1
|
Bastos RG, Hassan A, Onzere CK, Herndon DR, Villarino NF, Laughery JM, Fry LM. Transient efficacy of buparvaquone against the US isolate of Theileria orientalis Ikeda genotype in sub-clinically infected cattle. Front Vet Sci 2024; 11:1421710. [PMID: 39132441 PMCID: PMC11310158 DOI: 10.3389/fvets.2024.1421710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Theileria orientalis, an economically significant tick-borne hemoparasite, infects cattle globally. The T. orientalis Ikeda genotype, transmitted by Haemaphysalis longicornis ticks, is associated with clinical manifestations characterized by anemia, abortions, and mortality, although subclinical infections prevail. Despite the common occurrence of subclinical infections, therapeutic interventions targeting T. orientalis Ikeda in such cases are currently lacking, impeding effective parasite control measures. To address this critical knowledge gap, we assessed the efficacy of buparvaquone (BPQ) in eliminating the T. orientalis Ikeda, US isolate, in sub-clinically infected cattle. Methods Twelve sub-clinically infected calves, identified by the presence of T. orientalis in peripheral blood alongside the absence of fever and anemia, were enrolled in the study. Six calves received two treatments of the BPQ label dose (2.5 mg/kg) at a 48-h interval, while additional three calves received the drug at a dosage of 6 mg/kg following the same regimen. Three untreated calves served as controls. Results and discussion Endpoint and quantitative PCR analyses revealed that BPQ exerted a transient effect on T. orientalis parasitemia. Parasites remained undetectable in peripheral blood until weeks 4 and 11 post-treatment in animals administered 2.5 mg/kg and 6 mg/kg of BPQ, respectively. Intriguingly, following recrudescence, administering 6 mg/kg to animals previously treated with 2.5 mg/kg did not result in a reduction in parasite load. Pharmacokinetic analysis data suggested that escalating the dosage led to a less than proportional increase in serum concentrations of BPQ. Moreover, a significant yet reversible decrease (p < 0.05) in blood urea nitrogen was observed in animals treated with the drug, irrespective of the dosage. Despite parasitemia relapse, animals treated with 6 mg/kg BPQ exhibited a noteworthy decrease (p < 0.05) in IgG levels specific to the T. orientalis major piroplasm surface protein compared to controls and animals treated with 2.5 mg/kg of the drug. Conclusion BPQ did not demonstrate efficacy in clearing subclinical T. orientalis Ikeda infection. Future investigations are warranted to explore innovative therapeutic modalities that, in synergy with vaccines and diagnostic assays, can facilitate the development of comprehensive programs aimed at controlling and eradicating this parasite.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Amany Hassan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Animal Medicine, Faculty of Veterinary Medicine, University of Alexandria, Alexandria, Egypt
| | - Cynthia K. Onzere
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - David R. Herndon
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Nicolas F. Villarino
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay M. Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Aktas MS, Eren E, Kucukler S, Eroglu MS, Ilgun M, Yanar KE, Aydin O. Investigation of haematological, inflammatory and immunological response in naturally infected cattle with Theileria annulata. Parasite Immunol 2023; 45:e13002. [PMID: 37461131 DOI: 10.1111/pim.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
In this study, we aimed to investigate haematological, pro-inflammatory, inflammatory, anti-inflammatory and immunological responses in naturally Theileria annulata-infected cattle. The study material consisted of 25 Simmental cattle, 2-4 years of age, one of which was a control group consisting of healthy animals (Control group, n = 10), and the other was a Theileria group that include animals positive for Theileria annulata (Theileria group, n = 15). Haematological analysis (red blood cell [RBC], haemoglobin [HGB], haematocrit [HCT]), pro-inflammatory (tumour necrosis factor-α [TNF-α], nuclear factor kappa B [NF-ĸB] and interleukin-1 beta, [IL-1β]), inflammatory (neutrophil-lymphocyte ratio [NLR]), anti-inflammatory (interleukin-10 [IL-10]) and antimicrobial peptide (CAMP) analyses were performed by using ELISA kit from blood samples. It was found that the rectal temperature of the Theileria group was found to be significantly higher (p < .001) than that of the control group. Haematological and biochemical analysis revealed that the RBC and HGB count and HCT percentage decreased (p < .001), while NF-ĸB (p < .001), TNF-α (p = .002), IL-1β (p < .001), IL-10 (p = .012), NLR (p < .001) and CAMP (p = .037) levels increased in Theileria group compared to the control group. There was a strong correlation between NF-ĸB and TNF-α, NF-ĸB and IL-10, NLR and IL-1β, NF-ĸB and CAMP, TNF-α and CAMP and IL-10 and CAMP. As a result of this study, it was revealed that a pro-inflammatory and immunological response also occurs along with the anti-inflammatory response in the inflammatory process.
Collapse
Affiliation(s)
- Mustafa Sinan Aktas
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emre Eren
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Muhammed Sertac Eroglu
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Murat Ilgun
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Kerim Emre Yanar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Omer Aydin
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Liu J, Zhao S, Li Z, Zhang Z, Zhao B, Guan G, Yin H, Luo J. Activation of telomerase activity and telomere elongation of host cells by Theileria annulata infection. Front Microbiol 2023; 14:1128433. [PMID: 36910209 PMCID: PMC9997645 DOI: 10.3389/fmicb.2023.1128433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Theileria annulata-transformed cells share many phenotypes with cancer cells, including uncontrolled proliferation, immortalization, and dissemination. Telomeres are DNA-protein complex at the end of eukaryotic chromosomes that function to maintain genome stability and cell replicative capacity. Telomere length maintenance is primarily dependent on telomerase activity. In up to 90% of human cancer cells, telomerase is reactivated through expression of its catalytic subunit TERT. However, the effect of T. annulata infection on telomere and telomerase activity in bovine cells has not yet been described. In the present study, we confirmed that telomere length and telomerase activity are upregulated after T. annulata infection in three types of cell lines. This change depends on the presence of parasites. After eliminating Theileria from cells with antitheilerial drug buparvaquone, telomerase activity and the expression level of bTERT were decreased. In addition, inhibition of bHSP90 by novobiocin led to decreased AKT phosphorylation levels and telomerase activity, indicating that the bHSP90-AKT complex is a potent factor modulates telomerase activity in T. annulata-infected cells.
Collapse
Affiliation(s)
- Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhi Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Zhigang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Baocai Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Chepkwony M, Wragg D, Latré de Laté P, Paxton E, Cook E, Ndambuki G, Kitala P, Gathura P, Toye P, Prendergast J. Longitudinal transcriptome analysis of cattle infected with Theileria parva. Int J Parasitol 2022; 52:799-813. [PMID: 36244429 DOI: 10.1016/j.ijpara.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
The apicomplexan cattle parasite Theileria parva is a major barrier to improving the livelihoods of smallholder farmers in Africa, killing over one million cattle on the continent each year. Although exotic breeds not native to Africa are highly susceptible to the disease, previous studies have illustrated that such breeds often show innate tolerance to infection by the parasite. The mechanisms underlying this tolerance remain largely unclear. To better understand the host response to T. parva infection we characterised the transcriptional response over 15 days in tolerant and susceptible cattle (n = 29) naturally exposed to the parasite. We identify key genes and pathways activated in response to infection as well as, importantly, several genes differentially expressed between the animals that ultimately survived or succumbed to infection. These include genes linked to key cell proliferation and infection pathways. Furthermore, we identify response expression quantitative trait loci containing genetic variants whose impact on the expression level of nearby genes changes in response to the infection. These therefore provide an indication of the genetic basis of differential host responses. Together these results provide a comprehensive analysis of the host transcriptional response to this under-studied pathogen, providing clues as to the mechanisms underlying natural tolerance to the disease.
Collapse
Affiliation(s)
- M Chepkwony
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - D Wragg
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - P Latré de Laté
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - E Paxton
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - E Cook
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - G Ndambuki
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - P Kitala
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Gathura
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Toye
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya.
| | - J Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK.
| |
Collapse
|
5
|
Transcriptomics reveal potential vaccine antigens and a drastic increase of upregulated genes during Theileria parva development from arthropod to bovine infective stages. PLoS One 2018; 13:e0204047. [PMID: 30303978 PMCID: PMC6179218 DOI: 10.1371/journal.pone.0204047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023] Open
Abstract
Theileria parva is a protozoan parasite transmitted by the brown ear tick Rhipicephalus appendiculatus that causes East Coast fever (ECF) in cattle, resulting in substantial economic losses in the regions of southern, eastern and central Africa. The schizont form of the parasite transforms the bovine host lymphocytes into actively proliferating cancer-like cells. However, how T. parva causes bovine host cells to proliferate and maintain a cancerous phenotype following infection is still poorly understood. On the other hand, current efforts to develop improved vaccines have identified only a few candidate antigens. In the present paper, we report the first comparative transcriptomic analysis throughout the course of T. parva infection. We observed that the development of sporoblast into sporozoite and then the establishment in the host cells as schizont is accompanied by a drastic increase of upregulated genes in the schizont stage of the parasite. In contrast, the ten highest gene expression values occurred in the arthropod vector stages. A comparative analysis showed that 2845 genes were upregulated in both sporozoite and schizont stages compared to the sporoblast. In addition, 647 were upregulated only in the sporozoite whereas 310 were only upregulated in the schizont. We detected low p67 expression in the schizont stage, an unexpected finding considering that p67 has been reported as a sporozoite stage-specific gene. In contrast, we found that transcription of p67 was 20 times higher in the sporoblast than in the sporozoite. Using the expression profiles of recently identified candidate vaccine antigens as a benchmark for selection for novel potential vaccine candidates, we identified three genes with expression similar to p67 and several other genes similar to Tp1-Tp10 schizont vaccine antigens. We propose that the antigenicity or chemotherapeutic potential of this panel of new candidate antigens be further investigated. Structural comparisons of the transcripts generated here with the existing gene models for the respective loci revealed indels. Our findings can be used to improve the structural annotation of the T. parva genome, and the identification of alternatively spliced transcripts.
Collapse
|
6
|
Fry LM, Schneider DA, Frevert CW, Nelson DD, Morrison WI, Knowles DP. East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure. PLoS One 2016; 11:e0156004. [PMID: 27195791 PMCID: PMC4873194 DOI: 10.1371/journal.pone.0156004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis.
Collapse
Affiliation(s)
- Lindsay M. Fry
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - David A. Schneider
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - Charles W. Frevert
- Department of Comparative Medicine Center of Lung Biology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danielle D. Nelson
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - W. Ivan Morrison
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Donald P. Knowles
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
7
|
Gopalakrishnan A, Maji C, Dahiya R, Suthar A, Kumar R, Gupta A, Dimri U, Kumar S. In vitro growth inhibitory efficacy of some target specific novel drug molecules against Theileria equi. Vet Parasitol 2016; 217:1-6. [DOI: 10.1016/j.vetpar.2015.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
|
8
|
Metheni M, Echebli N, Chaussepied M, Ransy C, Chéreau C, Jensen K, Glass E, Batteux F, Bouillaud F, Langsley G. The level of H₂O₂ type oxidative stress regulates virulence of Theileria-transformed leukocytes. Cell Microbiol 2013; 16:269-79. [PMID: 24112286 PMCID: PMC3906831 DOI: 10.1111/cmi.12218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Theileria annulata infects predominantly macrophages, and to a lesser extent B cells, and causes a widespread disease of cattle called tropical theileriosis. Disease-causing infected macrophages are aggressively invasive, but this virulence trait can be attenuated by long-term culture. Attenuated macrophages are used as live vaccines against tropical theileriosis and via their characterization one gains insights into what host cell trait is altered concomitant with loss of virulence. We established that sporozoite infection of monocytes rapidly induces hif1-α transcription and that constitutive induction of HIF-1α in transformed leukocytes is parasite-dependent. In both infectedmacrophages and B cells induction of HIF-1α activates transcription of its target genes that drive host cells to perform Warburg-like glycolysis. We propose that Theileria-infected leukocytes maintain a HIF-1α-driven transcriptional programme typical of Warburg glycolysis in order to reduce as much as possible host cell H2O2 type oxidative stress. However, in attenuated macrophages H2O2 production increases and HIF-1α levels consequently remained high, even though adhesion and aggressive invasiveness diminished. This indicates that Theileria infection generates a host leukocytes hypoxic response that if not properly controlled leads to loss of virulence.
Collapse
Affiliation(s)
- Mehdi Metheni
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France; Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Niller HH, Banati F, Ay E, Minarovits J. Microbe-Induced Epigenetic Alterations. PATHO-EPIGENETICS OF DISEASE 2012:419-455. [DOI: 10.1007/978-1-4614-3345-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Hayashida K, Hattori M, Nakao R, Tanaka Y, Kim JY, Inoue N, Nene V, Sugimoto C. A schizont-derived protein, TpSCOP, is involved in the activation of NF-kappaB in Theileria parva-infected lymphocytes. Mol Biochem Parasitol 2010; 174:8-17. [PMID: 20540970 DOI: 10.1016/j.molbiopara.2010.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 04/13/2010] [Accepted: 06/02/2010] [Indexed: 11/16/2022]
Abstract
Theileria parva is a tick-transmitted intracellular protozoan parasite that causes East Coast fever, a fatal bovine lymphoproliferative disease. The molecular mechanisms that underlie host cell transformation by T. parva schizonts have been studied extensively, and it is known that the nuclear factor-kappa B (NF-kappaB) is activated in schizont-infected cells, making T. parva-transformed cells resistant to apoptosis. However, the mechanism by which the parasite triggers the activation of NF-kappaB remains enigmatic. In the present study, we biochemically characterized a novel protein, which we termed TpSCOP (T. parvaschizont-derived cytoskeleton-binding protein), which is expressed in the schizont stage of T. parva. TpSCOP was shown to interact with F-actin in vitro. Expression of TpSCOP in a murine lymphocytic cell line resulted in the activation of NF-kappaB signaling pathways, leading to apoptosis resistance. The activation of mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), was also detected. Furthermore, the introduction of TpSCOP into T. parva-infected cells also enhanced the activation of NF-kappaB. This is the first report to demonstrate that a parasite-derived molecule has the ability to activate the host NF-kappaB pathway. Based on these results, TpSCOP likely plays an important role in apoptosis inhibition during Theileria infection.
Collapse
Affiliation(s)
- Kyoko Hayashida
- Department of Education and Collaboration, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Leng J, Butcher BA, Denkers EY. Dysregulation of macrophage signal transduction by Toxoplasma gondii: past progress and recent advances. Parasite Immunol 2010; 31:717-28. [PMID: 19891610 DOI: 10.1111/j.1365-3024.2009.01122.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The opportunistic protozoan parasite Toxoplasma gondii is well known as a strong inducer of cell-mediated immunity, largely as a result of proinflammatory cytokine induction during in vivo infection. Yet, during intracellular infection the parasite suppresses signal transduction pathways leading to these proinflammatory responses. The opposing responses are likely to reflect the parasite's need to stimulate immunity allowing host survival and parasite persistence, and at the same time avoiding excessive responses that could result in parasite elimination and host immunopathology. This Review summarizes past and present investigations into the effects of Toxoplasma on host cell signal transduction. These studies reveal insight into the profound suppression of proinflammatory cytokine responses that occurs when the parasite infects macrophages and other cells of innate immunity.
Collapse
Affiliation(s)
- J Leng
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | |
Collapse
|
12
|
Schmuckli-Maurer J, Kinnaird J, Pillai S, Hermann P, McKellar S, Weir W, Dobbelaere D, Shiels B. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton. Cell Microbiol 2009; 12:158-73. [PMID: 19804486 DOI: 10.1111/j.1462-5822.2009.01386.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.
Collapse
Affiliation(s)
- Jacqueline Schmuckli-Maurer
- Division of Molecular Pathobiology, Department of Clinical Research and VPH, Vetsuisse Faculty Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The pathogenic Theileria species Theileria parva and T. annulata infect bovine leukocytes and erythrocytes causing acute, often fatal lymphoproliferative diseases in cattle. The parasites are of interest not only because of their economic importance as pathogens, but also because of their unique ability to transform the leukocytes they infect. The latter property allows parasitized leukocytes to be cultured as continuously growing cell lines in vitro, thus providing an amenable in vitro system to study the parasite/host cell relationship and parasite-specific cellular immune responses. This paper summarizes important advances in knowledge of the immunobiology of these parasites over the last 40 years, focusing particularly on areas of relevance to vaccination.
Collapse
|
14
|
Lang M, Kann M, Zahner H, Taubert A, Hermosilla C. Inhibition of host cell apoptosis by Eimeria bovis sporozoites. Vet Parasitol 2009; 160:25-33. [DOI: 10.1016/j.vetpar.2008.10.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
15
|
Chibucos MC, Collmer CW, Torto-Alalibo T, Gwinn-Giglio M, Lindeberg M, Li D, Tyler BM. Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiol 2009; 9 Suppl 1:S5. [PMID: 19278553 PMCID: PMC2654665 DOI: 10.1186/1471-2180-9-s1-s5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Manipulation of programmed cell death (PCD) is central to many host microbe interactions. Both plant and animal cells use PCD as a powerful weapon against biotrophic pathogens, including viruses, which draw their nutrition from living tissue. Thus, diverse biotrophic pathogens have evolved many mechanisms to suppress programmed cell death, and mutualistic and commensal microbes may employ similar mechanisms. Necrotrophic pathogens derive their nutrition from dead tissue, and many produce toxins specifically to trigger programmed cell death in their hosts. Hemibiotrophic pathogens manipulate PCD in a most exquisite way, suppressing PCD during the biotrophic phase and stimulating it during the necrotrophic phase. This mini-review will summarize the mechanisms that have evolved in diverse microbes and hosts for controlling PCD and the Gene Ontology terms developed by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium for describing those mechanisms.
Collapse
Affiliation(s)
- Marcus C Chibucos
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Stoller P, Marti D, Schmuckli-Maurer J, Dobbelaere D, Frenz M. Multiphoton imaging of ultrashort pulse laser ablation in the intracellular parasite Theileria. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:044021. [PMID: 19021349 DOI: 10.1117/1.2960524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Theileria annulata is an intracellular parasite that infects and transforms bovine leukocytes, inducing continuous proliferation of its host cell both in vivo and in vitro. Theileria-infected cells can easily be propagated in the laboratory and serve as a good model for laser ablation studies. Using single pulses from an amplified ultrashort pulse laser system, we developed a technique to introduce submicrometer holes in the plasma membrane of the intracellular schizont stage of Theileria annulata. This was achieved without compromising either the viability of the organisms or that of the host cell that harbors the parasite in its cytoplasm. Multiphoton microscopy was used to generate image stacks of the parasite before and after ablation. The high axial resolution allowed precise selection of the region of the membrane that was ablated. It also allowed observation of the size of the holes generated (in fixed, stained cells) and determination of the structural changes in the parasite resulting from the laser pulses (in living cells in vitro). This technique opens a new possibility for the transfection of Theileria or delivery of molecules to the schizont that may prove useful in the study of this special host-parasite relationship.
Collapse
Affiliation(s)
- Patrick Stoller
- University of Bern, Institute of Applied Physics, Sidlerstrasse 5, Bern, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Abstract
The modulation of apoptosis has emerged as an important weapon in the pathogenic arsenal of multiple intracellular protozoan parasites. Cryptosporidium parvum, Leishmania spp., Trypanosoma cruzi, Theileria spp., Toxoplasma gondii and Plasmodium spp. have all been shown to inhibit the apoptotic response of their host cell. While the pathogen mediators responsible for this modulation are unknown, the parasites are interacting with multiple apoptotic regulatory systems to render their host cell refractory to apoptosis during critical phases of intracellular infection, including parasite invasion, establishment and replication. Additionally, emerging evidence suggests that the parasite life cycle stage impacts the modulation of apoptosis and possibly parasite differentiation. Dissection of the host-pathogen interactions involved in modulating apoptosis reveals a dynamic and complex interaction that recent studies are beginning to unravel.
Collapse
Affiliation(s)
- John C Carmen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
18
|
Hermann P, Dobbelaere DA. Theileria-induced constitutive IKK activation is independent of functional Hsp90. FEBS Lett 2006; 580:5023-8. [PMID: 16938294 DOI: 10.1016/j.febslet.2006.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/03/2006] [Accepted: 08/07/2006] [Indexed: 01/19/2023]
Abstract
The intracellular parasite Theileria induces uncontrolled proliferation and host cell transformation. Parasite-induced transformation is accompanied by constitutive activation of IkappaB kinase (IKK), resulting in permanently high levels of activated nuclear factor (NF)-kappaB. IKK activation pathways normally require heat shock protein 90 (Hsp90), a chaperone that regulates the stability and activity of signalling molecules and can be blocked by the benzoquinone ansamycin compound geldanamycin (GA). In Theileria-transformed cells, IkappaBalpha and p65 phosphorylation, NF-kappaB nuclear translocation and DNA binding activity are largely resistant to GA and also NF-kappaB-dependent reporter gene expression is only partly affected. Our findings indicate that parasite-induced IKK activity does not require functional Hsp90.
Collapse
Affiliation(s)
- Pascal Hermann
- Division of Molecular Pathology, Vetsuisse Faculty Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | | |
Collapse
|
19
|
Abstract
In response to invasion by microbial pathogens, host defense mechanisms get activated by both the innate and adaptive arms of the immune responses. TNF (tumor necrosis factor) is a potent proinflammatory cytokine expressed by activated macrophages and lymphocytes that induces diverse cellular responses that can vary from apoptosis to the expression of genes involved in both early inflammatory and acquired immune responses. A wide spectrum of microbes has acquired elegant mechanisms to overcome or deflect the host responses mediated by TNF. For example, modulatory proteins encoded by multiple families of viruses can block TNF and TNF-mediated responses at multiple levels, such as the inhibition of the TNF ligand or its receptors, or by modulating key transduction molecules of the TNF signaling pathway. Bacteria, on the other hand, tend to modify TNF-mediated responses specifically by regulating components of the TNF signaling pathway. Investigation of these diverse strategies employed by viral and bacterial pathogens has significantly advanced our understanding of both host TNF responses and microbial pathogenesis. This review summarizes the diverse microbial strategies to regulate TNF and how such insights into TNF modulation could benefit the treatment of inflammatory or autoimmune diseases.
Collapse
|
20
|
Heussler V, Sturm A, Langsley G. Regulation of host cell survival by intracellular Plasmodium and Theileria parasites. Parasitology 2006; 132 Suppl:S49-60. [PMID: 17018165 DOI: 10.1017/s0031182006000850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium and Theileria parasites are obligate intracellular protozoa of the phylum Apicomplexa. Theileria infection of bovine leukocytes induces transformation of host cells and infected leukocytes can be kept indefinitely in culture. Theileria-dependent host cell transformation has been the subject of interest for many years and the molecular basis of this unique phenomenon is quite well understood. The equivalent life cycle stage of Plasmodium is the infection of mammalian hepatocytes, where parasites reside for 2-7 days depending on the species. Some of the molecular details of parasite-host interactions in P. berghei-infected hepatocytes have emerged only very recently. Similar to what has been shown for Theileria-infected leukocytes these data suggest that malaria parasites within hepatocytes also protect their host cell from programmed cell death. However, the strategies employed to inhibit host cell apoptotic pathways appear to be different to those used by Theileria. This review discusses similarities and differences at the molecular level of Plasmodium- and Theileria-induced regulation of the host cell survival machinery.
Collapse
Affiliation(s)
- V Heussler
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | |
Collapse
|
21
|
Dessauge F, Lizundia R, Langsley G. Constitutively activated CK2 potentially plays a pivotal role in Theileria-induced lymphocyte transformation. Parasitology 2005; 130 Suppl:S37-44. [PMID: 16281991 DOI: 10.1017/s0031182005008140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of casein kinase II (CK2) was one of the first observations made on how Theileria parasites manipulate host cell signal transduction pathways and we argue that CK2 induction may in fact contribute to many of the different activation events that have been described since 1993 for Theileria-infected lymphocytes such as sustained activation of transcription factors c-Myc and NF-κB. CK2 also contributes to infected lymphocyte survival by inhibiting caspase activation and is probably behind constitutive PI3-K activation by phosphorylating PTEN. Finally, we also discuss how CK2A may act not only as a kinase, but also as a stimulatory subunit for the protein phosphatase PP2A, so dampening down the MEK/ERK and Akt/PKB pathways and for all these reasons we propose CK2 as a central player in Theileria-induced lymphocyte transformation.
Collapse
Affiliation(s)
- F Dessauge
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, UMR 8104 CNRS/U567 INSERM, Département Maladies Infectieuses, Hôpital Cochin-Bâtiment Gustave Roussy, Institut Cochin, Paris, France
| | | | | |
Collapse
|
22
|
Shiels B, Langsley G, Weir W, Pain A, McKellar S, Dobbelaere D. Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes. Int J Parasitol 2005; 36:9-21. [PMID: 16221473 DOI: 10.1016/j.ijpara.2005.09.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/29/2005] [Accepted: 09/08/2005] [Indexed: 12/27/2022]
Abstract
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.
Collapse
Affiliation(s)
- Brian Shiels
- Division of Veterinary Infection and Immunity, Parasitology Group, Institute of Comparative Medicine, Faculty of Veterinary Medicine, Bearsden Rd, Glasgow G61 1QH, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Molestina RE, Sinai AP. Detection of a novel parasite kinase activity at the Toxoplasma gondii parasitophorous vacuole membrane capable of phosphorylating host IkappaBalpha. Cell Microbiol 2005; 7:351-62. [PMID: 15679838 DOI: 10.1111/j.1462-5822.2004.00463.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Toxoplasma gondii activates the NF-kappaB pathway in the infected host cell resulting in upregulation of pro-survival genes and prevention of apoptosis. Manipulation of the NF-kappaB cascade by T. gondii correlates with the localization of phosphorylated IkappaB at the parasitophorous vacuole membrane (PVM). This suggests a parasite-mediated event, involving the recruitment and activation of the host IkappaB kinase (IKK) complex, as has been observed with the related protozoan Theileria parva. In contrast to Theileria, confocal microscopy studies showed no apparent hijacking of IKKalpha, IKKbeta, or their activated phosphorylated forms at the T. gondii PVM. Remarkably, phosphorylation of IkappaBalpha at Ser 32/36 was observed at the PVM of T. gondii-infected IKKalpha-/-, IKKbeta-/- and IKKalpha/beta double-knockout (IKKalpha/beta-/-) fibroblasts, suggesting the involvement of a parasite kinase activity independent of host IKK. The presence of a putative T. gondii IkappaB kinase was examined by in vitro kinase assays using GST-IkappaBalpha constructs and protein extracts from both extracellular parasites and PVM fractions. Interestingly, an activity capable of phosphorylating IkappaBalpha at the critical Ser 32/36 sites was identified in parasite extracts, a property restricted to the IKK signalosome. Taken together, our data support the role for a T. gondii kinase involved in phosphorylation of host cell IkappaBalpha and suggest an unusual mechanism utilized by an intracellular pathogen capable of manipulating the NF-kappaB pathway.
Collapse
Affiliation(s)
- Robert E Molestina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
24
|
Dobbelaere DAE, Küenzi P. The strategies of the Theileria parasite: a new twist in host-pathogen interactions. Curr Opin Immunol 2005; 16:524-30. [PMID: 15245750 DOI: 10.1016/j.coi.2004.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Theileria parasites infect and transform cells of the ruminant immune system. Continuous proliferation and survival of Theileria-transformed cells involves the well-orchestrated activation of several host-cell signalling pathways. Constitutive NF-kappa B (nuclear factor kappa B) activation is accomplished by recruiting the IKK (I kappa B kinase) complex, a central regulator of NF-kappa B pathways, to the surface of the transforming schizont, where it becomes permanently activated. Constitutive activation of the PI-3K-PKB [phosphoinositide 3-kinase-(Akt) protein kinase B] pathway is likely to be indirect and is essential for continuous proliferation. Theileria-transformed T cells express a range of anti-apoptotic proteins that can be expected to provide protection against apoptosis induced by death receptors, as well as cellular control mechanisms that are mobilised to eliminate cells that entered a cycle of uncontrolled proliferation.
Collapse
Affiliation(s)
- Dirk A E Dobbelaere
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
25
|
Huang JL, Huang J, Duan ZH, Wei J, Min J, Luo XH, Li JG, Tan WP, Wu LZ, Liu RY, Li Y, Shao J, Huang BJ, Zeng YX, Huang W. Th2 predominance and CD8+ memory T cell depletion in patients with severe acute respiratory syndrome. Microbes Infect 2005; 7:427-436. [PMID: 15784184 PMCID: PMC7110803 DOI: 10.1016/j.micinf.2004.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/24/2004] [Accepted: 11/25/2004] [Indexed: 02/07/2023]
Abstract
UNLABELLED The immune spectrum of severe acute respiratory syndrome (SARS) is poorly understood. To define the dynamics of the immune spectrum in SARS, serum levels of cytokines, chemokines, immunoglobulins, complement and specific antibodies against SARS-associated coronavirus (SARS-CoV) were assayed by enzyme-linked immunosorbent assay (ELISA), and phenotypes of peripheral lymphocytes were analyzed by flow cytometry in 95 SARS-infected patients. Results showed that interleukin (IL)-10 and transforming growth factor beta (TGF-beta) were continuously up-regulated during the entirety of SARS. Regulated on activation normally T cell-expressed and secreted (RANTES) levels were decreased, while monocyte chemoattractant protein-1 (MCP-1) was elevated in acute patients. Immunoglobulins and complement were elevated during the first month of SARS. Both serum-positive rates and titers of specific IgM and IgG antibodies responding to SARS-CoV peaked at days 41-60 from the onset of SARS. CD4+ and CD8+ T lymphocytes decreased significantly in acute-phase. CD3+CD8+CD45RO+ T lymphocytes were decreased by 36.78% in the convalescent patients. CONCLUSION SARS-CoV seemed to elicit effective humoral immunity but inhibited cellular immunity, especially CD8+ memory T lymphocytes over time. Prolonged overproduction of IL-10 and TGF-beta may play an important role in the disease.
Collapse
Key Words
- severe acute respiratory syndrome
- immune monitoring
- immune system
- alt, aminotransferase
- anova, analysis of variance
- ast, aspartate aminotransferase
- c, complement
- cov, coronavirus
- ctr, control
- elisa, enzyme-linked immunosorbent assay
- fbs, fetal bovine serum
- ifn-γ, interferon γ
- ig, immunoglobulin
- il, interleukin
- mcp-1, monocyte chemoattractant protein-1
- nf-κb, nuclear factor κb
- pbmc, peripheral blood mononuclear cell
- rantes, regulated on activation normally t cell-expressed and secreted
- sars, severe acute respiratory syndrome
- sars-cov, sars-associated coronavirus
- s.d., standard deviation
- tgf, transforming growth factor
- tnf, tumor necrosis factor
Collapse
Affiliation(s)
- Jia-Ling Huang
- Cancer Institute, Cancer Center and World Health Organization (WHO) Cooperative Cancer Research Center, Cancer Center of Sun Yat-sen University, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Friess M, Engelhardt P, Dobbelaere D, Zurbriggen A, Gröne A. Reduced Nuclear Translocation of Nuclear Factor (NF)-κB p65 in the Footpad Epidermis of Dogs Infected with Distemper Virus. J Comp Pathol 2005; 132:82-9. [PMID: 15629482 DOI: 10.1016/j.jcpa.2004.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 07/06/2004] [Indexed: 11/29/2022]
Abstract
Infection of canine footpads with the canine distemper virus (CDV) can cause massive epidermal thickening (hard pad disease), as a consequence of increased proliferation of keratinocytes and hyperkeratosis. Keratinocytes of canine footpad epidermis containing detectable CDV nucleoprotein antigen and CDV mRNA were shown previously to have increased proliferation indices. Because various proteins that play a role in the proliferation of epidermal cells are viral targets, the potential participation of such proteins in CDV-associated keratinocyte proliferation was investigated. Transforming growth factor-alpha (TGF-alpha), cell cycle regulatory proteins p21, p27 and p53, and nuclear factor (NF)-kappaB transcription factor components p50 and p65 were studied in the footpad epidermis from the following groups of dogs inoculated with CDV: group 1, consisting of seven dogs with clinical distemper and CDV in the footpad epidermis; group 2, consisting of four dogs with clinical distemper but no CDV in the footpad epidermis; group 3, consisting of eight dogs with neither clinical distemper nor CDV in the footpad epithelium. Group 4 consisted of two uninoculated control dogs. The expression of TGF-alpha, p21, p27 and p53, and p50 in the basal layer, lower and upper spinous layers, and in the granular layer did not differ statistically between CDV-positive (group 1) and CDV-negative (groups 2-4) footpad epidermis. However, there were differences in the levels of nuclear and cytoplasmic p65 expression between group 1 dogs and the other three groups. Thus, footpads from group 1 dogs had more keratinocytes containing p65 in the cytoplasm and, conversely, fewer nuclei that were positive for p65. These findings indicate that p65 translocation into the nucleus is reduced in CDV-infected footpad epidermis. Such decreased translocation of p65 may help to explain increased keratinocyte proliferation in hard pad disease and suggests interference of CDV with the NF-kappaB pathway.
Collapse
Affiliation(s)
- M Friess
- Institut für Tierpathologie, Universität Bern, 3001 Bern, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Singh VK, Balaraman S, Tewary P, Madhubala R. Leishmania donovani activates nuclear transcription factor-kappaB in macrophages through reactive oxygen intermediates. Biochem Biophys Res Commun 2004; 322:1086-95. [PMID: 15336576 DOI: 10.1016/j.bbrc.2004.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 11/28/2022]
Abstract
Interaction of Leishmania donovani with macrophages antagonizes host defense mechanisms by interfering with a cascade of cell signaling processes in the macrophages. An early intracellular signaling event that follows receptor engagement is the activation of transcription factor NF-kappaB. It has been reported earlier that NF-kappaB-dependent signaling pathway regulates proinflammatory cytokine release. We therefore investigated the effect of L. donovani infectivity on this nuclear transcription factor in macrophage cell line J774A.1. Both L. donovani and its surface molecule lipophosphoglycan (LPG) resulted in a dose- and time-dependent activation of NF-kappaB-DNA binding activity in an electrophoretic mobility shift assay. We also report the involvement of IkappaB-alpha and IkappaB-beta in the persistent activation of NF-kappaB by L. donovani. We demonstrate that the NF-kappaB activation was independent of viability of the parasite. Electrophoretic mobility supershift assay indicated that the NF-kappaB complex consists of p65 and c-rel subunits. The interaction of parasite with the macrophages and not the cellular uptake was important for NF-kappaB activation. Both p38 and ERK mitogen activated protein kinase (MAP) activation appears to be necessary for NF-kappaB activation by LPG. Preincubation of cells with antioxidants resulted in inhibition of L. donovani induced NF-kappaB activation, thereby suggesting a potential role of reactive oxygen species in L. donovani induced intracellular signaling. The present data indicate that antioxidants could play an important role in working out various therapeutic modalities to control leishmaniasis.
Collapse
Affiliation(s)
- Vandana Km Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | |
Collapse
|
28
|
Sinai AP, Payne TM, Carmen JC, Hardi L, Watson SJ, Molestina RE. Mechanisms underlying the manipulation of host apoptotic pathways by Toxoplasma gondii. Int J Parasitol 2004; 34:381-91. [PMID: 15003498 DOI: 10.1016/j.ijpara.2003.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 10/29/2003] [Accepted: 11/04/2003] [Indexed: 11/23/2022]
Abstract
The establishment of a productive infection by an obligate intracellular pathogen is dependent on subversion of cellular defences. Apoptosis, or programmed cell death, is a property of metazoan cells that plays a critical role in inhibiting the proliferation of invasive organisms and viruses thereby protecting uninfected cells and limiting damage to the host organism. Not surprisingly, manipulation of the machinery of apoptosis plays a critical role in the pathogenesis of several intracellular pathogens. Toxoplasma gondii, arguably one of the most successful protozoan pathogens, has evolved several strategies to inhibit both the initiation and propagation of the apoptotic cascade. Recent work from several groups indicates an exquisite level of sophistication in the mechanisms to inhibit apoptosis along its diverse pathways. Much of this ability appears to centre around the manipulation of host transcription, specifically of genes involved in the pro-survival/anti-apoptotic response effectively manipulating the infected cell into a highly anti-apoptotic state. The implications of these observations extend beyond Toxoplasma biology to the broader area of microbial pathogenesis and cell signalling in mammalian cells.
Collapse
Affiliation(s)
- A P Sinai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose St, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Chen Y, Vallee S, Wu J, Vu D, Sondek J, Ghosh G. Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras. Mol Cell Biol 2004; 24:3048-56. [PMID: 15024091 PMCID: PMC371134 DOI: 10.1128/mcb.24.7.3048-3056.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IkappaBbeta, one of the major IkappaB proteins, is only partially degraded in response to most extracellular signals. However, the molecular mechanism of this event is unknown. We show here that IkappaBbeta exists in at least two different forms: one that is bound to the NF-kappaB dimer and the other bound to both NF-kappaB and kappaB-Ras, a Ras-like small G protein. Removal of cellular kappaB-Ras enhances whereas excess kappaB-Ras blocks induced IkappaBbeta degradation. Remarkably, kappaB-Ras functions in both GDP- and GTP-bound states, and mutations of the conserved guanine-binding residues of kappaB-Ras abrogate its ability to block degradation of IkappaBbeta. kappaB-Ras also directly blocks the in vitro phosphorylation of IkappaBbeta by IKKbeta. These observations suggest that IkappaBbeta in the ternary complex is resistant to degradation by most signals. We suggest that specific signals, in addition to those that activate only IKK, are essential for the complete degradation of IkappaBbeta.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
30
|
Guergnon J, Chaussepied M, Sopp P, Lizundia R, Moreau MF, Blumen B, Werling D, Howard CJ, Langsley G. A tumour necrosis factor alpha autocrine loop contributes to proliferation and nuclear factor-kappaB activation of Theileria parva-transformed B cells. Cell Microbiol 2003; 5:709-16. [PMID: 12969376 DOI: 10.1046/j.1462-5822.2003.00314.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Theileria infection of bovine leucocytes induces uncontrolled proliferation and a transformed phenotype comparable to tumour cells. Infected cells have many characteristics of activated leucocytes and use autocrine loops to augment proliferation. We have shown previously that, in infected B cells, PI3-K controls a granulocyte-macrophage colony-stimulating factor (GM-CSF) autocrine loop to increase both proliferation and activation of the activator protein 1 (AP-1) transcription factor. We show here that the same infected B cells also use a tumour necrosis factor (TNF) alpha autocrine loop that again contributes to proliferation and augments nuclear factor (NF)-kappaB activation. Interestingly, both pharmacological inhibition of TNF synthesis and neutralizing anti-TNF antibodies lead to a reduction in proliferation and a 50% drop in NF-kappaB activation, without inducing apoptosis.
Collapse
Affiliation(s)
- Julien Guergnon
- Laboratoire de Signalisation Immunoparasitaire, URA CNRS 1960, Département de Parasitologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Biermann R, Schnittger L, Beyer D, Ahmed JS. Initiation of translation and cellular localization of Theileria annulata casein kinase IIalpha: implication for its role in host cell transformation. J Cell Physiol 2003; 196:444-53. [PMID: 12891701 DOI: 10.1002/jcp.10291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Theileria annulata and T. parva are protozoa that infect bovine leukocytes which leads to subsequent transformation and uncontrolled proliferation of these cells. It has been proposed that the CKIIalpha subunit of T. parva induces mitogenic pathways of host leukocytes by being exported into the host cell. The evidence for this is the existence of a predicted N-terminal secretion signal-like peptide. We tested this hypothesis by analyzing gene structure, translation, and protein localization of the T. annulata CKIIalpha (TaCKIIalpha). The determined TaCKIIalpha-ORF potentially codes for a 50 kDa protein with an N-terminal extension including a possible signal sequence not present in CKIIalpha proteins of non-Theileria species. However, antisera raised against TaCKIIalpha recognized a protein of a molecular weight of about 40 kDa and, therefore, inconsistent with this predicted molecular weight. We demonstrate by in vitro transcription/translation that this discrepancy is due to translation from a downstream initiation site omitting the putative N-terminal signal sequence and thus excluding the notion that the protein product is secreted via the classical secretory pathway. In corroboration immunofluorescence investigations suggest that the TaCKIIalpha subunit is confined to the parasite schizonts within the host cell. On the basis of the above findings it seems highly unlikely that export via the classical pathway of the parasite CKIIalpha is the way in which this protein possibly contributes to host cell transformation.
Collapse
Affiliation(s)
- Reinhild Biermann
- Division of Veterinary Infectiology and Immunology, Research Center Borstel, Parkallee 22, Borstel, Germany
| | | | | | | |
Collapse
|
32
|
Küenzi P, Schneider P, Dobbelaere DAE. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1224-31. [PMID: 12874209 DOI: 10.4049/jimmunol.171.3.1224] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Collapse
Affiliation(s)
- Peter Küenzi
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
33
|
Abstract
The intracellular protozoan parasites Theileria parva and T. annulata transform the cells they infect, inducing uncontrolled proliferation. This is not a trivial event as, in addition to permanently switching on the complex pathways that govern all steps of the cell cycle, the built-in apoptotic safety mechanisms that prevent 'illegitimate' cell replication also need to be inactivated. Recent experiments show that the NF-kappa B and phosphoinositide 3-kinase (PtdIns-3K) pathways are important participants in the transformation process. I kappa B kinase (IKK), a pivotal kinase complex in the NF-kappa B pathway, is recruited to the parasite surface where it becomes activated. The PtdIns-3K/Akt/PKB pathway is also constitutively activated in a parasite-dependent manner, but contrary to IKK, activation is probably not triggered by direct association with the parasite.
Collapse
Affiliation(s)
- Dirk A E Dobbelaere
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
34
|
Chen Y, Wu J, Ghosh G. KappaB-Ras binds to the unique insert within the ankyrin repeat domain of IkappaBbeta and regulates cytoplasmic retention of IkappaBbeta x NF-kappaB complexes. J Biol Chem 2003; 278:23101-6. [PMID: 12672800 DOI: 10.1074/jbc.m301021200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IkappaBalpha and IkappaBbeta proteins inhibit the transcriptional potential of active NF-kappaB dimers through stable complex formation. It has been shown that inactive IkappaBalpha x NF-kappaB complexes shuttle in and out of the nucleus, whereas IkappaBbeta x NF-kappaB complexes are retained exclusively in the cytoplasm of resting cells. The biochemical mechanism underlying this functional difference and its consequences are unknown. Although the two IkappaB proteins are significantly homologous, IkappaBbeta contains a unique 47-amino acid insertion of unknown function within its ankyrin repeat domain. In this study, we assess the role of the IkappaBbeta insert in regulating cytoplasmic retention of IkappaBbeta.NF-kappaB complexes. Deletion of the IkappaBbeta insert renders IkappaBbeta x NF-kappaB complexes capable of shuttling between the nucleus and cytoplasm, similar to IkappaBalpha x NF-kappaB complexes. A small Ras-like G-protein, kappaB-Ras, participates with the IkappaBbeta insert to effectively mask the NF-kappaB nuclear localization potential. Similarly, a complex between NF-kappaB and a mutant IkappaBbeta protein containing four serine to alanine mutations within its C-terminal proline, glutamic acid, serine, and threonine-rich sequence exhibits nucleocytoplasmic shuttling. This suggests a phosphorylation state-dependent role for the C-terminal proline, glutamic acid, serine, and threonine-rich sequence of IkappaBbeta in proper localization of IkappaBbeta x NF-kappaB complexes. These results are consistent with structural studies, which predicted that binary IkappaBbeta x NF-kappaB complexes should be capable of nuclear translocation, and with previous observations that hypophosphorylated IkappaBbeta.NF-kappaB complexes can reside in the nucleus.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0359, USA
| | | | | |
Collapse
|
35
|
Omer OH, Haroun EM, Mahmoud OM, Abdel-Magied EM, El-Malik KH, Magzoub M. Parasitological and clinico-pathological profiles in friesian cattle naturally infected with Theileria annulata in Saudi Arabia. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2003; 50:200-3. [PMID: 12916695 DOI: 10.1046/j.1439-0450.2003.00649.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clinico-pathological profiles were studied in adult and young Friesian cattle naturally infected with Theileria annulata in the Qassim Region, Saudi Arabia. Sixty-two clinical cases of T. annulata infection in adult and young Friesian cattle were diagnosed during the period from August 1999 to July 2000. Symptoms observed were marked fever, swelling of superficial lymph nodes, inappetance, tachycardia, dyspnoea and weakness. The most prominent gross pathological features were jaundice, petechial and ecchymotic haemorrhages involving mucosal and serosal surfaces of many organs as well as body fat. A number of young and adult Friesian cattle undergoing lethal T. annulata infection developed lymphoma-like lesions in a manner similar to that of T. parva. The main histological findings were necrosis and severe lymphocytic infiltration. The spleen, lymph nodes and Peyer's patches were devoid of typical lymph nodules.
Collapse
Affiliation(s)
- O H Omer
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, King Saud University, Qassim, Buraidah, P.O. Box 1482, Kingdom of Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
36
|
Heussler VT, Rottenberg S, Schwab R, Küenzi P, Fernandez PC, McKellar S, Shiels B, Chen ZJ, Orth K, Wallach D, Dobbelaere DAE. Hijacking of host cell IKK signalosomes by the transforming parasite Theileria. Science 2002; 298:1033-6. [PMID: 12411708 DOI: 10.1126/science.1075462] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parasites have evolved a plethora of mechanisms to ensure their propagation and evade antagonistic host responses. The intracellular protozoan parasite Theileria is the only eukaryote known to induce uncontrolled host cell proliferation. Survival of Theileria-transformed leukocytes depends strictly on constitutive nuclear factor kappa B (NF-kappaB) activity. We found that this was mediated by recruitment of the multisubunit IkappaB kinase (IKK) into large, activated foci on the parasite surface. IKK signalosome assembly was specific for the transforming schizont stage of the parasite and was down-regulated upon differentiation into the nontransforming merozoite stage. Our findings provide insights into IKK activation and how pathogens subvert host-cell signaling pathways.
Collapse
Affiliation(s)
- Volker T Heussler
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rottenberg S, Schmuckli-Maurer J, Grimm S, Heussler VT, Dobbelaere DAE. Characterization of the bovine IkappaB kinases (IKK)alpha and IKKbeta, the regulatory subunit NEMO and their substrate IkappaBalpha. Gene 2002; 299:293-300. [PMID: 12459277 DOI: 10.1016/s0378-1119(02)01011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.
Collapse
Affiliation(s)
- Sven Rottenberg
- Institute of Animal Pathology, Molecular Pathology, University of Berne, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Caamaño J, Hunter CA. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 2002; 15:414-29. [PMID: 12097249 PMCID: PMC118079 DOI: 10.1128/cmr.15.3.414-429.2002] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription factors of the Rel/NF-kappaB family are activated in response to signals that lead to cell growth, differentiation, and apoptosis, and these proteins are critical elements involved in the regulation of immune responses. The conservation of this family of transcription factors in many phyla and their association with antimicrobial responses indicate their central role in the regulation of innate immunity. This is illustrated by the association of homologues of NF-kappaB, and their regulatory proteins, with resistance to infection in insects and plants (M. S. Dushay, B. Asling, and D. Hultmark, Proc. Natl. Acad. Sci. USA 93:10343-10347, 1996; D. Hultmark, Trends Genet. 9:178-183, 1993; J. Ryals et al., Plant Cell 9:425-439, 1997). The aim of this review is to provide a background on the biology of NF-kappaB and to highlight areas of the innate and adaptive immune response in which these transcription factors have a key regulatory function and to review what is currently known about their roles in resistance to infection, the host-pathogen interaction, and development of human disease.
Collapse
Affiliation(s)
- Jorge Caamaño
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6008, USA
| | | |
Collapse
|
39
|
Tato CM, Hunter CA. Host-pathogen interactions: subversion and utilization of the NF-kappa B pathway during infection. Infect Immun 2002; 70:3311-7. [PMID: 12065467 PMCID: PMC128040 DOI: 10.1128/iai.70.7.3311-3317.2002] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C M Tato
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
40
|
Shapira S, Speirs K, Gerstein A, Caamano J, Hunter CA. Suppression of NF-kappaB activation by infection with Toxoplasma gondii. J Infect Dis 2002; 185 Suppl 1:S66-72. [PMID: 11865442 DOI: 10.1086/338000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The interaction of host cells with microbial products or their invasion by pathogens frequently results in activation of the NF-kappaB family of transcription factors. The studies presented here reveal that in vivo, infection with Toxoplasma gondii results in the activation of NF-kappaB. To determine whether host cells could activate NF-kappaB in response to invasion by T. gondii, Western blots, immunofluorescence, and electrophoretic mobility shift assays were used to assess the response of host cells to infection. In these studies, infection of macrophages or fibroblasts with T. gondii did not result in the activation of NF-kappaB. In addition, the ability of lipopolysaccharide to activate NF-kappaB was impaired in cultures of macrophages infected with T. gondii. Together, these data demonstrate that invasion of cells by T. gondii does not lead to the activation of NF-kappaB and suggest that the parasite may actively interfere with the pathways that lead to NF-kappaB activation.
Collapse
Affiliation(s)
- S Shapira
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104-6008, USA
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Lüder CG, Gross U, Lopes MF. Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol 2001; 17:480-6. [PMID: 11587962 DOI: 10.1016/s1471-4922(01)02016-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death (apoptosis) is an important regulator of the host's response during infection with a variety of intracellular protozoan parasites. Parasitic pathogens have evolved diverse strategies to induce or inhibit host-cell apoptosis, thereby modulating the host's immune response, aiding dissemination within the host or facilitating intracellular survival. Here, we review the molecular and cell-biological mechanisms of the pathogen-induced modulation of host-cell apoptosis and its effects on the parasite-host interaction and the pathogenesis of parasitic diseases. We also discuss the previously unrecognized phenomenon of apoptotic cell death in (unicellular) protozoan parasites and its potential implications.
Collapse
Affiliation(s)
- C G Lüder
- Department Bacteriology, Georg August University of Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
43
|
Abstract
Protozoan parasites which reside inside a host cell avoid direct destruction by the immune system of the host. The infected cell, however, still has the capacity to counteract the invasive pathogen by initiating its own death, a process which is called programmed cell death or apoptosis. Apoptotic cells are recognised and phagocytosed by macrophages and the parasite is potentially eliminated together with the infected cell. This potent defence mechanism of the host cell puts strong selective pressure on the parasites which have, in turn, evolved strategies to modulate the apoptotic program of the host cell to their favour. Within the last decade, the existence of cellular signalling pathways which inhibit the apoptotic machinery has been demonstrated. It is not surprising that intracellular pathogens subvert these pathways to ensure their own survival in the infected cell. Molecular mechanisms which interfere with apoptotic pathways have been studied extensively for viruses and parasitic bacteria, but protozoan parasites have come into focus only recently. Intracellular protozoan parasites which have been reported to inhibit the apoptotic program of the host cell, are Toxoplasma gondii, Trypanosoma cruzi, Leishmania sp., Theileria sp., Cryptosporidium parvum, and the microsporidian Nosema algerae. Although these parasites differ in their mechanism of host cell entry and in their final intracellular localisation, they might activate similar pathways in their host cells to inhibit apoptosis. In this respect, two families of molecules, which are known for their capacity to interrupt the apoptotic program, are currently discussed in the literature. First, the expression of heat shock proteins is often induced upon parasite infection and can directly interfere with molecules of the cellular death machinery. Secondly, a more indirect effect is attributed to the parasite-dependent activation of NF-kappaB, a transcription factor that regulates the transcription of anti-apoptotic molecules.
Collapse
Affiliation(s)
- V T Heussler
- Molecular Pathology, Institute of Animal Pathology, University of Berne, Switzerland.
| | | | | |
Collapse
|
44
|
Heussler VT, Küenzi P, Fraga F, Schwab RA, Hemmings BA, Dobbelaere DA. The Akt/PKB pathway is constitutively activated in Theileria-transformed leucocytes, but does not directly control constitutive NF-kappaB activation. Cell Microbiol 2001; 3:537-50. [PMID: 11488815 DOI: 10.1046/j.1462-5822.2001.00134.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.
Collapse
Affiliation(s)
- V T Heussler
- Molecular Pathology, Institute of Animal Pathology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Machado J, Fernandez PC, Baumann I, Dobbelaere DA. Characterisation of NF-kappa B complexes in Theileria parva-transformedT cells. Microbes Infect 2000; 2:1311-20. [PMID: 11018447 DOI: 10.1016/s1286-4579(00)01284-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transformation of T cells by the intracellular parasite Theileria parva is accompanied by constitutive I-kappa B degradation and NF-kappa B activation, a process which is essential to prevent the spontaneous apoptosis of these parasite-transformed cells. NF-kappa B-mediated responses are regulated by selective combinations of NF-kappa B proteins as homo- or heterodimers and by distinct kappa B motifs. We characterised the NF-kappa B complexes induced by T. parva infection in TpM(803) T cells. By western blot, we demonstrated that all members of the NF-kappa B/Rel family of proteins translocate to the nucleus of infected cells. Using two different kappa B oligonucleotides (kappa B-1 and kappa B-2), both containing the decameric consensus kappa B motif (GGGACTTTCC), clearly distinct patterns of DNA binding activities could be demonstrated in electrophoretic mobility shift assays. Supershift analysis and UV cross-linking assays showed that complexes binding to kappa B-1 consisted of p50, p65 and RelB homo and/or heterodimers. We could also detect an association of ATF-2 and c-Fos with one of the complexes. The HIV-derived kappa B-2 oligo only bound p50 and p65. Additionally, several agents known to inhibit a wide range of NF-kappa B activation pathways had no inhibitory effect on the activation of NF-kappa B DNA binding in TpM(803) T cells.
Collapse
Affiliation(s)
- J Machado
- Laboratory of Molecular Pathology, Institute of Animal Pathology, University of Berne, Länggass-Strasse 122, 3012, Berne, Switzerland
| | | | | | | |
Collapse
|
46
|
Abstract
Babesiosis is an emerging, tick-transmitted, zoonotic disease caused by hematotropic parasites of the genus Babesia. Babesial parasites (and those of the closely related genus Theileria) are some of the most ubiquitous and widespread blood parasites in the world, second only to the trypanosomes, and consequently have considerable worldwide economic, medical, and veterinary impact. The parasites are intraerythrocytic and are commonly called piroplasms due to the pear-shaped forms found within infected red blood cells. The piroplasms are transmitted by ixodid ticks and are capable of infecting a wide variety of vertebrate hosts which are competent in maintaining the transmission cycle. Studies involving animal hosts other than humans have contributed significantly to our understanding of the disease process, including possible pathogenic mechanisms of the parasite and immunological responses of the host. To date, there are several species of Babesia that can infect humans, Babesia microti being the most prevalent. Infections with Babesia species generally follow regional distributions; cases in the United States are caused primarily by B. microti, whereas cases in Europe are usually caused by Babesia divergens. The spectrum of disease manifestation is broad, ranging from a silent infection to a fulminant, malaria-like disease, resulting in severe hemolysis and occasionally in death. Recent advances have resulted in the development of several diagnostic tests which have increased the level of sensitivity in detection, thereby facilitating diagnosis, expediting appropriate patient management, and resulting in a more accurate epidemiological description.
Collapse
|
47
|
Abstract
Babesiosis is an emerging, tick-transmitted, zoonotic disease caused by hematotropic parasites of the genus Babesia. Babesial parasites (and those of the closely related genus Theileria) are some of the most ubiquitous and widespread blood parasites in the world, second only to the trypanosomes, and consequently have considerable worldwide economic, medical, and veterinary impact. The parasites are intraerythrocytic and are commonly called piroplasms due to the pear-shaped forms found within infected red blood cells. The piroplasms are transmitted by ixodid ticks and are capable of infecting a wide variety of vertebrate hosts which are competent in maintaining the transmission cycle. Studies involving animal hosts other than humans have contributed significantly to our understanding of the disease process, including possible pathogenic mechanisms of the parasite and immunological responses of the host. To date, there are several species of Babesia that can infect humans, Babesia microti being the most prevalent. Infections with Babesia species generally follow regional distributions; cases in the United States are caused primarily by B. microti, whereas cases in Europe are usually caused by Babesia divergens. The spectrum of disease manifestation is broad, ranging from a silent infection to a fulminant, malaria-like disease, resulting in severe hemolysis and occasionally in death. Recent advances have resulted in the development of several diagnostic tests which have increased the level of sensitivity in detection, thereby facilitating diagnosis, expediting appropriate patient management, and resulting in a more accurate epidemiological description.
Collapse
Affiliation(s)
- M J Homer
- Corixa Corporation and The Infectious Disease Research Institute, Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
48
|
Ruzzene M, Brunati AM, Sarno S, Marin O, Donella-Deana A, Pinna LA. Ser/Thr phosphorylation of hematopoietic specific protein 1 (HS1): implication of protein kinase CK2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3065-72. [PMID: 10806407 DOI: 10.1046/j.1432-1033.2000.01333.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1), a tyrosine multiphosphorylated protein implicated in receptor-mediated apoptosis and proliferative responses, is shown here to become Ser/Thr phosphorylated upon incubation of platelets with radiolabeled inorganic phosphate. The in vivo Ser/Thr phosphorylation of HS1 is enhanced by okadaic acid and reduced by specific inhibitors of casein kinase (CK)2. In vitro, HS1 is an excellent substrate for either CK2 alpha subunit alone (Km = 47 nM) or CK2 holoenzyme, tested in the presence of polylysine (Km = 400 nM). Phosphorylation reaches a stoichiometry of about 2 mol phosphate per mol HS1 and occurs mainly at threonyl residue(s), mostly located in the N-terminal region, but also at seryl residue(s) residing in the central core of the molecule (208-402), as judged from experiments with deleted forms of HS1. Ser/Thr phosphorylation of HS1, either induced in vivo by okadaic acid or catalysed in vitro by CK2, potentiates subsequent phosphorylation at tyrosyl residues. These data indicate the possibility that regulation of HS1 may also be under the control of Ser/Thr phosphorylation, and suggest that in quiescent cells CK2 could play a role in inducing constitutive Tyr phosphorylation of HS1 in the absence of stimuli that activate the protein tyrosine kinase pathway.
Collapse
Affiliation(s)
- M Ruzzene
- Dipartimento di Chimica Biologica and Centro per lo Studio delle Biomembrane del CNR and CRIBI, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Nene V, Bishop R, Morzaria S, Gardner MJ, Sugimoto C, ole-MoiYoi OK, Fraser CM, Irvin A. Theileria parva genomics reveals an atypical apicomplexan genome. Int J Parasitol 2000; 30:465-74. [PMID: 10731569 DOI: 10.1016/s0020-7519(00)00016-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discipline of genomics is setting new paradigms in research approaches to resolving problems in human and animal health. We propose to determine the genome sequence of Theileria parva, a pathogen of cattle, using the random shotgun approach pioneered at The Institute for Genomic Research (TIGR). A number of features of the T. parva genome make it particularly suitable for this approach. The G+C content of genomic DNA is about 31%, non-coding repetitive DNA constitutes less than 1% of total DNA and a framework for the 10-12 Mbp genome is available in the form of a physical map for all four chromosomes. Minisatellite sequences are the only dispersed repetitive sequences identified so far, but they are limited in distribution to 13 of 33 SfiI fragments. Telomere and sub-telomeric non-coding sequences occupy less than 10 kbp at each chromosomal end and there are only two units encoding cytoplasmic rRNAs. Three sets of distinct multicopy sequences encoding ORFs have been identified but it is not known if these are associated with expression of parasite antigenic diversity. Protein coding genes exhibit a bias in codon usage and introns when present are unusually short. Like other apicomplexan organisms, T. parva contains two extrachromosomal DNAs, a mitochondrial DNA and a plastid DNA molecule. By annotating the genome sequence, in combination with the use of microarray technology and comparative genomics, we expect to gain significant insights into unique aspects of the biology of T. parva. We believe that the data will underpin future research to aid in the identification of targets of protective CD8+ cell mediated immune responses, and parasite molecules involved in inducing reversible host leukocyte transformation and tumour-like behaviour of transformed parasitised cells.
Collapse
Affiliation(s)
- V Nene
- International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dobbelaere DA, Fernandez PC, Heussler VT. Theileria parva: taking control of host cell proliferation and survival mechanisms. Cell Microbiol 2000; 2:91-9. [PMID: 11207566 DOI: 10.1046/j.1462-5822.2000.00045.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.
Collapse
Affiliation(s)
- D A Dobbelaere
- Institute of Animal Pathology, Molecular Pathology, Berne, Switzerland.
| | | | | |
Collapse
|