1
|
Kim HJ, Kim BH, Kim DK, Kim H, Choi SH, Kim DH, Choi M, Mook-Jung I, Jeong YT, Kwon O. Phosphorylated Tau in the Taste Buds of Alzheimer's Disease Mouse Models. Exp Neurobiol 2024; 33:202-214. [PMID: 39266476 PMCID: PMC11411091 DOI: 10.5607/en24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Numerous systemic diseases manifest with oral symptoms and signs. The molecular diagnosis of Alzheimer's disease (AD), the most prevalent neurodegenerative disease worldwide, currently relies on invasive or expensive methods, emphasizing the imperative for easily accessible biomarkers. In this study, we explored the expression patterns of key proteins implicated in AD pathophysiology within the taste buds of mice. We detected the expression of amyloid precursor protein (APP) and tau protein in the taste buds of normal C57BL/6 mice. Phosphorylated tau was predominantly found in type II and III taste cells, while APP was located in type I taste cells. Remarkably, we observed significantly stronger immunoreactivity to phosphorylated tau in the taste buds of aged AD mouse models compared to age-matched controls. These findings underscore the oral expression of biomarkers associated with AD, highlighting the diagnostic potential of the oral cavity for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Bo Hye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong Kyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Hanbin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Dong-Hoon Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
2
|
Yu W, Kastriti ME, Ishan M, Choudhary SK, Rashid MM, Kramer N, Do HGT, Wang Z, Xu T, Schwabe RF, Ye K, Adameyko I, Liu HX. The duct of von Ebner's glands is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections. Front Cell Dev Biol 2024; 12:1460669. [PMID: 39247625 PMCID: PMC11377339 DOI: 10.3389/fcell.2024.1460669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction We have recently demonstrated that Sox10-expressing (Sox10 +) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. Methods In this study, we performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex and used inducible Cre mouse models to map the cell lineages of vEGs and/or connective tissue (including stromal and Schwann cells). Results Transcriptomic analysis indicated that Sox10 expression was enriched in the cell clusters of vEG ducts that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and vEG ductal cells. In vivo lineage mapping showed that the traced cells were distributed in circumvallate taste buds concurrently with those in the vEGs, but not in the connective tissue. Moreover, multiple genes encoding pathogen receptors were enriched in the vEG ducts hosting Sox10 + cells. Discussion Our data supports that it is the vEGs, not connective tissue core, that serve as the niche of Sox10 + taste bud progenitors. If this is also true in humans, our data indicates that vEG duct is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
Collapse
Affiliation(s)
- Wenxin Yu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | | | - Mohamed Ishan
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | | | - Md Mamunur Rashid
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Naomi Kramer
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Hy Gia Truong Do
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Zhonghou Wang
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Ting Xu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kaixiong Ye
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Igor Adameyko
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Hong-Xiang Liu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Yu W, Kastriti ME, Ishan M, Choudhary SK, Kramer N, Rashid MM, Truong Do HG, Wang Z, Xu T, Schwabe RF, Ye K, Adameyko I, Liu HX. The main duct of von Ebner's glands is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594215. [PMID: 38798668 PMCID: PMC11118543 DOI: 10.1101/2024.05.14.594215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
Collapse
|
4
|
Edens BM, Bronner ME. Making developmental sense of the senses, their origin and function. Curr Top Dev Biol 2024; 159:132-167. [PMID: 38729675 DOI: 10.1016/bs.ctdb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
5
|
Clavé P, Ortega O, Rofes L, Alvarez-Berdugo D, Tomsen N. Brain and Pharyngeal Responses Associated with Pharmacological Treatments for Oropharyngeal Dysphagia in Older Patients. Dysphagia 2023; 38:1449-1466. [PMID: 37145201 DOI: 10.1007/s00455-023-10578-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Impaired pharyngo-laryngeal sensory function is a critical mechanism for oropharyngeal dysphagia (OD). Discovery of the TRP family in sensory nerves opens a window for new active treatments for OD. To summarize our experience of the action mechanism and therapeutic effects of pharyngeal sensory stimulation by TRPV1, TRPA1 and TRPM8 agonists in older patients with OD. Summary of our studies on location and expression of TRP in the human oropharynx and larynx, and clinical trials with acute and after 2 weeks of treatment with TRP agonists in older patients with OD. (1) TRP receptors are widely expressed in the human oropharynx and larynx: TRPV1 was localized in epithelial cells and TRPV1, TRPA1 and TRPM8 in sensory fibers mainly below the basal lamina. (2) Older people present a decline in pharyngeal sensory function, more severe in patients with OD associated with delayed swallow response, impaired airway protection and reduced spontaneous swallowing frequency. (3) Acute stimulation with TRP agonists improved the biomechanics and neurophysiology of swallowing in older patients with OD TRPV1 = TRPA1 > TRPM8. (4) After 2 weeks of treatment, TRPV1 agonists induced cortical changes that correlated with improvements in swallowing biomechanics. TRP agonists are well tolerated and do not induce any major adverse events. TRP receptors are widely expressed in the human oropharynx and larynx with specific patterns. Acute oropharyngeal sensory stimulation with TRP agonists improved neurophysiology, biomechanics of swallow response, and safety of swallowing. Subacute stimulation promotes brain plasticity further improving swallow function in older people with OD.
Collapse
Affiliation(s)
- Pere Clavé
- Gastrointestinal Physiology Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Omar Ortega
- Gastrointestinal Physiology Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laia Rofes
- Gastrointestinal Physiology Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Daniel Alvarez-Berdugo
- Gastrointestinal Physiology Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - Noemí Tomsen
- Gastrointestinal Physiology Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain.
| |
Collapse
|
6
|
Ohmoto M, Jyotaki M, Yee KK, Matsumoto I. A Transcription Factor Etv1/Er81 Is Involved in the Differentiation of Sweet, Umami, and Sodium Taste Cells. eNeuro 2023; 10:ENEURO.0236-22.2023. [PMID: 37045597 PMCID: PMC10131560 DOI: 10.1523/eneuro.0236-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Taste cells are maintained by continuous turnover throughout a lifetime, yet the mechanisms of taste cell differentiation, and how taste sensations remain constant despite this continuous turnover, remain poorly understood. Here, we report that a transcription factor Etv1 (also known as Er81) is involved in the differentiation of taste cells responsible for the preference for sweet, umami, and salty tastes. Molecular analyses revealed that Etv1 is expressed by a subset of taste cells that depend on Skn-1a (also known as Pou2f3) for their generation and express T1R genes (responsible for sweet and umami tastes) or Scnn1a (responsible for amiloride-sensitive salty taste). Etv1CreERT2/CreERT2 mice express Etv1 isoform(s) but not Etv1 in putative proprioceptive neurons as comparable to wild-type mice, yet lack expression of Etv1 or an isoform in taste cells. These Etv1CreERT2/CreERT2 mice have the same population of Skn-1a-dependent cells in taste buds as wild-type mice but have altered gene expression in taste cells, with regional differences. They have markedly decreased electrophysiological responses of chorda tympani nerves to sweet and umami tastes and to amiloride-sensitive salty taste evoked by sodium cation, but they have unchanged responses to bitter or sour tastes. Our data thus show that Etv1 is involved in the differentiation of the taste cells responsible for sweet, umami, and salty taste preferences.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | | | - Karen K Yee
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | | |
Collapse
|
7
|
Matsuyama K, Takai S, Shigemura N, Nakatomi M, Kawamoto T, Kataoka S, Toyono T, Seta Y. Ascl1-expressing cell differentiation in initially developed taste buds and taste organoids. Cell Tissue Res 2023:10.1007/s00441-023-03756-8. [PMID: 36781481 DOI: 10.1007/s00441-023-03756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Mammalian taste bud cells are composed of several distinct cell types and differentiated from surrounding tongue epithelial cells. However, the detailed mechanisms underlying their differentiation have yet to be elucidated. In the present study, we examined an Ascl1-expressing cell lineage using circumvallate papillae (CVP) of newborn mice and taste organoids (three-dimensional self-organized tissue cultures), which allow studying the differentiation of taste bud cells in fine detail ex vivo. Using lineage-tracing analysis, we observed that Ascl1 lineage cells expressed type II and III taste cell markers both CVP of newborn mice and taste organoids. However, the coexpression rate in type II cells was lower than that in type III cells. Furthermore, we found that the generation of the cells which express type II and III cell markers was suppressed in taste organoids lacking Ascl1-expressing cells. These findings suggest that Ascl1-expressing precursor cells can differentiate into both type III and a subset of type II taste cells.
Collapse
Affiliation(s)
- Kae Matsuyama
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan.
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Shinji Kataoka
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Yuji Seta
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| |
Collapse
|
8
|
Ohmoto M, Nakamura S, Wang H, Jiang P, Hirota J, Matsumoto I. Maintenance and turnover of Sox2+ adult stem cells in the gustatory epithelium. PLoS One 2022; 17:e0267683. [PMID: 36054203 PMCID: PMC9439239 DOI: 10.1371/journal.pone.0267683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Continuous turnover of taste bud cells in the oral cavity underlies the homeostasis of taste tissues. Previous studies have demonstrated that Sox2+ stem cells give rise to all types of epithelial cells including taste bud cells and non-gustatory epithelial cells in the oral epithelium, and Sox2 is required for generating taste bud cells. Here, we show the dynamism of single stem cells through multicolor lineage tracing analyses in Sox2-CreERT2; Rosa26-Confetti mice. In the non-gustatory epithelium, unicolored areas populated by a cluster of cells expressing the same fluorescent protein grew over time, while epithelial cells were randomly labeled with multiple fluorescent proteins by short-term tracing. Similar phenomena were observed in gustatory epithelia. These results suggest that the Sox2+ stem cell population is maintained by balancing the increase of certain stem cells with the reduction of the others. In the gustatory epithelia, many single taste buds contained cells labeled with different fluorescent proteins, indicating that a single taste bud is composed of cells derived from multiple Sox2+ stem cells. Our results reveal the characteristics of Sox2+ stem cells underlying the turnover of taste bud cells and the homeostasis of taste tissues.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- * E-mail: (MO); (IM)
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design (INIAD), Toyo University, Kita, Tokyo, Japan
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MO); (IM)
| |
Collapse
|
9
|
Barlow LA. The sense of taste: Development, regeneration, and dysfunction. WIREs Mech Dis 2022; 14:e1547. [PMID: 34850604 PMCID: PMC11152580 DOI: 10.1002/wsbm.1547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Gustation or the sense of taste is a primary sense, which functions as a gatekeeper for substances that enter the body. Animals, including humans, ingest foods that contain appetitive taste stimuli, including those that have sweet, moderately salty and umami (glutamate) components, and tend to avoid bitter-tasting items, as many bitter compounds are toxic. Taste is mediated by clusters of heterogeneous taste receptors cells (TRCs) organized as taste buds on the tongue, and these convey taste information from the oral cavity to higher order brain centers via the gustatory sensory neurons of the seventh and ninth cranial ganglia. One remarkable aspect of taste is that taste perception is mostly uninterrupted throughout life yet TRCs within buds are constantly renewed; every 1-2 months all taste cells have been steadily replaced. In the past decades we have learned a substantial amount about the cellular and molecular regulation of taste bud cell renewal, and how taste buds are initially established during embryogenesis. Here I review more recent findings pertaining to taste development and regeneration, as well as discuss potential mechanisms underlying taste dysfunction that often occurs with disease or its treatment. This article is categorized under: Infectious Diseases > Stem Cells and Development Cancer > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell & Developmental Biology, Graduate Program in Cell Biology, Stem Cells & Development, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Park GC, Bang SY, Lee HW, Choi KU, Kim JM, Shin SC, Cheon YI, Sung ES, Lee M, Lee JC, Kim HS, Lee BJ. ACE2 and TMPRSS2 immunolocalization and oral manifestations of COVID-19. Oral Dis 2022; 28 Suppl 2:2456-2464. [PMID: 35000261 DOI: 10.1111/odi.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the host cells depends on the expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). We investigated the distribution of ACE2- and TMPRSS2-expressing cells in various oral tissues to identify the underlying mechanism of oral manifestations in patients with coronavirus disease 2019. Subjects We analysed the expression patterns of ACE2 and TMPRSS2 in the oral mucosa (tongue, palate, and buccal mucosa), trigeminal ganglion, vessels, and salivary glands of 9 Sprague-Dawley rats using immunohistochemistry and immunofluorescence. RESULTS ACE2 and TMPRSS2 were strongly expressed in the intermediate layer of the squamous epithelia of tongue papillae and buccal mucosa. ACE2- and TMPRSS2-positive cells were observed in the taste buds of the tongue. Additionally, ACE2 and TMPRSS2 were co-expressed in the ductal epithelium and acinar cells of salivary glands. Furthermore, both ACE2 and TMPRSS2 were stained in the neuronal cell body of trigeminal ganglia, but not in Schwann cells. Moreover, ACE2 and TMPRSS2 were expressed in capillaries, but not in venules/arterioles. CONCLUSIONS SARS-CoV-2 can spread the suprabasal area of squamous epithelia of the oral mucosa, invades taste bud, trigeminal nerve, parotid gland, and microvessel, resulting in oral manifestations.
Collapse
Affiliation(s)
- Gi Cheol Park
- Department of Otolaryngology - Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Soo-Young Bang
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National Universtiy and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kyung Un Choi
- Department of Pathology, College of Medicine, Pusan National Universtiy and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ji Min Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National Universtiy and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National Universtiy and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Yong-Il Cheon
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National Universtiy and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Minhyung Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jin-Choon Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Pusan National Universtiy and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
11
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
12
|
Type II/III cell composition and NCAM expression in taste buds. Cell Tissue Res 2021; 385:557-570. [PMID: 33942154 DOI: 10.1007/s00441-021-03452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Taste buds are localized in fungiform (FF), foliate (FL), and circumvallate (CV) papillae on the tongue, and taste buds also occur on the soft palate (SP). Mature elongate cells within taste buds are constantly renewed from stem cells and classified into three cell types, Types I, II, and III. These cell types are generally assumed to reside in respective taste buds in a particular ratio corresponding to taste regions. A variety of cell-type markers were used to analyze taste bud cells. NCAM is the first established marker for Type III cells and is still often used. However, NCAM was examined mainly in the CV, but not sufficiently in other regions. Furthermore, our previous data suggested that NCAM may be transiently expressed in the immature stage of Type II cells. To precisely assess NCAM expression as a Type III cell marker, we first examined Type II and III cell-type markers, IP3R3 and CA4, respectively, and then compared NCAM with them using whole-mount immunohistochemistry. IP3R3 and CA4 were segregated from each other, supporting the reliability of these markers. The ratio between Type II and III cells varied widely among taste buds in the respective regions (Pearson's r = 0.442 [CV], 0.279 [SP], and - 0.011 [FF]), indicating that Type II and III cells are contained rather independently in respective taste buds. NCAM immunohistochemistry showed that a subset of taste bud cells were NCAM(+)CA4(-). While NCAM(+)CA4(-) cells were IP3R3(-) in the CV, the majority of them were IP3R3(+) in the SP and FF.
Collapse
|
13
|
Taste buds are not derived from neural crest in mouse, chicken, and zebrafish. Dev Biol 2020; 471:76-88. [PMID: 33326797 DOI: 10.1016/j.ydbio.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Our lineage tracing studies using multiple Cre mouse lines showed a concurrent labeling of abundant taste bud cells and the underlying connective tissue with a neural crest (NC) origin, warranting a further examination on the issue of whether there is an NC derivation of taste bud cells. In this study, we mapped NC cell lineages in three different models, Sox10-iCreERT2/tdT mouse, GFP+ neural fold transplantation to GFP- chickens, and Sox10-Cre/GFP-RFP zebrafish model. We found that in mice, Sox10-iCreERT2 specifically labels NC cell lineages with a single dose of tamoxifen at E7.5 and that the labeled cells were widely distributed in the connective tissue of the tongue. No labeled cells were found in taste buds or the surrounding epithelium in the postnatal mice. In the GFP+/GFP- chicken chimera model, GFP+ cells migrated extensively to the cranial region of chicken embryos ipsilateral to the surgery side but were absent in taste buds in the base of oral cavity and palate. In zebrafish, Sox10-Cre/GFP-RFP faithfully labeled known NC-derived tissues but did not label taste buds in lower jaw or the barbel. Our data, together with previous findings in axolotl, indicate that taste buds are not derived from NC cells in rodents, birds, amphibians or teleost fish.
Collapse
|
14
|
Sodium-Taste Cells Require Skn-1a for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste Cells. eNeuro 2020; 7:ENEURO.0385-20.2020. [PMID: 33219051 PMCID: PMC7729297 DOI: 10.1523/eneuro.0385-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023] Open
Abstract
Taste buds are maintained via continuous turnover of taste bud cells derived from local epithelial stem cells. A transcription factor Skn-1a (also known as Pou2f3) is required for the generation of sweet, umami (savory), and bitter taste cells that commonly express TRPM5 and CALHM ion channels. Here, we demonstrate that sodium-taste cells distributed only in the anterior oral epithelia and involved in evoking salty taste also require Skn-1a for their generation. We discovered taste cells in fungiform papillae and soft palate that show similar but not identical molecular feature with sweet, umami, and bitter taste-mediated Type II cells. This novel cell population expresses Plcb2, Itpr3, Calhm3, Skn-1a, and ENaCα (also known as Scnn1a) encoding the putative amiloride-sensitive (AS) salty taste receptor but lacks Trpm5 and Gnat3 Skn-1a-deficient taste buds are predominantly composed of putative non-sensory Type I cells and sour-sensing Type III cells, whereas wild-type taste buds include Type II (i.e., sweet, umami, and bitter taste) cells and sodium-taste cells. Both Skn-1a and Calhm3-deficient mice have markedly decreased chorda tympani nerve responses to sodium chloride, and those decreased responses are attributed to the loss of the AS salty taste response. Thus, AS salty taste is mediated by Skn-1a-dependent taste cells, whereas amiloride-insensitive salty taste is mediated largely by Type III sour taste cells and partly by bitter taste cells. Our results demonstrate that Skn-1a regulates differentiation toward all types of taste cells except sour taste cells.
Collapse
|
15
|
Ohmoto M, Kitamoto S, Hirota J. Expression of Eya1 in mouse taste buds. Cell Tissue Res 2020; 383:979-986. [PMID: 33242174 DOI: 10.1007/s00441-020-03311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Taste substances are detected by taste receptor cells in the taste buds in the oral epithelium. Individual taste receptor cells contribute to evoking one of the five taste qualities: sweet, umami, bitter, sour, and salty (sodium). They are continuously replaced every few weeks by new ones generated from local epithelial stem cells. A POU transcription factor, Pou2f3 (also known as Skn-1a), regulates the generation and differentiation of sweet, umami, and bitter cells. However, the molecular mechanisms underlying terminal differentiation into these Pou2f3-dependent taste receptor cells remain unknown. To identify the candidate molecules that regulate the differentiation of these taste receptor cells, we searched for taste receptor type-specific transcription factors using RNA-sequence data of sweet and bitter cells. No transcription factor gene showing higher expression in sweet cells than in bitter cells was found. Eyes absent 1 (Eya1) was identified as the only transcription factor gene showing higher expression in bitter cells than in sweet cells. In situ hybridization revealed that Eya1 was predominantly expressed in bitter cells and also in the putative immature/differentiating taste bud cells in circumvallate and fungiform papillae and soft palate. Eya1 is a candidate molecule that regulates the generation and differentiation of bitter cells.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Satsuki Kitamoto
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Junji Hirota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. .,Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
16
|
Ohmoto M, Lei W, Yamashita J, Hirota J, Jiang P, Matsumoto I. SOX2 regulates homeostasis of taste bud cells and lingual epithelial cells in posterior tongue. PLoS One 2020; 15:e0240848. [PMID: 33057384 PMCID: PMC7561181 DOI: 10.1371/journal.pone.0240848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022] Open
Abstract
Taste bud cells arise from local epithelial stem cells in the oral cavity and are continuously replaced by newborn cells throughout an animal's life. However, little is known about the molecular and cellular mechanisms of taste cell turnover. Recently, it has been demonstrated that SOX2, a transcription factor expressed in epithelial stem/progenitor cells of the oral cavity, regulates turnover of anterior tongue epithelium including gustatory and non-gustatory papillae. Yet, the role of SOX2 in regulating taste cell turnover in the posterior tongue is unclear. Prompted by the fact that there are regional differences in the cellular and molecular composition of taste buds and stem/progenitor cells in the anterior and posterior portions of tongue, which are derived from distinct embryonic origins, we set out to determine the role of SOX2 in epithelial tissue homeostasis in the posterior tongue. Here we report the differential requirement of SOX2 in the stem/progenitor cells for the normal turnover of lingual epithelial cells in the posterior tongue. Sox2 deletion in the stem/progenitor cells neither induced active caspase 3-mediated apoptotic cell death nor altered stem/progenitor cell population in the posterior tongue. Nevertheless, morphology and molecular feature of non-gustatory epithelial cells were impaired in the circumvallate papilla but not in the filiform papillae. Remarkably, taste buds became thinner, collapsed, and undetectable over time. Lineage tracing of Sox2-deleted stem/progenitor cells demonstrated an almost complete lack of newly generated basal precursor cells in the taste buds, suggesting mechanistically that Sox2 is involved in determining stem/progenitor cells to differentiate to gustatory lineage cells. Together, these results demonstrate that SOX2 plays key roles in regulating epithelial tissue homeostasis in the posterior tongue, similar but not identical to its function in the anterior tongue.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Weiwei Lei
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Junpei Yamashita
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Junji Hirota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Hsu CC, Seta Y, Matsuyama K, Kataoka S, Nakatomi M, Toyono T, Gunjigake KK, Kuroishi KN, Kawamoto T. Mash1-expressing cells may be relevant to type III cells and a subset of PLCβ2-positive cell differentiation in adult mouse taste buds. Cell Tissue Res 2020; 383:667-675. [PMID: 32960355 DOI: 10.1007/s00441-020-03283-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Mammalian taste bud cells have a limited lifespan and differentiate into type I, II, and III cells from basal cells (type IV cells) (postmitotic precursor cells). However, little is known regarding the cell lineage within taste buds. In this study, we investigated the cell fate of Mash1-positive precursor cells utilizing the Cre-loxP system to explore the differentiation of taste bud cells. We found that Mash1-expressing cells in Ascl1CreERT2::CAG-floxed tdTomato mice differentiated into taste bud cells that expressed aromatic L-amino acid decarboxylase (AADC) and carbonic anhydrase IV (CA4) (type III cell markers), but did not differentiate into most of gustducin (type II cell marker)-positive cells. Additionally, we found that Mash1-expressing cells could differentiate into phospholipase C β2 (PLCβ2)-positive cells, which have a shorter lifespan compared with AADC- and CA4-positive cells. These results suggest that Mash1-positive precursor cells could differentiate into type III cells, but not into most of type II cells, in the taste buds.
Collapse
Affiliation(s)
- Chia-Chien Hsu
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan.,Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Yuji Seta
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan.
| | - Kae Matsuyama
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Shinji Kataoka
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Takashi Toyono
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Kaori K Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Kayoko N Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| |
Collapse
|
18
|
Yu W, Ishan M, Yao Y, Stice SL, Liu HX. SOX10- Cre-Labeled Cells Under the Tongue Epithelium Serve as Progenitors for Taste Bud Cells That Are Mainly Type III and Keratin 8-Low. Stem Cells Dev 2020; 29:638-647. [PMID: 32098606 PMCID: PMC7232695 DOI: 10.1089/scd.2020.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Taste bud cells are specialized epithelial cells that undergo continuous turnover, and thus require active progenitors for their renewal and an intact taste function. Our previous studies suggested that a population of taste bud cells originates from outside of the surrounding tongue epithelium-previously regarded sole source of taste bud progenitors. In this study, we demonstrated that SOX10 (SRY-related HMG-box gene 10)-expressing cells, known to be in the migrating neural crest, were also distributed in taste bud-surrounding tissue compartments under the tongue epithelium, that is, the connective tissue core of taste papillae and von Ebner's glands. By lineage tracing of SOX10-expressing cells using SOX10-Cre, a Cre model driven by the endogenous SOX10 promoter, crossing with a Cre reporter line R26-tdTomato (tdT), we found SOX10-Cre-labeled tdT+ cells within taste buds in all three types of taste papillae (fungiform, circumvallate, and foliate) as well as in the soft palate in postnatal mice. The tdT+ taste bud cells were progressively more abundant along the developmental stages, from virtually zero at birth to over 35% in adults. Most of tdT+ taste bud cells had a low intensity of immunosignals of Keratin 8 (a widely used taste bud cell marker). In circumvallate taste buds, tdT signals were co-localized principally with a type III taste bud cell marker, less so with type I and II cell makers. Together, our data demonstrate a novel progenitor source for taste buds of postnatal mice-SOX10-Cre-labeled cells in the connective tissue core and/or von Ebner's glands.
Collapse
Affiliation(s)
- Wenxin Yu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Steven L. Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Abstract
Taste sensation is initiated in sensory cells within the taste buds (taste cells), in which the cooperation of many signaling molecules leads to the coding and transmission of information on the quality and intensity of taste to the afferent gustatory nerves. Here, we describe our method for inducing foreign gene expression in taste cells of fungiform papillae in a living mouse using a recombinant adeno-associated virus (AAV) vector, enabling us to study and control the function of a gene product in vivo. Among the serotypes tested to date, only AAV-DJ, a synthetic serotype, can transduce taste cells in vivo. We also describe how to validate intragemmal foreign gene expression in fungiform taste buds using an immunohistochemical approach.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Makiko Kashio
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
20
|
Kramer N, Chen G, Ishan M, Cui X, Liu HX. Early taste buds are from Shh + epithelial cells of tongue primordium in distinction from mature taste bud cells which arise from surrounding tissue compartments. Biochem Biophys Res Commun 2019; 515:149-155. [PMID: 31133375 PMCID: PMC6953407 DOI: 10.1016/j.bbrc.2019.05.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
Abstract
Mammalian taste buds emerge perinatally and most become mature 3-4 weeks after birth. Mature taste bud cells in rodents are known to be renewed by the surrounding K14+ basal epithelial cells and potentially other progenitor source(s), but the dynamics between initially developed taste buds and surrounding tissue compartments are unclear. Using the K14-Cre and Dermo1-Cre mouse lines to trace epithelial and mesenchymal cell lineages, we found that early taste buds in E18.5 and newborn mouse tongues are not derived from either lineage. At E11.5 when the tongue primordia (i.e., lingual swellings) emerge, the relatively homogeneous sonic hedgehog-expressing (Shh+) epithelial cells express Keratin (K) 8, a marker that is widely used to label taste buds. Mapping lineage of E11.0 Shh+ epithelium of the tongue rudiment with Shh-CreERT2/RFP mice demonstrated that both the early taste buds and the surrounding lingual epithelium are from the same population of progenitors - Shh+ epithelial cells of the tongue primordium. In combination with previous reports, we propose that Shh+K8+ cells in the homogeneous epithelium of tongue primordium at early embryonic stages are programmed to become taste papilla and taste bud cells. Switching off Shh and K8 expression in the Shh+ epithelial cells of the tongue primordium transforms the cells to non-gustatory cells surrounding papillae, including K14+ basal epithelial cells which will eventually contribute to the cell renewal of mature taste buds.
Collapse
Affiliation(s)
- Naomi Kramer
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Guiqian Chen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Xiaogang Cui
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
21
|
Itoyama T, Fukui M, Kawaguchi M, Kaneko S, Sugahara F, Murakami Y. FGF- and SHH-based molecular signals regulate barbel and craniofacial development in catfish. ZOOLOGICAL LETTERS 2019; 5:19. [PMID: 31223485 PMCID: PMC6570838 DOI: 10.1186/s40851-019-0135-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Catfish (Siluriformes) are characterized by unique morphologies, including enlarged jaws with movable barbels and taste buds covering the entire body surface. Evolution of these characteristics was a crucial step in their adaptive radiation to freshwater environments. However, the developmental processes of the catfish craniofacial region and taste buds remain to be elucidated; moreover, little is known about the molecular mechanisms underlying the morphogenesis of these structures. RESULTS In Amur catfish (Silurus asotus), three pairs of barbel primordia are formed by 2 days post-fertilization (dpf). Innervation of the peripheral nerves and formation of muscle precursors are also established during early development. Taste buds from the oral region to the body trunk are formed by 4 dpf. We then isolated catfish cognates Shh (SaShh) and Fgf8 (SaFgf8), which are expressed in maxillary barbel primordium at 1-2 dpf. Further, SHH signal inhibition induces reduction of mandibular barbels with abnormal morphology of skeletal elements, whereas it causes no apparent abnormality in the trigeminal and facial nerve morphology. We also found that mandibular barbel lengths and number of taste buds are reduced by FGF inhibition, as seen in SHH signal inhibition. However, unlike with SHH inhibition, the abnormal morphology of the trigeminal and facial nerves was observed in FGF signal-inhibited embryos. CONCLUSION The developmental processes of Amur catfish are consistent with those reported for other catfish species. Thus, developmental aspects of craniofacial structures and taste buds may be conserved in Siluriformes. Our findings also suggest that SHH signaling plays a crucial role in the formation of barbels and taste buds, without affecting nerve projection, while FGF signaling is required for the development of barbels, taste buds, and branchial nerves. Thus, SHH and FGF signaling plays key roles in the ontogenesis and evolution of some catfish-specific characteristics.
Collapse
Affiliation(s)
- Tatsuya Itoyama
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Makiko Fukui
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Masahumi Kawaguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
| | - Saki Kaneko
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, 663-8501 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| |
Collapse
|
22
|
Witt M. Anatomy and development of the human taste system. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:147-171. [DOI: 10.1016/b978-0-444-63855-7.00010-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
23
|
Khera S, Saigal A. Assessment and Evaluation of Gustatory Functions in Patients with Diabetes Mellitus Type II: A study. Indian J Endocrinol Metab 2018; 22:204-207. [PMID: 29911032 PMCID: PMC5972475 DOI: 10.4103/ijem.ijem_555_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The assessment of taste is critically important for an individual to enjoy life. This however, gets altered in various diseases. Diabetes Mellitus is one of the diseases in which person has dysgeusia. OBJECTIVES This study was done to assess different taste sensations in patients suffering from Diabetes Mellitus Type II. METHODS A total of 120 subjects were taken in this study and were divided into 3 groups. One group consisted of patients who were uncontrolled diabetics (n = 40), the second group of controlled diabetics (n = 40) and 40 subjects who were normal healthy individuals (control group). To assess their gustatory functions, two tests were performed, whole mouth above threshold and localized taste test. Whole mouth above threshold test was performed by assessing their detection threshold for each taste. RESULTS It was seen that patients with Diabetes Mellitus showed a high threshold to sweet, salty and sour taste. Bitter was not affected in either of the groups. The other test performed was localized (spatial) test. In this test, various parts of the oral cavity are assessed by dabbing the highest concentration of the prepared solutions and their response is noted. The tongue was divided into Left posterior tongue (LPT), Right posterior tongue (RPT), Right Anterior tongue (RAT), Left Anterior tongue (LAT). Soft palate was divided into Right Soft Palate (RSP) and Left Soft Palate (LSP). The results showed a significant difference for the sweet taste in the localized regions (right anterior tongue [RAT], left anterior tongue [LAT], right posterior tongue [RPT], left posterior tongue [LPT], right soft palate [RSP], and left soft palate [LSP]) of the mouth between the three groups (P < 0.05). The results of the salty taste showed significant differences in the RAT, LAT, RSP, and LSP regions of the mouth between the groups (P < 0.05). However, the regions of LPT and RPT showed no differences between the study groups (P > 0.05). The results showed a significant difference in the sour taste in the localized regions of the mouth in all the study groups (P < 0.05). The results of the bitter taste showed significant differences in the regions of the mouth in all the three groups (P < 0.05). However, the region of LPT showed no differences between the study groups (P > 0.05). CONCLUSION Within the limitation of this study, it was concluded that the diabetic patients had an increased satiation effect of sweet taste therefore they needed an increased quantity of sweet taste to be perceived. It was also significant for salty and sour taste, whereas bitter taste had no significance. Spatial taste test also showed differences in different regions of the tongue, soft palate. The left posterior tongue area showed no changes.
Collapse
Affiliation(s)
- Shriya Khera
- Department of Oral Medicine and Radiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Anjali Saigal
- Oral Medicine and Radiology, Thapar Hospital and Research Institute, Moga, Punjab, India
| |
Collapse
|
24
|
|
25
|
Ohmoto M, Ren W, Nishiguchi Y, Hirota J, Jiang P, Matsumoto I. Genetic Lineage Tracing in Taste Tissues Using Sox2-CreERT2 Strain. Chem Senses 2017; 42:547-552. [PMID: 28595328 DOI: 10.1093/chemse/bjx032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Taste cells in taste buds are epithelial sensory cells. Old taste bud cells die and are replaced by new ones generated from taste stem cells. Identifying and characterizing adult taste stem cells is therefore important to understand how peripheral taste tissues are maintained. SOX2 is expressed in oral epithelium including gustatory papillae and has been proposed to be a marker of adult taste stem/progenitor cells. Nevertheless, this hypothesis has never been directly tested. Here, by single-color genetic lineage tracing using Sox2-CreERT2 strain, we reveal that all types of taste bud cells distributed throughout the oral epithelium are derived from stem cells that express SOX2. Short-term tracing shows that SOX2-positive taste stem cells actively supply taste bud cells. At the base of epithelium outside taste buds are distributed proliferation marker- and SOX2-positive cells. Consistently, taste stem cells identified by Lgr5 expression in the circumvallate papillae also express SOX2. Together, taste stem cells distributed in oral epithelia express SOX2.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Wenwen Ren
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Yugo Nishiguchi
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259-B63 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259-B63 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.,Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B63 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Peihua Jiang
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Castillo-Azofeifa D, Losacco JT, Salcedo E, Golden EJ, Finger TE, Barlow LA. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development 2017; 144:3054-3065. [PMID: 28743797 DOI: 10.1242/dev.150342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/13/2017] [Indexed: 01/10/2023]
Abstract
The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin T Losacco
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ernesto Salcedo
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Erin J Golden
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas E Finger
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linda A Barlow
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA .,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CVH. Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. eLife 2017; 6:e21231. [PMID: 28387645 PMCID: PMC5438250 DOI: 10.7554/elife.21231] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/07/2017] [Indexed: 01/01/2023] Open
Abstract
The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.
Collapse
Affiliation(s)
- Dorit Hockman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessandro Mongera
- Department of Genetics, Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Shannon Fisher
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Ela W Knapik
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Charles K Kaufman
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Christian Mosimann
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Leonard I Zon
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
| | - Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Abstract
The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Charlotte M Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109;
| | - Archana Kumari
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
29
|
Ermilov AN, Kumari A, Li L, Joiner AM, Grachtchouk MA, Allen BL, Dlugosz AA, Mistretta CM. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling. PLoS Genet 2016; 12:e1006442. [PMID: 27893742 PMCID: PMC5125561 DOI: 10.1371/journal.pgen.1006442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.
Collapse
Affiliation(s)
- Alexandre N Ermilov
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Archana Kumari
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Libo Li
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ariell M Joiner
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marina A Grachtchouk
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrzej A Dlugosz
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
30
|
Taruno A, Kashio M, Sun H, Kobayashi K, Sano H, Nambu A, Marunaka Y. Adeno-Associated Virus-Mediated Gene Transfer into Taste Cells In Vivo. Chem Senses 2016; 42:69-78. [PMID: 27940927 DOI: 10.1093/chemse/bjw101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sense of taste is achieved by cooperation of many signaling molecules expressed in taste cells, which code and transmit information on quality and intensity of taste to the nervous system. Viral vector-mediated gene transfer techniques have been proven to be useful to study and control function of a gene product in vivo However, there is no transduction method for taste cells in live animals. Here, we have established a method for inducing foreign gene expression in mouse taste cells in vivo by recombinant adeno-associated virus (AAV) vector. First, using enhanced green fluorescent protein (EGFP) as a reporter, we screened 6 AAV serotypes along with a recombinant lentivirus vector for their ability to transduce taste cells. One week after viral injection into the submucosa of the tongue, EGFP expression in fungiform taste cells was observed only in animals injected with AAV-DJ, a synthetic serotype. Next, time course of AAV-DJ-mediated EGFP expression in fungiform taste cells was evaluated. Intragemmal EGFP signals appeared after a delay, rapidly increased until 7 days postinjection, and gradually decreased over the next few weeks probably because of the cell turnover. Finally, the taste cell types susceptible to AAV-DJ transduction were characterized. EGFP expression was observed in PLCβ2-immunoreactive type II and aromatic l-amino acid decarboxylase (AADC)-immunoreactive type III taste cells as well as in cells immunonegative for both PLCβ2 and AADC, demonstrating that AAV-DJ does not discriminate functional taste cell types. In conclusion, the method established in this study will be a promising tool to study the mechanism of taste.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Makiko Kashio
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Hiromi Sano
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan.,Division of System Neurophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan and
| | - Atsushi Nambu
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan.,Division of System Neurophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan and
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.,Department of Bio-Ionomics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
31
|
Venkatesan N, Rajapaksha P, Payne J, Goodfellow F, Wang Z, Kawabata F, Tabata S, Stice S, Beckstead R, Liu HX. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens. Biochem Biophys Res Commun 2016; 479:305-311. [PMID: 27639649 DOI: 10.1016/j.bbrc.2016.09.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue.
Collapse
Affiliation(s)
- Nandakumar Venkatesan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Prasangi Rajapaksha
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Jason Payne
- Department of Poultry Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Forrest Goodfellow
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Zhonghou Wang
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Fuminori Kawabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Steven Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Robert Beckstead
- Department of Poultry Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
32
|
Alvarez-Berdugo D, Rofes L, Casamitjana JF, Padrón A, Quer M, Clavé P. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments. Ann N Y Acad Sci 2016; 1380:104-120. [DOI: 10.1111/nyas.13150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Daniel Alvarez-Berdugo
- Gastrointestinal Motility Laboratory, Hospital de Mataró; Consorci Sanitari del Maresme; Mataró Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas; Instituto de Salud Carlos III; Barcelona Spain
| | - Laia Rofes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas; Instituto de Salud Carlos III; Barcelona Spain
| | | | - Andreína Padrón
- Department of Pathology, Hospital de Mataró; Consorci Sanitari del Maresme; Mataró Spain
| | - Miquel Quer
- ENT and Cervicofacial Pathology Department of Hospital de la Santa Creu i Sant Pau; Barcelona Spain
| | - Pere Clavé
- Gastrointestinal Motility Laboratory, Hospital de Mataró; Consorci Sanitari del Maresme; Mataró Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas; Instituto de Salud Carlos III; Barcelona Spain
- Fundació Institut de Investigació Germans Trias i Pujol; Badalona Spain
| |
Collapse
|
33
|
Boggs K, Venkatesan N, Mederacke I, Komatsu Y, Stice S, Schwabe RF, Mistretta CM, Mishina Y, Liu HX. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate. PLoS One 2016; 11:e0146475. [PMID: 26741369 PMCID: PMC4704779 DOI: 10.1371/journal.pone.0146475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.
Collapse
Affiliation(s)
- Kristin Boggs
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Nandakumar Venkatesan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Ingmar Mederacke
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Yoshihiro Komatsu
- Department of Pediatrics, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Steve Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Robert F. Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
34
|
Yoshimoto J, Okada S, Kishi M, Misaka T. Ulex Europaeus Agglutinin-1 Is a Reliable Taste Bud Marker for In Situ Hybridization Analyses. J Histochem Cytochem 2015; 64:205-15. [PMID: 26718243 DOI: 10.1369/0022155415626987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023] Open
Abstract
Taste signals are received by taste buds. To better understand the taste reception system, expression patterns of taste-related molecules are determined by in situ hybridization (ISH) analyses at the histological level. Nevertheless, even though ISH is essential for determining mRNA expression, few taste bud markers can be applied together with ISH. Ulex europaeus agglutinin-1 (UEA-1) appears to be a reliable murine taste bud marker based on immunohistochemistry (IHC) analyses. However, there is no evidence as to whether UEA-1 can be used for ISH. Thus, the present study evaluated UEA-1 using various histochemical methods, especially ISH. When lectin staining was performed after ISH procedures, UEA-1 clearly labeled taste cellular membranes and distinctly indicated boundaries between taste buds and the surrounding epithelial cells. Additionally, UEA-1 was determined as a taste bud marker not only when used in single-colored ISH but also when employed with double-labeled ISH or during simultaneous detection using IHC and ISH methods. These results suggest that UEA-1 is a useful marker when conducting analyses based on ISH methods. To clarify UEA-1 staining details, multi-fluorescent IHC (together with UEA-1 staining) was examined, resulting in more than 99% of cells being labeled by UEA-1 and overlapping with KCNQ1-expressing cells.
Collapse
Affiliation(s)
- Joto Yoshimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (JY, SO, TM),Central Research Institute, Mizkan Holdings, Aichi, Japan (JY, MK)
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (JY, SO, TM)
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings, Aichi, Japan (JY, MK)
| | - Takumi Misaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (JY, SO, TM)
| |
Collapse
|
35
|
Gaillard D, Xu M, Liu F, Millar SE, Barlow LA. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates. PLoS Genet 2015; 11:e1005208. [PMID: 26020789 PMCID: PMC4447363 DOI: 10.1371/journal.pgen.1005208] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/13/2015] [Indexed: 11/29/2022] Open
Abstract
Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells. Taste is a fundamental sense that helps the body determine whether food can be ingested. Taste dysfunction can be a side effect of cancer therapies, can result from an alteration of the renewal capacities of the taste buds, and is often associated with psychological distress and malnutrition. Thus, understanding how taste cells renew throughout adult life, i.e. how newly born cells replace old cells as they die, is essential to find potential therapeutic targets to improve taste sensitivity in patients suffering taste dysfunction. Here we show that a specific molecular pathway, Wnt/β-catenin signaling, controls renewal of taste cells by regulating separate stages of taste cell turnover. We show that activating this pathway directs the newly born cells to become primarily a specific taste cell type whose role is to support the other taste cells and help them work efficiently.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mingang Xu
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell & Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fei Liu
- Institute for Regenerative Medicine at Scott & White Hospital, Texas A&M University System Health Science Center, Temple, Texas, United States of America
| | - Sarah E. Millar
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Linda A. Barlow
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
36
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
37
|
During development intense Sox2 expression marks not only Prox1-expressing taste bud cell but also perigemmal cell lineages. Cell Tissue Res 2014; 359:743-53. [PMID: 25532873 DOI: 10.1007/s00441-014-2076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
Sox2 is proposed to regulate the differentiation of bipotential progenitor cells into taste bud cells. However, detailed expression of Sox2 remains unclear. In this report, Sox2 expression during taste bud development in the fungiform (FF), circumvallate (CV) and soft palate (SP) areas is examined together with Prox1. First, we immunohistochemically checked Prox1 expression in adults and found that almost all taste bud cells are Prox1-positive. During FF development, intense Sox2 expression was restricted to taste bud primordia expressing Prox1 at E12.5. However, at E14.5, Sox2 was intensely expressed outside the developing taste buds resolving to perigemmal Sox2 expression in adults. In the SP, at E14.5, taste bud primordia emerged as Prox1-expressing cell clusters. However, intense Sox2 expression was not restricted to taste bud primordia but was detected widely in the epithelium. During development, Sox2 expression outside developing taste buds was generally down-regulated but was retained in the perigemmal region similarly to that in the FF. In the CV, the initial stage of taste bud development remained unclear because of the lack of taste bud primordia comparable to that in the FF and SP. Here, we show that Prox1-expressing cells appear in the apical epithelium at E12.5, in the inner trench wall at E17.5 and in the outer trench wall at E18.5. Sox2 was again not restricted to developing taste bud cells expressing Prox1 during CV development. The expression patterns support that Sox2 does not serve as a cell fate selector between taste bud cells and surrounding keratinocytes but rather may contribute to them both.
Collapse
|
38
|
Miura H, Kusakabe Y, Hashido K, Hino A, Ooki M, Harada S. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla. Neurosci Lett 2014; 580:147-52. [PMID: 25123441 DOI: 10.1016/j.neulet.2014.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
Abstract
Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve.
Collapse
Affiliation(s)
- Hirohito Miura
- Department of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan.
| | - Yuko Kusakabe
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Kento Hashido
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Akihiro Hino
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba-shi, Ibaraki 305-8642, Japan
| | - Makoto Ooki
- Department of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| | - Shuitsu Harada
- Department of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| |
Collapse
|
39
|
Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells 2014; 31:992-1000. [PMID: 23377989 DOI: 10.1002/stem.1338] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/21/2012] [Indexed: 12/31/2022]
Abstract
Until recently, reliable markers for adult stem cells have been lacking for many regenerative mammalian tissues. Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5) has been identified as a marker for adult stem cells in intestine, stomach, and hair follicle; Lgr5-expressing cells give rise to all types of cells in these tissues. Taste epithelium also regenerates constantly, yet the identity of adult taste stem cells remains elusive. In this study, we found that Lgr5 is strongly expressed in cells at the bottom of trench areas at the base of circumvallate (CV) and foliate taste papillae and weakly expressed in the basal area of taste buds and that Lgr5-expressing cells in posterior tongue are a subset of K14-positive epithelial cells. Lineage-tracing experiments using an inducible Cre knockin allele in combination with Rosa26-LacZ and Rosa26-tdTomato reporter strains showed that Lgr5-expressing cells gave rise to taste cells, perigemmal cells, along with self-renewing cells at the bottom of trench areas at the base of CV and foliate papillae. Moreover, using subtype-specific taste markers, we found that Lgr5-expressing cell progeny include all three major types of adult taste cells. Our results indicate that Lgr5 may mark adult taste stem or progenitor cells in the posterior portion of the tongue.
Collapse
Affiliation(s)
- Karen K Yee
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
40
|
Miura H, Scott JK, Harada S, Barlow LA. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells. Dev Dyn 2014; 243:1286-97. [PMID: 24590958 DOI: 10.1002/dvdy.24121] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Taste buds contain ∼60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I, glial cells; II, bitter/sweet/umami receptor cells; and III, sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turn over rapidly suggesting that Shh+ cells are post-mitotic precursors of some or all taste cell types. RESULTS To fate map Shh-expressing cells, mice carrying ShhCreER(T2) and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). CONCLUSIONS Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds.
Collapse
Affiliation(s)
- Hirohito Miura
- Department of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | | | | | | |
Collapse
|
41
|
Hochheimer A, Krohn M, Rudert K, Riedel K, Becker S, Thirion C, Zinke H. Endogenous Gustatory Responses and Gene Expression Profile of Stably Proliferating Human Taste Cells Isolated From Fungiform Papillae. Chem Senses 2014; 39:359-77. [DOI: 10.1093/chemse/bju009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Taruno A, Matsumoto I, Ma Z, Marambaud P, Foskett JK. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. Bioessays 2013; 35:1111-8. [PMID: 24105910 DOI: 10.1002/bies.201300077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CALHM1 was recently demonstrated to be a voltage-gated ATP-permeable ion channel and to serve as a bona fide conduit for ATP release from sweet-, umami-, and bitter-sensing type II taste cells. Calhm1 is expressed in taste buds exclusively in type II cells and its product has structural and functional similarities with connexins and pannexins, two families of channel protein candidates for ATP release by type II cells. Calhm1 knockout in mice leads to loss of perception of sweet, umami, and bitter compounds and to impaired gustatory nerve responses to these tastants. These new studies validate the concept of ATP as the primary neurotransmitter from type II cells to gustatory neurons. Furthermore, they identify voltage-gated ATP release through CALHM1 as an essential molecular mechanism of ATP release in taste buds. We discuss these new findings, as well as unresolved issues in peripheral taste signaling that we hope will stimulate future research.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | |
Collapse
|
43
|
Takeda N, Jain R, Li D, Li L, Lu MM, Epstein JA. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury. PLoS One 2013; 8:e66314. [PMID: 23824276 PMCID: PMC3688887 DOI: 10.1371/journal.pone.0066314] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/04/2013] [Indexed: 11/18/2022] Open
Abstract
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- * E-mail: (NT); (JAE)
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
| | - Deqiang Li
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
| | - Li Li
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
| | - Min Min Lu
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, United States of America
- * E-mail: (NT); (JAE)
| |
Collapse
|
44
|
Jackson R, Braubach OR, Bilkey J, Zhang J, Akimenko M, Fine A, Croll RP, Jonz MG. Expression of
sall4
in taste buds of zebrafish. Dev Neurobiol 2013; 73:543-58. [DOI: 10.1002/dneu.22079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Robyn Jackson
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| | - Oliver R. Braubach
- Department of Physiology and BiophysicsDalhousie UniversityHalifax NS CanadaB3H 1X5
- Center for Functional ConnectomicsKorea Institute of Science and TechnologySeoul Korea
| | - Jessica Bilkey
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| | - Jing Zhang
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| | | | - Alan Fine
- Department of Physiology and BiophysicsDalhousie UniversityHalifax NS CanadaB3H 1X5
| | - Roger P. Croll
- Department of Physiology and BiophysicsDalhousie UniversityHalifax NS CanadaB3H 1X5
| | - Michael G. Jonz
- Department of BiologyUniversity of OttawaOttawa ON CanadaK1N 6N5
| |
Collapse
|
45
|
Kinnamon SC. Neurosensory transmission without a synapse: new perspectives on taste signaling. BMC Biol 2013; 11:42. [PMID: 23587289 PMCID: PMC3626930 DOI: 10.1186/1741-7007-11-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/11/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sue C Kinnamon
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, 12700 E 19th Ave, Aurora, Colorado 80045, USA.
| |
Collapse
|
46
|
Tanaka T, Komai Y, Tokuyama Y, Yanai H, Ohe S, Okazaki K, Ueno H. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat Cell Biol 2013; 15:511-8. [DOI: 10.1038/ncb2719] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
|
47
|
Kirino M, Parnes J, Hansen A, Kiyohara S, Finger TE. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors. Open Biol 2013; 3:130015. [PMID: 23466675 PMCID: PMC3718344 DOI: 10.1098/rsob.130015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.
Collapse
Affiliation(s)
- Masato Kirino
- Department of Chemistry and BioScience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
48
|
Perea-Martinez I, Nagai T, Chaudhari N. Functional cell types in taste buds have distinct longevities. PLoS One 2013; 8:e53399. [PMID: 23320081 PMCID: PMC3540047 DOI: 10.1371/journal.pone.0053399] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/30/2012] [Indexed: 12/21/2022] Open
Abstract
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.
Collapse
Affiliation(s)
- Isabel Perea-Martinez
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Takatoshi Nagai
- Department of Biology, Keio University School of Medicine, Yokohama, Japan
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Program in Neurosciences, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
49
|
Li F, Cao J, Zhou M. NTPDase2+ Cells Generate Lingual Epithelia and Papillae. Front Genet 2012; 3:255. [PMID: 23293651 PMCID: PMC3536025 DOI: 10.3389/fgene.2012.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/29/2012] [Indexed: 11/13/2022] Open
Abstract
The tongue epithelium is one of the most rapidly self-renewing tissues in adult mammals. Multiple stem cell populations are currently believed to exist in tongue epithelia. Keratin 14 (K14) positive cells differentiate into either lingual epithelia or lingual papillae, while ecto-nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) is associated with neural stem cells and astrocyte-like cells ensheathing the migrating neuroblasts. Here, using a transgenic mouse expressing rtTA from the mouse NTPDase2 promoter, we generated an inducible model by treatment with Doxycycline. By immunohistochemical analysis and in situ hybridization, we found exclusive expression of NTPDase2 in lingual epithelia and lingual papillae. Using inducible genetic cell fate mapping, we further showed that the NTPDase2+ cells generated lingual papillae and epithelia in the adult tongue. Finally, building on our previously proposed paradigm of cell migration stream, a model is further described here for lingual epithelia cell genesis. In short, the current results not only extend our understanding of the cell migration stream in lingual epithelia and lingual papillae, but they also support the concept of multiple stem cell populations in lingual epithelia and papillae.
Collapse
Affiliation(s)
- Feng Li
- School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | | | | |
Collapse
|
50
|
Matsumoto I, Ohmoto M, Abe K. Functional diversification of taste cells in vertebrates. Semin Cell Dev Biol 2012; 24:210-4. [PMID: 23085625 DOI: 10.1016/j.semcdb.2012.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
Abstract
Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five "basic" tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species.
Collapse
Affiliation(s)
- Ichiro Matsumoto
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|