1
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Singh A, Banerjee T. Host-parasite interactions in infections due to Entamoeba histolytica: A tale of known and unknown. Trop Parasitol 2022; 12:69-77. [PMID: 36643990 PMCID: PMC9832491 DOI: 10.4103/tp.tp_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an enteric microaerophilic protozoan parasite responsible for millions of cases worldwide. Majority of the infections due to E. histolytica remain asymptomatic; however, it can cause an array of symptoms ranging from devastating dysentery, colitis, and abscesses in different vital organs. The interactions between the E. histolytica and its host are a multifaceted chain of events rather than merely destruction and invasion. There are manifold decisive steps for the establishment of infections by E. histolytica which includes degradation of mucosal layer, adherence to the host epithelium, invasion into the host tissues, and dissemination to vital organs. It is widely hypothesized that, for establishment of infections, the interactions at the intestinal mucosa decides the fate of the disease. The delicate communications between the parasite, the host factors, and the associated bacterial microflora play a significant role in the pathogenesis of E. histolytica. In this review, we summarize the interactions between the E. histolytica and it's host at the genetic and immunological interphases emphasizing the crucial role of microbiota in these interactions.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Wang S, Moreau F, Chadee K. The colonic pathogen Entamoeba histolytica activates caspase-4/1 that cleaves the pore-forming protein gasdermin D to regulate IL-1β secretion. PLoS Pathog 2022; 18:e1010415. [PMID: 35303042 PMCID: PMC8967020 DOI: 10.1371/journal.ppat.1010415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
A hallmark of Entamoeba histolytica (Eh) invasion in the gut is acute inflammation dominated by the secretion of pro-inflammatory cytokines TNF-α and IL-1β. This is initiated when Eh in contact with macrophages in the lamina propria activates caspase-1 by recruiting the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner resulting in the maturation and secretion of IL-1β and IL-18. Here, we interrogated the requirements and mechanisms for Eh-induced caspase-4/1 activation in the cleavage of gasdermin D (GSDMD) to regulate bioactive IL-1β release in the absence of cell death in human macrophages. Unlike caspase-1, caspase-4 activation occurred as early as 10 min that was dependent on Eh Gal-lectin and EhCP-A5 binding to macrophages. By utilizing CRISPR-Cas9 gene edited CASP4/1, NLRP3 KO and ASC-def cells, caspase-4 activation was found to be independent of the canonical NLRP3 inflammasomes. In CRISPR-Cas9 gene edited CASP1 macrophages, caspase-4 activation was significantly up regulated that enhanced the enzymatic cleavage of GSDMD at the same cleavage site as caspase-1 to induce GSDMD pore formation and sustained bioactive IL-1β secretion. Eh-induced IL-1β secretion was independent of pyroptosis as revealed by pharmacological blockade of GSDMD pore formation and in CRISPR-Cas9 gene edited GSDMD KO macrophages. This was in marked contrast to the potent positive control, lipopolysaccharide + Nigericin that induced high expression of predominantly caspase-1 that efficiently cleaved GSDMD with high IL-1β secretion/release associated with massive cell pyroptosis. These results reveal that Eh triggered “hyperactivated macrophages” allowed caspase-4 dependent cleavage of GSDMD and IL-1β secretion to occur in the absence of pyroptosis that may play an important role in disease pathogenesis. A unique feature of Entamoeba histolytica (Eh) infection is the capability to cause symptoms in only a limited subset of individuals. This occurs when Eh breaches intestinal innate host defences and comes in contact with the colonic epithelium and immune cells in the lamina propria to elicit a pro-inflammatory response critical in disease pathogenesis. Macrophages are considered among the first responders that Eh comes in direct contact with to activate caspase-1 by initiating the assembly of the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner, resulting in processing and release of IL-1β. In this study, we showed that inflammatory caspase-4 was activated earlier than caspase-1 when Eh contacts macrophages independent of the NLRP3 inflammasome complex. More importantly, Eh-induced caspase-4 was essential in regulating bioactive IL-1β secretion in the absence of cell death (pyroptosis) that was induced primarily by the activation of caspase-1. Mechanistically, we reveal that Eh-induced caspase-4 activation was critically important in regulating a measured amount of gasdermin D (GSDMD) cleavage resulting in GSDMD pore formation that facilitated sustained IL-1β secretion from macrophages. This was in marked contrast to LPS + Nigericin stimulated macrophages that robustly activated casapase-1 via the NLRP3 inflammasome that resulted in almost complete cleavage of GSDMD with pore-forming proteins that caused massive pyroptosis. Our study provides new insights on how Eh in contact with macrophages fine tune macrophage responses via the activation of caspase-4/1 to allow the cell to regulate IL-1β release by keeping the cells alive. We believe this mechanism of activating macrophages (termed hyperactivation) is a critically overlooked response in the biology of Eh that may play a major role in disease pathogenesis and host defence.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
4
|
Li X, Feng M, Zhao Y, Zhang Y, Zhou R, Zhou H, Pang Z, Tachibana H, Cheng X. A Novel TLR4-Binding Domain of Peroxiredoxin From Entamoeba histolytica Triggers NLRP3 Inflammasome Activation in Macrophages. Front Immunol 2021; 12:758451. [PMID: 34659265 PMCID: PMC8515043 DOI: 10.3389/fimmu.2021.758451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages promote early host responses to infection by releasing pro-inflammatory cytokines, and they are crucial to combat amoebiasis, a disease affecting millions of people worldwide. Macrophages elicit pro-inflammatory responses following direct cell/cell interaction of Entamoeba histolytica, inducing NLRP3 inflammasome activation with high-output IL-1β/IL-18 secretion. Here, we found that trophozoites could upregulate peroxiredoxins (Prx) expression and abundantly secrete Prxs when encountering host cells. The C-terminal of Prx was identified as the key functional domain in promoting NLRP3 inflammasome activation, and a recombinant C-terminal domain could act directly on macrophage. The Prxs derived from E. histolytica triggered toll-like receptor 4-dependent activation of NLRP3 inflammasome in a cell/cell contact-independent manner. Through genetic, immunoblotting or pharmacological inhibition methods, NLRP3 inflammasome activation was induced through caspase-1-dependent canonical pathway. Our data suggest that E. histolytica Prxs had stable and durable cell/cell contact-independent effects on macrophages following abundantly secretion during invasion, and the C-terminal of Prx was responsible for activating NLRP3 inflammasome in macrophages. This new alternative pathway may represent a potential novel therapeutic approach for amoebiasis, a global threat to millions.
Collapse
Affiliation(s)
- Xia Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Pang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
5
|
Chadha A, Chadee K. The NF-κB Pathway: Modulation by Entamoeba histolytica and Other Protozoan Parasites. Front Cell Infect Microbiol 2021; 11:748404. [PMID: 34595137 PMCID: PMC8476871 DOI: 10.3389/fcimb.2021.748404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Protozoan parasites have led to worldwide devastation because of their ability to cause infectious diseases. They have evolved as successful pathogens in part because of their remarkable and sophisticated ways to evade innate host defenses. This holds true for both intracellular and extracellular parasites that deploy multiple strategies to circumvent innate host defenses for their survival. The different strategies protozoan parasites use include hijacking the host cellular signaling pathways and transcription factors. In particular, the nuclear factor-κB (NF-κB) pathway seems to be an attractive target for different pathogens owing to their central role in regulating prompt innate immune responses in host defense. NF-κB is a ubiquitous transcription factor that plays an indispensable role not only in regulating immediate immune responses against invading pathogens but is also a critical regulator of cell proliferation and survival. The major immunomodulatory components include parasite surface and secreted proteins/enzymes and stimulation of host cells intracellular pathways and inflammatory caspases that directly or indirectly interfere with the NF-κB pathway to thwart immune responses that are directed for containment and/or elimination of the pathogen. To showcase how protozoan parasites exploits the NF-κB signaling pathway, this review highlights recent advances from Entamoeba histolytica and other protozoan parasites in contact with host cells that induce outside-in and inside-out signaling to modulate NF-κB in disease pathogenesis and survival in the host.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Chadha A, Moreau F, Wang S, Dufour A, Chadee K. Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages. PLoS Pathog 2021; 17:e1009936. [PMID: 34499701 PMCID: PMC8454965 DOI: 10.1371/journal.ppat.1009936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages. The protozoan parasite Entamoeba histolytica (Eh) is the etiologic agent for the disease amebiasis. It is a potent pathogen that deploys an arsenal of virulence factors to trigger and subvert host immune defenses. One of the hallmark features of the disease is amebic colitis and in extreme cases, it can lead to abscesses of the liver and brain. For unknown reasons, the parasite breaches colonic mucosal barriers and invade underlying tissues. The host immune system plays a decisive role in determining the outcome of the disease. At the molecular level, the interaction of Eh with macrophage is a turning point in shaping pro-inflammatory responses. Understanding host-pathogen intricacies at the molecular level is key in determining the complexity of the disease. In the context of amebiasis, the underlying molecular events that occur at the Eh-macrophage intercellular junction are partly unravelled. Here we sought to interrogate the mechanisms by which NF-κB signaling is aborted following Eh-macrophage contact and found two regulatory scaffold proteins, cullin-1 and -5 (cullin-1/5) of the multiple E3 ligase complex, are degraded leading to dampening of NF-κB signaling. During Eh-macrophage contact, cullin-1/4A/4B/5 were rapidly degraded whereas cullin-2/3 were not. The degradation of cullin-1/5 was highly dependent on Eh-induced caspase-1 activation via the NLRP3 inflammasome. In contrast, the degradation of cullin-4A but not cullin-4B, was partially dependent on caspase-1 and was inhibited with a cell-permeable pan caspase inhibitor. Intriguingly, we found that Eh virulence factor EhCP-A1 and EhCP-A4, but not EhCP-A5, played an important role in mediating the degradation of these proteins. Silencing cullin-1/5 decreased the phosphorylation of Iκ-Bα in response to Eh and LPS stimulation that markedly downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. This study unravelled a novel role for Eh-induced NLRP3 inflammasome activation of caspase-1 that intersected with the NF-κB pathway leading to the degradation of the novel substrates cullin-1/5 that regulates NF-κB-dependent pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shanshan Wang
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
7
|
Begum S, Moreau F, Dufour A, Chadee K. Entamoeba histolytica exploits the autophagy pathway in macrophages to trigger inflammation in disease pathogenesis. Mucosal Immunol 2021; 14:1038-1054. [PMID: 33963264 DOI: 10.1038/s41385-021-00408-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
The mechanism whereby Entamoeba histolytica (Eh) binding with macrophages at the intercellular junction triggers aggressive pro-inflammatory responses in disease pathogenesis is not well understood. The host intracellular protein degradation process autophagy and its regulatory proteins are involved in maintenance of cellular homeostasis and excessive inflammatory responses. In this study we unraveled how Eh hijacks the autophagy process in macrophages to dysregulate pro-inflammatory responses. Direct contact of live Eh with macrophages activated caspase-6 that induced rapid proteolytic degradation of the autophagy ATG16L1 protein complex independent of NLRP3 inflammasome and caspase-3/8 activation. Crohn's disease susceptible ATG16L1 T300A variant was highly susceptible to Eh-mediated degradation that augmented pro-inflammatory cytokines in mice. Quantitative proteomics revealed downregulation of autophagy and vesicle-mediated transport and upregulation of cysteine-type endopeptidase pathways in response to Eh. We conclude during Eh-macrophage outside-in signaling, ATG16L1 protein complex plays an overlooked regulatory role in shaping the pro-inflammatory landscape in amebiasis.
Collapse
Affiliation(s)
- Sharmin Begum
- Departments of Microbiology, Immunology and Infectious Diseases, Calgary, AB, Canada
| | - France Moreau
- Departments of Microbiology, Immunology and Infectious Diseases, Calgary, AB, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology and Infectious Diseases, Calgary, AB, Canada.
| |
Collapse
|
8
|
Sellau J, Puengel T, Hoenow S, Groneberg M, Tacke F, Lotter H. Monocyte dysregulation: consequences for hepatic infections. Semin Immunopathol 2021; 43:493-506. [PMID: 33829283 PMCID: PMC8025899 DOI: 10.1007/s00281-021-00852-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Liver disorders due to infections are a substantial health concern in underdeveloped and industrialized countries. This includes not only hepatotropic viruses (e.g., hepatitis B, hepatitis C) but also bacterial and parasitic infections such as amebiasis, leishmaniasis, schistosomiasis, or echinococcosis. Recent studies of the immune mechanisms underlying liver disease show that monocytes play an essential role in determining patient outcomes. Monocytes are derived from the mononuclear phagocyte lineage in the bone marrow and are present in nearly all tissues of the body; these cells function as part of the early innate immune response that reacts to challenge by external pathogens. Due to their special ability to develop into tissue macrophages and dendritic cells and to change from an inflammatory to an anti-inflammatory phenotype, monocytes play a pivotal role in infectious and non-infectious liver diseases: they can maintain inflammation and support resolution of inflammation. Therefore, tight regulation of monocyte recruitment and termination of monocyte-driven immune responses in the liver is prerequisite to appropriate healing of organ damage. In this review, we discuss monocyte-dependent immune mechanisms underlying hepatic infectious disorders. Better understanding of these immune mechanisms may lead to development of new interventions to treat acute liver disease and prevent progression to organ failure.
Collapse
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Stefan Hoenow
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
9
|
Begum S, Gorman H, Chadha A, Chadee K. Role of inflammasomes in innate host defense against Entamoeba histolytica. J Leukoc Biol 2020; 108:801-812. [PMID: 32498132 DOI: 10.1002/jlb.3mr0420-465r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Intestinal amebiasis is the disease caused by the extracellular protozoan parasite Entamoeba histolytica (Eh) that induces a dynamic and heterogeneous interaction profile with the host immune system during disease pathogenesis. In 90% of asymptomatic infection, Eh resides with indigenous microbiota in the outer mucus layer of the colon without prompting an immune response. However, for reasons that remain unclear, in a minority of the Eh-infected individuals, this fine tolerated relationship is switched to a pathogenic phenotype and advanced to an increasingly complex host-parasite interaction. Eh disease susceptibility depends on parasite virulence factors and their interactions with indigenous bacteria, disruption of the mucus bilayers, and adherence to the epithelium provoking host immune cells to evoke a robust pro-inflammatory response mediated by inflammatory caspases and inflammasome activation. To understand Eh pathogenicity and innate host immune responses, this review highlights recent advances in our understanding of how Eh induces outside-in signaling via Mϕs to activate inflammatory caspases and inflammasome to regulate pro-inflammatory responses.
Collapse
Affiliation(s)
- Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Attinder Chadha
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Entamoeba histolytica stimulates the alarmin molecule HMGB1 from macrophages to amplify innate host defenses. Mucosal Immunol 2020; 13:344-356. [PMID: 31772322 DOI: 10.1038/s41385-019-0233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Even though Entamoeba histolytica (Eh)-induced host pro-inflammatory responses play a critical role in disease, we know very little about the host factors that regulate this response. Direct contact between host cell and Eh signify the highest level of danger, and to eliminate this threat, the host immune system elicits an augmented immune response. To understand the mechanisms of this response, we investigated the induction and release of the endogenous alarmin molecule high-mobility group box 1 (HMGB1) that act as a pro-inflammatory cytokine and chemoattractant during Eh infection. Eh in contact with macrophage induced a dose- and time-dependent secretion of HMGB1 in the absence of cell death. Secretion of HMGB1 was facilitated by Eh surface Gal-lectin-activated phosphoinositide 3-kinase and nuclear factor-κB signaling and up-regulation of histone acetyltransferase activity to trigger acetylated HMGB1 translocation from the nucleus. Unlike lipopolysaccharide, Eh-induced HMGB1 release was independent of caspase-1-mediated inflammasome and gasdermin D pores. In vivo, Eh inoculation in specific pathogen-free but not germ-free mice was associated with high levels of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and keratinocyte-derived chemokine, which was suppressed with HMGB1 neutralization. This study reveals that Eh-induced active secretion of the HMGB1 plays a key role in shaping the pro-inflammatory landscape critical in innate host defense against amebiasis.
Collapse
|
11
|
Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers 2018; 5:e1283386. [PMID: 28452682 DOI: 10.1080/21688370.2017.1283386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and interacts dynamically with the host intestinal epithelium during disease pathogenesis. A multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely asymptomatic. For 100 millions individuals that are infected each year, key interactions within the intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and disseminate into extraintestinal organs depends on the parasite competing with indigenous bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion through the mucosa and outsmarting the immune system. In this review we summarize how Eh interacts with the intestinal epithelium and subverts host defense mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Steve Cornick
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| | - Kris Chadee
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
12
|
St-Pierre J, Moreau F, Cornick S, Quach J, Begum S, Aracely Fernandez L, Gorman H, Chadee K. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog 2017; 13:e1006592. [PMID: 28837696 PMCID: PMC5587335 DOI: 10.1371/journal.ppat.1006592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/06/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. The protozoan parasite Entamoeba histolytica can establish an enteric infection in human hosts that leads to symptoms ranging from diarrhea to abscesses in the liver and the brain. Host susceptibility to amebic infection is in part determined by the quality and potency of the host immune response that occurs once the parasite overcomes the mucus bilayers and colonic epithelial barriers, and invades underlying tissues. At the cellular level, one of the key events that shape the inflammatory response occurs during direct parasite interaction with host macrophages via surface proteins. The ensuing cascades of intracellular signaling events have only partly been uncovered. Interestingly, only direct interaction between live parasites and macrophages, as opposed to soluble factors or dead parasites, is a prerequisite to the generation of a prompt raging pro-inflammatory response. We have sought to further elucidate the mechanisms by which macrophages distinguish live parasites and found that the macrophage cell skeleton undergoes rapid significant alteration upon Eh contact. Furthermore, we uncovered a previously unknown role for two Eh enzymes in triggering macrophage pro-inflammatory responses. Through this work, we gain a better understanding of the molecular interactions that occur at the macrophage-ameba interface that regulate host inflammatory responses.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luz Aracely Fernandez
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
14
|
|
15
|
Mortimer L, Moreau F, Cornick S, Chadee K. The NLRP3 Inflammasome Is a Pathogen Sensor for Invasive Entamoeba histolytica via Activation of α5β1 Integrin at the Macrophage-Amebae Intercellular Junction. PLoS Pathog 2015; 11:e1004887. [PMID: 25955828 PMCID: PMC4425650 DOI: 10.1371/journal.ppat.1004887] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
Entamoeba histolytica (Eh) is an extracellular protozoan parasite of humans that invades the colon to cause life-threatening intestinal and extra-intestinal amebiasis. Colonized Eh is asymptomatic, however, when trophozoites adhere to host cells there is a considerable inflammatory response that is critical in the pathogenesis of amebiasis. The host and/or parasite factors that trigger the inflammatory response to invading Eh are not well understood. We recently identified that Eh adherence to macrophages induces inflammasome activation and in the present study we sought to determine the molecular events upon contact that coordinates this response. Here we report that Eh contact-dependent activation of α5β1 integrin is critical for activation of the NLRP3 inflammasome. Eh-macrophage contact triggered recruitment of α5β1 integrin and NLRP3 into the intercellular junction, where α5β1 integrin underwent activation by an integrin-binding cysteine protease on the parasite surface, termed EhCP5. As a result of its activation, α5β1 integrin induced ATP release into the extracellular space through opening of pannexin-1 channels that signalled through P2X7 receptors to deliver a critical co-stimulatory signal that activated the NLRP3 inflammasome. Both the cysteine protease activity and integrin-binding domain of EhCP5 were required to trigger α5β1 integrin that led to ATP release and NLRP3 inflammasome activation. These findings reveal engagement of α5β1 integrin across the parasite-host junction is a key regulatory step that initiates robust inflammatory responses to Eh. We propose that α5β1 integrin distinguishes Eh direct contact and functions with NLRP3 as pathogenicity sensor for invasive Eh infection. Amebiasis caused by the enteric protozoan parasite Entamoeba histolytica is among the three top causes of death from parasitic infections worldwide, as a result of amebic colitis (dysentery) and liver or brain abscess. When Eh invades the intestinal barrier and contacts host tissue there is a profound inflammatory response, which is thought to drive the disease. One of the central outstanding questions has been how the immune response is escalated at sites of invasion. Adherence of the parasite to host cells has long been appreciated in the pathogenesis of amebiasis, but was never considered as a “cue” that host cells use to detect Eh and initiate host defense. Here we introduce the idea, and demonstrate, that an intercellular junction forms between Eh and host cells upon contact that engages the NLRP3 inflammasome. The NLRP3 inflammasome belongs to a group of “danger” sensors that are uniquely designed to rapidly activate highly inflammatory host defenses. In this work, we identified a surface receptor on macrophages that normally functions in adhesion and polarization recognizes a protein on the outer surface of Eh. Intriguingly, Eh also secretes this protein. However, the full activation of the surface receptor leading to inflammasome activation only occurs when the Eh protein is immobilized on the parasite surface. Thus, we uncovered a molecular mechanism though which host cells distinguish direct contact, and therefore recognize parasites that are immediately present in the tissue, to mobilize a highly inflammatory response. We believe this concept is central to understanding the biology of amebiasis.
Collapse
Affiliation(s)
- Leanne Mortimer
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Aguirre García M, Gutiérrez-Kobeh L, López Vancell R. Entamoeba histolytica: adhesins and lectins in the trophozoite surface. Molecules 2015; 20:2802-15. [PMID: 25671365 PMCID: PMC6272351 DOI: 10.3390/molecules20022802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amebiasis in humans and is responsible for 100,000 deaths annually, making it the third leading cause of death due to a protozoan parasite. Pathogenesis appears to result from the potent cytotoxic activity of the parasite, which kills host cells within minutes. Although the mechanism is unknown, it is well established to be contact-dependent. The life cycle of the parasite alternates with two forms: the resistant cyst and the invasive trophozoite. The adhesive interactions between the parasite and surface glycoconjugates of host cells, as well as those lining the epithelia, are determinants for invasion of human tissues, for its cytotoxic activity, and finally for the outcome of the disease. In this review we present an overview of the information available on the amebic lectins and adhesins that are responsible of those adhesive interactions and we also refer to their effect on the host immune response. Finally, we present some concluding remarks and perspectives in the field.
Collapse
Affiliation(s)
- Magdalena Aguirre García
- Departmento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis #148, Col. Doctores, C.P. 06726 Mexico, D.F., Mexico.
| | - Laila Gutiérrez-Kobeh
- Departmento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis #148, Col. Doctores, C.P. 06726 Mexico, D.F., Mexico.
| | - Rosario López Vancell
- Departmento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis #148, Col. Doctores, C.P. 06726 Mexico, D.F., Mexico.
| |
Collapse
|
17
|
Mortimer L, Moreau F, Cornick S, Chadee K. Gal-lectin-dependent contact activates the inflammasome by invasive Entamoeba histolytica. Mucosal Immunol 2014; 7:829-41. [PMID: 24253103 DOI: 10.1038/mi.2013.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 02/04/2023]
Abstract
Entamoeba histolytica (Eh) is an extracellular protozoan parasite of the human colon, which occasionally breaches the intestinal barrier. Eradicating ameba that invades is essential for host survival. A defining but uncharacterized feature of amebic invasion is direct contact between ameba and host cells. This event corresponds with a massive pro-inflammatory response. To date, pathogen recognition receptors (PRRs) that are activated by contact with viable Eh are unknown. Here we show that the innate immune system responds in a qualitatively different way to contact with viable Eh vs. soluble ligands produced by viable or dead ameba. This unique Eh Gal-lectin contact-dependent response in macrophages was mediated by activation of the inflammasome. Soluble native Gal-lectin did not induce inflammasome activation, but was sufficient for transcriptional priming of the inflammasome and non-inflammasome-dependent pro-inflammatory cytokine release. We conclude the inflammasome is a pathogenicity sensor for invasive Eh and identify for the first time a PRR that specifically responds to contact with intact parasites in a manner that accords with scale immune response to parasite invasion.
Collapse
Affiliation(s)
- L Mortimer
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| | - F Moreau
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| | - S Cornick
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| | - K Chadee
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Hertz R, Ben Lulu S, Shahi P, Trebicz-Geffen M, Benhar M, Ankri S. Proteomic identification of S-nitrosylated proteins in the parasite Entamoeba histolytica by resin-assisted capture: insights into the regulation of the Gal/GalNAc lectin by nitric oxide. PLoS One 2014; 9:e91518. [PMID: 24626316 PMCID: PMC3953491 DOI: 10.1371/journal.pone.0091518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is a gastrointestinal protozoan parasite that causes amebiasis, a disease which has a worldwide distribution with substantial morbidity and mortality. Nitrosative stress, which is generated by innate immune cells, is one of the various environmental challenges that E. histolytica encounters during its life cycle. Although the effects of nitric oxide (NO) on the regulation of gene expression in this parasite have been previously investigated, our knowledge on S-nitrosylated proteins in E.histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale detection of S-nitrosylated (SNO) proteins in E.histolytica trophozoites that were treated with the NO donor, S-nitrosocysteine by resin-assisted capture (RAC). We found that proteins involved in glycolysis, gluconeogenesis, translation, protein transport, and adherence to target cells such as the heavy subunit of Gal/GalNac lectin are among the S-nitrosylated proteins that were enriched by SNO-RAC. We also found that the S-nitrosylated cysteine residues in the carbohydrate recognition domain (CRD) of Gal/GalNAc lectin impairs its function and contributes to the inhibition of E.histolytica adherence to host cells. Collectively, these results advance our understanding of the mechanism of reduced E.histolytica adherence to mammalian cells by NO and emphasize the importance of NO as a regulator of key physiological functions in E.histolytica.
Collapse
Affiliation(s)
- Rivka Hertz
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shani Ben Lulu
- Department of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Shahi
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|
19
|
Quach J, St-Pierre J, Chadee K. The future for vaccine development against Entamoeba histolytica. Hum Vaccin Immunother 2014; 10:1514-21. [PMID: 24504133 DOI: 10.4161/hv.27796] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica.
Collapse
Affiliation(s)
- Jeanie Quach
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Joëlle St-Pierre
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Kris Chadee
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| |
Collapse
|
20
|
Ayala-Sumuano JT, Téllez-López VM, Domínguez-Robles MDC, Shibayama-Salas M, Meza I. Toll-like receptor signaling activation by Entamoeba histolytica induces beta defensin 2 in human colonic epithelial cells: its possible role as an element of the innate immune response. PLoS Negl Trop Dis 2013; 7:e2083. [PMID: 23469306 PMCID: PMC3585038 DOI: 10.1371/journal.pntd.0002083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Background Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria. Methodology/Principal Findings We show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce β defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody. Conclusions/Significance Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed. Entamoeba histolytica ameba/bacteria mixed intestinal infections are common in endemic regions of Amebiasis. Recent investigations support the idea that pathogen interplay in these infections may have a role in invasive disease, activating signals that increase intestinal inflammation. We have studied interactions of amebic trophozoites with human colonic CaCo2 cells, using as positive control pathogenic intestinal bacteria E. coli (ETEC). Both pathogens activated a chain of chemical reactions in the cells that led to production of the antimicrobial peptide β defensin-2 (HBD2), an element of the innate immune response. Pathogen activation of CaCo2 cell response and production of HBD2 were analyzed employing biochemical, cell, molecular biology, and immunology methods. Amebas induced HBD2 via the same classic Toll-receptor signaling pathway activated by ETEC. Amebic-induced HBD2 showed capacity to permeabilize and cause severe damage to bacteria and ameba membranes. Although this study was done in vitro, due to lack of an adequate animal model in which to monitor ameba/bacteria interactions, it provides a new insight into intestinal infections, showing that presence of amebas induces synthesis of elements of an innate immune response that could affect the equilibrium of the intestinal microbiota and modify the course of intestinal infections by other pathogens.
Collapse
Affiliation(s)
- Jorge-Tonatiuh Ayala-Sumuano
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Victor M. Téllez-López
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - M. del Carmen Domínguez-Robles
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Mineko Shibayama-Salas
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Isaura Meza
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
- * E-mail:
| |
Collapse
|
21
|
Verkerke HP, Petri WA, Marie CS. The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol 2012; 34:771-85. [PMID: 23114864 PMCID: PMC3510265 DOI: 10.1007/s00281-012-0349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 01/27/2023]
Abstract
Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, greatly contributes to disease burden in the developing world. Efforts to exhaustively characterize the pathogenesis of amebiasis have increased our understanding of the dynamic host-parasite interaction and the process by which E. histolytica trophozoites transition from gut commensals to invaders of the intestinal epithelium. Mouse models of disease continue to be instrumental in this area. At the same time, large-scale studies in human populations have identified genetic and environmental factors that influence susceptibility to amebiasis. Nutritional status has long been known to globally influence immune function. So it is not surprising that undernutrition has emerged as a critical risk factor. A better understanding of how nutritional status affects immunity to E. histolytica will have dramatic implications in the development of novel treatments. Future work should continue to characterize the fascinating host-parasite arms race that occurs at each stage of infection.
Collapse
Affiliation(s)
- Hans P. Verkerke
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Chelsea S. Marie
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
22
|
Meneses-Ruiz DM, Laclette JP, Aguilar-Díaz H, Hernández-Ruiz J, Luz-Madrigal A, Sampieri A, Vaca L, Carrero JC. Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster. Int J Biol Sci 2011; 7:1345-56. [PMID: 22110386 PMCID: PMC3221370 DOI: 10.7150/ijbs.7.1345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/23/2022] Open
Abstract
Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.
Collapse
Affiliation(s)
- D M Meneses-Ruiz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. A.P. 70228, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Galván-Moroyoqui JM, Del Carmen Domínguez-Robles M, Meza I. Pathogenic bacteria prime the induction of Toll-like receptor signalling in human colonic cells by the Gal/GalNAc lectin Carbohydrate Recognition Domain of Entamoeba histolytica. Int J Parasitol 2011; 41:1101-12. [PMID: 21787776 DOI: 10.1016/j.ijpara.2011.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/25/2022]
Abstract
In mixed intestinal infections with Entamoeba histolytica trophozoites and enteropathogenic bacteria, which are wide-spread in areas of endemic amoebiasis, interaction between the pathogens could be an important factor in the occurrence of invasive disease. It has been reported that exposure of human colonic cells to enteropathogenic bacteria increased trophozoite adherence to the cells and their subsequent damage. We report here that the Carbohydrate Recognition Domain (CRD) of the amoebic Gal/GalNAc lectin binds to Toll-like receptors TLR-2 and TLR-4 in human colonic cells, activating the "classic" signalling pathway of these receptors. Activation induced expression of TLR-2 and TLR-4 mRNAs and the mRNAs of pro-inflammatory cytokines, as well as an increase in the corresponding proteins. Direct correlation was observed between the increased expression of TLRs and pro-inflammatory cytokines, the enhanced adhesion of trophozoites to the cells and the inflicted cell damage. When cells were exposed to pathogenic bacteria Staphylococcus aureus (Gram⁺) or Shigella dysenteriae (Gram⁻), elements of an innate immune response were induced. CRD by itself elicited a similar cell response, while exposure to a commensal Escherichia coli had a null effect. Pre-exposure of the cells to pathogenic bacteria and then to CRD rendered an inflammatory-like microenvironment that after addition of trophozoites facilitated greater cell destruction. Our results suggest that CRD is recognised by human colonic cells as a pathogen-associated-molecular-pattern-like molecule and as such can induce the expression of elements of an innate immune response. In the human host, an exacerbated inflammatory environment, derived from pathogen interplay, may be an important factor for development of invasive disease.
Collapse
Affiliation(s)
- José Manuel Galván-Moroyoqui
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Apartado Postal 14-740, México, DF 07360, Mexico
| | | | | |
Collapse
|
24
|
Abstract
Entameba histolytica causes amebiasis, which includes both intestinal and extraintestinal amebiasis. E. histolytica causes 34 million to 50 million symptomatic cases of amebiasis worldwide every year, causing 40 thousand to 100 thousand deaths annually. E. histolytica, the pathogenic species of amebae is indistinguishable in its cyst and trophozoite stages from those of E. moshkovskii, a free-living ameba, and E. dispar, a non-invasive ameba, by microscopy, except in cases of invasive disease, where E. histolytica trophozoite may contain ingested red blood cells, but such a finding is rarely seen. This leads to a confusing scenario for the definite identification and differentiation of E. histolytica from E. moshkovskii and E. dispar by conventional microscopy, in the diagnosis of intestinal amebiasis. The advent of molecular methods such as multiplex PCR and real time PCR have facilitated a better and accurate diagnosis of E. histolytica, E. moshkovskii, and E. dispar in stool, urine, saliva, and other specimens. Multiplex PCR for the diagnosis of amebic liver abscess, using urine and saliva as clinical specimens, has been used, and the results have been encouraging. Real-time PCR is a new and a very attractive methodology for laboratory diagnosis of amebiasis, because of its characteristics that eliminate post-PCR analysis, leading to a shorter turnaround time. Microarray-based approaches represent an attractive diagnostic tool for the detection and identification of amebae in clinical and epidemiological investigations. Development of vaccines against amebiasis is still in its infancy. However, in recent years, progress has been made in the identification of possible vaccine candidates, the route of application, and the understanding of the immune response, which is required for protection against amebiasis. Thus, it is just a matter of time, and hopefully, amebiasis vaccine for human trials will be available in the next few years.
Collapse
Affiliation(s)
- Subhash Chandra Parija
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
25
|
Comparison of methods for detection of Blastocystis infection in routinely submitted stool samples, and also in IBS/IBD Patients in Ankara, Turkey. PLoS One 2010; 5:e15484. [PMID: 21124983 PMCID: PMC2987810 DOI: 10.1371/journal.pone.0015484] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/23/2010] [Indexed: 12/16/2022] Open
Abstract
Background This study compared diagnostic methods for identifying Blastocystis in stool samples, and evaluated the frequency of detection of Blastocystis in patients with irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Results and Discussion From a set of 105 stool specimens submitted for routine parasitological analysis, 30 were identified as positive for Blastocystis by the culture method. From that group of 30 positives, Lugol's stain, trichrome staining, and an immunofluorescence assay identified 11, 15, and 26 samples as positive respectively. Using culture as a standard, the sensitivity of Lugol's stain was 36.7%, trichrome staining was 50%, and the IFA stain was 86.7%. The specificity of Lugol's stain was 91%, trichrome staining was 100%, and the IFA stain was 97.3%. In the group of 27 IBS and IBD patients, using all methods combined, we detected Blastocystis in 67% (18/27) of the patients. Blastocystis was detected in 33% (2/6) of IBD patients and 76% (16/21) of IBS patients. For comparison, trichrome staining alone, the method most frequently used in many countries, would have only identified Blastocystis infection in 29% (6/21) of the IBS patients. No parasitic co-infections were identified in the IBS/IBD patients. Most Blastocystis-positive IBS/IBD patients were over 36 with an average length of illness of 4.9 years. Conclusions Most IBS patients in this study were infected with Blastocystis. IFA staining may be a useful alternative to stool culture, especially if stool specimens have been chemically preserved.
Collapse
|
26
|
Peterson KM, Shu J, Duggal P, Haque R, Mondal D, Petri WA. Association between TNF-alpha and Entamoeba histolytica diarrhea. Am J Trop Med Hyg 2010; 82:620-5. [PMID: 20348510 DOI: 10.4269/ajtmh.2010.09-0493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An association between tumor necrosis factor alpha (TNF-alpha) and Entamoeba histolytica diarrhea was assessed in a cohort of 138 non-related Bangladeshi children who have been prospectively followed since 2001. Peripheral blood mononuclear cells (PBMCs) obtained at study entry were purified, cultured, and stimulated with soluble amebic antigen before cytokine measurement from supernatant. Higher levels of TNF-alpha were associated with increased risk of first (P = 0.01) and recurrent E. histolytica-related diarrheal episodes (P = 0.005). Children who developed E. histolytica diarrhea had significantly higher TNF-alpha protein levels than those who experienced asymptomatic E. histolytica infection (P value = 0.027) or no infection (P value = 0.017). Microarray studies performed using RNA isolated from acute and convalescent whole blood and colon biopsy samples revealed higher but non-significant TNF-alpha messenger RNA (mRNA) levels in subjects with acute E. histolytica diarrhea compared with convalescence. We conclude that there is an association between higher TNF-alpha production and E. histolytica diarrhea.
Collapse
Affiliation(s)
- Kristine M Peterson
- Division of Infectious Diseases, University of Virginia Health Systems, PO BOX 801337, Building MR4, Room 2115, 409 Lane Road, Charlottesville, VA, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Mortimer L, Chadee K. The immunopathogenesis of Entamoeba histolytica. Exp Parasitol 2010; 126:366-80. [PMID: 20303955 DOI: 10.1016/j.exppara.2010.03.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/08/2010] [Accepted: 03/12/2010] [Indexed: 12/17/2022]
Abstract
Amebiasis is the disease caused by the enteric dwelling protozoan parasite Entamoeba histolytica. The WHO considers amebiasis as one of the major health problems in developing countries; it is surpassed by only malaria and schistosomiasis for death caused by parasitic infection. E. histolytica primarily lives in the colon as a harmless commensal, but is capable of causing devastating dysentery, colitis and liver abscess. What triggers the switch to a pathogenic phenotype and the onset of disease is unknown. We are becoming increasingly aware of the complexity of the host-parasite interaction. During chronic stages of amebiasis, the host develops an immune response that is incapable of eliminating tissue resident parasites, while the parasite actively immunosuppresses the host. However, most individuals with symptomatic infections succumb only to an episode of dysentery. Why most halt invasion and a minority progress to chronic disease remains poorly understood. This review presents a current understanding of the immune processes that shape the outcome of E. histolytica infections during its different stages.
Collapse
Affiliation(s)
- Leanne Mortimer
- Faculty of Medicine, Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada
| | | |
Collapse
|
28
|
Lejeune M, Rybicka JM, Chadee K. Recent discoveries in the pathogenesis and immune response toward Entamoeba histolytica. Future Microbiol 2009; 4:105-18. [PMID: 19207103 DOI: 10.2217/17460913.4.1.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entamoeba histolytica is an enteric dwelling human protozoan parasite that causes the disease amoebiasis, which is endemic in the developing world. Over the past four decades, considerable effort has been made to understand the parasite and the disease. Improved diagnostics can now differentiate pathogenic E. histolytica from that of the related but nonpathogenic Entamoeba dispar, thus minimizing screening errors. Classically, the triad of Gal-lectin, cysteine proteinases and amoebapores of the parasite were thought to be the major proteins involved in the pathogenesis of amoebiasis. However, other amoebic molecules such as lipophosphopeptidoglycan, perioxiredoxin, arginase, and lysine and glutamic acid-rich proteins are also implicated. Recently, the genome of E. histolytica has been sequenced, which has widened our scope to study additional virulence factors. E. histolytica genome-based approaches have now confirmed the presence of Golgi apparatus-like vesicles and the machinery for glycosylation, thus improving the chances of identifying potential drug targets for chemotherapeutic intervention. Apart from Gal-lectin-based vaccines, promising vaccine targets such as serine-rich E. histolytica protein have yielded encouraging results. Considerable efforts have also been made to skew vaccination responses towards appropriate T-helper cell immunity that could augment the efficacy of vaccine candidates under study. Thus, ongoing efforts mining the information made available with the sequencing of the E. histolytica genome will no doubt identify and characterize other important potential vaccine/drug targets and lead to effective immunologic strategies for the control of amoebiasis.
Collapse
Affiliation(s)
- Manigandan Lejeune
- University of Calgary, Department of Microbiology & Infectious Diseases, Calgary, AB, T2N 4N1, Canada.
| | | | | |
Collapse
|
29
|
Host-microbe interactions and defense mechanisms in the development of amoebic liver abscesses. Clin Microbiol Rev 2009; 22:65-75, Table of Contents. [PMID: 19136434 DOI: 10.1128/cmr.00029-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Amoebiasis by Entamoeba histolytica is a major public health problem in developing countries and leads to several thousand deaths per year. The parasite invades the intestine (provoking diarrhea and dysentery) and the liver, where it forms abscesses (amoebic liver abscesses [ALAs]). The liver is the organ responsible for filtering blood coming from the intestinal tract, a task that implies a particular structure and immune features. Amoebae use the portal route and break through the sinusoidal endothelial barrier to reach the hepatic parenchyma. When faced with systemic and cell-mediated defenses, trophozoites adapt to their new environment and modulate host responses, leading to parasite survival and the formation of inflammatory foci. Cytopathogenic effects and the onset of inflammation may be caused by diffusible products originating from parasites and/or immune cells either by their secretion or by their release after cell death. Liver infection thus results from the interplay between E. histolytica and hepatic cells. Despite its importance in terms of public health burden, the lack of integrated data on ALA genesis means that we have only an incomplete description of the initiation and development of hepatic amoebiasis. Here, we review the main steps of ALA development as well as the responses triggered in both the host and the parasite. Transcriptome studies highlighted parasite factors involved in adherence to human cells, cytopathogenic effects, and adaptative and stress responses. An understanding of their role in ALA development will help to unravel the host-pathogen interactions and their evolution throughout the infection.
Collapse
|
30
|
Blazquez S, Guigon G, Weber C, Syan S, Sismeiro O, Coppe JY, Labruyre E, Guilln N. Chemotaxis ofEntamoeba histolyticatowards the pro-inflammatory cytokine TNF is based on PI3K signalling, cytoskeleton reorganization and the GalactoseN-acetylgalactosamine lectin activity. Cell Microbiol 2008; 10:1676-86. [DOI: 10.1111/j.1462-5822.2008.01158.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Toll-like receptor 9-dependent macrophage activation by Entamoeba histolytica DNA. Infect Immun 2007; 76:289-97. [PMID: 17984204 DOI: 10.1128/iai.01217-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Activation of the innate immune system by bacterial DNA and DNA of other invertebrates represents a pathogen recognition mechanism. In this study we investigated macrophage responses to DNA from the intestinal protozoan parasite Entamoeba histolytica. E. histolytica genomic DNA was purified from log-phase trophozoites and tested with the mouse macrophage cell line RAW 264.7. RAW cells treated with E. histolytica DNA demonstrated an increase in levels of tumor necrosis factor alpha (TNF-alpha) mRNA and protein production. TNF-alpha production was blocked by pretreatment with chloroquine or monensin. In fact, an NF-kappaB luciferase reporter assay in HEK cells transfected with human TLR9 demonstrated that E. histolytica DNA signaled through Toll-like receptor 9 (TLR9) in a manner similar to that seen with CpG-ODN. Immunofluorescence assays confirmed NF-kappaB activation in RAW cells, as seen by nuclear translocation of the p65 subunit. Western blot analysis demonstrated mitogen-activated protein kinase activation by E. histolytica DNA. E. histolytica DNA effects were abolished in MYD88-/- mouse-derived macrophages. In the context of disease, immunization with E. histolytica DNA protected gerbils from an E. histolytica challenge infection. Taken together, these results demonstrate that E. histolytica DNA is recognized by TLR9 to activate macrophages and may provide an innate defense mechanism characterized by the induction of the inflammatory mediator TNF-alpha.
Collapse
|
32
|
Morrison RN, Zou J, Secombes CJ, Scapigliati G, Adams MB, Nowak BF. Molecular cloning and expression analysis of tumour necrosis factor-alpha in amoebic gill disease (AGD)-affected Atlantic salmon (Salmo salar L.). FISH & SHELLFISH IMMUNOLOGY 2007; 23:1015-31. [PMID: 17566761 DOI: 10.1016/j.fsi.2007.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/02/2007] [Accepted: 04/05/2007] [Indexed: 05/15/2023]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a key mediator of inflammation during amoebiasis of humans and mice. Atlantic salmon (Salmo salar L.) are also susceptible to infection by amoebae (Neoparamoeba spp.), inflicting a condition known as amoebic gill disease (AGD). Here, the role of TNF-alpha in AGD-pathogenesis was examined. Two Atlantic salmon TNF-alpha transcripts designated TNF-alpha1 and TNF-alpha2 together with their respective genes were cloned and sequenced. TNF-alpha1 is 1379 bp and consists of a 738 bp open reading frame (ORF) translating into a predicted protein of 246 amino acids. TNF-alpha2 is 1412 bp containing an ORF and translated protein the same lengths as TNF-alpha1. An anti-rainbow trout TNF-alpha polyclonal antibody that bound recombinant Atlantic salmon TNF-alpha1 and TNF-alpha2 was used to detect constitutive and inducible expression of TNF-alpha in various tissues. The anti-TNF-alpha antibody bound to a TNF-like protein approximately 60 kDa that was constitutively expressed in a number of tissues in healthy Atlantic salmon. However, this protein was not detected in lysates from mitogen-stimulated head kidney leucocytes, despite up-regulation of TNF-alpha mRNAs under the same conditions. During the early onset of AGD in Atlantic salmon, there were no demonstrable differences in the gill tissue expression of TNF-alpha1, TNF-alpha2 nor the interleukin-1 beta (IL-1beta), inducible nitric oxide synthase (iNOS) and interferon gamma (IFN-gamma) mRNAs compared to tissue from healthy fish. In Atlantic salmon with advanced AGD, IL-1beta but not TNF-alpha1 or TNF-alpha2 mRNAs was up-regulated and was lesion-restricted. Given that Neoparamoeba spp. modulated both TNF-alpha2 and IL-1beta in head kidney leucocytes in vitro, it appears that rather than being recalcitrant to Neoparamoeba spp.-mediated TNF-alpha expression, either the parasite can influence the cytokine response during infection, there is ineffective signalling for TNF-alpha expression, or there are too few cells at the site of infection with the capacity to produce TNF-alpha. These data support our previous observation that IL-1beta mRNA expression is up-regulated in AGD-affected tissue and that TNF-alpha is not intrinsic in AGD-pathogenesis.
Collapse
Affiliation(s)
- R N Morrison
- Aquafin CRC, School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Ivory CPA, Chadee K. Intranasal immunization with Gal-inhibitable lectin plus an adjuvant of CpG oligodeoxynucleotides protects against Entamoeba histolytica challenge. Infect Immun 2007; 75:4917-22. [PMID: 17620349 PMCID: PMC2044551 DOI: 10.1128/iai.00725-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 06/30/2007] [Indexed: 11/20/2022] Open
Abstract
The development of an effective amebiasis vaccine could improve child health in the developing world, reducing cases of amebic colitis and liver abscess. An ideal vaccine would be comprised of a well-characterized parasite antigen and an adjuvant, which would have high potency while driving the immune response in a Th1 direction. This study describes a mucosal vaccine composed of the Entamoeba histolytica galactose/N-acetyl-D-galactosamine-inhibitable lectin (Gal-lectin) and CpG oligodeoxynucleotides (CpG-ODN). The Gal-lectin is a protein involved in parasite virulence and adherence and is known to activate immune cells, while CpG-ODN are known to be potent inducers of type 1-like immune responses. We demonstrated that intranasal administration of the vaccine resulted in strong Gal-lectin-specific Th1 responses and humoral responses. Vaccination induced the production of Gal-lectin-specific T cells and the production of the proinflammatory cytokine gamma interferon. Vaccinated animals had detectable serum anti-Gal-lectin immunoglobulin G (IgG) and stool anti-Gal-lectin IgA capable of blocking parasite adherence to target cells in vitro. One week after immunization, gerbils were challenged intrahepatically with live trophozoites. Vaccinated gerbils had no detectable abscesses after day 5, whereas control gerbils developed larger abscesses. These results show that mucosal vaccination with Gal-lectin and CpG-ODN can induce both systemic and humoral immune responses.
Collapse
Affiliation(s)
- Catherine P A Ivory
- Faculty of Medicine, Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
34
|
Blazquez S, Rigothier MC, Huerre M, Guillén N. Initiation of inflammation and cell death during liver abscess formation by Entamoeba histolytica depends on activity of the galactose/N-acetyl-d-galactosamine lectin. Int J Parasitol 2007; 37:425-33. [PMID: 17188278 DOI: 10.1016/j.ijpara.2006.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/05/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The parasite Entamoeba histolytica colonizes the human intestine causing amoebic colitis and disseminates through the vascular route to form liver abscesses. The Gal/GalNAc lectin is an adhesion protein complex which sustains tissue invasion by E. histolytica. Disruption of the Gal/GalNAc lectin function in engineered parasites (HGL-2 trophozoites) changed the pathophysiology of hamster liver abscess formation. HGL-2 trophozoites produced numerous small inflammatory foci located in the vicinity of blood vessels. The low penetration of HGL-2 trophozoites into hepatic tissue was shown to be associated with weak attraction of neutrophils and macrophages to the infiltrated areas and absence of pro-inflammatory tumour necrosis factor, in contrast to wild type or control vector infections. The low host inflammatory response in HGL-2 infections correlated with a delay in apoptosis of hepatic cells, whereas apoptosis of endothelial cells was not detected. Triggering of apoptosis in both host cell types most likely has a central role in modulating inflammation, a major landmark in hepatic amoebiasis. These data highlight the key role of the Gal/GalNAc lectin in initiation of E. histolytica hepatic infection.
Collapse
Affiliation(s)
- Samantha Blazquez
- Institut Pasteur, Unité de Biologie Cellulaire du Parasitisme, Paris, F-75015, France
| | | | | | | |
Collapse
|
35
|
Ivory CPA, Chadee K. Activation of dendritic cells by the Gal-lectin ofEntamoeba histolytica drives Th1 responsesin vitro andin vivo. Eur J Immunol 2007; 37:385-94. [PMID: 17219364 DOI: 10.1002/eji.200636476] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amebiasis is a human disease caused by the protozoan intestinal parasite Entamoeba histolytica. Vaccine development has focused on the parasite's surface galactose-N-acetyl-D-galactosamine inhibitable lectin (Gal-lectin) as a protective antigen. The Gal-lectin is immunogenic and has been shown to induce Th1 cytokines in vitro and in vivo. The immunological basis of the protective immune response elicited by the Gal-lectin is unknown. In this study, we investigated the response of BALB/c bone marrow-derived DC to E. histolytica Gal-lectin. Incubation of immature DC with Gal-lectin resulted in activation and maturation after 24 h. FACS analysis demonstrated an up-regulation of DC maturation markers CD80, CD86, CD40 and MHC class II upon exposure to Gal-lectin. The Gal-lectin also induced DC production of IL-12, indicating a Th1 response. Gal-lectin-activated DC were able to stimulate T cell proliferation in an allogeneic mixed leukocyte reaction and adoptive transfer of Gal-lectin-treated DC into naïve mice resulted in IFN-gamma-producing Gal-lectin-sensitized T cells. The activation of DC by Gal-lectin was mediated by MAPK and NF-kappaB. These findings indicate that E. histolytica Gal-lectin is a potent vaccine antigen capable of directly initiating DC maturation and activation characterized by Th1 cytokine production.
Collapse
Affiliation(s)
- Catherine P A Ivory
- Faculty of Medicine, Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | | |
Collapse
|
36
|
Lotter H, Tannich E. The current status of an amebiasis vaccine. Arch Med Res 2006; 37:292-6. [PMID: 16380335 DOI: 10.1016/j.arcmed.2005.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/25/2022]
Abstract
Efficient control of infectious diseases requires the development and application of suitable vaccines. Development of vaccines against amebiasis is still in its infancy. However, in recent years progress has been made in the identification of possible vaccine candidates, the route of application and the understanding of the immune response that is required for protection against amebiasis.
Collapse
Affiliation(s)
- Hannelore Lotter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
37
|
Sim S, Yong TS, Park SJ, Im KI, Kong Y, Ryu JS, Min DY, Shin MH. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. THE JOURNAL OF IMMUNOLOGY 2005; 174:4279-88. [PMID: 15778391 DOI: 10.4049/jimmunol.174.7.4279] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extracellular tissue penetrating protozoan parasite Entamoeba histolytica has been known to induce host cell apoptosis. However, the intracellular signaling mechanism used by the parasite to trigger apoptosis is poorly understood. In this study, we investigated the roles of reactive oxygen species (ROS), and of MAPKs in the Entamoeba-induced apoptosis of human neutrophils. The neutrophils incubated with live trophozoites of E. histolytica revealed a marked increase of receptor shedding of CD16 as well as phosphatidylserine (PS) externalization on the cell surface. The Entamoeba-induced apoptosis was effectively blocked by pretreatment of cells with diphenyleneiodonium chloride (DPI), a flavoprotein inhibitor of NADPH oxidase. A large amount of intracellular ROS was detected after exposure to viable trophozoites, and the treatment with DPI strongly inhibited the Entamoeba-induced ROS generation. However, a mitochondrial inhibitor rotenone did not attenuate the Entamoeba-induced ROS generation and apoptosis. Although E. histolytica strongly induced activation of ERK1/2 and p38 MAPK in neutrophils, the activation of ERK1/2 was closely associated with ROS-mediated apoptosis. Pretreatment of neutrophils with MEK1 inhibitor PD98059, but not p38 MAPK inhibitor SB202190, prevented Entamoeba-induced apoptosis. Moreover, DPI almost completely inhibited Entamoeba-induced phosphorylation of ERK1/2, but not phosphorylation of p38 MAPK. These results strongly suggest that NADPH oxidase-derived ROS-mediated activation of ERK1/2 is required for the Entamoeba-induced neutrophil apoptosis.
Collapse
Affiliation(s)
- Seobo Sim
- Department of Parasitology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rawal S, Majumdar S, Dhawan V, Vohra H. Entamoeba histolytica Gal/GalNAc lectin depletes antioxidant defences of target epithelial cells. Parasitology 2004; 128:617-24. [PMID: 15206463 DOI: 10.1017/s0031182004005074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the variety of virulence factors of Entamoeba histolytica, an adherence lectin (Gal/GalNAc, 260 kDa) is known to mediate colonization and subsequent host responses. Gal/GalNAc lectin is universally recognized by the immune sera of patients with amoebic liver abscess. It plays a crucial role in cytolysis and phagocytosis of human and rat colonic mucin glycoproteins. The objective of the present study was to elucidate the role of antioxidants in E. histolytica Gal/GalNAc lectin-induced signals in the target epithelial cells. We have attempted to define a pathway in target cells, Henle-407 cells (human intestinal epithelial cell line), that could link this immunodominant antigen to a known biological pathway for target cell activation and triggering of subsequent disease pathology/parasite survival. Since several workers have demonstrated that cAMP and cGMP may act as important cellular signals for altering ion transport, so in the present study, cAMP and cGMP levels were measured in Henle-407 cells which showed significant increase at 15 min after stimulation. Elevated cAMP and cGMP levels are implicated in altered electrolyte transport and conductance. Results showed that there were increased levels of ROS and RNI which led to reduced activities of antioxidant enzymes--catalase, superoxide dismutase and glutathione peroxidase. Despite the increased glutathione (reduced) levels, the enzymes were not able to combat the damage caused by ROS and RNI. Thus, there was an increased local concentration of the free radicals and reduced activities of all the three enzymes which could damage the target cell in terms of cytoskeleton and permeability changes.
Collapse
Affiliation(s)
- S Rawal
- Department of Experimental Medicine and Biotechnology, Post-graduate Institute of Medical Education and Research, Sector-12, Chandigarh 160 012, India
| | | | | | | |
Collapse
|
39
|
Houpt E, Barroso L, Lockhart L, Wright R, Cramer C, Lyerly D, Petri WA. Prevention of intestinal amebiasis by vaccination with the Entamoeba histolytica Gal/GalNac lectin. Vaccine 2004; 22:611-7. [PMID: 14741152 DOI: 10.1016/j.vaccine.2003.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevention of intestinal infection by Entamoeba histolytica would block both invasive disease and parasite transmission. The amebic Gal/GalNAc lectin mediates parasite adherence to the colonic surface and fecal anti-lectin IgA is associated with protection from intestinal reinfection in children. We tested if vaccination with the E. histolytica Gal/GalNAc lectin could prevent cecal infection in a C3H mouse model of amebic colitis. Two trials using native lectin purified from the parasite and two trials using a 64 kDa recombinant fragment ("LecA") were performed with a combined intranasal and intraperitoneal immunization regimen using cholera toxin and Freund's adjuvants, respectively. Two weeks after immunization mice were challenged intracecally with trophozoites, and 4-12 weeks after challenge mice were sacrificed for histopathologic evaluation of infection. Vaccination prevented intestinal infection with efficacies of 84 and 100% in the two native lectin trials and 91 and 34% in the two LecA trials. Mice with detectable pre-challenge fecal anti-lectin IgA responses were significantly more resistant to infection than mice without fecal anti-lectin IgA responses. These results show for the first time that immunization with the Gal/GalNAc lectin can prevent intestinal amebiasis in mice and suggest a protective role for fecal anti-lectin IgA in vivo.
Collapse
Affiliation(s)
- Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, 300 Lane Rd, PO Box 801340, MR4 Building Room 2115, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kammanadiminti SJ, Mann BJ, Dutil L, Chadee K. Regulation of Toll-like receptor-2 expression by the Gal-lectin of Entamoeba histolytica. FASEB J 2003; 18:155-7. [PMID: 14630697 DOI: 10.1096/fj.03-0578fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Gal/GalNAc lectin (Gal-lectin) of Entamoeba histolytica is a surface molecule involved in parasite adherence to host cells and is the most promising subunit vaccine candidate against amoebiasis. As macrophages are the major effector cells in host defense against amoebas, we studied the molecular mechanisms by which Gal-lectin activates macrophage. Microarray analysis showed that Gal-lectin up-regulated mRNAs of several cytokines and receptor genes involved in proinflammatory responses. The mechanism whereby the Gal-lectin regulates Toll-like receptor 2 (TLR-2) expression in macrophages was studied. Native Gal-lectin increased TLR-2 mRNA expression in a dose- and time-dependent fashion; peak response occurred with 1 microg/ml after 2 h stimulation. By immunoflourescence, enhanced surface expression of TLR-2 was observed after 12 h. With the use of nonoverlapping anti-Gal-lectin monoclonal antibodies that map to the carbohydrate recognition domain, amino acid 596-1082 was identified as the TLR-2 stimulating region. The Gal-lectin increased TLR-2 gene transcription, and the half-life of the mRNA transcripts was 1.4 h. Inhibition of nuclear factor (NF)-kappaB suppressed TLR-2 mRNA induction by the Gal-lectin. Moreover, cells pretreated with an inhibitor of p38 kinase (SB 208530) inhibited Gal-lectin induced TLR-2 mRNA expression by 40%. We conclude that the Gal-lectin activates NF-kappaB and MAP kinase-signaling pathways in macrophages culminating in the induction of several genes including TLR-2 and hypothesize that this could have a significant impact on macrophage activation and contribute to amoebic pathogenesis.
Collapse
Affiliation(s)
- Srinivas J Kammanadiminti
- Institute of Parasitology of McGill University Macdonald Campus,Ste. Anne de Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Entamoeba histolytica is the aetiological agent of invasive amoebiasis, the third leading parasitic cause of mortality in the world. The disease can be easily cured by chemotherapy; however, prevention, mainly in the form of vaccination, could greatly decrease the incidence of the disease, and possibly help in its eradication. The parasite's surface galactose and N-acetyl-d-galactosamine-inhibitable adherence lectin (Gal-lectin) is highly antigenic and is the most promising subunit vaccine candidate. We have generated a Gal-lectin-based DNA vaccine and tested its immunogenicity in mice. Although further optimization will probably be required, this vaccine could help in the generation of an amoebiasis DNA vaccine for use in humans.
Collapse
Affiliation(s)
- Denis Gaucher
- Institute of Parasitology of McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
42
|
Spithill TW, Chadee K, Jardim AP, Prichard RK, Ribeiro P. Confronting parasites from Canada. Trends Parasitol 2002; 18:519-21. [PMID: 12482527 DOI: 10.1016/s1471-4922(02)02369-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ankri S. Strategies of the protozoan parasiteEntamoeba histolytica to evade the innate immune responses of intestinal epithelial cells. J Biosci 2002. [DOI: 10.1007/bf02704855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Jarillo-Luna RA, Campos-Rodríguez R, Tsutsumi V. Entamoeba histolytica: immunohistochemical study of hepatic amoebiasis in mouse. Neutrophils and nitric oxide as possible factors of resistance. Exp Parasitol 2002; 101:40-56. [PMID: 12243737 DOI: 10.1016/s0014-4894(02)00021-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies in mice have not rendered conclusive data on cell and humoral factors to support the resistance of this rodent to Entamoeba histolytica infection. In Balb/c and C3H/HeJ mice inoculated with live or fixed trophozoites, we studied the evolution of the hepatic lesion, the kinetics of inflammatory cells, and the participation of some humoral factors in the development of the hepatic amoebic lesion. From the first hour, amoebae were surrounded by neutrophils containing inducible nitric oxide synthase (iNOS); macrophages also expressing iNOS appeared lately, whereas NK cells were not part of the inflammatory infiltrates. On the fourth day, neutrophils, macrophages, T and B lymphocytes, plasma cells, and some NK cells limited the lesions and anti-amoeba antibodies appeared when most parasites had been eliminated. Therefore, the resistance of the mice to E. histolytica probably lies in non-specific immune responses, among which the activation of neutrophils and the production of nitric oxide (NO) may be important amoebicide factors.
Collapse
Affiliation(s)
- R A Jarillo-Luna
- Department of Experimental Pathology, Center for Research and Advanced Studies, National Polytechnic Institute, Cinvestav-IPN, México City, Mexico
| | | | | |
Collapse
|
45
|
Stanley SL, Reed SL. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1049-54. [PMID: 11352795 DOI: 10.1152/ajpgi.2001.280.6.g1049] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition of crucial elements of the host response to infection have led to significant insights into the pathogenesis of amebic infection. E. histolytica virulence factors include 1) a surface galactose binding lectin that mediates E. histolytica binding to host cells and may contribute to amebic resistance to complement, 2) amebapores, small peptides capable of lysing cells, which may play a role in killing intestinal epithelial cells, hepatocytes, and host defense cells, and 3) a family of secreted cysteine proteinases that play a key role in E. histolytica tissue invasion, evasion of host defenses, and parasite induction of gut inflammation. Amebae can both lyse host cells and induce their suicide through programmed cell death. The host response is also an important factor in the outcome of infection, and neutrophils may play a key role in contributing to the tissue damage seen in amebiasis and in controlling amebic infection.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
46
|
Langer RC, Riggs MW. Cryptosporidium parvum apical complex glycoprotein CSL contains a sporozoite ligand for intestinal epithelial cells. Infect Immun 1999; 67:5282-91. [PMID: 10496907 PMCID: PMC96882 DOI: 10.1128/iai.67.10.5282-5291.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, has become a well-recognized diarrheal disease of humans and other mammals throughout the world. No approved parasite-specific drugs, vaccines, or immunotherapies for control of the disease are currently available, although passive immunization with C. parvum-specific antibodies has some efficacy in immunocompromised and neonatal hosts. We previously reported that CSL, an approximately 1,300-kDa conserved apical glycoprotein of C. parvum sporozoites and merozoites, is the antigenic species mechanistically bound by neutralizing monoclonal antibody 3E2 which elicits the circumsporozoite precipitate (CSP)-like reaction and passively protects against C. parvum infection in vivo. These findings indicated that CSL has a functional role in sporozoite infectivity. Here we report that CSL has properties consistent with being a sporozoite ligand for intestinal epithelial cells. For these studies, native CSL was isolated from whole sporozoites by isoelectric focusing (IEF) following observations that the approximately 1,300-kDa region containing CSL as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was comprised of approximately 15 molecular species (pI 3 to 10) when examined by two-dimensional (2-D) electrophoresis and silver staining. A subset of six approximately 1,300-kDa species (pI 4.0 to 6.5) was specifically recognized by 3E2 in 2-D Western immunoblots of IEF-isolated CSL. Isolated native CSL bound specifically and with high affinity to permissive human intestinal epithelial Caco-2 cells in a dose-dependent, saturable, and self-displaceable manner. Further, CSL specifically bound to the surface of live Caco-2 cells inhibited sporozoite attachment and invasion. In addition, sporozoites having released CSL after incubation with 3E2 and occurrence of the CSP-like reaction did not attach to and invade Caco-2 cells. These findings indicate that CSL contains a sporozoite ligand which facilitates attachment to and invasion of Caco-2 cells and, further, that ligand function may be disrupted by CSL-reactive monoclonal antibody. We conclude that CSL is a rational target for passive or active immunization against cryptosporidiosis.
Collapse
Affiliation(s)
- R C Langer
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
47
|
Andrade JL, Arruda S, Barbosa T, Paim L, Ramos MV, Cavada BS, Barral-Netto M. Lectin-induced nitric oxide production. Cell Immunol 1999; 194:98-102. [PMID: 10357885 DOI: 10.1006/cimm.1999.1494] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considering that nitric oxide (NO) may be involved in anti-tumoral and anti-parasite lectin effects, in this report we investigated whether lectin induces NO production. Lectins from Canavalia brasiliensis, Dioclea grandiflora, Pisum arvense (PAA), and concanavalin A induced murine peritoneal cells to produce NO in vitro. PAA induced similar levels to that obtained with lipopolysaccharide plus interferon-gamma. NO production by adherent cells was significantly lower than that of unfractionated cells, suggesting a combination of lectin stimuli directly on macrophages and via lymphocyte stimulation. Ex vivo experiments showed that cells stimulated in vivo could maintain NO production in vitro without further stimuli. NO synthesis blockage in vivo can significantly increase cell numbers in draining lymph nodes after lectin injection compared to unblocked controls, suggesting an in vivo association of lectin stimuli and NO production. Taken together these data show that lectins can induce NO production both in vitro and in vivo.
Collapse
Affiliation(s)
- J L Andrade
- Laboratório de Imuno-regulação e Microbiologia (LIMI) Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Bahia, 40.295-001 SSA, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Huston CD, Petri WA. Host-pathogen interaction in amebiasis and progress in vaccine development. Eur J Clin Microbiol Infect Dis 1998; 17:601-14. [PMID: 9832261 DOI: 10.1007/bf01708342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Entamoeba histolytica, the causative organism of invasive intestinal and extraintestinal amebiasis, infects approximately 50 million people each year, causing an estimated 40 to 100 thousand deaths annually. Because amebae only infect humans and some higher non-human primates, an anti-amebic vaccine could theoretically eradicate the organism. Uncontrolled epidemiologic studies indicate that acquired immunity to amebic infection probably occurs and that such a vaccine might be feasible. Application of molecular biologic techniques has led to rapid progress towards understanding how Entamoeba histolytica causes disease, and to the identification of several amebic proteins associated with virulence. These proteins are now being evaluated as potential vaccine components. Parenteral and oral vaccine preparations containing recombinant amebic proteins have been effective in preventing disease in a gerbil model of amebic liver abscess. Although systemic and mucosal cellular and humoral immunity both appear to play a role in protection against Entamoeba histolytica, the relative importance of each in the human immune response remains unknown. No animal model of intestinal amebiasis currently exists, moreover, so it has been impossible to evaluate protection against colonization and colitis. Further investigation of the fundamental mechanisms by which Entamoeba histolytica causes disease and of the human immune response to amebic infection is necessary to assess the true feasibility of an anti-amebic vaccine.
Collapse
Affiliation(s)
- C D Huston
- Department of Internal Medicine, University of Vermont College of Medicine, Burlington 05401, USA
| | | |
Collapse
|
49
|
Séguin R, Mann BJ, Keller K, Chadee K. The tumor necrosis factor alpha-stimulating region of galactose-inhibitable lectin of Entamoeba histolytica activates gamma interferon-primed macrophages for amebicidal activity mediated by nitric oxide. Infect Immun 1997; 65:2522-7. [PMID: 9199414 PMCID: PMC175356 DOI: 10.1128/iai.65.7.2522-2527.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Entamoeba histolytica adheres via galactose-lectin (Gal-lectin) to human colonic mucins and intestinal epithelial cells as a prerequisite to amebic invasion. Native Gal-lectin is a protective antigen in the gerbil model of amebiasis. Amino acids 596 to 1082 of Gal-lectin mediate E. histolytica adherence to target cells and stimulate tumor necrosis factor alpha (TNF-alpha) production by naive murine bone marrow macrophages (BMM). Resistance to amebiasis requires an effective cell-mediated immune response against E. histolytica trophozoites mediated by nitric oxide (NO) released from activated macrophages. Herein, we determine whether the TNF-alpha-stimulating region of Gal-lectin can activate gamma interferon (IFN-gamma)-primed BMM for NO production and amebicidal activity. Native Gal-lectin (100 to 500 ng/ml) stimulated TNF-alpha and inducible nitric oxide synthase (iNOS) mRNA expression in IFN-gamma-primed BMM as did lipopolysaccharide (100 ng/ml). Primed BMM produced TNF-alpha and NO in response to Gal-lectin in a dose-dependent manner. Antilectin monoclonal antibody IG7, which recognizes a domain (amino acids 596 to 818) of the TNF-alpha mRNA-stimulating region of Gal-lectin, specifically inhibited TNF-alpha and iNOS mRNA induction and TNF-alpha and NO production by primed BMM in response to Gal-lectin (100 ng/ml). Simultaneous treatment of BMM with IFN-gamma and Gal-lectin (100 ng/ml) activated the cells to kill E. histolytica trophozoites, whereas IFN-gamma treatment alone had no effect. In the presence of monoclonal antibody 1G7 or aminoguanidine (an iNOS inhibitor), NO production and amebicidal activity were inhibited >80%. These results suggest that the TNF-alpha-stimulating region of native Gal-lectin is a potent stimulus of IFN-gamma-primed BMM for NO production, which is essential for host defense against amebiasis.
Collapse
Affiliation(s)
- R Séguin
- Institute of Parasitology of McGill University, Macdonald Campus, Quebec, Canada
| | | | | | | |
Collapse
|
50
|
Lotter H, Zhang T, Seydel KB, Stanley SL, Tannich E. Identification of an epitope on the Entamoeba histolytica 170-kD lectin conferring antibody-mediated protection against invasive amebiasis. J Exp Med 1997; 185:1793-801. [PMID: 9151705 PMCID: PMC2196324 DOI: 10.1084/jem.185.10.1793] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1997] [Indexed: 02/04/2023] Open
Abstract
The emergence of multidrug-resistant organisms and the failure to eradicate infection by a number of important pathogens has led to increased efforts to develop vaccines to prevent infectious diseases. However, the nature of the immune response to vaccination with a given antigen can be complex and unpredictable. An example is the galactose- and N-acetylgalactosamine-inhibitable lectin, a surface antigen of Entamoeba histolytica that has been identified as a major candidate in a vaccine to prevent amebiasis. Vaccination with the lectin can induce protective immunity to amebic liver abscess in some animals, but others of the same species exhibit exacerbations of disease after vaccination. To better understand this phenomenon, we used recombinant proteins corresponding to four distinct domains of the molecule, and synthetic peptides to localize both protective and exacerbative epitopes of the heavy chain subunit of the lectin. We show that protective immunity after vaccination can be correlated with the development of an antibody response to a region of 25 amino acid residues of the lectin, and have confirmed the importance of the antibody response to this region by passive immunization studies. In addition, we show that exacerbation of disease can be linked to the development of antibodies that bind to an NH2-terminal domain of the lectin. These findings are clinically relevant, as individuals who are colonized with E. histolytica but are resistant to invasive disease have a high prevalence of antibodies to the protective epitope(s), compared to individuals with a history of invasive amebiasis. These studies should enable us to develop an improved vaccine for amebiasis, and provide a model for the identification of protective and exacerbative epitopes of complex antigens.
Collapse
Affiliation(s)
- H Lotter
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|