as well as for gene expression. Although integrated vector sequences persisted unchanged in engineered epidermis at 10 weeks post-grafting, retroviral long terminal repeat (LTR)-driven beta-Gal expression ceased in vivo after approximately 4 weeks. Endogenous cellular promoters, however, maintained consistently normal gene expression levels without evidence of time-dependent decline, as determined by immunostaining with species-specific antibodies for human involucrin, filaggrin, keratinocyte transglutaminase, keratin 10, type VII collagen, and Laminin 5 proteins out to week 14 post-grafting. Transduced human keratinocytes generated multilayer epidermis sustained through multiple epidermal turnover cycles; this epidermis demonstrated retention of a spatially appropriate pattern of basal and suprabasal epidermal marker gene expression. These results confirm previous findings suggesting that viral promoter-driven gene expression is not durable and demonstrate that keratinocytes passaged in vitro can regenerate and sustain normal epidermis for prolonged periods.
Collapse
Affiliation(s)
- K A Choate
- Dermatology Service, VA Palo Alto Health Care System, CA 94304, USA
| | | |
Collapse
|
26
|
Wang X, Zinkel S, Polonsky K, Fuchs E. Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci U S A 1997; 94:219-26. [PMID: 8990189 PMCID: PMC19291 DOI: 10.1073/pnas.94.1.219] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/1996] [Indexed: 02/03/2023] Open
Abstract
Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at approximately 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.
Collapse
Affiliation(s)
- X Wang
- Howard Hughes Medical Institute, Department of Molecular Genetics, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
27
|
Hwang JJ, Scuric Z, Anderson WF. Novel retroviral vector transferring a suicide gene and a selectable marker gene with enhanced gene expression by using a tetracycline-responsive expression system. J Virol 1996; 70:8138-41. [PMID: 8892941 PMCID: PMC190890 DOI: 10.1128/jvi.70.11.8138-8141.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A retroviral vector for the enhanced expression of the herpes simplex virus thymidine kinase (HSV tk) gene was developed by using a tetracycline-responsive expression system (TRES). The two components of the TRES, the chimeric transactivator (tTA) and the corresponding tTA-binding cis element (tetO), were both incorporated into a retroviral vector and resulted in high levels of tk gene expression from tetO in target cells. Amphotropic virus supernatants from stable producer cells, generated by the retroviral vector containing the TRES, gave titers of 10(4) to 10(5) G418-resistant CFU/ml on murine NIH 3T3 cells. The retroviral vector (G1tTA-[tetOTkINa]R), in which tetO was used in the opposite orientation relative to viral transcription, was capable of transducing tk and neo genes into murine NIH 3T3 cells to yield a high level of tk gene expression. TK enzyme activity in NIH 3T3 cells transduced by this vector was 417-fold higher than in control cells. This increased TK activity was returned to basal levels in the presence of tetracycline. The level of tk gene expression driven by tetO from G1tTA-[tetOTkINa]R vector in NIH 3T3 cells was fourfold higher at both the mRNA level and the TK enzyme level than that produced by the long terminal repeat of G1Tk1SvNa, the vector being used in the ongoing brain tumor gene therapy trial. Retroviral vectors containing the TRES may be useful therefore in achieving higher levels of tk gene expression, which should facilitate gene therapy approaches in the treatment of cancer.
Collapse
Affiliation(s)
- J J Hwang
- Gene Therapy Laboratories, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | |
Collapse
|
28
|
Mathor MB, Ferrari G, Dellambra E, Cilli M, Mavilio F, Cancedda R, De Luca M. Clonal analysis of stably transduced human epidermal stem cells in culture. Proc Natl Acad Sci U S A 1996; 93:10371-6. [PMID: 8816807 PMCID: PMC38391 DOI: 10.1073/pnas.93.19.10371] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have transduced normal human keratinocytes with retroviral constructs expressing a bacterial beta-galactosidase (beta-gal) gene or a human interleukin-6 (hIL-6) cDNA under control of a long terminal repeat. Efficiency of gene transfer averaged approximately 50% and 95% of clonogenic keratinocytes for beta-gal and hIL-6, respectively. Both genes were stably integrated and expressed for more than 150 generations. Clonal analysis showed that both holoclones and their transient amplifying progeny expressed the transgene permanently. Southern blot analysis on isolated clones showed that many keratinocyte stem cells integrated multiple proviral copies in their genome and that the synthesis of the exogenous gene product in vitro was proportional to the number of proviral integrations. When cohesive epidermal sheets prepared from stem cells transduced with hIL-6 were grafted on athymic animals, the serum levels of hIL-6 were strictly proportional to the rate of secretion in vitro and therefore to the number of proviral integrations. The possibility of specifying the level of transgene expression and its permanence in a homogeneous clone of stem cell origin opens new perspectives in the long-term treatment of genetic disorders.
Collapse
Affiliation(s)
- M B Mathor
- Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Garlick JA, Fenjves ES. Keratinocyte gene transfer and gene therapy. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1996; 7:204-21. [PMID: 8909878 DOI: 10.1177/10454411960070030101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gene therapy has moved beyond the pre-clinical stage to the treatment of a variety of inherited and acquired diseases. For such therapy to be successful, genes must be efficiently delivered to target cells and gene products must be expressed for prolonged periods of time without toxic effects to the host. This may be achieved by means of an in vivo strategy where genes are transferred directly into a host cell, or by means of an ex vivo approach through which cells are removed, cultured, targeted for gene delivery, and grafted back to the host. Several obstacles continue to delay safe and effective clinical application of gene therapy in a variety of target cells. The limited survival of transplanted cells, transient expression of transferred genes, and difficulties in targeting stem cells are technical issues requiring further investigation. Epidermal and oral keratinocytes are potential vehicles for gene therapy. Several features of these tissues can be utilized to achieve delivery of therapeutic gene products for local or systemic delivery. These qualities include: (1) the presence of stem cells; (2) the cell-, strata-, and site-specific regulation of keratinocyte gene expression; (3) tissue accessibility; and (4) secretory capacity. Such features can be exploited by the use of gene therapy strategies to facilitate: (1) identification, enrichment, and targeting of stem cells to ensure the continued presence of the transferred gene; (2) high-level and persistent transgene expression using keratinocyte-specific promoters; (3) tissue access needed for culture and grafting for ex vivo therapy and direct in vivo gene transfer; (4) secretion of transgene product for local or systemic delivery; and (5) monitoring of genetically modified tissue and removal if treatment termination is required. Optimal gene therapy strategies are being tested in a variety of tissues to treat dominant and recessive genetic disorders as well as acquired diseases such as neoplasia and infectious disease. This experience provides a basis for the application of such clinical studies to a spectrum of diseases effecting epidermal and oral keratinocytes. Gene therapy is in an early stage yet holds great promise for its ultimate clinical application.
Collapse
Affiliation(s)
- J A Garlick
- Department of Oral Biology and Pathology, State University of New York at Stony Brook 11794-8702, USA
| | | |
Collapse
|
30
|
Fenjves ES, Yao SN, Kurachi K, Taichman LB. Loss of expression of a retrovirus-transduced gene in human keratinocytes. J Invest Dermatol 1996; 106:576-8. [PMID: 8648197 DOI: 10.1111/1523-1747.ep12344976] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Retroviral-mediated transfer of new genetic information into keratinocytes is a key step in epidermal gene therapy. An obstacle to the use of retroviruses for gene therapy is that although high levels of expression of the transduced gene can be maintained in tissue culture, expression is often lost when the cells are transplanted to an animal host. To examine some of the factors involved in this instability of expression, we transduced keratinocytes with a retrovirus encoding the gene for human factor IX and monitored secretion of the transduced gene. We observed continued secretion of factor IX through five passages in culture. When, however, sheets of these cells were grafted to athymic mice, factor IX expression was reduced or lost within 6 wk. We show that the reduction of factor IX expression in grafted keratinocytes did not result from a loss of grafted cells, nor was there a block to systemic delivery of a secreted endogenous product.
Collapse
Affiliation(s)
- E S Fenjves
- Department of Oral Biology, School of Dental Medicine, State University of New York at Stony Brook, 11794-8702, U.S.A
| | | | | | | |
Collapse
|
31
|
Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet 1995; 10:161-6. [PMID: 7545056 DOI: 10.1038/ng0695-161] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The epidermis is readily accessible for genetic manipulation and is easily monitored. Using pig skin because it is very similar to human skin morphologically, we have developed a method to transiently express biologically active factors in epidermis. Following direct injection of naked plasmid DNA into skin, DNA is taken up and transiently expressed at high levels by epidermal keratinocytes. Injection of interleukin-8 plasmid DNA into skin results in the appropriate biological response of neutrophil recruitment, demonstrating functional utility. In addition to this model's therapeutic uses, the biological effects of structural gene products on the epidermis could also be studied in vivo.
Collapse
Affiliation(s)
- U R Hengge
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Andree C, Swain WF, Page CP, Macklin MD, Slama J, Hatzis D, Eriksson E. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci U S A 1994; 91:12188-92. [PMID: 7991604 PMCID: PMC45402 DOI: 10.1073/pnas.91.25.12188] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This report details the transfer of a human epidermal growth factor (hEGF) expression plasmid to porcine partial-thickness wound keratinocytes by particle-mediated DNA transfer (Accell). After gene transfer an external sealed fluid-filled wound chamber was used to protect the wound, provide containment of the exogenous DNA and expressed peptide, and permit sampling of the wound fluid. Analysis of wound fluid for hEGF and total protein, an indicator of reformation of the epithelial barrier, showed that wounds bombarded with the hEGF plasmid exhibited a 190-fold increase in EGF concentration and healed 20% (2.1 days) earlier than the controls. EGF concentrations in wound fluid persisted over the entire 10-day monitored period, decreasing from 200 pg/ml to 25 pg/ml over the first 5 days. Polymerase chain reaction results showed that plasmid DNA was present in the wound for at least 30 days. These findings demonstrate the possible utility of in vivo gene transfer to enhance epidermal repair.
Collapse
Affiliation(s)
- C Andree
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The introduction and expression of exogenous genetic material in cultured cells has provided a powerful tool for studying gene function and regulation. Immortalized cell lines have been useful for establishing gene transfer methodologies that are generally inefficient. For investigators of epidermal and mucosal biology, wishing to make use of the tissue architecture produced by primary keratinocytes in vitro, the limited life span of these cells presents a host of unique problems. Primary cells require the use of gene transfer methods that are highly efficient and will not significantly alter the cell's normal differentiation pathway. The purpose of this review is to evaluate gene transfer technology as it applies to keratinocytes.
Collapse
Affiliation(s)
- E S Fenjves
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York, Stony Brook 11794-8702
| |
Collapse
|
34
|
Abstract
Important advances have been made within the past several years in understanding diseases at the molecular and cellular levels, which may enable the application of somatic gene therapy to a wide variety of genetic and acquired diseases. The initial clinical trials involving somatic gene therapy have demonstrated that gene transfer into human subjects can be performed safely and with public acceptance. This review focuses on use of the epidermis as a target tissue for gene therapy and assesses various delivery systems for both ex vivo and in vivo approaches. In addition, we discuss candidate diseases that may be amenable to epidermal gene therapy and the advantages of employing transgenic mouse model systems to test the efficacy of a given gene therapy prior to clinical trials.
Collapse
Affiliation(s)
- D A Greenhalgh
- Department of Cell Biology and Dermatology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
35
|
Fenjves ES, Smith J, Zaradic S, Taichman LB. Systemic delivery of secreted protein by grafts of epidermal keratinocytes: prospects for keratinocyte gene therapy. Hum Gene Ther 1994; 5:1241-8. [PMID: 7849096 DOI: 10.1089/hum.1994.5.10-1241] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Grafts of autologous keratinocytes genetically altered to secrete a new gene product are a potential vehicle for gene therapy. To consider the feasibility of such an approach, we have examined the ability of keratinocytes to secrete and deliver apolipoprotein E (apoE) to the circulation of mice bearing grafts of human keratinocytes. The grafted keratinocytes secreted two forms of apoE, an endogenous apoE encoded in the genome and a recombinant apoE encoded in a transfected gene construct. In vitro studies showed that endogenous apoE was secreted from basal keratinocytes whereas recombinant apoE was secreted from basal as well as suprabasal cells. On the basis of amounts of recombinant apoE present in the serum of grafted mice, we estimate that a graft occupying 2% of the surface area of an adult human would deliver 6.5-8.3 mg of recombinant apoE protein per day.
Collapse
Affiliation(s)
- E S Fenjves
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York, Stony Brook 11794-8702
| | | | | | | |
Collapse
|
36
|
Staedel C, Remy JS, Hua Z, Broker TR, Chow LT, Behr JP. High-efficiency transfection of primary human keratinocytes with positively charged lipopolyamine:DNA complexes. J Invest Dermatol 1994; 102:768-72. [PMID: 8176262 DOI: 10.1111/1523-1747.ep12377673] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability to introduce DNA into mammalian cells has provided a powerful means to examine the regulation of gene expression and the function of gene products. However, the most commonly used techniques for DNA transfection are not always suitable for primary cells. Primary human keratinocytes are particularly stringent in their growth requirements and are also very refractory to transfection, rendering transient gene expression studies difficult. We have investigated the ability of several polycationic lipids to promote DNA uptake into human epidermal keratinocytes, as monitored with the bacterial beta-galactosidase reporter gene. We report that the cationic lipopolyamine dipalmitoyl phosphatidylethanolamine spermine as well as another procedure using Polybrene can achieve a 20% to 30% transfection efficiency, superior to any other agent tested on these cells. Gene transfer was accomplished by a 3-h exposure of monolayer cells to DNA complexes formed with either reagent by simple mixing in a serum-free medium, followed by a brief osmotic shock with glycerol. Neither DNA carrier showed any toxicity at the effective concentrations nor interfered with cell attachment, growth or differentiation. The use of a fully biodegradable lipopolyamine as DNA carrier should make it possible to extend this transfection method to gene transfer for in vivo therapeutic applications.
Collapse
Affiliation(s)
- C Staedel
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York
| | | | | | | | | | | |
Collapse
|
37
|
Setoguchi Y, Jaffe HA, Danel C, Crystal RG. Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors. J Invest Dermatol 1994; 102:415-21. [PMID: 8151119 DOI: 10.1111/1523-1747.ep12372181] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The skin has the potential for a variety of gene therapy applications. In addition to local delivery, it is the largest organ of the body, and highly vascular, and thus is an ideal site for systemic delivery of gene products. To evaluate the potential for adenovirus-mediated skin gene transfer, the replication-deficient recombinant adenovirus vectors Ad.RSV beta gal (coding for Escherichia coli beta-galactosidase) and Ad alpha 1AT (coding for human alpha 1-antitrypsin) were used in both ex vivo and in vivo approaches. Following in vitro infection with Ad.RSV beta gal, murine keratinocytes expressed beta-galactosidase. Parallel in vitro studies with Ad alpha 1AT documented de novo synthesis and secretion of human alpha 1AT as shown by [35S]methionine labeling and immunoprecipitation. Quantification of human alpha 1AT in the culture supernatants demonstrated 0.1-0.3 microgram human alpha 1AT secreted/ml-24 h. Evaluation of the serum of mice receiving transplants (10(5) cells/mouse) of Ad alpha 1AT-infected syngeneic keratinocytes demonstrated human alpha 1AT for at least 14 d with maximum levels of 41 ng/ml. To demonstrate the feasibility of direct adenovirus-mediated in vivo transfer of genes to the skin, Ad.RSV beta gal or Ad alpha 1AT were administered subcutaneously to mice. Histologic evaluation after 4 d demonstrated expression of beta-galactosidase in various types of skin cells. Quantification of human alpha 1AT in serum of animals infected subcutaneously with Ad alpha 1AT showed levels of 53 ng/ml at day 4, with human alpha 1AT detectable for at least 14 d. These observations support the feasibility of ex vivo and in vivo gene transfer to the skin mediated by replication-deficient adenovirus vectors.
Collapse
Affiliation(s)
- Y Setoguchi
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
38
|
Wiestler OD, Brüstle O, Eibl RH, Radner H, Aguzzi A, Kleihues P. Oncogene transfer into the brain. Recent Results Cancer Res 1994; 135:55-66. [PMID: 8047697 DOI: 10.1007/978-3-642-85039-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- O D Wiestler
- Institut für Neuropathologie, Universitätskliniken Bonn, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Gerrard AJ, Hudson DL, Brownlee GG, Watt FM. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet 1993; 3:180-3. [PMID: 8499952 DOI: 10.1038/ng0293-180] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Haemophilia B might be permanently cured by gene therapy--the introduction of a correct copy of the factor IX gene into the somatic cells of a patient. Here, we have introduced a recombinant human factor IX cDNA into primary human keratinocytes by means of a defective retroviral vector. In tissue culture, transduced keratinocytes were found to secrete biologically active factor IX and after transplantation of these cells into nude mice, human factor IX was detected in the bloodstream in small quantities for one week. This is the first demonstration of a therapeutic protein reaching the bloodstream from transduced primary keratinocytes. This may have implications for the treatment of haemophilia B and other disorders.
Collapse
Affiliation(s)
- A J Gerrard
- Chemical Pathology Unit, Sir William Dunn School of Pathology, Oxford OX1, 3RE, UK
| | | | | | | |
Collapse
|
40
|
Gross MM, Janiaud P, Stanbridge EJ. Effect of retroviral integration on control of expression of a tumor marker in HeLa cells. Mol Carcinog 1993; 8:89-95. [PMID: 7691070 DOI: 10.1002/mc.2940080205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fusion between HeLa cells and normal human fibroblasts results in the suppression of tumorigenicity. Under prolonged culture conditions, rare tumorigenic segregants arise and have been shown to reexpress a cell surface antigen, p75, which is also present in the HeLa parent but not in the fibroblast parent or in the nontumorigenic HeLa x fibroblast hybrid. Expression of p75 strictly correlates with tumorigenicity in HeLa and human somatic cell hybrids, as has been shown by chromosomal segregation and after gamma-irradiation. Using insertional mutagenesis, we induced expression of p75 in the nontumorigenic hybrid. Three cell clones were isolated that expressed p75 at different levels. Two of these clones exhibited a high level of p75 expression and displayed an altered morphology similar to that of the previously characterized tumorigenic segregants and consistent with the appearance of tumorigenicity. When injected into athymic nude mice, two clones were found to be tumorigenic, one from the onset of subculturing and the second only after further propagation for approximately 50 population doublings. The third clone showed very low p75 expression, had no altered morphology, and was nontumorigenic.
Collapse
MESH Headings
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/genetics
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Blotting, Northern
- Blotting, Southern
- Cell Transformation, Neoplastic/metabolism
- Clone Cells
- DNA/analysis
- DNA/isolation & purification
- GPI-Linked Proteins
- Gene Expression Regulation, Neoplastic/genetics
- HeLa Cells
- Humans
- Hybrid Cells
- Immunoenzyme Techniques
- Mice
- Mice, Nude
- Mutagenesis, Insertional
- RNA/analysis
- Retroviridae/genetics
- Transfection
- Tumor Cells, Cultured
- Virus Integration/genetics
Collapse
Affiliation(s)
- M M Gross
- Institute of Biochemistry, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
41
|
Abstract
The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with beta-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.
Collapse
Affiliation(s)
- E Barr
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109
| | | |
Collapse
|
42
|
Garlick JA, Katz AB, Fenjves ES, Taichman LB. Retrovirus-mediated transduction of cultured epidermal keratinocytes. J Invest Dermatol 1991; 97:824-9. [PMID: 1919048 DOI: 10.1111/1523-1747.ep12489019] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Retrovirus-mediated gene transfer is an efficient means of introducing and expressing exogenous gene(s) in many cell types including keratinocytes. However, parameters of transduction and gene expression have not been systematically analyzed for keratinocytes. To carry out such a study we have transduced cultures of newborn foreskin cells with retroviral vectors that encode the genes for neomycin resistance (neor) and for beta-galactosidase (B-gal). The neor gene is a dominant selectable marker and the B-gal gene encodes a histochemically detectable product. Our key findings are the following: 1) all keratinocytes that form colonies can be successfully transduced at a viral titer greater than 5 x 10(6) colony-forming units/ml; 2) transduction is effected by integration of a single copy of retroviral DNA; 3) transduced cells are not at a growth disadvantage and, in fact, single clones of transduced keratinocytes can be expanded to yield over 10(9) cells, suggesting that stem cells are transduced; 4) whereas most transduced colonies exhibit B-gal staining in a high percentage of constituent cells, some colonies had a mosaic or sectored staining pattern; 5) expression of the non-selectable B-gal gene was somewhat greater in differentiated cells of the culture as compared to nondifferentiated precursors. The ability to transduce stem cells at a high efficiency and to follow expression of transduced genes in clonal progeny will allow lineage mapping in stratified epithelial tissues.
Collapse
Affiliation(s)
- J A Garlick
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York, Stony Brook 11794-8702
| | | | | | | |
Collapse
|
43
|
Ferry N, Duplessis O, Houssin D, Danos O, Heard JM. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci U S A 1991; 88:8377-81. [PMID: 1656443 PMCID: PMC52511 DOI: 10.1073/pnas.88.19.8377] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stable gene transfer into hepatocytes might be used to compensate for a genetic deficiency affecting liver function or to deliver diffusible factors into the blood stream. In rats, we have combined retroviral-mediated gene transfer with a surgical procedure in which the liver is temporarily excluded from the circulation and infected in vivo. Partial hepatectomy was performed 24-48 hr before perfusion with virus to induce hepatocyte division and facilitate viral integration. A helper-free recombinant retrovirus coding for beta-galactosidase with nuclear localization was used to score cells that expressed the transgene. For at least 3 months after gene transfer, up to 5% of hepatocytes expressed nuclear beta-galactosidase. Whereas in vitro reimplantation of genetically modified hepatocytes has proved to be inefficient in stably transferring genes into the liver, our approach provides a feasible alternative.
Collapse
Affiliation(s)
- N Ferry
- Laboratoire Rétrovirus et Transfert Génétique, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Abstract
The ideal approach to gene therapy of hereditary diseases or gene correction therapy is considered. The advantages, disadvantages and limits of gene targeting by homologous recombination are discussed with regard to its possible application in gene correction therapy and in comparison with retroviral-mediated gene complementation therapy.
Collapse
Affiliation(s)
- M A Vega
- Institut für Virologie and Immunbiologie der Universität, Würzburg, Federal Republic of Germany
| |
Collapse
|
45
|
Abstract
Recent advances in molecular genetics have made possible the use of retroviral "vectors" to transfer cloned human genes into somatic cells. With this new technology, the genetic defect underlying many recessive inherited disorders can probably be corrected by inserting a normal gene into the patient's hematopoietic stem cells. This article reviews the design and safety of the viral vectors and the results of in vivo studies in mice and large animals that have led to the first human trials. Other target cells for gene transfer, such as endothelial cells, fibroblasts, keratinocytes, and hepatocytes, are also discussed. The use of recombinant retroviruses for gene transfer in vivo is still a new area of research, but the feasibility of "gene therapy" for genetic disorders is rapidly gaining medical and scientific acceptance.
Collapse
|
46
|
Stockschlaeder MA, Storb R, Osborne WR, Miller AD. L-histidinol provides effective selection of retrovirus-vector-transduced keratinocytes without impairing their proliferative potential. Hum Gene Ther 1991; 2:33-9. [PMID: 1650586 DOI: 10.1089/hum.1991.2.1-33] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Retroviral vectors carrying the neomycin phosphotransferase (neo) gene have been shown to confer G418 resistance to canine keratinocytes at relatively high frequency. To investigate the usefulness of keratinocytes as potential target cells for gene therapy, we used a retroviral vector (LASN) that contains both human adenosine deaminase (hADA) and neo genes. We show here that LASN-transduced canine keratinocytes expressed high levels of hADA, a human protein of therapeutic relevance. Selection of LASN-transduced keratinocytes in medium containing G418 resulted in a population of cells that expressed even higher levels of hADA, about 80-fold higher than the endogenous canine ADA level. However, the G418-selected cells had a reduced proliferative potential and altered morphology indicative of terminal differentiation. To test whether L-histidinol is more beneficial for selection of keratinocytes than G418, we constructed two retroviral vectors that contain both the neo and the histidinol dehydrogenase (hisD) genes. Cocultivation of primary keratinocytes with lethally irradiated PA317 retrovirus packaging cells that produce these vectors gave rise to 12-53% drug-resistant colonies in either G418 or L-histidinol. In contrast to G418, selection of transduced keratinocytes in L-histidinol had no apparent effect on the proliferative potential or morphology of drug-resistant cells containing the vectors. Given the utility of this selection system, two hisD-based generic constructs containing cloning sites for cDNA expression from either the retroviral promoter or from an internal human cytomegalovirus immediate early promoter were constructed. Our results suggest that hisD will be a useful selectable marker for use in studies of keratinocyte differentiation and for transfer of genes into keratinocytes for the purposes of gene therapy.
Collapse
|