1
|
Silver SE, Howells AR, Arhontoulis DC, Randolph LN, Hyams NA, Barrs RW, Li M, Kerr CM, Robino RA, Morningstar JE, Bain JD, Floy ME, Norris RA, Bao X, Ruddy JM, Palecek SP, Ferreira LMR, Lian XL, Mei Y. Hypoimmunogenic hPSC-derived cardiac organoids for immune evasion and heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648007. [PMID: 40291708 PMCID: PMC12027337 DOI: 10.1101/2025.04.09.648007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Human pluripotent stem cell (hPSC)-derived cardiac therapies hold great promise for heart regeneration but face major translational barriers due to allogeneic immune rejection. Here, we engineered hypoimmunogenic hPSCs using a two-step CRISPR-Cas9 strategy: (1) B2M knockout, eliminating HLA class I surface expression, and (2) knock-in of HLA-E or HLA-G trimer constructs in the AAVS1 safe harbor locus to confer robust immune evasion. Hypoimmunogenic hPSCs maintained pluripotency, efficiently differentiated into cardiac cell types that resisted both T and NK cell-mediated cytotoxicity in vitro , and self-assembled into engineered cardiac organoids. Comprehensive analyses of the hypoimmunogenic cells and organoids revealed preservation of transcriptomic, structural, and functional properties with minimal off-target effects from gene editing. In vivo , hypoimmunogenic cardiac organoids restored contractile function in infarcted rat hearts and demonstrated superior graft retention and immune evasion in humanized mice compared to wild-type counterparts. These findings establish the therapeutic potential of hypoimmunogenic hPSC-CMs in the cardiac organoid platform, laying the foundation for off-the-shelf cardiac cell therapies to treat cardiovascular disease, the leading cause of death worldwide.
Collapse
|
2
|
Alyami A, AlJurayyan A, Alosaimi B, Alkadi H, Alkhulaifi F, Al-Jurayb H, Osman A, Christmas S, Alomar S, Al-Bayati Z. The correlation between soluble human leukocyte antigen (sHLA-G) levels and +3010 polymorphism. Int J Immunogenet 2024; 51:39-46. [PMID: 38087909 DOI: 10.1111/iji.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Human leukocyte antigen-G (HLA-G) is classified as non-classical HLA, located in the short arm of chromosome 6 and composed of seven introns and eight exons. The HLA-G gene has a lower frequency polymorphism in the coding area and higher variability at the regulatory 5'- and 3'-untranslated regions linked to HLA-G microRNA regulation. HLA-G molecule is known to have an immunomodulatory and tolerogenic features role. In 199 Saudi individuals, we examined the association between plasma soluble HLA-G (sHLA-G) levels and eight polymorphic different sites, including 14 bp ins/del/+3003T-C/+3010C-G/+3027C-A/+3035C-T/+3142C-G/+3187A-G/+3196C-G single nucleotide polymorphisms (SNPs) in exon 8 in the HLA-G gene. Our results revealed higher frequency for rs17179101C (97%), rs1707T (92%) and rs9380142A (73%) alleles. Greater frequencies for the tested genotypes were observed in 3027C/C (rs17179101) (93%), 14 bp (rs1704) ins/del (92%), +3003T/T (rs1707) (85%) and +3035C/T (rs17179108) (79%) SNP genotypes. Moreover, we observed a significant association of sHLA-G with +3010G/C (rs1710) SNP. In conclusion, we showed a significant association between 3010G/C (rs1710) SNP and the sHLA-G level among our sample for Saudi populations. Our findings demonstrated that specific SNP within the HLA-G gene is linked to sHLA-G molecule secretion, suggesting sHLA-G levels may be regulated genetically.
Collapse
Affiliation(s)
- Ahmed Alyami
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Abdullah AlJurayyan
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Haitham Alkadi
- Research Center, King Fahad Medical City Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Fadwa Alkhulaifi
- College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Haya Al-Jurayb
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Awad Osman
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Steve Christmas
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Suliman Alomar
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zaid Al-Bayati
- Department of Genetic Study, Azadi Teaching Hospital, Kirkuk, Iraq
| |
Collapse
|
3
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 PMCID: PMC11784324 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
4
|
Tung CC, Rathore APS, St. John AL. Conventional and non-conventional antigen presentation by mast cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad016. [PMID: 38567067 PMCID: PMC10917180 DOI: 10.1093/discim/kyad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
Collapse
Affiliation(s)
- Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
5
|
Gunavathy N, Asirvatham A, Chitra A, Jayalakshmi M. Evaluation of HLA-G 14bp Ins/Del and +3142 C/G Polymorphisms in Type 1 Diabetes among South Indian Population. Indian J Endocrinol Metab 2023; 27:223-229. [PMID: 37583409 PMCID: PMC10424110 DOI: 10.4103/ijem.ijem_7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/02/2023] [Accepted: 04/22/2023] [Indexed: 08/17/2023] Open
Abstract
Background Type 1 diabetes (T1D) is a multifactorial autoimmune disease, involving strong genetic components with familial predisposition. Human leukocyte antigen-G (HLA-G) is a non-classical HLA-class I molecule having several immunomodulatory functions. Polymorphisms in HLA-G are associated with several autoimmune diseases including T1D. This study aims to evaluate the association of HLA-G 14bp Ins/Del and +3142 C/G polymorphisms with T1D among the South Indian population. Methods The study was performed in a cohort of 123 T1D patients along with their 51 siblings and 126 parents. The association and linkage of HLA-G 14bp Ins/Del and +3142 C/G polymorphisms with T1D were analysed, and transmission disequilibrium test (TDT) was performed. Results Significantly increased frequencies of HLA-G 14bp Del/Del genotype (OR = 2.16, pc = 0.0302) and Del allele (OR = 1.71, pc = 0.0398) were observed in female patients compared to parents. Higher frequencies of DelDel/GG combined genotype (OR = 4.45, pc = 0.0049) and Del/G haplotype (OR = 2.91, pc = 0.0277) were observed in female patients compared to parents. TDT also revealed over-transmission of Del/G haplotype (25T vs 7UT; P = 0.0015) and a strong linkage disequilibrium between the studied polymorphisms. Conclusion This familial study shows the association of HLA-G 3'UTR 14bp Ins/Del polymorphism with the risk of T1D among the South Indian population, especially in females.
Collapse
Affiliation(s)
- Nagarajan Gunavathy
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Arthur Asirvatham
- Department of Diabetology, Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Ayyappan Chitra
- Institute of Child Health and Research Centre, Government Rajaji Hospital, Madurai, Tamil Nadu, India
| | - Mariakuttikan Jayalakshmi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
6
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
7
|
Suzuki S, Morishima S, Murata M, Tanaka M, Shigenari A, Ito S, Kanga U, Kulski JK, Morishima Y, Shiina T. Sequence Variations Within HLA-G and HLA-F Genomic Segments at the Human Leukocyte Antigen Telomeric End Associated With Acute Graft-Versus-Host Disease in Unrelated Bone Marrow Transplantation. Front Immunol 2022; 13:938206. [PMID: 35935961 PMCID: PMC9351719 DOI: 10.3389/fimmu.2022.938206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is defined as a syndrome of an immunological response of graft to the host that occurs early after allogeneic hematopoietic stem cell transplantation (HCT). This disease is frequently observed even in HCT matched for human leukocyte antigen (HLA) alleles at multiple gene loci. Although the HLA region represents complex and diverse genomic characteristics, detailed association analysis is required for the identification of uncharacterized variants that are strongly associated with aGVHD. We genotyped three loci, OR2H2, HLA-F-AS1, and HLA-G, that are located in the 460 kb of HLA telomeric region and statistically analyzed the genotypes including HLA-DPB1 with clinical and transplantation outcomes using 338 unrelated bone marrow transplantation (UR-BMT) patient–donor pairs who were matched for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 (HLA-10/10). Multivariate analyses demonstrated that HLA-F-AS1 and HLA-DPB1 mismatches were associated with grade II–IV aGVHD (hazard ratio (HR), 1.76; 95% CI, 1.07–2.88; p = 0.026; and HR, 1.59; CI, 1.02–2.49; p = 0.042, respectively). There was no confounding between HLA-F-AS1 and HLA-DPB1 (p = 0.512), suggesting that the HLA-F-AS1 mismatch has a strong effect on aGVHD independently of HLA-DPB1. Moreover, a stratified analysis suggested possible associations of HLA-F-AS1, HLA-DPB1, and/or HLA-G mismatches with grade II–IV aGVHD and the more severe grade III–IV aGVHD. These findings provide new insights into understanding the molecular mechanism of aGVHD caused by HLA-matched UR-BMT.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Sayaka Ito
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Uma Kanga
- Clinical Immunogenetics Laboratory, Centre for Excellence in Molecular Medicine, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, The University of Western Australia Medical School, Crawley, WA, Australia
| | - Yasuo Morishima
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Hematology and Oncology, Nakagami Hospital, Okinawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Takashi Shiina,
| |
Collapse
|
8
|
Variation of Complement Protein Levels in Maternal Plasma and Umbilical Cord Blood during Normal Pregnancy: An Observational Study. J Clin Med 2022; 11:jcm11133611. [PMID: 35806894 PMCID: PMC9267899 DOI: 10.3390/jcm11133611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system constitutes a crucial part of the innate immunity, mediating opsonization, lysis, inflammation, and elimination of potential pathogens. In general, there is an increased activity of the complement system during pregnancy, which is essential for maintaining the host’s defense and fetal survival. Unbalanced or excessive activation of the complement system in the placenta is associated with pregnancy complications, such as miscarriage, preeclampsia, and premature birth. Nonetheless, the actual clinical value of monitoring the activation of the complement system during pregnancy remains to be investigated. Unfortunately, normal reference values specifically for pregnant women are missing, and for umbilical cord blood (UCB), data on complement protein levels are scarce. Herein, complement protein analyses (C1q, C3, C4, C3d levels, and C3d/C3 ratio) were performed in plasma samples from 100 healthy, non-medicated and non-smoking pregnant women, collected during different trimesters and at the time of delivery. In addition, UCB was collected at all deliveries. Maternal plasma C1q and C3d/C3 ratio showed the highest mean values during the first trimester, whereas C3, C4, and C3d had rising values until delivery. We observed low levels of C1q and C4 as well as increased C3d and C3d/C3 ratio, particularly during the first trimester, as a sign of complement activation in some women. However, the reference limits of complement analyses applied for the general population appeared appropriate for the majority of the samples. As expected, the mean complement concentrations in UCB were much lower than in maternal plasma, due to the immature complement system in neonates.
Collapse
|
9
|
Liu S, Bos NA, Verschuuren EAM, van Baarle D, Westra J. Biological Characteristics of HLA-G and Its Role in Solid Organ Transplantation. Front Immunol 2022; 13:902093. [PMID: 35769475 PMCID: PMC9234285 DOI: 10.3389/fimmu.2022.902093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Organ transplantation is a lifesaving option for patients with advanced diseases. Rejection is regarded as one of the most severe risk factors post-transplantation. A molecule that contributes to immune tolerance and resisting rejection is human leukocyte antigen (HLA)-G, which belongs to the non-classical major histocompatibility complex class (MHC) I family. HLA-G was originally found to play a role during pregnancy to maintain immune tolerance between mother and child. It is expressed in the placenta and detected in several body fluids as soluble factor as well as different membrane isoforms on cells. Recent findings on HLA-G show that it can also play multifaceted roles during transplantation. This review will explain the general characteristics and biological function of HLA-G and summarize the views supporting the tolerogenic and other roles of HLA-G to better understand its role in solid organ transplantation (SOT) and its complications. Finally, we will discuss potential future research on the role of HLA-G in prevention, diagnosis, and treatment in SOT.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johanna Westra,
| |
Collapse
|
10
|
Tronik-Le Roux D, Daouya M, Jacquier A, Schenowitz C, Desgrandchamps F, Rouas-Freiss N, Carosella ED. The HLA-G immune checkpoint: a new immuno-stimulatory role for the α1-domain-deleted isoform. Cell Mol Life Sci 2022; 79:310. [PMID: 35596891 PMCID: PMC11072982 DOI: 10.1007/s00018-022-04359-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
The heterogeneity of cancer cells, in part maintained via the expression of multiple isoforms, introduces significant challenges in designing effective therapeutic approaches. In this regard, isoforms of the immune checkpoint HLA-G have been found in most of the tumors analyzed, such as ccRCC, the most common human renal malignancy. In particular, HLA-G∆α1, which is the only HLA-G isoform described that lacks the α1 extracellular domain, has been newly identified in ccRCC and now here in trophoblasts. Using a cellular model expressing HLA-G∆α1, we have uncovered its specific and overlapping functional roles, relative to the main HLA-G isoform, i.e., the full-length HLA-G1. We found that HLA-G∆α1 has several particular features: (i) although possessing the α3 domain, it does not associate with β2-microglobulin; (ii) it may not present peptides to T cells due to absence of the peptide-binding groove; and (iii) it exerts immune-stimulatory activity towards peripheral blood NK and T cells, while all known isoforms of HLA-G are immune-inhibitory checkpoint molecules. Such immune-stimulatory properties of HLA-G∆α1 on the cytotoxic function of peripheral blood NK cells are individual dependent and are not exerted through the interaction with the known HLA-G receptor, ILT2. Importantly, we are faced here with a potential antitumor effect of an HLA-G isoform, opposed to the pro-tumor properties described for all other HLA-G isoforms, which should be taken into account in future therapeutic designs aimed at blocking this immune checkpoint.
Collapse
Affiliation(s)
- Diana Tronik-Le Roux
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France.
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France.
| | - Marina Daouya
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - Alix Jacquier
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - Chantal Schenowitz
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - François Desgrandchamps
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
- Service d'Urologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Nathalie Rouas-Freiss
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - Edgardo D Carosella
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| |
Collapse
|
11
|
Eikmans M, van der Keur C, Anholts JDH, Drabbels JJM, van Beelen E, de Sousa Lopes SMC, van der Hoorn ML. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol 2022; 13:814019. [PMID: 35634345 PMCID: PMC9136060 DOI: 10.3389/fimmu.2022.814019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Trophoblasts are essential in fetal-maternal interaction during pregnancy. The goal was to study HLA profiles of primary trophoblasts derived from placentas, and to investigate their usefulness in studying interaction with immune cells. Methods After enzymatic digestion of first-trimester placental tissue from seven donors (6-9 weeks gestation) and trophoblast enrichment we cultured cytotrophoblasts (CTB) in stem cell medium. CTB were differentiated into EVT in a Matrigel-containing medium. A subset of CTB/EVT was profiled for microRNA levels. Expression of classical HLA molecules and of HLA-G was studied by flow cytometry, qPCR, and ELISA. Secondary trophoblast cell lines JAR and JEG-3 were studied as controls. Lymphocytes were investigated during co-culturing with EVT. Results The trophoblasts could be easily maintained for several passages, upregulated classical trophoblast markers (GATA3, TFAP2C, chromosome-19 microRNAs), and upon differentiation to EVT they were selective in expressing HLA-C. EVT showed increasing expression of total HLA-G, an increasing proportion of HLA-G1 over G2- and G3 isoforms, and elevated excretion of soluble HLA-G. These features were distinct from those of the secondary trophoblast cell lines. TNF-α and IL-8 represented the most abundantly secreted cytokines by CTB, but their levels were minimal in EVT cultures. As proof of principle, we showed that EVT affect lymphocytes in three-day co-cultures (n=4) by decreasing activation marker HLA-DR. Conclusion We verified the possibility culturing trophoblasts from first-term placentas, and their capability of differentiating to HLA-G expressing EVT. This culture model better represents the in-vivo situation than previously studied secondary trophoblast cell lines and enables mechanistic studies of fetal-maternal interactions.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Michael Eikmans,
| | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jos J. M. Drabbels
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Els van Beelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
12
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
13
|
Zhou J, Chen H, Xu X, Liu Y, Chen S, Yang S, He F, Yu B. Uterine damage induces placenta accreta and immune imbalance at the maternal-fetal interface in the mouse. Placenta 2022; 119:8-16. [PMID: 35066308 DOI: 10.1016/j.placenta.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Placenta accreta spectrum (PAS) disorder is one of the major complications resulting in maternal death and serious adverse pregnancy outcomes. Uterine damage - principally that associated with cesarean section - is the leading risk factor for the development of PAS. However, the underlying pathogenesis of PAS related to uterine damage remains unclear. METHODS For this study, we constructed a mouse PAS model using hysterotomy to simulate a cesarean section in humans. Pregnant mice were sacrificed on embryonic days 12.5 (E12.5) and E17.5. Trophoblast invasion and placental vascularization were analyzed using Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC), and the proportions of immune cells at the maternal-fetal interface were analyzed using flow cytometry. We analyzed the expressions of genes in the decidua and placenta using RNA sequencing and subsequent validation by QPCR, and measured serum angiogenic factors by ELISA. RESULTS Uterine damage led to increased trophoblast invasion and placental vascularization, with extensive changes to the immune-cell profiles at the maternal-fetal interface. The proportions of T and NK cells in the deciduas diminished significantly, with the decidual NK cells and M - 2 macrophages showing the greatest decline. The expression of TNF-α and IL4 was upregulated in the deciduas, while that of IFN-γ and IL10 was downregulated significantly. The expression of Mmp2, Mmp9, Mmp3, and Dock4 was significantly elevated in the placenta, and the serum levels of anti-angiogenic factors were significantly attenuated. DISCUSSION Uterine damage can cause immune imbalance at the maternal-fetal interface, which may contribute to abnormal trophoblast invasion and enhanced vascularization of the mouse placenta.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huanpeng Chen
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Xu
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyun Liu
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengzhu Chen
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Yang
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang He
- Department of Obstetrics and Gynecology, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bolan Yu
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Sun YX, Feng Q, Wang SW, Li X, Sheng Z, Peng J. HLA-G-ILT2 interaction contributes to suppression of bone marrow B cell proliferation in acquired aplastic anemia. Ann Hematol 2022; 101:739-748. [PMID: 35041051 DOI: 10.1007/s00277-022-04757-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/09/2022] [Indexed: 12/17/2022]
Abstract
Acquired aplastic anemia (AA) is an autoimmune disease characterized by hematopoietic stem and progenitor cell destruction in bone marrow. The non-classic human leukocyte class I antigen (HLA-) G interacts with multiple cell subsets, such as T cells and B cells. HLA-G exerts powerful immune suppression by binding with its receptors, immunoglobulin-like transcripts (ILTs). Here, we compared 46 AA patients and 28 healthy controls. Soluble HLA-G levels in bone marrow supernatants from AA patients were higher than controls. The proportion of bone marrow B cells was decreased and the ILT2-expressing cells among CD19+ cells were increased in AA patients. In addition, the percentage of mature B cells among marrow B cells was increased in AA patient, while the percentage of pro-B plus pre-B cells was decreased. More immature B cells and pro-B plus pre-B cells expressed ILT2 in AA patients than in controls, while mature B cells expressing ILT2 did not differ significantly. Functional studies demonstrated that high-level soluble HLA-G inhibited bone marrow B cell proliferation by interacting with ILT2 in AA, and was blocked by anti-HLA-G and anti-ILT2 monoclonal antibodies. Together, these results suggest that the abnormal decrease of pro-B plus pre-B cells in AA patients was related to the enhanced suppression by the excess HLA-G and ILT2 proteins. Therapeutic blockade of the HLA-G-ILT2 interaction may help to normalize bone marrow B cell proliferation.
Collapse
Affiliation(s)
- Yuan-Xin Sun
- Department of Hemodialysis, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shu-Wen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
15
|
Hubert L, Paganini J, Picard C, Chiaroni J, Abi-Rached L, Pontarotti P, Di Cristofaro J. HLA-H*02:07 Is a Membrane-Bound Ligand of Denisovan Origin That Protects against Lysis by Activated Immune Effectors. THE JOURNAL OF IMMUNOLOGY 2022; 208:49-53. [DOI: 10.4049/jimmunol.2100358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/01/2021] [Indexed: 04/08/2023]
Abstract
Abstract
The biological relevance of genes initially categorized as “pseudogenes” is slowly emerging, notably in innate immunity. In the HLA region on chromosome 6, HLA-H is one such pseudogene; yet, it is transcribed, and its variation is associated with immune properties. Furthermore, two HLA-H alleles, H*02:07 and H*02:14, putatively encode a complete, membrane-bound HLA protein. Here we thus hypothesized that HLA-H contributes to immune homeostasis similarly to tolerogenic molecules HLA-G, -E, and -F. We tested if HLA-H*02:07 encodes a membrane-bound protein that can inhibit the cytotoxicity of effector cells. We used an HLA-null human erythroblast cell line transduced with HLA-H*02:07 cDNA to demonstrate that HLA-H*02:07 encodes a membrane-bound protein. Additionally, using a cytotoxicity assay, our results support that K562 HLA-H*02:07 inhibits human effector IL-2–activated PBMCs and human IL-2–independent NK92-MI cell line activity. Finally, through in silico genotyping of the Denisovan genome and haplotypic association with Denisovan-derived HLA-A*11, we also show that H*02:07 is of archaic origin. Hence, admixture with archaic humans brought a functional HLA-H allele into modern European and Asian populations.
Collapse
Affiliation(s)
- Lucas Hubert
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| | | | - Christophe Picard
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| | - Jacques Chiaroni
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| | - Laurent Abi-Rached
- §Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranée Infection, Marseille, France; and
- ¶CNRS, Marseille, France
| | - Pierre Pontarotti
- §Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranée Infection, Marseille, France; and
- ¶CNRS, Marseille, France
| | - Julie Di Cristofaro
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| |
Collapse
|
16
|
Li YR, Dunn ZS, Zhou Y, Lee D, Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells 2021; 10:cells10123497. [PMID: 34944002 PMCID: PMC8700013 DOI: 10.3390/cells10123497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
17
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Parent AV, Faleo G, Chavez J, Saxton M, Berrios DI, Kerper NR, Tang Q, Hebrok M. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep 2021; 36:109538. [PMID: 34407395 DOI: 10.1016/j.celrep.2021.109538] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Stem cell-based replacement therapies hold the promise to restore function of damaged or degenerated tissue such as the pancreatic islets in people with type 1 diabetes. Wide application of these therapies requires overcoming the fundamental roadblock of immune rejection. To address this issue, we use genetic engineering to create human pluripotent stem cells (hPSCs) in which the majority of the polymorphic human leukocyte antigens (HLAs), the main drivers of allogeneic rejection, are deleted. We retain the common HLA class I allele HLA-A2 and less polymorphic HLA-E/F/G to allow immune surveillance and inhibition of natural killer (NK) cells. We employ a combination of in vitro assays and humanized mouse models to demonstrate that these gene manipulations significantly reduce NK cell activity and T-cell-mediated alloimmune response against hPSC-derived islet cells. In summary, our approach produces hypoimmunogenic hPSCs that can be readily matched with recipients to avoid alloimmune rejection.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Chavez
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Saxton
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David I Berrios
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natanya R Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Front Immunol 2021; 12:680480. [PMID: 34295330 PMCID: PMC8290519 DOI: 10.3389/fimmu.2021.680480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression. NK cell activation is tightly regulated through the integrated balance of signaling via inhibitory- and activating receptors. HLA class I molecules are critical regulators of NK cell activation through the interaction with inhibitory- as well as activating NK cell receptors, hence, HLA molecules act as critical immune checkpoints for NK cells. In the current review, we evaluate how NK cell alloreactivity and anti-viral immunity are regulated by NK cell receptors belonging to the KIR family and interacting with classical HLA class I molecules, or by NKG2A/C and LILRB1/KIR2DL4 engaging non-classical HLA-E or -G. In addition, we provide an overview of the methods to determine genetic variation in these receptors and their HLA ligands.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
20
|
Abbas RA, Ghulmiyyah L, Hobeika E, Usta IM, Mirza F, Nassar AH. Preeclampsia: A Review of Early Predictors. MATERNAL-FETAL MEDICINE 2021. [DOI: 10.1097/fm9.0000000000000088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
21
|
Flahou C, Morishima T, Takizawa H, Sugimoto N. Fit-For-All iPSC-Derived Cell Therapies and Their Evaluation in Humanized Mice With NK Cell Immunity. Front Immunol 2021; 12:662360. [PMID: 33897711 PMCID: PMC8059435 DOI: 10.3389/fimmu.2021.662360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be limitlessly expanded and differentiated into almost all cell types. Moreover, they are amenable to gene manipulation and, because they are established from somatic cells, can be established from essentially any person. Based on these characteristics, iPSCs have been extensively studied as cell sources for tissue grafts, blood transfusions and cancer immunotherapies, and related clinical trials have started. From an immune-matching perspective, autologous iPSCs are perfectly compatible in principle, but also require a prolonged time for reaching the final products, have high cost, and person-to-person variation hindering their common use. Therefore, certified iPSCs with reduced immunogenicity are expected to become off-the-shelf sources, such as those made from human leukocyte antigen (HLA)-homozygous individuals or genetically modified for HLA depletion. Preclinical tests using immunodeficient mice reconstituted with a human immune system (HIS) serve as an important tool to assess the human alloresponse against iPSC-derived cells. Especially, HIS mice reconstituted with not only human T cells but also human natural killer (NK) cells are considered crucial. NK cells attack so-called “missing self” cells that do not express self HLA class I, which include HLA-homozygous cells that express only one allele type and HLA-depleted cells. However, conventional HIS mice lack enough reconstituted human NK cells for these tests. Several measures have been developed to overcome this issue including the administration of cytokines that enhance NK cell expansion, such as IL-2 and IL-15, the administration of vectors that express those cytokines, and genetic manipulation to express the cytokines or to enhance the reconstitution of human myeloid cells that express IL15R-alpha. Using such HIS mice with enhanced human NK cell reconstitution, alloresponses against HLA-homozygous and HLA-depleted cells have been studied. However, most studies used HLA-downregulated tumor cells as the target cells and tested in vitro after purifying human cells from HIS mice. In this review, we give an overview of the current state of iPSCs in cell therapies, strategies to lessen their immunogenic potential, and then expound on the development of HIS mice with reconstituted NK cells, followed by their utilization in evaluating future universal HLA-engineered iPSC-derived cells.
Collapse
Affiliation(s)
- Charlotte Flahou
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses 2021; 13:v13020300. [PMID: 33671917 PMCID: PMC7918975 DOI: 10.3390/v13020300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the population worldwide are asymptomatic carriers of Epstein-Barr Virus (EBV). However, some infected individuals eventually develop EBV-related cancers, including Nasopharyngeal Carcinoma (NPC). NPC is one of the most common EBV-associated epithelial cancers, and is highly prevalent in Southern China and Southeast Asia. While NPC is highly sensitive to radiotherapy and chemotherapy, there is a lack of effective and durable treatment among the 15%–30% of patients who subsequently develop recurrent disease. Natural Killer (NK) cells are natural immune lymphocytes that are innately primed against virus-infected cells and nascent aberrant transformed cells. As EBV is found in both virally infected and cancer cells, it is of interest to examine the NK cells’ role in both EBV infection and EBV-associated NPC. Herein, we review the current understanding of how EBV-infected cells are cleared by NK cells, and how EBV can evade NK cell-mediated elimination in the context of type II latency in NPC. Next, we summarize the current literature about NPC and NK cell biology. Finally, we discuss the translational potential of NK cells in NPC. This information will deepen our understanding of host immune interactions with EBV-associated NPC and facilitate development of more effective NK-mediated therapies for NPC treatment.
Collapse
|
23
|
Wu CL, Caumartin J, Amodio G, Anna F, Loustau M, Gregori S, Langlade-Demoyen P, LeMaoult J. Inhibition of iNKT Cells by the HLA-G-ILT2 Checkpoint and Poor Stimulation by HLA-G-Expressing Tolerogenic DC. Front Immunol 2021; 11:608614. [PMID: 33505397 PMCID: PMC7832389 DOI: 10.3389/fimmu.2020.608614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a small and distinct population of T cells crucial in immunomodulation. After activation by alpha-GalactosylCeramide (αGC), an exogenic glycolipid antigen, iNKT cells can rapidly release cytokines to enhance specific anti-tumor activity. Several human clinical trials on iNKT cell-based anti-cancer are ongoing, however results are not as striking as in murine models. Given that iNKT-based immunotherapies are dependent mainly on antigen-presenting cells (APC), a human tolerogenic molecule with no murine homolog, such as Human Leucocyte Antigen G (HLA-G), could contribute to this discrepancy. HLA-G is a well-known immune checkpoint molecule involved in fetal-maternal tolerance and in tumor immune escape. HLA-G exerts its immunomodulatory functions through the interaction with immune inhibitory receptors such as ILT2, differentially expressed on immune cell subsets. We hypothesized that HLA-G might inhibit iNKT function directly or by inducing tolerogenic APC leading to iNKT cell anergy, which could impact the results of current clinical trials. Using an ILT2-transduced murine iNKT cell line and human iNKT cells, we demonstrate that iNKT cells are sensitive to HLA-G, which inhibits their cytokine secretion. Furthermore, human HLA-G+ dendritic cells, called DC-10, failed at inducing iNKT cell activation compared to their autologous HLA-G‒ DCs counterparts. Our data show for the first time that the HLA-G/ILT2 ICP is involved in iNKT cell function modulation.
Collapse
Affiliation(s)
- Ching-Lien Wu
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France.,Université de Paris, IRSL, UMRS 976, Paris, France.,Invectys, Paris, France
| | | | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Joel LeMaoult
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France.,Université de Paris, IRSL, UMRS 976, Paris, France
| |
Collapse
|
24
|
Kumano S, Okushi Y, Fujimoto K, Adachi H, Furuichi K, Yokoyama H. Role and expression of non-classical human leukocyte antigen-G in renal transplanted allografts. Clin Exp Nephrol 2021; 25:428-438. [PMID: 33398603 DOI: 10.1007/s10157-020-01999-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The non-classical class I molecule human leukocyte antigen-G (HLA-G) has great potential to modulate the immune response. However, the mechanism underlying HLA-G induction remains unknown. Therefore, this study aimed to determine the factors that induce HLA-G expression on proximal tubular epithelial cells (pTECs) in renal transplanted allografts in vivo and in vitro. METHODS This study included 40 adult Japanese patients with renal allografts (35 and five patients with kidneys from living and deceased donors, respectively) who survived for at least 1 year. We evaluated HLA-G1/5 expression using an immunofluorescence method and investigated the induction of HLA-G expression in primary cultured human pTECs by cytokines and immunosuppressants. RESULTS The HLA-G expression was identified in the perinuclear region or on the basement membrane of pTECs of renal biopsy tissue in 12 (30%) of 40 patients at 2-4 weeks and at 1 year following transplantation. A reduction of 30% in the estimated glomerular filtration rate was lower in the HLA-G-positive group than that of the negative group (p = 0.016). Cox proportional hazard models also demonstrated that HLA-G1/5 expression on pTECs was an independent predictor of improved renal allograft function (hazard ratio, 0.189; 95% CI 0.041-0.850, p = 0.030). Interferon-beta was the most powerful inducer of HLA-G expression in vitro, whereas the immunosuppressants everolimus, tacrolimus, cyclosporin, and dexamethasone did not induce any expression. CONCLUSION Unlike immunosuppressants, acquired HLA-G expression might confer long-term renal preservation effects in renal transplanted allografts.
Collapse
Affiliation(s)
- Sho Kumano
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Yuki Okushi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Keiji Fujimoto
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Adachi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Kengo Furuichi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hitoshi Yokoyama
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| |
Collapse
|
25
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Lee J, Sheen JH, Lim O, Lee Y, Ryu J, Shin D, Kim YY, Kim M. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Sci Rep 2020; 10:17753. [PMID: 33082438 PMCID: PMC7576162 DOI: 10.1038/s41598-020-74772-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
As recent advancements in the chimeric antigen receptor-T cells have revolutionized the way blood cancers are handled, potential benefits from producing off-the-shelf, standardized immune cells entail the need for development of allogeneic immune cell therapy. However, host rejection driven by HLA disparity in adoptively transferred allogeneic T cells remains a key obstacle to the universal donor T cell therapy. To evade donor HLA-mediated immune rejection, we attempted to eliminate T cell’s HLA through the CRISPR/Cas9 gene editing system. First, we screened 60 gRNAs targeting B2M and multiple sets of gRNA each targeting α chains of HLA-II (DPA, DQA and DRA, respectively) using web-based design tools, and identified specific gRNA sequences highly efficient for target deletion without carrying off-target effects. Multiplex genome editing of primary human T cells achieved by the newly discovered gRNAs yielded HLA-I- or HLA-I/II-deficient T cells that were phenotypically unaltered and functionally intact. The overnight mixed lymphocyte reactions demonstrated the HLA-I-negative cells induced decreased production of IFN-γ and TNF-α in alloreactive T cells, and deficiency of HLA-I/II in T cells further dampened the inflammatory responses. Taken together, our approach will provide an efficacious pathway toward the universal donor cell generation by manipulating HLA expression in therapeutic T cells.
Collapse
Affiliation(s)
- Jeewon Lee
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Joong Hyuk Sheen
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Okjae Lim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yunjung Lee
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Jihye Ryu
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Duckhyang Shin
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yu Young Kim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Munkyung Kim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea.
| |
Collapse
|
27
|
Shi L, Li W, Liu Y, Chen Z, Hui Y, Hao P, Xu X, Zhang S, Feng H, Zhang B, Zhou S, Li N, Xiao L, Liu L, Ma L, Zhang X. Generation of hypoimmunogenic human pluripotent stem cells via expression of membrane-bound and secreted β2m-HLA-G fusion proteins. Stem Cells 2020; 38:1423-1437. [PMID: 32930470 DOI: 10.1002/stem.3269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023]
Abstract
Allogeneic immune rejection is a major barrier for the application of human pluripotent stem cells (hPSCs) in regenerative medicine. A broad spectrum of immune cells, including T cells, natural killer (NK) cells, and antigen-presenting cells, which either cause direct cell killing or constitute an immunogenic environment, are involved in allograft immune rejection. A strategy to protect donor cells from cytotoxicity while decreasing the secretion of inflammatory cytokines of lymphocytes is still lacking. Here, we engineered hPSCs with no surface expression of classical human leukocyte antigen (HLA) class I proteins via beta-2 microglobulin (B2M) knockout or biallelic knockin of HLA-G1 within the frame of endogenous B2M loci. Elimination of the surface expression of HLA class I proteins protected the engineered hPSCs from cytotoxicity mediated by T cells. However, this lack of surface expression also resulted in missing-self response and NK cell activation, which were largely compromised by expression of β2m-HLA-G1 fusion proteins. We also proved that the engineered β2m-HLA-G5 fusion proteins were soluble, secretable, and capable of safeguarding low immunogenic environments by lowering inflammatory cytokines secretion in allografts. Our current study reveals a novel strategy that may offer unique advantages to construct hypoimmunogenic hPSCs via the expression of membrane-bound and secreted β2m-HLA-G fusion proteins. These engineered hPSCs are expected to serve as an unlimited cell source for generating universally compatible "off-the-shelf" cell grafts in the future.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China.,Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wenjing Li
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yang Liu
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhenyu Chen
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yi Hui
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Pengcheng Hao
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiangjie Xu
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuwei Zhang
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hexi Feng
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bowen Zhang
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shanshan Zhou
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Nan Li
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China.,Shanghai SiDanSai Biotechnology Limited Company, Shanghai, People's Republic of China
| | - Ling Liu
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
| | - Lin Ma
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
| | - Xiaoqing Zhang
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China.,Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai, People's Republic of China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, People's Republic of China
| |
Collapse
|
28
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
29
|
Abstract
Pregnancy is a natural process that poses an immunological challenge because non-self fetus must be accepted. During the pregnancy period, the fetus as 'allograft' inherits maternal and also paternal antigens. For successful and term pregnancy, the fetus is tolerated and nurtured enjoying immune privileges that minimize the risk of being rejected by maternal immune system. Multiple mechanisms contribute to tolerate the semi-allogeneic fetus. Here, we summarize the recent progresses on how the maternal immune system actively collaborates to maintain the immune balance and maternal-fetal tolerance.
Collapse
Affiliation(s)
- Xiaopeng Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Zhou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Fang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,International College, University of the Chinese Academy of Sciences, Beijing, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Bolze PA, Lopez J, Allias F, Hajri T, Patrier S, Devouassoux-Shisheboran M, Massardier J, You B, Golfier F, Mallet F. Transcriptomic and immunohistochemical approaches identify HLA-G as a predictive biomarker of gestational choriocarcinoma resistance to monochemotherapy. Gynecol Oncol 2020; 158:785-793. [PMID: 32513563 DOI: 10.1016/j.ygyno.2020.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Using a transcriptional approach on tissue samples, we sought to identify predictive biomarkers of post molar malignant transformation, and of choriocarcinoma chemosensitivity to mono- (methotrexate or actinomycin D) or polychemotherapy [EMA(Etoposide, Methotrexate, Actinomycin D)-CO(Cyclophosphamide, Vincristine) and EMA-EP(Etoposide, Cisplatine)] regimens. METHODS We studied the expression of a 760-gene panel (PanCancer Pathway) related to oncogenesis and immune tolerance in tissue samples of complete hydatidiform moles and gestational choriocarcinoma. RESULTS We did not identify any differentially expressed gene between moles with post molar malignant transformation in choriocarcinoma (n = 14) and moles with remission (n = 20). In monochemoresistant choriocarcinoma (n = 34), four genes (HLA-G, COL27A1, IL1R2 and GLI3) had a significantly reduced expression and one (THEM4) had an increased expression [FDR (false discovery rate) adjusted p-value ≤ 0.05] when compared to monochemosensitive choriocarcinoma (n = 9). The proportion of trophoblast cells and the intensity of immunohistochemical HLA-G expression were reduced in monochemoresistant choriocarcinoma (p < 0.05). In polychemoresistant choriocarcinoma (n = 20) we did not identify differentially expressed genes with an FDR adjusted p-value ≤ 0.05 when compared to polychemosensitive choriocarcinoma (n = 15). Gene pathway analysis revealed a predicted activation of IFN ᵞ in monochemoresistant choriocarcinoma and inhibited IL2 and TNF in polychemoresistant choriocarcinoma. The main biological functions predicted to be altered in chemoresistant choriocarcinoma were related to immunological homeostasis and leukopoiesis. CONCLUSION HLA-G is a strong candidate gene to predict choriocarcinoma resistance to monochemotherapy and that further studies are required to implement its routine quantification in the decision process for the management of gestational choriocarcinoma.
Collapse
Affiliation(s)
- Pierre-Adrien Bolze
- University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, Department of Gynecological Surgery and Oncology, Obstetrics, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Marcy l'Etoile, France; Joint Research Unit Hospices Civils de Lyon-bioMérieux, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University, Edouard Herriot Hospital, Lyon, France.
| | - Jonathan Lopez
- University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, Plateforme de Recherche de Transfert en Oncologie, Department of Biochemistry and Molecular Biology, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; Faculté de Médecine Lyon Est, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Fabienne Allias
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, Department of Pathology, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France
| | - Touria Hajri
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France
| | - Sophie Patrier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; Department of Pathology, University Hospital of Rouen, F-76031 Rouen Cedex, France
| | - Mojgan Devouassoux-Shisheboran
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, Department of Pathology, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France
| | - Jérôme Massardier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; University of Lyon 1, University Hospital Femme Mere Enfant, Department of Obstetrics and Gynecology, 51, boulevard Pinel, 69500 Bron, France
| | - Benoit You
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, Medical Oncology Department, Investigational Center for Treatments in Oncology and Hematology of Lyon (CITOHL), 165 chemin du grand Revoyet, 69495 Pierre Bénite, France
| | - François Golfier
- University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, Department of Gynecological Surgery and Oncology, Obstetrics, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 165 chemin du grand Revoyet, 69495 Pierre Bénite, France; Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Marcy l'Etoile, France; Joint Research Unit Hospices Civils de Lyon-bioMérieux, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
31
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
32
|
Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and the Orbicularis Oris Muscle: How Do They Behave When Exposed to a Proinflammatory Stimulus? Stem Cells Int 2020; 2020:3670412. [PMID: 32184831 PMCID: PMC7060870 DOI: 10.1155/2020/3670412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/04/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied as a promising type of stem cell for use in cell therapies because of their ability to regulate the immune response. Although they are classically isolated from the bone marrow, many studies have sought to isolate MSCs from noninvasive sources. The objective of this study was to evaluate how MSCs isolated from the dental pulp of human exfoliated deciduous teeth (SHED) and fragments of the orbicularis oris muscle (OOMDSCs) behave when treated with an inflammatory IFN-γ stimulus, specifically regarding their proliferative, osteogenic, and immunomodulatory potentials. The results demonstrated that the proliferation of SHED and OOMDSCs was inhibited by the addition of IFN-γ to their culture medium and that treatment with IFN-γ at higher concentrations resulted in a greater inhibition of the proliferation of these cells than treatment with IFN-γ at lower concentrations. SHED and OOMDSCs maintained their osteogenic differentiation potential after stimulation with IFN-γ. Additionally, SHED and OOMDSCs have been shown to have low immunogenicity because they lack expression of HLA-DR and costimulatory molecules such as CD40, CD80, and CD86 before and after IFN-γ treatment. Last, SHED and OOMDSCs expressed the immunoregulatory molecule HLA-G, and the expression of this antigen increased after IFN-γ treatment. In particular, an increase in intracellular HLA-G expression was observed. The results obtained suggest that SHED and OOMDSCs lack immunogenicity and have immunomodulatory properties that are enhanced when they undergo inflammatory stimulation with IFN-γ, which opens new perspectives for the therapeutic use of these cells.
Collapse
|
33
|
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol 2020; 11:167. [PMID: 32117298 PMCID: PMC7031489 DOI: 10.3389/fimmu.2020.00167] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, with an increasing number of therapeutic dimensions, is becoming an important mode of treatment for cancer patients. The inhibition of immune checkpoints, which are the source of immune escape for various cancers, is one such immunotherapeutic dimension. It has mainly been aimed at T cells in the past, but NK cells are a newly emerging target. Simultaneously, the number of checkpoints identified has been increasing in recent times. In addition to the classical NK cell receptors KIRs, LIRs, and NKG2A, several other immune checkpoints have also been shown to cause dysfunction of NK cells in various cancers and chronic infections. These checkpoints include the revolutionized CTLA-4, PD-1, and recently identified B7-H3, as well as LAG-3, TIGIT & CD96, TIM-3, and the most recently acknowledged checkpoint-members of the Siglecs family (Siglec-7/9), CD200 and CD47. An interesting dimension of immune checkpoints is their candidacy for dual-checkpoint inhibition, resulting in therapeutic synergism. Furthermore, the combination of immune checkpoint inhibition with other NK cell cytotoxicity restoration strategies could also strengthen its efficacy as an antitumor therapy. Here, we have undertaken a comprehensive review of the literature to date regarding NK cell-based immune checkpoints.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
He Y, Xu B, Song D, Wang Y, Yu F, Chen Q, Zhao M. Normal range of complement components during pregnancy: A prospective study. Am J Reprod Immunol 2020; 83:e13202. [PMID: 31646704 PMCID: PMC7027513 DOI: 10.1111/aji.13202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The complement system plays a key role in normal placentation, and delicate regulation of complement system activation is critical for successful pregnancy. Therefore, establishing a normal range of complement components during pregnancy is important for clinical evaluation and research. METHODS We performed a prospective study to investigate the normal range of complement components in circulation during different stages of pregnancy. Plasma concentrations of complement factor B (CFB), C1q, complement factor H (CFH), C3, C3c, and C4 were measured using an immunoturbidimetric assay; mannan-binding lectin (MBL), C3a, C5a, and soluble C5b-9 (sC5b-9) levels at different time points of pregnancy were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 733 plasma samples were collected from 362 women with a normal pregnancy and 65 samples from non-pregnant women. In the first trimester of pregnancy, the levels of CFB, CFH, MBL, C3c, C4, and C3a were 414.5 ± 85.9 mg/L (95% CI for mean: 402.4-426.6 mg/L), 381.0 ± 89.0 mg/L (95% CI for mean: 368.5-393.6 mg/L), 4274.5 ± 2752 ng/mL (95% CI for mean: 3881.1-4656.4 ng/mL), 1346.9 ± 419.8 mg/L (95% CI for mean: 1287.7-1406.0 mg/L), 357.4 ± 101.8 mg/L (95% CI for mean: 343.0-371.7 mg/L), and 182.5 ± 150.0 ng/mL (95% CI for mean: 186.9-229.1 ng/mL), respectively. The levels of C3 and C4 increased gradually throughout pregnancy. The levels of C1q, C5a, and sC5b-9 in the first and second trimesters were nearly the same as those in non-pregnant women. CONCLUSION The results of this study show that pregnancy itself may influence the plasma levels of complement system components.
Collapse
Affiliation(s)
- Ying‐dong He
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Bing‐ning Xu
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Di Song
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Ya‐qin Wang
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Feng Yu
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Qian Chen
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Ming‐hui Zhao
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
- Peking‐Tsinghua Center for Life SciencesBeijingChina
| |
Collapse
|
35
|
Human Hepatocytes and Differentiated Adult-Derived Human Liver Stem/Progenitor Cells Display In Vitro Immunosuppressive Properties Mediated, at Least in Part, through the Nonclassical HLA Class I Molecule HLA-G. J Immunol Res 2019; 2019:8250584. [PMID: 31612154 PMCID: PMC6757295 DOI: 10.1155/2019/8250584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
One of the main challenges in liver cell therapy (LCT) is the induction of a tolerogenic microenvironment to promote graft acceptance in the recipient. Little is known about the immunomodulatory potential of the hepatic cells used in liver cell therapy. In this work, we wanted to evaluate the immunosuppressive properties of human hepatocytes and adult-derived human liver stem/progenitor cells (ADHLSCs), as well as the potential involvement of the immunomodulatory molecule HLA-G. We demonstrated that both cell types were capable of inhibiting the proliferative response of PBMCs to an allogenic stimulus and that the immune inhibitory potential of ADHLSCs, although lower than that of hepatocytes, increased after hepatogenic differentiation. We demonstrated that liver cells express HLA-G and that the immune inhibition pattern was clearly associated to its expression. Interestingly, HLA-G expression increased after the third step of differentiation, wherein oncostatin M (OSM) was added. A 48 hr treatment with OSM was sufficient to induce HLA-G expression in ADHLSCs and result in immune inhibition. Surprisingly, blocking HLA-G partially reversed the immune inhibition mediated by hepatocytes and differentiated ADHLSCs, but not that of undifferentiated ADHLSCs, suggesting that additional immune inhibitory mechanisms may be used by these cells. In conclusion, we demonstrated that both hepatocytes and ADHLSCs present immunomodulatory properties mediated, at least in part, through HLA-G, which can be upregulated following hepatogenic differentiation or liver cell pretreatment with OSM. These observations open up new perspectives for the induction of tolerance following LCT and for potential therapeutic applications of these liver cells.
Collapse
|
36
|
Le Guevelou J, Lebars S, Kammerer E, de Gabory L, Vergez S, Janot F, Baujat B, Righini C, Jegoux F, Dufour X, Merol JC, Mauvais O, Lasne-Cardon A, Selleret L, Thariat J. Head and neck cancer during pregnancy. Head Neck 2019; 41:3719-3732. [PMID: 31329334 DOI: 10.1002/hed.25877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The incidence of cancer during pregnancy is low but is slightly increasing. Data on incidence and etiology of head and neck (HN) cancers in pregnant women are rare. We evaluated the frequency, tumor type, associated factors, and specific biomarkers in HN cancers occurring in pregnant (and peripartum) women. METHODS A systematic literature search was performed on PubMed, for any HN tumor site occurring in pregnant women. RESULTS Sixty cases of HN cancers occurring during pregnancy were identified. Most of them were oral cavity cancers. Relationships with oncogenic viruses, hormonal disturbance, and shift in maternal immunity profile were identified. CONCLUSION Carcinogenesis of HN cancers in pregnant women may be led by different cancer type-specific hallmarks. Relevance of these etiological factors with respect to treatments and birth control recommendations is being investigated by the REFCOR in an ambispective study.
Collapse
Affiliation(s)
| | | | | | - Ludovic de Gabory
- Service de Chirurgie ORL, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Sebastien Vergez
- Service de Chirurgie ORL, Centre Hospitalier Universitaire Rangueil-Larrey, Toulouse, France
| | - François Janot
- Service de Chirurgie ORL, Centre Gustave Roussy, Villejuif, France
| | - Bertrand Baujat
- Service de Chirurgie ORL, Hopital Tenon, Université Paris-Est, Paris, France
| | - Christian Righini
- Service de Chirurgie ORL, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Franck Jegoux
- Service de Chirurgie ORL, Centre Hospitalier Universitaire Pontchaillou, Rennes, France
| | - Xavier Dufour
- Service de Chirurgie ORL, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Claude Merol
- Service de Chirurgie ORL, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Olivier Mauvais
- Service de Chirurgie ORL, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Audrey Lasne-Cardon
- Service de Chirurgie ORL Centre François Baclesse, Normandie Université-Unicaen, Caen, France
| | - Lise Selleret
- Service de Gynécologie Obstetrique, Hopital Tenon, Paris, France
| | - Juliette Thariat
- Service de Radiothérapie, Centre François Baclesse, Caen, France
| |
Collapse
|
37
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Using genome editing to engineer universal platelets. Emerg Top Life Sci 2019; 3:301-311. [PMID: 33523140 PMCID: PMC7289015 DOI: 10.1042/etls20180153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022]
Abstract
Genome editing technologies such as zinc finger nucleases, TALENs and CRISPR/Cas9 have recently emerged as tools with the potential to revolutionise cellular therapy. This is particularly exciting for the field of regenerative medicine, where the large-scale, quality-controlled editing of large numbers of cells could generate essential cellular products ready to move towards the clinic. This review details recent progress towards generating HLA Class I null platelets using genome editing technologies for β2-microglobulin deletion, generating a universally transfusable cellular product. In addition, we discuss various methods for megakaryocyte (MK) production from human pluripotent stem cells and subsequent platelet production from the MKs. As well as simply producing platelets, differentiating MK cultures can enable us to understand megakaryopoiesis in vivo and take steps towards ameliorating bleeding disorders or deficiencies in MK maturation in patients. Thus by intersecting both these areas of research, we can produce optimised differentiation systems for the production of universal platelets, thus offering a stable supply of platelets for difficult-to-match patients and providing areas with transmissible disease concerns or an unpredictable supply of platelets with a steady supply of quality-controlled platelet units.
Collapse
|
39
|
Phoswa WN, Naicker T, Ramsuran V, Moodley J. Pre-eclampsia: the role of highly active antiretroviral therapy and immune markers. Inflamm Res 2018; 68:47-57. [PMID: 30276649 DOI: 10.1007/s00011-018-1190-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE OF THE REVIEW This review highlights the role immune cells and markers such as natural killer (NK) cells, cytokines and human leukocyte antigen (HLA-G) play in predisposing HIV-infected women who are on HAART to develop PE, thus contributing to a better understanding and early diagnosis of PE with a subsequent reduction in maternal foetal and neonatal deaths. RECENT FINDINGS Pregnant women infected with the Human Immunodeficiency Virus (HIV) have a 25% risk of mother to child transmission. This risk, however, decreases to 2% if the women is on treatment. Highly active antiretroviral therapy (HAART) is the recommended treatment for both pregnant and non-pregnant women infected with HIV. Treatment with HAART is reported to potentiate predisposition to the development of hypertensive disorders of pregnancy such as pre-eclampsia (PE). Pre-eclampsia accounts for 7-10% of abnormal pregnancies worldwide. Studies demonstrate that pregnant women with HIV have PE at lower frequencies than uninfected women, however, the converse is observed upon HAART initiation. HIV-infected women on HAART exhibit a greater tendency to develop PE, emanating from immune reconstitution induced by HAART. There is paucity of information as to the pathogenesis of PE upon HAART initiation and there are, therefore, controversial data as to whether HAART predisposes women to a lower, equal or higher risk of PE development compared to the general population, further investigations on the impact of HIV infection and HAART on the immune response and rate of PE development in HIV infected pregnant women are urgently needed.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Discipline of Obstetrics and Gynaecology, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Thajasvarie Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
40
|
Robinson KA, Orent W, Madsen JC, Benichou G. Maintaining T cell tolerance of alloantigens: Lessons from animal studies. Am J Transplant 2018; 18:1843-1856. [PMID: 29939471 PMCID: PMC6352985 DOI: 10.1111/ajt.14984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023]
Abstract
Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Kortney A. Robinson
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - William Orent
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA.,Division of Cardiac Surgery, Department of Surgery,
Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gilles Benichou
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M. Glioblastoma Stem-Like Cells Are More Susceptible Than Differentiated Cells to Natural Killer Cell Lysis Mediated Through Killer Immunoglobulin-Like Receptors-Human Leukocyte Antigen Ligand Mismatch and Activation Receptor-Ligand Interactions. Front Immunol 2018; 9:1345. [PMID: 29967607 PMCID: PMC6015895 DOI: 10.3389/fimmu.2018.01345] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain malignancy in adults, where survival is approximately 14.6 months. Novel therapies are urgently needed and immunotherapy has hailed a new dawn for treatment of solid tumors. Natural killer (NK) cells may be amenable therapeutic effectors against heterogeneous GBM, since they also do not require co-stimulation and antigen specificity. However, it is unclear how culture media routinely used in pre-clinical studies affect GBM cell responses to NK-mediated cytotoxicity. We hypothesized that the culture medium would affect GBM cell phenotype, proliferation, and responses to NK cytotoxicity. We investigated in paired analyses n = 6 patient-derived primary GBM cells propagated in stem cell or serum-containing medium for morphology, proliferation, as well as susceptibility to NK cytolysis and related this to expression of surface and intracellular lineage markers, as well as ligands for NK cell activating and inhibitory receptors. We genotyped the GBM cells for human leukocyte antigen (HLA) as well as the killer immunoglobulin-like receptors (KIR) of the n = 6 allogeneic NK cells used as effector cells. Culture in serum-containing medium induced a switch in GBM cell morphology from suspension neuropsheres to adherent epithelial-mesenchymal-like phenotypes, which was partially reversible. The differentiated cells diminished expression of nestin, CD133 (prominin-1), and A2B5 putative glioma stem-cell markers, attenuated growth, diminished expression of ligands for activating NK cell receptors, while upregulating class I HLA ligands for NK cell inhibitory receptors. When maintained in serum-containing medium, fewer GBM cells expressed intercellular cell adhesion molecule-1 (ICAM-1) and were less susceptible to lysis by NK cells expressing αLβ2 integrin receptor (LFA-1), mediated through combination of inhibitory KIR-HLA ligand mismatch and diminished activation receptor-ligand interactions compared to cells maintained in stem cell media. We conclude that development of preclinical immunotherapy strategies against GBM should not use cells propagated in serum-containing media to avoid misinterpretation of potential therapeutic responses.
Collapse
Affiliation(s)
| | | | | | | | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
HLA-G peptide preferences change in transformed cells: impact on the binding motif. Immunogenetics 2018; 70:485-494. [PMID: 29602958 PMCID: PMC6061458 DOI: 10.1007/s00251-018-1058-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
HLA-G is known for its strictly restricted tissue distribution. HLA-G expression could be detected in immune privileged organs and many tumor entities such as leukemia, multiple myeloma, and non-Hodgkin and Hodgkin’s lymphoma. This functional variability from mediation of immune tolerance to facilitation of tumor immune evasion strategies might translate to a differential NK cell inhibition between immune-privileged organs and tumor cells. The biophysical invariability of the HLA-G heavy chain and its contrary diversity in immunity implicates a strong influence of the bound peptides on the pHLA-G structure. The aim was to determine if HLA-G displays a tissue-specific peptide repertoire. Therefore, using soluble sHLA-G technology, we analyzed the K562 and HDLM-2 peptide repertoires. Although both cell lines possess a comparable proteome and recruit HLA-G-restricted peptides through the same peptide-loading pathway, the peptide features appear to be cell specific. HDLM-2 derived HLA-G peptides are anchored by an Arg at p1 and K562-derived peptides are anchored by a Lys. At p2, no anchor motif could be determined while peptides were anchored at pΩ with a Leu and showed an auxiliary anchor motif Pro at p3. To appreciate if the peptide anchor alterations are due to a cell-specific differential peptidome, we performed analysis of peptide availability within the different cell types. Yet, the comparison of the cell-specific proteome and HLA-G-restricted ligandome clearly demonstrates a tissue-specific peptide selection by HLA-G molecules. This exclusive and unexpected observation suggests an exquisite immune function of HLA-G.
Collapse
|
43
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Laaribi AB, Bortolotti D, Hannachi N, Mehri A, Hazgui O, Ben Yahia H, Babay W, Belhadj M, Chaouech H, Yacoub S, Letaief A, Ouzari HI, Boudabous A, Di Luca D, Boukadida J, Rizzo R, Zidi I. Increased levels of soluble HLA-G molecules in Tunisian patients with chronic hepatitis B infection. J Viral Hepat 2017; 24:1016-1022. [PMID: 28429836 DOI: 10.1111/jvh.12718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
Hepatitis B virus (HBV) infection is a global health problem. The mechanisms of immune tolerance in HBV infection are still unclear. The host immune response plays a critical role in determining the outcome of HBV infection. Human leucocyte antigen-G (HLA-G) is involved in immunotolerogenic process and infectious diseases. This study aimed to explore the implication of soluble HLA-G (sHLA-G) and its isoforms in HBV infection. Total sHLA-G (including shedding HLA-G1 and HLA-G5) was analysed by ELISA in 95 chronic HBV patients, 83 spontaneously resolvers and 100 healthy controls (HC). To explore the presence of sHLA-G dimers, we performed an immunoprecipitation and a Western blot analysis on positive samples for sHLA-G in ELISA. The serum levels of sHLA-G were significantly increased in patients with chronic HBV patients compared to spontaneously resolvers and HC (P<.0001). Interestingly, we found an increased level of sHLA-G1 in chronic HBV patients than in spontaneously resolvers and HC (P<.001). In addition, the expression of HLA-G5 seems to be higher in the sera of chronic HBV patients than spontaneously resolvers (P=.026). The analysis of HLA-G dimers showed the presence of homodimers in 93% of chronic HBV patients, 67% in spontaneously resolvers and 60% in HC. These results provide evidence that sHLA-G may have a crucial role in the outcome of HBV infection and could be proposed as a biomarker for infection outcome. Based on its tolerogenic function, HLA-G might be considered as a new promising immunotherapeutic approach to treat the chronic infection with HBV.
Collapse
Affiliation(s)
- A B Laaribi
- Laboratory of Microorganisms and Actives Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia.,Sciences Faculty of Bizerte, University of Carthage, Tunis, Tunisia
| | - D Bortolotti
- Section Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - N Hannachi
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - A Mehri
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia.,Sciences Faculty of Bizerte, University of Carthage, Tunis, Tunisia
| | - O Hazgui
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - H Ben Yahia
- Laboratory of Microorganisms and Actives Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - W Babay
- Laboratory of Microorganisms and Actives Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - M Belhadj
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - H Chaouech
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - S Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, Sousse, Tunisia
| | - A Letaief
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - H I Ouzari
- Laboratory of Microorganisms and Actives Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - A Boudabous
- Laboratory of Microorganisms and Actives Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - D Di Luca
- Section Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - J Boukadida
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - R Rizzo
- Section Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - I Zidi
- Laboratory of Microorganisms and Actives Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
45
|
Girardi G. Complement activation, a threat to pregnancy. Semin Immunopathol 2017; 40:103-111. [PMID: 28900713 DOI: 10.1007/s00281-017-0645-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Pregnancy poses a challenge for the immune systems of placental mammals. As fetal tissues are semi-allogeneic and alloantibodies that commonly develop in the mother, the fetus and the placenta might be subject to complement-mediated immune attack with the potential risk of adverse pregnancy outcomes. Here, I describe how the use of animal models was pivotal in demonstrating that complement inhibition at the fetomaternal interface is essential for a successful pregnancy. Studies in animals also helped the identification of uncontrolled complement activation as a crucial effector in the pathogenesis of recurrent miscarriages, intrauterine growth restriction, preeclampsia, and preterm birth. Clinical studies employing complement biomarkers in plasma and urine showed an association between dysregulation of the complement system and adverse pregnancy outcomes. A better understanding of the role of the complement system in pregnancy complications will allow a rational approach to manipulate its activation as a potential therapeutic strategy with the goal of protecting pregnancies and improving long-term outcomes for mother and child.
Collapse
Affiliation(s)
- Guillermina Girardi
- Pregnancy Laboratory, Department of Women and Children's Health, The Rayne Institute, St Thomas' Hospital, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
46
|
Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol 2017; 25:81-89. [PMID: 28818736 DOI: 10.1016/j.coviro.2017.07.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/13/2017] [Accepted: 07/23/2017] [Indexed: 01/26/2023]
Abstract
Eukaryotic genomes are littered with sequences of diverse viral origins, termed endogenous viral elements (EVEs). Here we used examples primarily drawn from mammalian endogenous retroviruses to document how the influx of EVEs has provided a source of prefabricated coding and regulatory sequences that were formerly utilized for viral infection and replication, but have been occasionally repurposed for cellular function. While EVE co-option has benefited a variety of host biological functions, there appears to be a disproportionate contribution to immunity and antiviral defense. The mammalian embryo and placenta offer opportunistic routes of viral transmission to the next host generation and as such they represent hotbeds for EVE cooption. Based on these observations, we propose that EVE cooption is initially driven as a mean to mitigate conflicts between host and viruses, which in turn acts as a stepping-stone toward the evolution of cellular innovations serving host physiology and development.
Collapse
Affiliation(s)
- John A Frank
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Petersdorf EW. Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation. F1000Res 2017; 6:617. [PMID: 28529723 PMCID: PMC5419254 DOI: 10.12688/f1000research.10990.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a significant potentially life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). Since the discovery of the human leukocyte antigen (HLA) system over 50 years ago, significant advances have clarified the nature of HLA variation between transplant recipients and donors as a chief etiology of GVHD. New information on coding and non-coding gene variation and GVHD risk provides clinicians with options to consider selected mismatched donors when matched donors are not available. These advances have increased the availability of unrelated donors for patients in need of a transplant and have lowered the overall morbidity and mortality of HCT.
Collapse
|
48
|
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the Interface of Maternal-Fetal Tolerance. Trends Immunol 2017; 38:272-286. [PMID: 28279591 DOI: 10.1016/j.it.2017.01.009] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Esensten JH, Bluestone JA, Lim WA. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials. ANNUAL REVIEW OF PATHOLOGY 2017; 12:305-330. [PMID: 27959633 PMCID: PMC5557092 DOI: 10.1146/annurev-pathol-052016-100304] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, California 94143;
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, California 94143;
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94158-2517;
| |
Collapse
|
50
|
Ferreira SDC, Chachá SGF, Souza FF, Teixeira AC, Santana RDC, Deghaide NHS, Rodrigues S, Marano LA, Mendes-Junior CT, Ramalho LNZ, Zucoloto S, Donadi EA, Martinelli ADLC. The HLA-G 14-base pair deletion allele and the deletion/deletion genotype are associated with persistent HBe antigenemia in chronic hepatis B infection. Hum Immunol 2016; 78:166-171. [PMID: 28041834 DOI: 10.1016/j.humimm.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS HLA-G has well-recognized immunomodulatory properties, and this molecule is frequently expressed in the livers of hepatitis B virus (HBV)-infected patients. Because the HLA-G 14 bp-insertion/deletion polymorphism (rs371194629) has been associated with the magnitude of HLA-G expression, we evaluated this polymorphism in the recognized evolutionary forms of chronic HBV infection. METHODS We studied 196 chronic HBV-infected patients (118 HBeAg-negative chronic hepatitis, 53 HBeAg-positive chronic hepatitis and 25 inactive carriers exhibiting low levels of serum HBVDNA and persistently normal ALT levels), and 202 healthy individuals. Chronic hepatitis HLA-G typing was performed using PCR-amplified DNA hybridized with specific primers. RESULTS The frequencies of the insertion/deletion alleles and genotypes were very similar in patients and controls. After patient stratification according to the evolutionary form of the chronic HBV infection, the frequencies of the deletion allele (P=0.0460; OR=1.26; 95%CI=1.01-1.45) and of the deletion/deletion genotype (P=0.0356; OR=2.08; 95%CI=1.05-4.09) were overrepresented in HBeAg-positive patients when compared to HBeAg-negative patients. No differences were observed when HBV inactive carriers were compared to HBeAg-negative chronic hepatitis patients. CONCLUSIONS Because the 14-bp deletion allele has been associated with increased HLA-G production and because HLA-G may down regulate the cytotoxic activity of TCD8 and NK cells, patients exhibiting the 14-bp deletion allele at single or double doses are at increased risk for developing chronic forms of HBV associated with persistent viremia and worse prognoses.
Collapse
Affiliation(s)
- Sandro da Costa Ferreira
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil.
| | - Silvana Gama Florêncio Chachá
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil; Department of Medicine, University Federal of São Carlos (UFSCAR), Brazil
| | - Fernanda Fernandes Souza
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Andreza Corrêa Teixeira
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Rodrigo de Carvalho Santana
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Neifi Hassan Saloun Deghaide
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Sandra Rodrigues
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Leonardo A Marano
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | | | | | - Sérgio Zucoloto
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| | - Ana de Lourdes Candolo Martinelli
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Brazil
| |
Collapse
|