1
|
Alves e Silva TL, Kanatani S, Barletta Ferreira AB, Schwartz C, Talyuli OA, Olivas J, Nagata BM, Pala ZR, Pascini T, Alves DA, Zhao M, Suzuki M, Dorner LP, Frischknecht F, Coppens I, Barillas-Mury C, Ribeiro JM, Sinnis P, Vega-Rodriguez J. High-Resolution Proteomics Unveils Salivary Gland Disruption and Saliva-Hemolymph Protein Exchange in Plasmodium-Infected Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640873. [PMID: 40060675 PMCID: PMC11888397 DOI: 10.1101/2025.02.28.640873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Plasmodium sporozoites, the stage that initiates a malaria infection, must invade the mosquito salivary glands (SGs) before transmitting to a vertebrate host. However, the effects of sporozoite invasion on salivary gland physiology and saliva composition remain largely unexplored. We examined the impact of Plasmodium infection on Anopheles gambiae salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data revealed differential expression of various proteins, including the enrichment of humoral proteins in infected salivary glands originating from the hemolymph. These proteins diffused into the SGs due to structural damage caused by the sporozoites during invasion. Conversely, saliva proteins diffused out into the circulation of infected mosquitoes. Moreover, infection altered saliva protein composition, as shown by proteomes from saliva collected from mosquitoes infected by P. berghei or P. falciparum, revealing a significant reduction of immune proteins compared to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites within the mosquito salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both Plasmodium species were remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between Plasmodium sporozoites and mosquito salivary glands.
Collapse
Affiliation(s)
- Thiago Luiz Alves e Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Sachi Kanatani
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ana Beatriz Barletta Ferreira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Cindi Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Octavio A.C. Talyuli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Bianca M. Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Sanaria Inc., 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Lilian P. Dorner
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg
| | - Isabelle Coppens
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jose M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
2
|
Wang Z, Zhou Y, Tang F. RNAi-mediated silencing of transferrin promotes entomopathogens lethality in Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106149. [PMID: 39477602 DOI: 10.1016/j.pestbp.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Transferrin (Tsf) is a highly conserved multifunctional protein involved in insect physiology, defense and development that has been developed as a novel RNA interference (RNAi)-based target for pest control. The function study of the Tsf gene in Odontotermes formosanu (Shiraki) was evaluated for synergistic control of this agroforestry pest with Serratia marcescens (SM1), Bacillus thuringiensis (Bt) or Beauveria bassiana (Bb). The Tsf gene of O. formosanus was identified and characterized. Real-time fluorescent quantitative PCR (qPCR) analysis demonstrated that OfTsf was most highly expressed in the male dealate of O. formosanus, and OfTsf was highly expressed in the hemolymph. OfTsf expression was considerably elevated after SM1, Bt or Bb infection. Furthermore, dsOfTsf treatment was effective in increasing the virulence of entomopathogens to O. formosanus. In addition, OfTsf expression was markedly upregulated in O. formosanus fed with oxidative stress inducers; reactive oxygen species (ROS) levels were significantly increased after dsOfTsf treatment. Therefore, OfTsf gene played an important role in defending against entomopathogen infection and antioxidant stress. Most importantly, our work suggested OfTsf as a potential RNAi target for the control of O. formosanus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Wimalasiri-Yapa BMCR, Huang B, Ross PA, Hoffmann AA, Ritchie SA, Frentiu FD, Warrilow D, van den Hurk AF. Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. PLoS Negl Trop Dis 2023; 17:e0011222. [PMID: 36989319 PMCID: PMC10085034 DOI: 10.1371/journal.pntd.0011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.
Collapse
Affiliation(s)
- B M C Randika Wimalasiri-Yapa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Open University of Sri Lanka, Nugegoda, Colombo, Sri Lanka
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| |
Collapse
|
4
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
5
|
Cao J. Functional Divergence of the N-Lobe and C-Lobe of Transferrin Gene in Pungitius sinensis (Amur Stickleback). Animals (Basel) 2022; 12:ani12243458. [PMID: 36552378 PMCID: PMC9774405 DOI: 10.3390/ani12243458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Transferrin is an important iron-binding glycosylated protein and plays key roles in iron-binding and immune response. Here, a 2037-bp open reading frame was obtained from our previous transcriptome sequencing data of Amur stickleback, which encoded a 679 amino acid putative transferrin protein harbored obvious N-lobe and C-lobe domains. The tissue-specific expression pattern showed that the transcript was detected in a variety of tissues, with the highest signal in liver. Moreover, Streptococcus iniae pathogen stimulation can increase the expression level of this transcript, implying important immune properties for organisms. Next, N-lobes and C-lobes were obtained from 45 fish species. The phylogenetic tree showed that N-lobes and C-lobes were in two different evolutionary branches, and they had different motif composition. Functional divergence indicated a higher evolutionary rate or site-specific alteration among the N-lobe and C-lobe groups. Ka/Ks value of C-lobe group was relatively higher than that of N-lobe group, indicating a faster change rate of C-lobe sequences in evolution. Moreover, some sites experiencing positive selection were also found, which may be involved in the iron- or anion-binding, pathogen resistance and diversification of transferrin protein. Differential iron-binding activity was also detected between N-lobe and C-lobe of Amur stickleback transferrin protein with Chrome Azurol S assay. Compared with the C-lobe, the N-lobe showed stronger growth inhibitory activity of Escherichia coli, implying their potential antibacterial properties. This study will give a reference for subsequent research of transferrin proteins.
Collapse
Affiliation(s)
- Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Weber JJ, Brummett LM, Coca ME, Tabunoki H, Kanost MR, Ragan EJ, Park Y, Gorman MJ. Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103811. [PMID: 35781032 PMCID: PMC9869689 DOI: 10.1016/j.ibmb.2022.103811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michelle E Coca
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Emily J Ragan
- Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, CO, 80217, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Chen P, De Schutter K, Pauwels J, Gevaert K, Van Damme EJM, Smagghe G. Binding of Orysata lectin induces an immune response in insect cells. INSECT SCIENCE 2022; 29:717-729. [PMID: 34473412 DOI: 10.1111/1744-7917.12968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In mammals, plant lectinshave been shown to possess immunomodulatory properties, acting in both the innate and adaptive immune system to modulate the production of mediators of the immune response, ultimately improving host defences. At present, knowledge of immunomodulatory effects of plant lectins in insects is scarce. Treatment of insect cells with the Orysa sativa lectin, Orysata, was previously reported to induce cell aggregation, mimicking the immune process of encapsulation. In this project we investigated the potential immunomodulatory effects of this mannose-binding lectin using Drosophila melanogaster S2 cells. Identification of the Orysata binding partners on the surface of S2 cells through a pull-down assay and proteomic analysis revealed 221 putative interactors, several of which were immunity-related proteins. Subsequent qPCR analysis revealed the upregulation of Toll- and immune deficiency (IMD)-regulated antimicrobial peptides (Drs, Mtk, AttA, and Dpt) and signal transducers (Rel and Hid) belonging to the IMD pathway. In addition, the iron-binding protein Transferrin 3 was identified as a putative interactor for Orysata, and treatment of S2 cells with Orysata was shown to reduce the intracellular iron concentration. All together, we believe these results offer a new perspective on the effects by which plant lectins influence insect cells and contribute to the study of their immunomodulatory properties.
Collapse
Affiliation(s)
- Pengyu Chen
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jarne Pauwels
- Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Els J M Van Damme
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Wu J, Zheng Y, Xu C, Jiao Q, Ye C, Chen T, Yu X, Pang K, Hao P. Rice Defense against Brown Planthopper Partially by Suppressing the Expression of Transferrin Family Genes of Brown Planthopper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2839-2850. [PMID: 35226488 DOI: 10.1021/acs.jafc.1c07361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transferrins are multifunctional proteins, but their role in the interaction of rice and brown planthopper (BPH) remains unclear. In this study, the full-length cDNA of transferrin genes NlTsf1, NlTsf2, and NlTsf3 was cloned. Reverse transcription quantitative polymerase chain reaction showed that the expressions of NlTsf1 and NlTsf3 were significantly suppressed in BPH reared on the resistant rice R1 by 68.0 and 86.7%, respectively, compared with that on the susceptible S9. The survival rate decreased to 3.3% for dsNlTsf3-treated nymphs, to 58.9% for dsNlTsf1, and to 56.7% for dsNlTsf2 on day 11. RNAi of NlTsf3 against females largely reduced the number of eggs by 99.4%, and it decreased by 48.6% for dsNlTsf1 but did not significantly decrease for dsNlTsf2. Collectively, NlTsf1, NlTsf2, and NlTsf3 are essential for the survival and fecundity of BPH and are differentially involved in the interaction between rice and BPH. Therefore, NlTsf1 and NlTsf3 may be used as targets to control BPH.
Collapse
Affiliation(s)
- Jiangen Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuanyuan Zheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenxi Xu
- School of Food Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Jiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tongtong Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Rani J, De TD, Chauhan C, Kumari S, Sharma P, Tevatiya S, Chakraborti S, Pandey KC, Singh N, Dixit R. Functional disruption of transferrin expression alters reproductive physiology in Anopheles culicifacies. PLoS One 2022; 17:e0264523. [PMID: 35245324 PMCID: PMC8896695 DOI: 10.1371/journal.pone.0264523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Iron metabolism is crucial to maintain optimal physiological homeostasis of every organism and any alteration of the iron concentration (i.e. deficit or excess) can have adverse consequences. Transferrins are glycoproteins that play important role in iron transportation and have been widely characterized in vertebrates and insects, but poorly studied in blood-feeding mosquitoes. RESULTS We characterized a 2102 bp long transcript AcTrf1a with complete CDS of 1872bp, and 226bp UTR region, encoding putative transferrin homolog protein from mosquito An. culicifacies. A detailed in silico analysis predicts AcTrf1a encodes 624 amino acid (aa) long polypeptide that carries transferrin domain. AcTrf1a also showed a putative N-linked glycosylation site, a characteristic feature of most of the mammalian transferrins and certain non-blood feeding insects. Structure modelling prediction confirms the presence of an iron-binding site at the N-terminal lobe of the transferrin. Our spatial and temporal expression analysis under altered pathophysiological conditions showed that AcTrf1a is abundantly expressed in the fat-body, ovary, and its response is significantly altered (enhanced) after blood meal uptake, and exogenous bacterial challenge. Additionally, non-heme iron supplementation of FeCl3 at 1 mM concentration not only augmented the AcTrf1a transcript expression in fat-body but also enhanced the reproductive fecundity of gravid adult female mosquitoes. RNAi-mediated knockdown of AcTrf1a causes a significant reduction in fecundity, confirming the important role of transferrin in oocyte maturation. CONCLUSION All together our results advocate that detailed characterization of newly identified AcTrf1a transcript may help to select it as a unique target to impair the mosquito reproductive outcome.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Soumyananda Chakraborti
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
10
|
Geiser DL, Li W, Pham DQD, Wysocki VH, Winzerling JJ. Shotgun and TMT-Labeled Proteomic Analysis of the Ovarian Proteins of an Insect Vector, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 35303100 PMCID: PMC8932505 DOI: 10.1093/jisesa/ieac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Aedes aegypti [Linnaeus in Hasselquist; yellow fever mosquito] transmits several viruses that infect millions of people each year, including Zika, dengue, yellow fever, chikungunya, and West Nile. Pathogen transmission occurs during blood feeding. Only the females blood feed as they require a bloodmeal for oogenesis; in the bloodmeal, holo-transferrin and hemoglobin provide the females with a high iron load. We are interested in the effects of the bloodmeal on the expression of iron-associated proteins in oogenesis. Previous data showed that following digestion of a bloodmeal, ovarian iron concentrations doubles by 72 hr. We have used shotgun proteomics to identify proteins expressed in Ae. aegypti ovaries at two oogenesis developmental stages following blood feeding, and tandem mass tag-labeling proteomics to quantify proteins expressed at one stage following feeding of a controlled iron diet. Our findings provide the first report of mosquito ovarian protein expression in early and late oogenesis. We identify proteins differentially expressed in the two oogenesis development stages. We establish that metal-associated proteins play an important role in Ae. aegypti oogenesis and we identify new candidate proteins that might be involved in mosquito iron metabolism. Finally, this work identified a unique second ferritin light chain subunit, the first reported in any species. The shotgun proteomic data are available via ProteomeXchange with identifier PXD005893, while the tandem mass tag-labeled proteomic data are available with identifier PXD028242.
Collapse
Affiliation(s)
- Dawn L Geiser
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Wenzhou Li
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Amgen Incorporation, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Daphne Q-D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Joy J Winzerling
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses. Cells 2022; 11:cells11040693. [PMID: 35203347 PMCID: PMC8870222 DOI: 10.3390/cells11040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus–vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector–virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.
Collapse
|
12
|
Hrdina A, Iatsenko I. The roles of metals in insect-microbe interactions and immunity. CURRENT OPINION IN INSECT SCIENCE 2022; 49:71-77. [PMID: 34952239 DOI: 10.1016/j.cois.2021.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Metal ions play essential roles in diverse physiological processes in insects, including immunity and interactions with microbes. Some, like iron, are essential nutrients and therefore are the subject of a tug-of-war between insects and microbes. Recent findings showed that the hypoferremic response mediated by Transferrin 1 is an essential defense mechanism against pathogens in insects. Transferrin 1 and the overall iron metabolism were also implicated in mediating interactions between insects and beneficial microbes. Other metals, like copper and zinc, can interfere with insect immune effectors, and either enhance (antimicrobial peptides) or reduce (reactive oxygen species) their activity. By covering recent advances in the field, this review emphasizes the importance of metals as essential mediators of insect-microbe interactions.
Collapse
Affiliation(s)
- Alexandra Hrdina
- Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
13
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
14
|
Eleftherianos I, Zhang W, Heryanto C, Mohamed A, Contreras G, Tettamanti G, Wink M, Bassal T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. Int J Biol Macromol 2021; 191:277-287. [PMID: 34543628 DOI: 10.1016/j.ijbiomac.2021.09.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, Varese 21100, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Napoli Federico II, Via Università, 100, Portici 80055, Italy
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Taha Bassal
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
15
|
Pinto CPG, Walker AA, Robinson SD, Chin YKY, King GF, Rossi GD. Venom composition of the endoparasitoid wasp Cotesia flavipes (Hymenoptera: Braconidae) and functional characterization of a major venom peptide. Toxicon 2021; 202:1-12. [PMID: 34547307 DOI: 10.1016/j.toxicon.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Endoparasitoid wasps use complex biochemical arsenals to suppress the normal humoral and cellular immune responses of their hosts in order to transform them into a suitable environment for development of their eggs and larvae. Venom injected during oviposition is a key component of this arsenal, but the functions of individual venom toxins are still poorly understood. Furthermore, there has been little investigation of the potential biotechnological use of these venom toxins, for example for control of agricultural pests. The endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) is a biocontrol agent reared in biofactories and released extensively in Brazil to control the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). The objectives of this work were to reveal venom components produced by C. flavipes and explore the function of a major venom peptide, Cf4. Using a combined proteomic/transcriptomic approach, we identified 38 putative venom toxins including both linear and disulfide-rich peptides, hydrolases, protease inhibitors, apolipophorins, lipid-binding proteins, and proteins of the odorant binding families. Because of its high abundance in the venom, we selected Cf4, a 33-residue peptide with three disulfide bonds, for synthesis and further characterization. We found that synthetic Cf4 reduced the capacity of D. saccharalis hemocytes to encapsulate foreign bodies without any effect on phenoloxidase activity, consistent with a role in disruption of the cellular host immune response. Feeding leaves coated with Cf4 to neonate D. saccharalis resulted in increased mortality and significantly reduced feeding compared to caterpillars fed untreated leaves, indicating that Cf4 is a potential candidate for insect pest control through ingestion. This study adds to our knowledge of endoparasitoid wasp venoms composition, host regulation mechanisms and their biotechnological potential for pest management.
Collapse
Affiliation(s)
- Ciro P G Pinto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guilherme D Rossi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
16
|
Maya-Maldonado K, Cardoso-Jaime V, González-Olvera G, Osorio B, Recio-Tótoro B, Manrique-Saide P, Rodríguez-Sánchez IP, Lanz-Mendoza H, Missirlis F, Hernández-Hernández FDLC. Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Negl Trop Dis 2021; 15:e0009509. [PMID: 34161336 PMCID: PMC8221525 DOI: 10.1371/journal.pntd.0009509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti throughout their life cycle and following a blood meal. Consistent with previous reports, we found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albimanus. Sodium, potassium, iron, and copper are present at higher concentrations during larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe (bs) phenotype counterparts. A similar increase in copper and iron accumulation was also observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and after receiving Plasmodium-infected blood protected from infection and simultaneously affected follicular development in the case of iron chelation. Unexpectedly, the application of the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal chelation on P. berghei infectivity was strain-specific.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Victor Cardoso-Jaime
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Gabriela González-Olvera
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Iram Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | | |
Collapse
|
17
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021; 9:microorganisms9040804. [PMID: 33920371 PMCID: PMC8069306 DOI: 10.3390/microorganisms9040804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| | - Larissa Rezende Vieira
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| |
Collapse
|
18
|
Weber JJ, Kashipathy MM, Battaile KP, Go E, Desaire H, Kanost MR, Lovell S, Gorman MJ. Structural insight into the novel iron-coordination and domain interactions of transferrin-1 from a model insect, Manduca sexta. Protein Sci 2021; 30:408-422. [PMID: 33197096 PMCID: PMC7784759 DOI: 10.1002/pro.3999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin-1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin. Manduca sexta (MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl-lobe adopts a novel orientation and contacts with the amino-lobe. The structure revealed coordination of a single Fe3+ ion in the amino-lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans.
Collapse
Affiliation(s)
- Jacob J. Weber
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology CenterUniversity of KansasLawrenceKansasUSA
| | | | - Eden Go
- Department of ChemistryUniversity of KansasLawrenceKansasUSA
| | - Heather Desaire
- Department of ChemistryUniversity of KansasLawrenceKansasUSA
| | - Michael R. Kanost
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology CenterUniversity of KansasLawrenceKansasUSA
| | - Maureen J. Gorman
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| |
Collapse
|
19
|
Rodríguez-García C, Heerman MC, Cook SC, Evans JD, DeGrandi-Hoffman G, Banmeke O, Zhang Y, Huang S, Hamilton M, Chen YP. Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathog 2021; 17:e1009270. [PMID: 33600478 PMCID: PMC7891791 DOI: 10.1371/journal.ppat.1009270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee's ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.
Collapse
Affiliation(s)
| | - Matthew C. Heerman
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Steven C. Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | | | - Olubukola Banmeke
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Yi Zhang
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Shaokang Huang
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
20
|
Solyman M, Brayton KA, Shaw DK, Omsland A, McGeehan S, Scoles GA, Noh SM. Predicted iron metabolism genes in hard ticks and their response to iron reduction in Dermacentor andersoni cells. Ticks Tick Borne Dis 2020; 12:101584. [PMID: 33059171 DOI: 10.1016/j.ttbdis.2020.101584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
For most organisms, iron is an essential nutrient due to its role in fundamental cellular processes. Insufficient iron causes sub-optimal metabolism with potential effects on viability, while high levels of iron are toxic due to the formation of oxidative radicals, which damage cellular components. Many molecules and processes employed in iron uptake, storage, transport and metabolism are conserved, however significant knowledge gaps remain regarding these processes in ticks due to their unique physiology. In this study, we first identified and sequenced 13 genes likely to be involved in iron metabolism in Dermacentor andersoni cells. We then developed a method to reduce iron levels in D. andersoni cells using the iron chelator 2,2'-bipyridyl and measured the transcriptional response of these genes to iron reduction. The genes include a putative transferrin receptor, divalent metal transporter 1, duodenal cytochrome b, zinc/iron transporters zip7, zip13, zip14, mitoferrin, ferrochelatase, iron regulatory protein 1, ferritin1, ferritin2, transferrin and poly r(C)-binding protein. Overall, the transcriptional response of the target genes to iron reduction was modest. The most marked changes were a decrease in ferritin2, which transports iron through the tick hemolymph, the mitochondrial iron transporter mitoferrin, and the mitochondrial enzyme ferrochelatase. Iron regulatory protein1 was the only gene with an overall increase in transcript in response to reduced iron levels. This work lays the foundation for an improved understanding of iron metabolism in ticks which may provide molecular targets for the development of novel tick control methods and aid in the understanding of tick-pathogen interactions.
Collapse
Affiliation(s)
- Muna Solyman
- Department of Veterinary Microbiology and Pathology, P. O. Box 647040, Washington State University, Pullman, Wash. 99164, USA.
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, P. O. Box 647040, Washington State University, Pullman, Wash. 99164, USA.
| | - Dana K Shaw
- Department of Veterinary Microbiology and Pathology, P. O. Box 647040, Washington State University, Pullman, Wash. 99164, USA.
| | - Anders Omsland
- The Paul G. Allen School for Global Animal Health, 1155 College Ave., Washington State University, Pullman, Wash. 99164-70403, USA.
| | - Steven McGeehan
- Analytical Sciences Laboratory, University of Idaho, Moscow, ID 83844-2293, USA.
| | - Glen A Scoles
- Animal Diseases Research Unit, USDA-ARS, 3003 ADBF, Pullman, Wash. 99164-6630, USA.
| | - Susan M Noh
- Animal Diseases Research Unit, USDA-ARS, 3003 ADBF, Pullman, Wash. 99164-6630, USA.
| |
Collapse
|
21
|
Weber JJ, Kanost MR, Gorman MJ. Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: Implications for insect iron homeostasis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103438. [PMID: 32735914 PMCID: PMC7501197 DOI: 10.1016/j.ibmb.2020.103438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 05/20/2023]
Abstract
Transferrins belong to an ancient family of extracellular proteins. The best-characterized transferrins are mammalian proteins that function in iron sequestration or iron transport; they accomplish these functions by having a high-affinity iron-binding site in each of their two homologous lobes. Insect hemolymph transferrins (Tsf1s) also function in iron sequestration and transport; however, sequence-based predictions of their iron-binding residues have suggested that most Tsf1s have a single, lower-affinity iron-binding site. To reconcile the apparent contradiction between the known physiological functions and predicted biochemical properties of Tsf1s, we purified and characterized the iron-binding properties of Drosophila melanogaster Tsf1 (DmTsf1), Manduca sexta Tsf1 (MsTsf1), and the amino-lobe of DmTsf1 (DmTsf1N). Using UV-Vis spectroscopy, we found that these proteins bind iron, but they exhibit shifts in their spectra compared to mammalian transferrins. Through equilibrium dialysis experiments, we determined that DmTsf1 and MsTsf1 bind only one ferric ion; their affinity for iron is high (log K' = 18), but less than that of the well-characterized mammalian transferrins (log K' ~ 20); and they release iron under moderately acidic conditions (pH50 = 5.5). Iron release analysis of DmTsf1N suggested that iron binding in the amino-lobe is stabilized by the carboxyl-lobe. These findings will be critical for elucidating the mechanisms of Tsf1 function in iron sequestration and transport in insects.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
22
|
Fuzita FJ, Chandler KB, Haserick JR, Terra WR, Ferreira C, Costello CE. N-glycosylation in Spodoptera frugiperda (Lepidoptera: Noctuidae) midgut membrane-bound glycoproteins. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110464. [PMID: 32553552 DOI: 10.1016/j.cbpb.2020.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Spodoptera frugiperda is a widely distributed agricultural pest. It has previously been established that glycoproteins in the midgut microvillar membrane of insects are targets for toxins produced by different organisms as well as plant lectins. However, there is still little information about the N-glycome of membrane-bound midgut glycoproteins in Lepidoptera and other insect groups. The present study used mass spectrometry-based approaches to characterize the N-glycoproteins present in the midgut cell microvilli of Spodoptera frugiperda. We subjected midgut cell microvilli proteins to proteolytic digestion and enriched the resulting glycopeptides prior to analysis. We also performed endoglycosidase release of N-glycans in the presence of H218O determining the compositions of released N-glycans by MALDI-TOF MS analysis and established the occupancy of the potential N-glycosylation sites. We report here a total of 160 glycopeptides, representing 25 N-glycan compositions associated with 70 sites on 35 glycoproteins. Glycan compositions consistent with oligomannose, paucimannose and complex/hybrid N-glycans represent 35, 30 and 35% of the observed glycans, respectively. The two most common N-glycan compositions were the complex/hybrid Hex3HexNAc4dHex4 and the paucimannose structure that contains only the doubly-fucosylated trimannosylchitobiose core Hex3HexNAc2dHex2, each appearing in 22 occupied sites (13.8%). These findings enlighten aspects of the glycobiology of lepidopteran midgut microvilli.
Collapse
Affiliation(s)
- Felipe Jun Fuzita
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Laboratory of Insect Biochemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| | - Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - John R Haserick
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Walter R Terra
- Laboratory of Insect Biochemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Laboratory of Insect Biochemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Iatsenko I, Marra A, Boquete JP, Peña J, Lemaitre B. Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster. Proc Natl Acad Sci U S A 2020; 117:7317-7325. [PMID: 32188787 PMCID: PMC7132258 DOI: 10.1073/pnas.1914830117] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron sequestration is a recognized innate immune mechanism against invading pathogens mediated by iron-binding proteins called transferrins. Despite many studies on antimicrobial activity of transferrins in vitro, their specific in vivo functions are poorly understood. Here we use Drosophila melanogaster as an in vivo model to investigate the role of transferrins in host defense. We find that systemic infections with a variety of pathogens trigger a hypoferremic response in flies, namely, iron withdrawal from the hemolymph and accumulation in the fat body. Notably, this hypoferremia to infection requires Drosophila nuclear factor κB (NF-κB) immune pathways, Toll and Imd, revealing that these pathways also mediate nutritional immunity in flies. Next, we show that the iron transporter Tsf1 is induced by infections downstream of the Toll and Imd pathways and is necessary for iron relocation from the hemolymph to the fat body. Consistent with elevated iron levels in the hemolymph, Tsf1 mutants exhibited increased susceptibility to Pseudomonas bacteria and Mucorales fungi, which could be rescued by chemical chelation of iron. Furthermore, using siderophore-deficient Pseudomonas aeruginosa, we discover that the siderophore pyoverdine is necessary for pathogenesis in wild-type flies, but it becomes dispensable in Tsf1 mutants due to excessive iron present in the hemolymph of these flies. As such, our study reveals that, similar to mammals, Drosophila uses iron limitation as an immune defense mechanism mediated by conserved iron-transporting proteins transferrins. Our in vivo work, together with accumulating in vitro studies, supports the immune role of insect transferrins against infections via an iron withholding strategy.
Collapse
Affiliation(s)
- Igor Iatsenko
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Philippe Boquete
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
24
|
García-Reina A, Rodríguez-García MJ, Cuello F, Galián J. Immune transcriptome analysis in predatory beetles reveals two cecropin genes overexpressed in mandibles. J Invertebr Pathol 2020; 171:107346. [PMID: 32067979 DOI: 10.1016/j.jip.2020.107346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Abstract
The great complexity and variety of the innate immune system and the production of antimicrobial peptides in insects is correlated with their evolutionary success and adaptation to different environments. Tiger beetles are an example of non-pest species with a cosmopolitan distribution, but the immune system is barely known and its study could provide useful information about the humoral immunity of predatory insects. Suppression subtractive hybridization (SSH) was performed in Calomera littoralis beetles to obtain a screening of those genes that were overexpressed after an injection with Escherichia coli lipopolysaccharide (LPS). Several genes were identified to be related to immune defense. Among those genes, two members of the cecropin antimicrobial peptides were characterized and identified as CliCec-A and CliCec-B2. Both protein sequences showed cecropin characteristics including 37 and 38 residue mature peptides, composed by two α-helices structures with amphipathic and hydrophobic nature, as shown in their predicted three-dimensional structure. Chemically synthesized CliCec-B2 confirmed cecropin antimicrobial activity against some Gram (+) and Gram (-) bacteria, but not against yeast. Expression of both cecropin genes was assessed by qPCR and showed increases after a LPS injection and highlighted their overexpression in adult beetle mandibles, which could be related to their alimentary habits.
Collapse
Affiliation(s)
- Andrés García-Reina
- University of Murcia Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain.
| | - María Juliana Rodríguez-García
- University of Murcia Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - Francisco Cuello
- University of Murcia, Departament of Animal Health, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - José Galián
- University of Murcia Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| |
Collapse
|
25
|
Londono-Renteria B, Drame PM, Montiel J, Vasquez AM, Tobón-Castaño A, Taylor M, Vizcaino L, Lenhart AE. Identification and Pilot Evaluation of Salivary Peptides from Anopheles albimanus as Biomarkers for Bite Exposure and Malaria Infection in Colombia. Int J Mol Sci 2020; 21:ijms21030691. [PMID: 31973044 PMCID: PMC7037407 DOI: 10.3390/ijms21030691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/23/2023] Open
Abstract
Insect saliva induces significant antibody responses associated with the intensity of exposure to bites and the risk of disease in humans. Several salivary biomarkers have been characterized to determine exposure intensity to Old World Anopheles mosquito species. However, new tools are needed to quantify the intensity of human exposure to Anopheles bites and understand the risk of malaria in low-transmission areas in the Americas. To address this need, we conducted proteomic and bioinformatic analyses of immunogenic candidate proteins present in the saliva of uninfected Anopheles albimanus from two separate colonies—one originating from Central America (STECLA strain) and one originating from South America (Cartagena strain). A ~65 kDa band was identified by IgG antibodies in serum samples from healthy volunteers living in a malaria endemic area in Colombia, and a total of five peptides were designed from the sequences of two immunogenic candidate proteins that were shared by both strains. ELISA-based testing of human IgG antibody levels against the peptides revealed that the transferrin-derived peptides, TRANS-P1, TRANS-P2 and a salivary peroxidase peptide (PEROX-P3) were able to distinguish between malaria-infected and uninfected groups. Interestingly, IgG antibody levels against PEROX-P3 were significantly lower in people that have never experienced malaria, suggesting that it may be a good marker for mosquito bite exposure in naïve populations such as travelers and deployed military personnel. In addition, the strength of the differences in the IgG levels against the peptides varied according to location, suggesting that the peptides may able to detect differences in intensities of bite exposure according to the mosquito population density. Thus, the An. albimanus salivary peptides TRANS-P1, TRANS-P2, and PEROX-P3 are promising biomarkers that could be exploited in a quantitative immunoassay for determination of human-vector contact and calculation of disease risk.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Entomology Department, Vector Biology Laboratory, Kansas State University, 1603 Old Claflin Pl, 123 Waters Hall, Manhattan, KS 66506, USA;
- Correspondence: ; Tel.: +1-785-532-2120
| | - Papa M. Drame
- Department of Global Health, Duke University, 310 Trent Drive, Durham, NC 27710, USA;
| | - Jehidys Montiel
- Entomology Department, Vector Biology Laboratory, Kansas State University, 1603 Old Claflin Pl, 123 Waters Hall, Manhattan, KS 66506, USA;
| | - Ana M. Vasquez
- Calle 70 No. 52–21, Malaria Group, Universidad de Antioquia, Medellin, Antioquia 05001, Colombia; (A.M.V.); (A.T.-C.)
| | - Alberto Tobón-Castaño
- Calle 70 No. 52–21, Malaria Group, Universidad de Antioquia, Medellin, Antioquia 05001, Colombia; (A.M.V.); (A.T.-C.)
| | - Marissa Taylor
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (M.T.); (L.V.); (A.E.L.)
| | - Lucrecia Vizcaino
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (M.T.); (L.V.); (A.E.L.)
| | - Audrey E. Lenhart
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (M.T.); (L.V.); (A.E.L.)
| |
Collapse
|
26
|
Ferro K, Peuß R, Yang W, Rosenstiel P, Schulenburg H, Kurtz J. Experimental evolution of immunological specificity. Proc Natl Acad Sci U S A 2019; 116:20598-20604. [PMID: 31548373 PMCID: PMC6789748 DOI: 10.1073/pnas.1904828116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.
Collapse
Affiliation(s)
- Kevin Ferro
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Department of Entomology, University of Arizona, Tucson, AZ 85704
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Wentao Yang
- Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, Kiel University, 24118 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
27
|
Dutta A, Dandapat J, Mohanty N. First report on transferrin in the silkworm, Antheraea mylitta, with a putative role in antioxidant defense: Insights from proteomic analysis and immunodetection. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:23-34. [DOI: 10.1016/j.cbpb.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/13/2023]
|
28
|
Alkhaibari AM, Lord AM, Maffeis T, Bull JC, Olivares FL, Samuels RI, Butt TM. Highly specific host-pathogen interactions influence Metarhizium brunneum blastospore virulence against Culex quinquefasciatus larvae. Virulence 2019; 9:1449-1467. [PMID: 30112970 PMCID: PMC6141145 DOI: 10.1080/21505594.2018.1509665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Entomopathogenic fungi are potential biological control agents of mosquitoes. Our group observed that not all mosquitoes were equally susceptible to fungal infection and observed significant differences in virulence of different spore types. Conidiospores and blastospores were tested against Culex quinquefasciatus larvae. Blastospores are normally considered more virulent than conidia as they form germ tubes and penetrate the host integument more rapidly than conidia. However, when tested against Cx. quinquefasciatus, blastospores were less virulent than conidia. This host-fungus interaction was studied by optical, electron and atomic force microscopy (AFM). Furthermore, host immune responses and specific gene expression were investigated. Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores did not readily adhere to Culex larval integument and the main route of infection was through the gut. Adhesion forces between blastospores and Culex cuticle were significantly lower than for other insects. Larvae challenged with blastospores showed enhanced immune responses, with increased levels of phenoloxidase, glutathione-S-transferase, esterase, superoxide dismutase and lipid peroxidase activity. Interestingly, M. brunneum pathogenicity/stress-related genes were all down-regulated in blastospores exposed to Culex. Conversely, when conidia were exposed to Culex, the pathogenicity genes involved in adhesion or cuticle degradation were up-regulated. Delayed host mortality following blastospore infection of Culex was probably due to lower adhesion rates of blastospores to the cuticle and enhanced host immune responses deployed to counter infection. The results here show that subtle differences in host-pathogen interactions can be responsible for significant changes in virulence when comparing mosquito species, having important consequences for biological control strategies and the understanding of pathogenicity processes.
Collapse
Affiliation(s)
- Abeer M Alkhaibari
- a Department of Biosciences , College of Science, Swansea University , Swansea , United Kingdom.,b Department of Biology, Faculty of Science , Tabuk University , Tabuk , Kingdom of Saudi Arabia
| | - Alex M Lord
- c Centre for Nanohealth , College of Engineering, Swansea University , Swansea , United Kingdom
| | - Thierry Maffeis
- c Centre for Nanohealth , College of Engineering, Swansea University , Swansea , United Kingdom
| | - James C Bull
- a Department of Biosciences , College of Science, Swansea University , Swansea , United Kingdom
| | - Fabio L Olivares
- d Department of Cell and Tissue Biology , State University of North Fluminense Darcy Ribeiro , Campos dos Goytacazes , Brazil
| | - Richard I Samuels
- e Department of Entomology and Plant Pathology , State University of North Fluminense Darcy Ribeiro , Campos dos Goytacazes , Brazil
| | - Tariq M Butt
- a Department of Biosciences , College of Science, Swansea University , Swansea , United Kingdom
| |
Collapse
|
29
|
Ding TB, Li J, Chen EH, Niu JZ, Chu D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front Physiol 2019; 10:302. [PMID: 31001125 PMCID: PMC6457337 DOI: 10.3389/fphys.2019.00302] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and Tomato chlorosis virus (ToCV) are two of the most devastating cultivated tomato viruses, causing significant crop losses worldwide. As the vector of both TYLCV and ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread and mixed infection of TYLCV and ToCV in China. However, little is known concerning B. tabaci MED's molecular response to TYLCV and ToCV infection or their co-infection. We determined the transcriptional responses of the whitefly MED to TYLCV infection, ToCV infection, and TYLCV&ToCV co-infection using Illumina sequencing. In all, 78, 221, and 60 differentially expressed genes (DEGs) were identified in TYLCV-infected, ToCV-infected, and TYLCV&ToCV co-infected whiteflies, respectively, compared with non-viruliferous whiteflies. Differentially regulated genes were sorted according to their roles in detoxification, stress response, immune response, transport, primary metabolism, cell function, and total fitness in whiteflies after feeding on virus-infected tomato plants. Alterations in the transcription profiles of genes involved in transport and energy metabolism occurred between TYLCV&ToCV co-infection and single infection with TYLCV or ToCV; this may be associated with the adaptation of the insect vector upon co-infection of the two viruses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses demonstrated that the single infection with TYLCV or ToCV and the TYLCV&ToCV co-infection could perturb metabolic processes and metabolic pathways. Taken together, our results provide basis for further exploration of the molecular mechanisms of the response to TYLCV, ToCV single infection, and TYLCV&ToCV co-infection in B. tabaci MED, which will add to our knowledge of the interactions between plant viruses and insect vectors.
Collapse
Affiliation(s)
- Tian-Bo Ding
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
30
|
RNA-Seq analysis of the bioluminescent and non-bioluminescent species of Elateridae (Coleoptera): Comparison to others photogenic and non-photogenic tissues of Elateroidea species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:154-165. [PMID: 30472608 DOI: 10.1016/j.cbd.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
|
31
|
Nakazawa S, Kanno T, Sugisaki K, Kameya H, Matsui M, Ukai M, Sato K, Takui T. Fe-transferrins or their homologues in ex-vivo mushrooms as identified by ESR spectroscopy and quantum chemical calculations: A full spin-Hamiltonian approach for the ferric sextet state with intermediate zero-field splitting parameters. Food Chem 2018; 266:24-30. [PMID: 30381181 DOI: 10.1016/j.foodchem.2018.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Fe-transferrins/their homologues in ex-vivo mushrooms were identified by ESR spectroscopy at liquid helium temperature, 4 K. The ESR fine-structure signals from Grifola frondosa were analyzed by spectral simulation with a full spin-Hamiltonian approach, determining the spin Hamiltonian parameters of the ferric iron species bound in the biological environment: S = 5/2, g = (2.045, 2.01, 2.235), |D| = 0.28 cm-1, |E/D| = 0.05. The zero-field splitting (ZFS) parameters, D- and E-values, are very close to the reported values, |D| = 0.25 cm-1 and |E/D| = 0.06, for an Fe-transferrin with oxalate anion, and to |D| = 0.25 cm-1 and |E/D| = 0.04 for one with malonate anion in human sera, suggesting that the Fe3+ species are from Fe-transferrins or their homologues. Quantum chemical calculations of the ZFS tensors for Fe-transferrins were carried out. Fe-transferrins/homologues have been identified for all the mushrooms under study, suggesting that such Fe3+ enzymes are widely distributed in mushrooms.
Collapse
Affiliation(s)
- Shigeaki Nakazawa
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | - Tomomi Kanno
- Department of Health and Nutritional Sciences, Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi 480-1197, Japan.
| | - Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Hiromi Kameya
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki 305-8642, Japan
| | - Miki Matsui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Mitsuko Ukai
- Hakodate Campus, Hokkaido University of Education, Hakodate 040-8567, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| |
Collapse
|
32
|
Bakhshi H, Failloux AB, Zakeri S, Raz A, Dinparast Djadid N. Mosquito-borne viral diseases and potential transmission blocking vaccine candidates. INFECTION GENETICS AND EVOLUTION 2018; 63:195-203. [PMID: 29842982 DOI: 10.1016/j.meegid.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023]
Abstract
Mosquito-borne viral diseases (MBVDs) have a complex biological cycle involving vectors and vertebrate hosts. These viruses are responsible for many deadly diseases worldwide. Although MBVDs threaten mostly developing countries, there is growing evidence indicating that they are also of concern in western countries where local transmission of arboviruses such as West Nile, Zika, Chikungunya and Dengue viruses have been recently reported. The rapid rise in human infections caused by these viruses is attributed to rapid climate change and travel facilities. Usually, the only way to control these diseases relies on the control of vectors in the absence of licensed vaccines and specific treatments. However, the overuse of insecticides has led to the emergence of insecticide resistance in vector populations, posing significant challenges for their control. An alternative method for reducing MBVDs can be the use of Transmission Blocking Vaccines (TBVs) that limits viral infection at the mosquito vector stage. Some successes have been obtained confirming the potential application of TBVs against viruses; however, this approach remains at the developmental stage and still needs improvements. The present review aims to give an update on MBVDs and to discuss the application as well as usage of potential TBVs for the control of mosquito-borne viral infections.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran.
| |
Collapse
|
33
|
Yin X, Mu L, Bian X, Wu L, Li B, Liu J, Guo Z, Ye J. Expression and functional characterization of transferrin in Nile tilapia (Oreochromis niloticus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:530-539. [PMID: 29353079 DOI: 10.1016/j.fsi.2018.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
Transferrin (TF), an iron-binding glycoprotein, plays an important role in host defense against pathogenic infection, which inhibits the growth and proliferation of pathogens, deprives iron from invading pathogens, and activates anti-microbial responses in macrophages. In this study, a TF homologue (OnTF) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression pattern against bacterial infection and capability binding bacterial pathogens. The open reading frame of OnTF is 2118 bp of nucleotide sequence encoding polypeptides of 705 amino acids. The deduced protein is highly homology to the other species, containing two conserved iron binding lobes: N-lobe and C-lobe. Expression analysis revealed that the OnTF was extremely highly expressed in liver tissue; however, much weakly exhibited in other examined tissues including spleen and head kidney. The OnTF expression was significantly up-regulated in the liver, spleen and head kidney following infection of a Gram-positive bacterial pathogen (Streptococcus agalactiae) and a Gram-negative bacterial pathogen (Aeromonas hydrophila). The up-regulation of OnTF expression was also demonstrated in hepatocytes and macrophages in vitro stimulated with S. agalactiae and A. hydrophila. In addition, recombinant OnTF ((r)OnTF) protein possessed capability to bind both S. agalactiae and A. hydrophila in vitro. Taken together, the present study indicated that OnTF might be involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Bingxi Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China.
| |
Collapse
|
34
|
Nevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJF, Ribeiro JMC. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis 2018; 12:e0006243. [PMID: 29462134 PMCID: PMC5834209 DOI: 10.1371/journal.pntd.0006243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/02/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Triatomines are hematophagous arthropod vectors of Trypanosoma cruzi, the causative agent of Chagas Disease. Panstrongylus lignarius, also known as Panstrongylus herreri, is considered one of the most versatile triatomines because it can parasitize different hosts, it is found in different habitats and countries, it has sylvatic, peridomestic and domestic behavior and it is a very important vector of Chagas disease, especially in Peru. Molecules produced and secreted by salivary glands and fat body are considered of important adaptational value for triatomines because, among other functions, they subvert the host haemostatic, inflammatory and immune systems and detoxify or protect them against environmental aggressors. In this context, the elucidation of the molecules produced by these tissues is highly valuable to understanding the ability of this species to adapt and transmit pathogens. Here, we use high-throughput sequencing techniques to assemble and describe the coding sequences resulting from the transcriptome of the fat body and salivary glands of P. lignarius. The final assembly of both transcriptomes together resulted in a total of 11,507 coding sequences (CDS), which were mapped from a total of 164,676,091 reads. The CDS were subdivided according to their 10 folds overexpression on salivary glands (513 CDS) or fat body (2073 CDS). Among the families of proteins found in the salivary glands, lipocalins were the most abundant. Other ubiquitous families of proteins present in other sialomes were also present in P. lignarius, including serine protease inhibitors, apyrase and antigen-5. The unique transcriptome of fat body showed proteins related to the metabolic function of this organ. Remarkably, nearly 20% of all reads mapped to transcripts coded by Triatoma virus. The data presented in this study improve the understanding on triatomines' salivary glands and fat body function and reveal important molecules used in the interplay between vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Jessica C. Nevoa
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria T. Mendes
- University of Texas at El Paso, El Paso, Texas, United States of America
| | - Marcos V. da Silva
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Siomar C. Soares
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo J. F. Oliveira
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José M. C. Ribeiro
- National Institute of Allergy and Infectious Diseases (NIAID), Laboratory of Malaria and Vector Research (LMVR), Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet 2018; 9:19. [PMID: 29456553 PMCID: PMC5801409 DOI: 10.3389/fgene.2018.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP), Heme Oxygenase (HO) and the heme exporter Feline Leukemia Virus C Receptor (FLVCR), components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM), where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of these key proteins after a blood- meal can be extremely deleterious to the insects in their various stages of development.
Collapse
Affiliation(s)
- Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mabel L Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rafael D Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Perera NCN, Godahewa GI, Hwang JY, Kwon MG, Hwang SD, Lee J. Molecular, structural, and functional comparison of N lobe and C lobe of the transferrin from rock bream, Oplegnathus fasciatus, with respect to its immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 68:299-309. [PMID: 28732766 DOI: 10.1016/j.fsi.2017.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The iron-withholding strategy of innate immunity is an effective antimicrobial defense mechanism that combats microbial infection by depriving microorganisms of Fe3+, which is important for their growth and propagation. Transferrins (Tfs) are a group of iron-binding proteins that exert their antimicrobial function through Fe3+ sequestration. The current study describes both structural and functional characteristics of a transferrin ortholog from rock bream Oplegnathus fasciatus (RbTf). The RbTf cDNA possesses an open reading frame (ORF) of 2079 bp encoding 693 amino acids. It has a molecular mass of approximately 74 kDa and an isoelectric point of 5.4. In silico analysis revealed that RbTf has two conserved domains: N-terminal domain and C-terminal domain. Pairwise homology analysis and phylogenetic analysis revealed that RbTf shared the highest identity (82.6%) with Dicentrarchus labrax Tf. According to the genomic analysis, RbTf possesses 17 exons and 16 introns, similar to the other orthologs. Here, we cloned the N terminal and C terminal domains of RbTf to evaluate their distinct functional features. Results obtained through the CAS (chrome azurol S) assay confirmed the iron-binding ability of the RbTf, and it was further determined that the iron-binding ability of rRbTfN was higher than that of rRbTfC. The antimicrobial functions of the rRbTfN and the rRbTfC were confirmed via the iron-dependent bacterial growth inhibition assay. Tissue distribution profiling revealed a ubiquitous expression with intense expression in the liver. Temporal assessment revealed that RbTf increased after stimulation of LPS, Edwardsiella tarda, and Streptococcus iniae post injection (p.i.). These findings demonstrated that RbTf is an important antimicrobial protein that can combat bacterial pathogens.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jee Youn Hwang
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Mun Gyeong Kwon
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
37
|
Iron availability affects West Nile virus infection in its mosquito vector. Virol J 2017; 14:103. [PMID: 28583206 PMCID: PMC5460528 DOI: 10.1186/s12985-017-0770-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/26/2017] [Indexed: 01/02/2023] Open
Abstract
Background Mosquitoes are responsible for transmission of viruses, including dengue, West Nile and chikungunya viruses. Female mosquitoes are infected when they blood-feed on vertebrates, a required step for oogenesis. During this process, mosquitoes encounter high iron loads. Since iron is an essential nutrient for most organisms, including pathogens, one of the defense mechanisms for the host includes sequestration of iron away from the invading pathogen. Here, we determine whether iron availability affects viral replication in mosquitoes. Methods To elucidate effect of iron availability on mosquito cells during infection, Culex cells were treated with either ferric ammonium citrate (FAC) or the iron chelator, deferoxamine (DFX). Real time RT-PCR was performed using ferritin (heavy chain) and NRAMP as a measure of iron homeostasis in cells. To determine iron requirement for viral replication, Culex cells were knocked down for NRAMP using dsRNA. Finally, the results were validated in Culex mosquito-infection model, by treating infected mosquitoes with DFX to reduce iron levels. Results Our results show that infection of Culex cells led to induction in levels of ferritin (heavy chain) and NRAMP mRNAs in time-dependent manner. Results also showed that treatment of cells with FAC, reduced expression of NRAMP (iron transporter) and increase levels of ferritin (heavy chain). Interestingly, increasing iron levels increased viral titers; while reducing intracellular iron levels, either by NRAMP knock-down or using DFX, reduced viral titers. The results from Culex mosquito infection showed that mosquitoes treated with DFX had reduced viral titers compared with untreated controls in midgut as well as carcass 8 days pi. Saliva from mosquitoes treated with DFX also showed reduced viral titers compared with untreated controls, indicating low viral transmission capacity. Conclusions Our results indicate that iron is required for viral replication in mosquito cells. Mosquitoes respond to viral infection, by inducing expression of heavy chain ferritin, which sequesters available iron, reducing its availability to virus infected cells. The data indicates that heavy chain ferritin may be part of an immune mechanism of mosquitoes in response to viral infections.
Collapse
|
38
|
Huang HJ, Xue J, Zhuo JC, Cheng RL, Xu HJ, Zhang CX. Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species. Mol Ecol 2017; 26:2726-2737. [PMID: 28214356 DOI: 10.1111/mec.14067] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
The brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism-, exoskeleton- and chemosensory-related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co-regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Xue
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Lin Cheng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
39
|
Trites MJ, Barreda DR. Contributions of transferrin to acute inflammation in the goldfish, C. auratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:300-309. [PMID: 27623236 DOI: 10.1016/j.dci.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Transferrin is an evolutionary conserved protein that in addition to having a critical role in iron transport also has been shown to have a crucial role in host defence, by depriving iron from invading pathogens. Recently cleaved transferrin products was shown to activate macrophages in vitro. We now use an in vivo model of self-resolving peritonitis in goldfish, coupled with gene expression and protein analysis to evaluate the contributions of cleaved transferrin to acute inflammation. We show, for the first time, that cleaved transferrin products are produced in vivo early during an acute inflammatory response. These cleaved transferrin fragments were produced during pathogen-induced, but not sterile, inflammation. Both macrophages and neutrophils were able to contribute to transferrin cleavage. However, only macrophages contributed to this innate process through inducible expression of transferrin. The appearance of transferrin cleavage products in vivo correlated with the influx of leukocytes but did not necessarily correlate the induction of robust respiratory burst and nitric oxide responses. Overall, this study adds to a growing body of work highlighting the role of transferrin as an immune regulator during acute inflammation. Given the significant conservation of this and related molecules, these findings have potentially broad implications for host defences and inflammation control across evolution.
Collapse
Affiliation(s)
- M J Trites
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
40
|
Brummett LM, Kanost MR, Gorman MJ. The immune properties of Manduca sexta transferrin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:1-9. [PMID: 27986638 PMCID: PMC5292288 DOI: 10.1016/j.ibmb.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.
Collapse
Affiliation(s)
- Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
41
|
Dashti ZJS, Gamieldien J, Christoffels A. Computational characterization of Iron metabolism in the Tsetse disease vector, Glossina morsitans: IRE stem-loops. BMC Genomics 2016; 17:561. [PMID: 27503259 PMCID: PMC4977773 DOI: 10.1186/s12864-016-2932-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background Iron metabolism and regulation is an indispensable part of species survival, most importantly for blood feeding insects. Iron regulatory proteins are central regulators of iron homeostasis, whose binding to iron response element (IRE) stem-loop structures within the UTRs of genes regulate expression at the post-transcriptional level. Despite the extensive literature on the mechanism of iron regulation in human, less attention has been given to insect and more specifically the blood feeding insects, where research has mainly focused on the characterization of ferritin and transferrin. We thus, examined the mechanism of iron homeostasis through a genome-wide computational identification of IREs and other enriched motifs in the UTRs of Glossina morsitans with the view to identify new IRE-regulated genes. Results We identified 150 genes, of which two are known to contain IREs, namely the ferritin heavy chain and the MRCK-alpha. The remainder of the identified genes is considered novel including 20 hypothetical proteins, for which an iron-regulatory mechanism of action was inferred. Forty-three genes were found with IRE-signatures of regulation in two or more insects, while 46 were only found to be IRE-regulated in two species. Notably 39 % of the identified genes exclusively shared IRE-signatures in other Glossina species, which are potentially Glossina-specific adaptive measures in addressing its unique reproductive biology and blood meal-induced iron overload. In line with previous findings, we found no evidence pertaining to an IRE regulation of Transferrin, which highlight the importance of ferritin heavy chain and the other proposed transporters in the tsetse fly. In the context of iron-sequestration, key players of tsetse immune defence against trypanosomes have been introduced namely 14 stress and immune response genes, while 28 cell-envelop, transport, and binding genes were assigned a putative role in iron trafficking. Additionally, we identified and annotated enriched motifs in the UTRs of the putative IRE-regulated genes to derive at a co-regulatory network that maintains iron homeostasis in tsetse flies. Three putative microRNA-binding sites namely Gy-box, Brd-box and K-box motifs were identified among the regulatory motifs, enriched in the UTRs of the putative IRE-regulated genes. Conclusion Beyond our current view of iron metabolism in insects, with ferritin and transferrin as its key players, this study provides a comprehensive catalogue of genes with possible roles in the acquisition; transport and storage of iron hence iron homeostasis in the tsetse fly. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahra Jalali Sefid Dashti
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Junaid Gamieldien
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa.
| |
Collapse
|
42
|
Reyes-Becerril M, Angulo C, Angulo M, Ascencio-Valle F. Changes in transferrin gene expression after exposure to iron and Aeromonas hydrophila infection in yellow snapper ( Lutjanus argentiventris ). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Hamidou Soumana I, Klopp C, Ravel S, Nabihoudine I, Tchicaya B, Parrinello H, Abate L, Rialle S, Geiger A. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies. Front Microbiol 2015; 6:1259. [PMID: 26617594 PMCID: PMC4643127 DOI: 10.3389/fmicb.2015.01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies.
Collapse
Affiliation(s)
| | - Christophe Klopp
- Institut National de la Recherche Agronomique, GenoToul, UR875 Castanet-Tolosan, France
| | - Sophie Ravel
- UMR 177, Institut de Recherche Pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | | | - Bernadette Tchicaya
- UMR 177, Institut de Recherche Pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | - Hugues Parrinello
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle Montpellier, France ; Institut National de la Santé et de la Recherche Médicale U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR 5203 Montpellier, France ; Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | - Luc Abate
- UMR MIVEGEC (Institut de Recherche pour le Développement 224-Centre National de la Recherche Scientifique 5290-UM1-UM2), Institut de Recherche pour le Développement Montpellier, France
| | - Stéphanie Rialle
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle Montpellier, France ; Institut National de la Santé et de la Recherche Médicale U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR 5203 Montpellier, France ; Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | - Anne Geiger
- UMR 177, Institut de Recherche Pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| |
Collapse
|
44
|
Herath HMLPB, Elvitigala DAS, Godahewa GI, Whang I, Lee J. Molecular insights into a molluscan transferrin homolog identified from disk abalone (Haliotis discus discus) evidencing its detectable role in host antibacterial defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:222-233. [PMID: 26191782 DOI: 10.1016/j.dci.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
The basic function of transferrin is to bind iron (III) ions in the medium and to deliver them to the locations where they are required for metabolic processes. It also takes part in the host immune defense mainly via its ability to bind to iron (III) ions. Hence, transferrin is also identified as an important acute-phase protein in host immunity. Abalones are major shellfish aquaculture crops that are susceptible to a range of marine microbial infections. Since transferrin is known to be a major player in innate immunity, in the present study we sought to identify, and molecularly and functionally characterize a transferrin-like gene from disk abalone (Haliotis discus discus) named as AbTrf. AbTrf consisted of a 2187-bp open reading frame (ORF) which encodes a 728 amino acid (aa) protein. The putative amino acid sequence of AbTrf harbored N- and C-terminal transferrin-like domains, active sites for iron binding, and conserved cysteine residues. A constitutive tissue specific AbTrf expression pattern was detected by qPCR in abalones where mantle and muscle showed high AbTrf expression levels. Three immune challenge experiments were conducted using Vibrio parahaemolyticus, Listeria monocytogenes and LPS as stimuli and, subsequently, AbTrf mRNA expression levels were quantified in gill and hemocytes in a time-course manner. The mRNA expression was greatly induced in both tissues in response to both challenges. Evidencing the functional property of transferrins, recombinant AbTrf N-terminal domain (AbTrf-N) showed dose-dependent iron (III) binding activity detected by chrome azurol S (CAS) assay system. Moreover, recombinant AbTrf-N could significantly inhibit the growth of iron-dependent bacterium, Escherichia coli in a dose-dependent manner. However, AbTrf-N was unable to show any detectable bacteriostatic activity against iron-independent bacterium Lactobacillus plantarum (L. plantarum) even at its highest concentration. Collectively, our results suggest that AbTrf might play a significant role in the host innate immunity, possibly by withholding iron from pathogens.
Collapse
Affiliation(s)
- H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
45
|
He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G, Kanost MR, Jiang H. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:23-37. [PMID: 25662101 PMCID: PMC4476920 DOI: 10.1016/j.ibmb.2015.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 05/09/2023]
Abstract
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kai Li
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Institute of Biological Sciences, Donghua University, Songjiang, Shanghai 310029, China
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
46
|
Hattori M, Komatsu S, Noda H, Matsumoto Y. Proteome Analysis of Watery Saliva Secreted by Green Rice Leafhopper, Nephotettix cincticeps. PLoS One 2015; 10:e0123671. [PMID: 25909947 PMCID: PMC4409333 DOI: 10.1371/journal.pone.0123671] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
The green rice leafhopper, Nephotettix cincticeps, is a vascular bundle feeder that discharges watery and gelling saliva during the feeding process. To understand the potential functions of saliva for successful and safe feeding on host plants, we analyzed the complexity of proteinaceous components in the watery saliva of N. cincticeps. Salivary proteins were collected from a sucrose diet that adult leafhoppers had fed on through a membrane of stretched parafilm. Protein concentrates were separated using SDS-PAGE under reducing and non-reducing conditions. Six proteins were identified by a gas-phase protein sequencer and two proteins were identified using LC-MS/MS analysis with reference to expressed sequence tag (EST) databases of this species. Full -length cDNAs encoding these major proteins were obtained by rapid amplification of cDNA ends-PCR (RACE-PCR) and degenerate PCR. Furthermore, gel-free proteome analysis that was performed to cover the broad range of salivary proteins with reference to the latest RNA-sequencing data from the salivary gland of N. cincticeps, yielded 63 additional protein species. Out of 71 novel proteins identified from the watery saliva, about 60 % of those were enzymes or other functional proteins, including GH5 cellulase, transferrin, carbonic anhydrases, aminopeptidase, regucalcin, and apolipoprotein. The remaining proteins appeared to be unique and species- specific. This is the first study to identify and characterize the proteins in watery saliva of Auchenorrhyncha species, especially sheath-producing, vascular bundle-feeders.
Collapse
Affiliation(s)
- Makoto Hattori
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Hiroaki Noda
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yukiko Matsumoto
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
47
|
Galay RL, Umemiya-Shirafuji R, Mochizuki M, Fujisaki K, Tanaka T. Iron metabolism in hard ticks (Acari: Ixodidae): the antidote to their toxic diet. Parasitol Int 2014; 64:182-9. [PMID: 25527065 DOI: 10.1016/j.parint.2014.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ticks are notorious parasitic arthropods, known for their completely host-blood-dependent lifestyle. Hard ticks (Acari: Ixodidae) feed on their hosts for several days and can ingest blood more than a hundred times their unfed weight. Their blood-feeding habit facilitates the transmission of various pathogens. It is remarkable how hard ticks cope with the toxic nature of their blood meal, which contains several molecules that can promote oxidative stress including iron. While it is required in several physiological processes, high amounts of iron can be dangerous because iron can also participate in the formation of free radicals that may cause cellular damage and death. Here we review the current knowledge on heme and inorganic iron metabolism in hard ticks and compare it with that in vertebrates and other arthropods. We briefly discuss the studies on heme transport, storage and detoxification, and the transport and storage of inorganic iron, with emphasis on the functions of tick ferritins. This review points out other aspects of tick iron metabolism that warrant further investigation, as compared to mammals and other arthropods. Further understanding of this physiological process may help in formulating new control strategies for tick infestation and the spread of tick-borne diseases.
Collapse
Affiliation(s)
- Remil Linggatong Galay
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Masami Mochizuki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
48
|
Hamidou Soumana I, Tchicaya B, Chuchana P, Geiger A. Midgut expression of immune-related genes in Glossina palpalis gambiensis challenged with Trypanosoma brucei gambiense. Front Microbiol 2014; 5:609. [PMID: 25426112 PMCID: PMC4226161 DOI: 10.3389/fmicb.2014.00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies from the subspecies Glossina morsitans morsitans and Glossina palpalis gambiensis, respectively, transmit Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The former causes the acute form of sleeping sickness, and the latter provokes the chronic form. Although several articles have reported G. m. morsitans gene expression following trypanosome infection, no comparable investigation has been performed for G. p. gambiensis. This report presents results on the differential expression of immune-related genes in G. p. gambiensis challenged with T. b. gambiense. The aim was to characterize transcriptomic events occurring in the tsetse gut during the parasite establishment step, which is the crucial first step in the parasite development cycle within its vector. The selected genes were chosen from those previously shown to be highly expressed in G. m. morsitans, to allow further comparison of gene expression in both Glossina species. Using quantitative PCR, genes were amplified from the dissected midguts of trypanosome-stimulated, infected, non-infected, and self-cleared flies at three sampling timepoints (3, 10, and 20 days) after a bloodmeal. At the 3-day sampling point, transferrin transcripts were significantly up-regulated in trypanosome-challenged flies versus flies fed on non-infected mice. In self-cleared flies, serpin-2 and thioredoxin peroxidase-3 transcripts were significantly up-regulated 10 days after trypanosome challenge, whereas nitric oxide synthase and chitin-binding protein transcripts were up-regulated after 20 days. Although the expression levels of the other genes were highly variable, the expression of immune-related genes in G. p. gambiensis appears to be a time-dependent process. The possible biological significance of these findings is discussed, and the results are compared with previous reports for G. m. morsitans.
Collapse
Affiliation(s)
| | | | - Paul Chuchana
- Inserm, U844, Hôpital Saint-Eloi Montpellier, France
| | | |
Collapse
|
49
|
Poochai W, Choowongkomon K, Srisapoome P, Unajak S, Areechon N. Characterization and expression analysis of the transferrin gene in Nile tilapia (Oreochromis niloticus) and its upregulation in response to Streptococcus agalactiae infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1473-1485. [PMID: 24770882 DOI: 10.1007/s10695-014-9941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly(369) and Gly(370) were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 10(6) and 10(8) colony-forming units mL(-1) of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.
Collapse
Affiliation(s)
- Watsida Poochai
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | | | | | | | | |
Collapse
|
50
|
Harizanova N, Tchorbadjieva M, Ivanova P, Dimov S, Ralchev K. Developmental and Organ-Specific Expression of Transferrin inDrosophila Melanogaster. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2004.10817097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|