1
|
Patel A, Wolfram A, Desin TS. Advancements in Detection Methods for Salmonella in Food: A Comprehensive Review. Pathogens 2024; 13:1075. [PMID: 39770335 PMCID: PMC11728791 DOI: 10.3390/pathogens13121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Non-typhoidal Salmonella species are one of the leading causes of gastrointestinal disease in North America, leading to a significant burden on the healthcare system resulting in a huge economic impact. Consequently, early detection of Salmonella species in the food supply, in accordance with food safety regulations, is crucial for protecting public health, preventing outbreaks, and avoiding serious economic losses. A variety of techniques have been employed to detect the presence of this pathogen in the food supply, including culture-based, immunological, and molecular methods. The present review summarizes these methods and highlights recent updates on promising emerging technologies, including aptasensors, Surface Plasmon Resonance (SPR), and Surface Enhanced Raman Spectroscopy (SERS).
Collapse
Affiliation(s)
- Aayushi Patel
- Trinity School of Medicine, Trinity Medical Sciences University, Roswell, GA 30075, USA; (A.P.); (A.W.)
| | - Andrew Wolfram
- Trinity School of Medicine, Trinity Medical Sciences University, Roswell, GA 30075, USA; (A.P.); (A.W.)
| | - Taseen S. Desin
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
2
|
Walker GT, Perez-Lopez A, Silva S, Lee MH, Bjånes E, Dillon N, Brandt SL, Gerner RR, Melchior K, Norton GJ, Argueta FA, Dela Pena F, Park L, Sosa-Hernandez VA, Cervantes-Diaz R, Romero-Ramirez S, Cartelle Gestal M, Maravillas-Montero JL, Nuccio SP, Nizet V, Raffatellu M. CCL28 modulates neutrophil responses during infection with mucosal pathogens. eLife 2024; 13:e78206. [PMID: 39193987 PMCID: PMC11444682 DOI: 10.7554/elife.78206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The chemokine CCL28 is highly expressed in mucosal tissues, but its role during infection is not well understood. Here, we show that CCL28 promotes neutrophil accumulation in the gut of mice infected with Salmonella and in the lung of mice infected with Acinetobacter. Neutrophils isolated from the infected mucosa expressed the CCL28 receptors CCR3 and, to a lesser extent, CCR10, on their surface. The functional consequences of CCL28 deficiency varied between the two infections: Ccl28-/- mice were highly susceptible to Salmonella gut infection but highly resistant to otherwise lethal Acinetobacter lung infection. In vitro, unstimulated neutrophils harbored pre-formed intracellular CCR3 that was rapidly mobilized to the cell surface following phagocytosis or inflammatory stimuli. Moreover, CCL28 stimulation enhanced neutrophil antimicrobial activity, production of reactive oxygen species, and formation of extracellular traps, all processes largely dependent on CCR3. Consistent with the different outcomes in the two infection models, neutrophil stimulation with CCL28 boosted the killing of Salmonella but not Acinetobacter. CCL28 thus plays a critical role in the immune response to mucosal pathogens by increasing neutrophil accumulation and activation, which can enhance pathogen clearance but also exacerbate disease depending on the mucosal site and the infectious agent.
Collapse
Affiliation(s)
- Gregory T Walker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Araceli Perez-Lopez
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, United States
- Biomedicine Research Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Steven Silva
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Michael H Lee
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Elisabet Bjånes
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Nicholas Dillon
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Stephanie L Brandt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Romana R Gerner
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- School of Life Sciences, ZIEL - Institute for Food and Health, Freising-Weihenstephan, Technical University of Munich, Munich, Germany
| | - Karine Melchior
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Grant J Norton
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Felix A Argueta
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Frenchesca Dela Pena
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Lauren Park
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Victor A Sosa-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Diaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Romero-Ramirez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Monica Cartelle Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, United States
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, United States
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, United States
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSDcMAV), La Jolla, United States
| |
Collapse
|
3
|
Stepien TA, Singletary LA, Guerra FE, Karlinsey JE, Libby SJ, Jaslow SL, Gaggioli MR, Gibbs KD, Ko DC, Brehm MA, Greiner DL, Shultz LD, Fang FC. Nuclear factor kappa B-dependent persistence of Salmonella Typhi and Paratyphi in human macrophages. mBio 2024; 15:e0045424. [PMID: 38497655 PMCID: PMC11005419 DOI: 10.1128/mbio.00454-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.
Collapse
Affiliation(s)
- Taylor A. Stepien
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Fermin E. Guerra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Joyce E. Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Stephen J. Libby
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Sarah L. Jaslow
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Margaret R. Gaggioli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Kyle D. Gibbs
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Michael A. Brehm
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dale L. Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ferric C. Fang
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Chandra HB, Lalhmangaihzuali L, Shome A, Sahoo R, Irungbam K, Mahawar M. Comparative analysis reveals the trivial role of MsrP in defending oxidative stress and virulence of Salmonella Typhimurium in mice. Free Radic Biol Med 2024; 213:322-326. [PMID: 38262547 DOI: 10.1016/j.freeradbiomed.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Sulphur containing amino acids, methionine and cysteine are highly prone to oxidation. Reduction of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) enhances the survival of bacterial pathogens under oxidative stress conditions. S. Typhimurium encodes two types (cytoplasmic and periplasmic) of Msrs. Periplasmic proteins, due to their location are highly vulnerable to host-generated oxidants. Therefore, the periplasmic Msr (MsrP) mediated repair (as compared to the cytoplasmic counterpart) might play a more imperative role in defending host-generated oxidants. Contrary to this, we show that in comparison to the ΔmsrP strain, the mutant strains in the cytoplasmic Msrs (ΔmsrA and ΔmsrAC strains) showed many folds more susceptibility to chloramine-T and neutrophils. Further ΔmsrA and ΔmsrAC strains accumulated higher levels of ROS and showed compromised fitness in mice spleen and liver. Our data suggest the pivotal role of cytoplasmic Msrs in oxidative stress survival of S. Typhimurium.
Collapse
Affiliation(s)
- Hari Balaji Chandra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - L Lalhmangaihzuali
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Raj Sahoo
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Karuna Irungbam
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India.
| |
Collapse
|
5
|
Chandra HB, Shome A, Sahoo R, Apoorva S, Bhure SK, Mahawar M. Periplasmic methionine sulfoxide reductase (MsrP)-a secondary factor in stress survival and virulence of Salmonella Typhimurium. FEMS Microbiol Lett 2023; 370:fnad063. [PMID: 37403401 PMCID: PMC10653988 DOI: 10.1093/femsle/fnad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Among others, methionine residues are highly susceptible to host-generated oxidants. Repair of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) play a chief role in stress survival of bacterial pathogens, including Salmonella Typhimurium. Periplasmic proteins, involved in many important cellular functions, are highly susceptible to host-generated oxidants. According to location in cell, two types of Msrs, cytoplasmic and periplasmic are present in S. Typhimurium. Owing to its localization, periplasmic Msr (MsrP) might play a crucial role in defending the host-generated oxidants. Here, we have assessed the role of MsrP in combating oxidative stress and colonization of S. Typhimurium. ΔmsrP (mutant strain) grew normally in in-vitro media. In comparison to S. Typhimurium (wild type), mutant strain showed mild hypersensitivity to HOCl and chloramine-T (ChT). Following exposure to HOCl, mutant strain showed almost similar protein carbonyl levels (a marker of protein oxidation) as compared to S. Typhimurium strain. Additionally, ΔmsrP strain showed higher susceptibility to neutrophils than the parent strain. Further, the mutant strain showed very mild defects in survival in mice spleen and liver as compared to wild-type strain. In a nutshell, our results indicate that MsrP plays only a secondary role in combating oxidative stress and colonization of S. Typhimurium.
Collapse
Affiliation(s)
- Hari Balaji Chandra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Raj Sahoo
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - S Apoorva
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sanjeev Kumar Bhure
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
6
|
Alugupalli AS, Cravens MP, Walker JA, Gulandijany D, Dickinson GS, Debes GF, Schifferli DM, Bäumler AJ, Alugupalli KR, Alugupalli KR. The Lack of Natural IgM Increases Susceptibility and Impairs Anti-Vi Polysaccharide IgG Responses in a Mouse Model of Typhoid. Immunohorizons 2022; 6:807-816. [PMID: 36480484 DOI: 10.4049/immunohorizons.2200088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating IgM present in the body prior to any apparent Ag exposure is referred to as natural IgM. Natural IgM provides protective immunity against a variety of pathogens. Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever in humans. Because mice are not permissive to S. Typhi infection, we employed a murine model of typhoid using S. enterica serovar Typhimurium expressing the Vi polysaccharide (ViPS) of S. Typhi (S. Typhimurium strain RC60) to evaluate the role of natural IgM in pathogenesis. We found that natural mouse IgM binds to S. Typhi and S. Typhimurium. The severity of S. Typhimurium infection in mice is dependent on presence of the natural resistance-associated macrophage protein 1 (Nramp1) allele; therefore, we infected mice deficient in secreted form of IgM (sIgM) on either a Nramp1-resistant (129S) or -susceptible (C57BL/6J) background. We found that the lack of natural IgM results in a significantly increased susceptibility and an exaggerated liver pathology regardless of the route of infection or the Nramp1 allele. Reconstitution of sIgM-/- mice with normal mouse serum or purified polyclonal IgM restored the resistance to that of sIgM+/+ mice. Furthermore, immunization of sIgM-/- mice with heat-killed S. Typhi induced a significantly reduced anti-ViPS IgG and complement-dependent bactericidal activity against S. Typhi in vitro, compared with that of sIgM+/+ mice. These findings indicate that natural IgM is an important factor in reducing the typhoid severity and inducing an optimal anti-ViPS IgG response to vaccination.
Collapse
Affiliation(s)
- Akhil S Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Matthew P Cravens
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Dania Gulandijany
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Gregory S Dickinson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Dieter M Schifferli
- Department of Microbiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA; and
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
7
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
8
|
Effects of Salmonella enterica serovar typhimurium sseK1 on macrophage inflammation-related cytokines and glycolysis. Cytokine 2021; 140:155424. [PMID: 33513526 DOI: 10.1016/j.cyto.2021.155424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/12/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important virulent intracellular pathogen, causes inflammatory gastroenteritis or typhoid. Macrophages play a key role in innate immunity against Salmonella. Salmonella secreted effector K1 (SseK1) encoded by SPI2 has been identified a novel translocated protein. To investigate the role of Salmonella enterica serovar Typhimurium sseK1 about the inflammation and glycolysis in macrophages, the levels of IL-1β, IL-2, IL-4, IL-6, IFN-γ and Nitric Oxide in macrophages infected by S. Typhimurium SL1344 wild-type (WT) group, ΔsseK1 mutant group and sseK1-complemented group were measured. And the glycolysis level was determined in RAW 264.7 cells infected with these different Salmonella strains. The results showed that groups infected by wild-type strain, sseK1 mutant and sseK1-complemented strain upregulated the production of IL-1β, IL-2, IL-4, IL-6, IFN-γ and NO at 3 h, 6 h and 12 h, respectively. The production of IL-1β, IL-2, IL-4, IL-6, IFN-γ and NO in wild-type strain group were significantly decreased compared with the ΔsseK1 mutant group, which suggested that sseK1 down-regulated the production of related inflammatory factors. Moreover, hexokinase, lactic acid and pyruvic acid levels significantly decreased by infection with sseK1 mutant compared to the wild-type strain. The ATP level of ΔsseK1 mutant group was remarkably increased than WT group and sseK1-complemented group. These indicated that the sseK1 enhanced the level of glycolysis of macrophages infected by S. Typhimurium. In summary, the results demonstrated that sseK1 can down-regulate the inflammation-related cytokines and enhance the glycolysis level in macrophages infected by S. Typhimurium, which may be beneficial for S. typhimurium survival in macrophages.
Collapse
|
9
|
Farouk MM, El-Molla A, Salib FA, Soliman YA, Shaalan M. The Role of Silver Nanoparticles in a Treatment Approach for Multidrug-Resistant Salmonella Species Isolates. Int J Nanomedicine 2020; 15:6993-7011. [PMID: 33061364 PMCID: PMC7520150 DOI: 10.2147/ijn.s270204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The main objective of this study is to investigate the antibacterial activity of silver nanoparticles (AgNPs) against multidrug-resistant Salmonella isolates recovered from diarrheic sheep and goats. METHODS This study used chemical reduction synthesis of AgNPs to evaluate their antimicrobial effects by estimation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each isolate using the microplate dilution method and tetrazolium salt reduction test to detect the viability percentage. In vivo treatment efficacy was assessed in mice by determining the viable count of Salmonella Enteritidis recovered from feces and by hematologic, biochemical and histopathologic examinations to confirm that use of AgNPs has no toxic or pathologic effects and to evaluate its ability in tissue regeneration following treatment. RESULTS All recovered strains were identified as MDR with a prevalence of 4% and 3.6% in sheep and goats, respectively. The results of TEM, DLS, Zeta potential, and FTIR revealed typical characteristics of the synthesized AgNPs. Silver nanoparticles showed antibacterial activity against all recovered strains with MIC of ≤0.02-0.313 μg/mL (mean average 0.085±0.126 μg/mL) and MBC of 0.078-1.250 μg/mL (average 0.508±0.315 μg/mL). In vivo efficacy of AgNPs was observed by a reduction in the number of viable S. Enteritidis recovered from feces in an S. Enteritidis infected mouse model, with complete shedding stopping between treatment days 4 and 6. Hematologic, serum biochemical, and histopathologic analyses proved the ability of AgNPs to suppress inflammatory reaction caused by S. Enteritidis infection. CONCLUSION The study proved the effective ability of AgNPs to fight MDR Salmonella spp. in vitro and in vivo without adverse effects.
Collapse
Affiliation(s)
- Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza12211, Egypt
| | - Amal El-Molla
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza12211, Egypt
| | - Fayez A Salib
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza12211, Egypt
| | - Yousef A Soliman
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Cairo, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza12211, Egypt
| |
Collapse
|
10
|
Tan P, He L, Xing C, Mao J, Yu X, Zhu M, Diao L, Han L, Zhou Y, You MJ, Wang HY, Wang RF. Myeloid loss of Beclin 1 promotes PD-L1hi precursor B cell lymphoma development. J Clin Invest 2019; 129:5261-5277. [PMID: 31503548 PMCID: PMC6877338 DOI: 10.1172/jci127721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Beclin 1 (Becn1) is a key molecule in the autophagy pathway and has been implicated in cancer development. Due to the embryonic lethality of homozygous Becn1-deficient mice, the precise mechanisms and cell type-specific roles of Becn1 in regulating inflammation and cancer immunity remain elusive. Here, we report that myeloid-deficient Becn1 (Becn1ΔM) mice developed neutrophilia, were hypersusceptible to LPS-induced septic shock, and had a high risk of developing spontaneous precursor B cell (pre-B cell) lymphoma with elevated expression of immunosuppressive molecules programmed death ligand 1 (PD-L1) and IL-10. Becn1 deficiency resulted in the stabilization of MEKK3 and aberrant p38 activation in neutrophils, and mediated neutrophil-B cell interaction through Cxcl9/Cxcr3 chemotaxis. Neutrophil-B cell interplay further led to the activation of IL-21/STAT3/IRF1 and CD40L/ERK signaling and PD-L1 expression; therefore, it suppressed CD8+ T cell function. Ablation of p38 in Becn1ΔM mice prevented neutrophil inflammation and B cell tumorigenesis. Importantly, the low expression of Becn1 in human neutrophils was significantly correlated with the PD-L1 levels in pre-B acute lymphoblastic lymphoma (ALL) patients. Our findings have identified myeloid Becn1 as a key regulator of cancer immunity and therapeutic target for pre-B cell lymphomas.
Collapse
Affiliation(s)
- Peng Tan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Lian He
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jingrong Mao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
- Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Motao Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
11
|
Pucciarelli MG, García-Del Portillo F. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0009-2016. [PMID: 28730976 PMCID: PMC11687531 DOI: 10.1128/microbiolspec.mtbp-0009-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella-containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
12
|
Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nat Microbiol 2017; 2:16268. [PMID: 28112722 DOI: 10.1038/nmicrobiol.2016.268] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.
Collapse
|
13
|
Li W, Hu Y. Assessment of Post-Vaccination Phagocytic Activation Using Candida albicans Killing Assays. Methods Mol Biol 2017; 1625:313-326. [PMID: 28584999 DOI: 10.1007/978-1-4939-7104-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Candida albicans is an important opportunistic fungal pathogen. It is now the fourth leading cause of nosocomial bloodstream infections and a great threat to the immuncompromised patients attributed to the disseminated candidiasis with the mortality up to 40%. Phagocytic cells are the first line of defense against Candida infections. Antibodies induced by vaccination can effectively enhance the capacities of phagocytosis and killing of neutrophils and macrophages. In this chapter, flow cytometric analysis (FACS) and killing assay by plate culture methods are introduced to evaluate the phagocytosis and killing of strains of Candida albicans opsonized with immune serum obtained from mice vaccinated with yeast and recombinant enolase.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Oral Biology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Yuexiu District, Guangzhou, Guangdong, 510100, China
| | - Yan Hu
- Department of Oral Biology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Yuexiu District, Guangzhou, Guangdong, 510100, China.
| |
Collapse
|
14
|
Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium. Nat Commun 2016; 7:12748. [PMID: 27599659 PMCID: PMC5023958 DOI: 10.1038/ncomms12748] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8+ T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. FoxO3a signalling has limited influence over acute bacterial infection. Here the authors show that FoxO3a promotes survival of mice in response to chronic Salmonella typhimurium infection by restraining oxidative stress and ERK signalling.
Collapse
|
15
|
Barrett KE. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J Physiol 2016; 595:423-432. [PMID: 27284010 DOI: 10.1113/jp272227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
Transport of fluid and electrolytes in the intestine allows for appropriate adjustments in luminal fluidity while reclaiming water used in digesting and absorbing a meal, and is closely regulated. This article discusses various endogenous and exogenous mechanisms whereby transport is controlled in the gut, placing these in the context of the ideas about the neurohumoral control of alimentary physiology that were promulgated by William Bayliss and Ernest Starling. The article considers three themes. First, mechanisms that intrinsically regulate chloride secretion, centred on the epidermal growth factor receptor (EGFr), are discussed. These may be important in ensuring that excessive chloride secretion, with the accompanying loss of fluid, is not normally stimulated by intestinal distension as the meal passes through the gastrointestinal tract. Second, mechanisms whereby probiotic microorganisms can impart beneficial effects on the gut are described, with a focus on targets at the level of the epithelium. These findings imply that the commensal microbiota exert important influences on the epithelium in health and disease. Finally, mechanisms that lead to diarrhoea in patients infected with an invasive pathogen, Salmonella, are considered, based on recent studies in a novel mouse model. Diarrhoea is most likely attributable to reduced expression of absorptive transporters and may not require the influx of neutrophils that accompanies infection. Overall, the goal of the article is to highlight the many ways in which critical functions of the intestinal epithelium are regulated under physiological and pathophysiological conditions, and to suggest possible targets for new therapies for digestive disease states.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine and Biomedical Sciences Ph.D. Program, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| |
Collapse
|
16
|
Aribam SD, Harada T, Elsheimer-Matulova M, Iwata T, Kanehira K, Hikono H, Matsui H, Ogawa Y, Shimoji Y, Eguchi M. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication. PLoS One 2016; 11:e0151352. [PMID: 26986057 PMCID: PMC4795626 DOI: 10.1371/journal.pone.0151352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb)-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Swarmistha Devi Aribam
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Tomoyuki Harada
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | | | - Taketoshi Iwata
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Katsushi Kanehira
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Hirokazu Hikono
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108–8641, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Yoshihiro Shimoji
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305–0856, Japan
- * E-mail:
| |
Collapse
|
17
|
Trivedi RN, Agarwal P, Kumawat M, Pesingi PK, Gupta VK, Goswami TK, Mahawar M. Methionine sulfoxide reductase A (MsrA) contributes to Salmonella Typhimurium survival against oxidative attack of neutrophils. Immunobiology 2015. [PMID: 26224245 DOI: 10.1016/j.imbio.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salmonella Typhimurium (ST) must evade neutrophil assault for infection establishment in the host. Myeloperoxidase generated HOCl is the key antimicrobial agent produced by the neutrophils; and methionine (Met) residues are the primary targets of this oxidant. Oxidation of Mets leads to methionine sulfoxide (Met-SO) formation and consequently compromises the protein function(s). Methionine sulfoxide reductase A (MsrA) reductively repairs Met-SO to Mets. In this manner, MsrA maintains the function(s) of key proteins which are important for virulence of ST and enhance the survival of this bacterium under oxidative stress. We constructed msrA gene deletion strain (ΔmsrA). The primers located in the flanking regions to ΔmsrA gene amplified 850 and 300 bp amplicons in ST and ΔmsrA strains, respectively. The ΔmsrA strain grew normally in in vitro broth culture. However, ΔmsrA strain showed high susceptibility (p<0.001) to very low concentrations of HOCl which was restored (at least in part) by plasmid based complementation. ΔmsrA strain was hypersensitive (than ST) to the granules isolated from neutrophils. Further, the ΔmsrA strain was significantly (p<0.05) more susceptible to neutrophil mediated killing.
Collapse
Affiliation(s)
- Raj Narayan Trivedi
- The Immunology Section, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Pranjali Agarwal
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Manoj Kumawat
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Pavan Kumar Pesingi
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | | | - Tapas Kumar Goswami
- The Immunology Section, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Manish Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| |
Collapse
|
18
|
Pan D, Rostagno MH, Ebner PD, Eicher SD. Differential innate immune responses of bovine peripheral blood leukocytes to Salmonella enterica serovars Dublin, Typhimurium, and Enteritidis. Vet Immunol Immunopathol 2015; 165:14-21. [PMID: 25847354 DOI: 10.1016/j.vetimm.2015.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022]
Abstract
The majority of Salmonella serovars cause no clinical disease in cattle, while some are associated with severe disease. The objective of the current study was to determine the innate immune responses of bovine peripheral blood leukocytes exposed to Salmonella enterica serovar Dublin (bovine-specific), Salmonella typhimurium (murine adapted, but zoonotic), and Salmonella enteritidis (poultry host-adapted) in 3-week-old calves. All Salmonella exposures increased cell surface CD14 and CD18 regardless of serovar. The greatest CD14 marker mean fluorescence was in monocytes and the greatest mean fluorescent of the marker mean was in neutrophils. Phagocytosis increased with all serovars, but was not different among them. Neutrophils had the greatest marker mean fluorescence for phagocytosis, with all serovars being equal. Oxidative burst increased in all serovars compared to control cells, but were not different among the serovars. Neutrophils and monocytes were similar in the oxidative burst, with limited oxidative burst detected in the primarily lymphocyte population. mRNA expression of TNF-α, IL-8, and IL-12, increased above the control cells whereas none of these serovars affected mRNA expression of TLR4. TNF-α was greatest in S. enterica and S. typhimurium, compared to Salmonella dublin. In contrast, IL-8 was expressed more in S. dublin than S. typhiurium, with S. Enteriditus intermediary. These results show while cell surface markers, phagocytosis, and oxidative burst were largely unaffected by serovar, cytokine and chemokine expression differed among the Salmonella serovars. It appears that internal responses of the cells differ, rather than cell recognition, creating pathogenicity differences among of the serovars, even in the neonate with developing immunity.
Collapse
Affiliation(s)
- Deng Pan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, USA
| | | | - Paul D Ebner
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Susan D Eicher
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, USA.
| |
Collapse
|
19
|
Sivick KE, Arpaia N, Reiner GL, Lee BL, Russell BR, Barton GM. Toll-like receptor-deficient mice reveal how innate immune signaling influences Salmonella virulence strategies. Cell Host Microbe 2014; 15:203-13. [PMID: 24528866 DOI: 10.1016/j.chom.2014.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/08/2014] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Pathogens utilize features of the host response as cues to regulate virulence gene expression. Salmonella enterica serovar Typhimurium (ST) sense Toll-like receptor (TLR)-dependent signals to induce Salmonella Pathogenicity Island 2 (SPI2), a locus required for intracellular replication. To examine pathogenicity in the absence of such cues, we evaluated ST virulence in mice lacking all TLR function (Tlr2(-/-)xTlr4(-/-)xUnc93b1(3d/3d)). When delivered systemically to TLR-deficient mice, ST do not require SPI2 and maintain virulence by replicating extracellularly. In contrast, SPI2 mutant ST are highly attenuated after oral infection of the same mice, revealing a role for SPI2 in the earliest stages of infection, even when intracellular replication is not required. This early requirement for SPI2 is abolished in MyD88(-/-)xTRIF(-/-) mice lacking both TLR- and other MyD88-dependent signaling pathways, a potential consequence of compromised intestinal permeability. These results demonstrate how pathogens use plasticity in virulence strategies to respond to different host immune environments.
Collapse
Affiliation(s)
- Kelsey E Sivick
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Arpaia
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabrielle L Reiner
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bettina L Lee
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bethany R Russell
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 2014; 8:570-82. [PMID: 25043180 DOI: 10.1016/j.celrep.2014.06.028] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/01/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge in vivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge.
Collapse
|
21
|
Burton N, Schürmann N, Casse O, Steeb A, Claudi B, Zankl J, Schmidt A, Bumann D. Disparate Impact of Oxidative Host Defenses Determines the Fate of Salmonella during Systemic Infection in Mice. Cell Host Microbe 2014; 15:72-83. [DOI: 10.1016/j.chom.2013.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 12/13/2013] [Indexed: 01/15/2023]
|
22
|
Epithelial entry rather than the ensuing systemic immune response determines the pathogenicity of two Salmonella enterica serovar Typhimurium strains in a mouse model. Microbes Infect 2013; 15:911-9. [PMID: 23978790 DOI: 10.1016/j.micinf.2013.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 12/28/2022]
Abstract
Most studies of Salmonella enterica serovar Typhimurium infection focus only on the pathogenicity of one strain. We investigated whether differences in pathogenicity of two wild-type S. Typhimurium strains; DT120 and SL1344, were related to gut invasion or the resulting immune response. Oral administration of a ten-fold lower number of SL1344 (10(6) CFU) as compared to DT120 (10(7) CFU) resulted in higher bacterial counts in liver and lymph nodes, and led to massive neutrophil infiltration of the spleen, while DT120 administration did not. In contrast, administration of the same dose (10(3) CFU) of the two strains intravenously resulted in the same levels of bacteria and neutrophils in spleen and bone marrow. Oral administration of SL1344 led to an increase in neutrophil apoptosis in both spleen and the bone marrow and four out of five mice died before Day 8, while in DT120 mice, no increase in neutrophil apoptosis was observed and all mice survived until Day 8. This study reveals that two wild-type S. Typhimurium strains, despite evoking highly comparable immune responses upon intravenous injection, exhibit diverse pathogenicity in mice and thus suggests that differences in their invasiveness and survival during gut passage determines the success of the ensuing immune response.
Collapse
|
23
|
Emami CN, Mittal R, Wang L, Ford HR, Prasadarao NV. Role of neutrophils and macrophages in the pathogenesis of necrotizing enterocolitis caused by Cronobacter sakazakii. J Surg Res 2012; 172:18-28. [PMID: 21601887 PMCID: PMC3169739 DOI: 10.1016/j.jss.2011.04.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/17/2011] [Accepted: 04/07/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cronobacter sakazakii (CS) is a highly virulent gram-negative opportunistic pathogen that has been implicated in clinical outbreaks of necrotizing enterocolitis (NEC). The role of mucosal immune cells in CS infection is not well understood. In this study, we sought to elucidate the role of neutrophils (polymorphonuclear leukocytes; PMNs) and macrophages in the pathogenesis of NEC induced by CS using a novel newborn mouse model. MATERIALS AND METHODS PMNs and macrophages were depleted in newborn mice using Gr-1 antibody and carrageenan, respectively, and then infected with 10(3) CFU of CS. The development of NEC in these mice was assessed by a pathologist based on the morphologic changes in the intestine. Cytokine production was determined in the serum and intestinal homogenates of infected mice by enzyme-linked immunosorbent assay (ELISA). Inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production was determined by flow cytometry and Greiss method, respectively. RESULTS Depletion of PMNs and macrophages in newborn mice led to increased recruitment of dendritic cells (DCs) in the intestine compared with wild-type mice upon infection with CS. PMN- and macrophage-depleted mice showed increased bacterial load, production of pro-inflammatory cytokines, iNOS expression, and NO production in the intestines in comparison to wild-type mice fed with CS. In addition, depletion of PMNs and macrophages prior to infection in mice resulted in severe inflammation, villus destruction, and enhanced enterocyte apoptosis in the intestines compared with CS-infected wild-type mice. CONCLUSIONS Our data suggest that depletion of PMNs and macrophages from the lamina propria (LP) exacerbates experimental NEC, indicating that both of these immunocytes play an important role in the clearance of CS during the initial stages of infection. The increased mucosal cytokine response and NO production in the absence of these immunocytes may be responsible for the observed increase in mucosal injury. Understanding how CS manipulates these cells, employing novel mouse model of NEC reported in this study, will provide significant insights for the development of novel therapeutic and preventive strategies to combat NEC.
Collapse
Affiliation(s)
- Claudia N Emami
- Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
24
|
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat Commun 2011; 2:552. [PMID: 22109526 PMCID: PMC3537828 DOI: 10.1038/ncomms1554] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/19/2011] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
Collapse
|
25
|
Golenkina EA, Galkina SI, Romanova JM, Lazarenko MI, Sud'ina GF. Involvement of red blood cells in the regulation of leukotriene synthesis in polymorphonuclear leucocytes upon interaction with Salmonella Typhimurium. APMIS 2011; 119:635-42. [PMID: 21851422 DOI: 10.1111/j.1600-0463.2011.02786.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukotriene (LT) B4 is the primary eicosanoid product of polymorphonuclear leucocytes (PMNLs). We studied LT synthesis in PMNLs upon interaction with Salmonella enterica serovar Typhimurium. Human PMNLs exposed to Salmonella produced LTs; mostly LTB4 and ω-hydroxy-LTB4. Opsonization with normal serum increased the capacity of S. Typhimurium to induce LT synthesis in PMNLs. Addition of red blood cells (RBCs) alone did not activate LT synthesis in PMNLs but did further increase the Salmonella-induced release of LTs. Priming of PMNLs with lipopolysaccharide before the addition of bacteria potentiated LT synthesis in these cells. The effect was more pronounced in the presence of RBCs. We found that RBCs diminished the effect of exogenously added NO donors on LT synthesis in PMNLs. We conclude that RBCs mediate the activation of LT synthesis in PMNLs exposed to Salmonella bacteria at least in part by regulating the intercellular exchange and metabolism of NO.
Collapse
Affiliation(s)
- Ekaterina A Golenkina
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow
| | - Svetlana I Galkina
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow
| | - Julia M Romanova
- The Gamaleya Research Institute of Epidemiology and Microbiology, Moscow
| | | | - Galina F Sud'ina
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow
| |
Collapse
|
26
|
Carr KD, Sieve AN, Indramohan M, Break TJ, Lee S, Berg RE. Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. Eur J Immunol 2011; 41:2666-76. [PMID: 21660934 DOI: 10.1002/eji.201041363] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/06/2011] [Accepted: 06/01/2011] [Indexed: 11/05/2022]
Abstract
Previous studies have suggested that neutrophils are required for resistance during infection with multiple pathogenic microorganisms. However, the depleting antibody used in those studies binds to both Ly6G and Ly6C (anti-Gr-1; clone RB6-8C5). This antibody has been shown to deplete not only neutrophils but also monocytes and a subset of CD8(+) T cells. Recently, an antibody against Ly6G, which specifically depletes neutrophils, was characterized. In the present study, neutrophils are depleted using the antibody against Ly6G during infection with the intracellular bacterium Listeria monocytogenes (LM). Our data show that neutrophil-depleted mice are much less susceptible to infection than mice depleted with anti-Gr-1. Although neutrophils are required for clearance of LM, their importance is more pronounced in the liver and during a high-dose bacterial challenge. Furthermore, we demonstrate that the protection mediated by neutrophils is due to the production of TNF-α, but not IFN-γ. Additionally, neutrophils are not required for the recruitment of monocytes or the generation of adaptive T-cell responses during LM infection. This study highlights the importance of neutrophils during LM infection, and indicate that depletion of neutrophils is less detrimental to the host than depletion of all Gr-1-expressing cell populations.
Collapse
Affiliation(s)
- Karen D Carr
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | |
Collapse
|
27
|
Guiney DG, Fierer J. The Role of the spv Genes in Salmonella Pathogenesis. Front Microbiol 2011; 2:129. [PMID: 21716657 PMCID: PMC3117207 DOI: 10.3389/fmicb.2011.00129] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 11/30/2022] Open
Abstract
Salmonella strains cause three main types of diseases in people: gastroenteritis, enteric (typhoid) fever, and non-typhoid extra-intestinal disease with bacteremia. Genetic analysis indicates that each clinical syndrome requires distinct sets of virulence genes, and Salmonella isolates differ in their constellation of virulence traits. The spv locus is strongly associated with strains that cause non-typhoid bacteremia, but are not present in typhoid strains. The spv region contains three genes required for the virulence phenotype in mice: the positive transcriptional regulator spvR and two structural genes spvB and spvC. SpvB and SpvC are translocated into the host cell by the Salmonella pathogenicity island-2 type-three secretion system. SpvB prevents actin polymerization by ADP-ribosylation of actin monomers, while SpvC has phosphothreonine lyase activity and has been shown to inhibit MAP kinase signaling. The exact mechanisms by which SpvB and SpvC act in concert to enhance virulence are still unclear. SpvB exhibits a cytotoxic effect on host cells and is required for delayed cell death by apoptosis following intracellular infection. Strains isolated from systemic infections of immune compromised patients, particularly HIV patients, usually carry the spv locus, strongly suggesting that CD4 T cells are required to control disease due to Salmonella that are spv positive. This association is not seen with typhoid fever, indicating that the pathogenesis and immunology of typhoid have fundamental differences from the syndrome of non-typhoid bacteremia.
Collapse
Affiliation(s)
- Donald G Guiney
- Department of Medicine, University of California San Diego School of Medicine La Jolla, CA, USA
| | | |
Collapse
|
28
|
Alzogaray V, Danquah W, Aguirre A, Urrutia M, Berguer P, García Véscovi E, Haag F, Koch-Nolte F, Goldbaum FA. Single-domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. FASEB J 2010; 25:526-34. [PMID: 20940265 DOI: 10.1096/fj.10-162958] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ADP-ribosylation of host cell proteins is a common mode of cell intoxication by pathogenic bacterial toxins. Antibodies induced by immunization with inactivated ADP-ribosylating toxins provide efficient protection in case of some secreted toxins, e.g., diphtheria and pertussis toxins. However, other ADP-ribosylating toxins, such as Salmonella SpvB toxin, are secreted directly from the Salmonella-containing vacuole into the cytosol of target cells via the SPI-2 encoded bacterial type III secretion system, and thus are inaccessible to conventional antibodies. Small-molecule ADP-ribosylation inhibitors are fraught with potential side effects caused by inhibition of endogenous ADP-ribosyltransferases. Here, we report the development of a single-domain antibody from an immunized llama that blocks the capacity of SpvB to ADP-ribosylate actin at a molar ratio of 1:1. The single-domain antibody, when expressed as an intrabody, effectively protected cells from the cytotoxic activity of a translocation-competent chimeric C2IN-C/SpvB toxin. Transfected cells were also protected against cytoskeletal alterations induced by wild-type SpvB-expressing strains of Salmonella. This proof of principle paves the way for developing new antidotes against intracellular toxins.
Collapse
Affiliation(s)
- Vanina Alzogaray
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ren Z, Gay R, Thomas A, Pae M, Wu D, Logsdon L, Mecsas J, Meydani SN. Effect of age on susceptibility to Salmonella Typhimurium infection in C57BL/6 mice. J Med Microbiol 2009; 58:1559-1567. [PMID: 19729455 PMCID: PMC2783761 DOI: 10.1099/jmm.0.013250-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/28/2009] [Indexed: 02/03/2023] Open
Abstract
Ageing is associated with a decline in immune function, which predisposes the elderly to a higher incidence of infections. Information on the mechanism of the age-related increase in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) is limited. In particular, little is known regarding the involvement of the immune response in this age-related change. We employed streptomycin (Sm)-pretreated C57BL/6 mice to develop a mouse model that would demonstrate age-related differences in susceptibility and immune response to S. Typhimurium. In this model, old mice inoculated orally with doses of 3 x 10(8) or 1 x 10(6) c.f.u. S. Typhimurium had significantly greater S. Typhimurium colonization in the ileum, colon, Peyer's patches, spleen and liver than young mice. Old mice had significantly higher weight loss than young mice on days 1 and 2 post-infection. In response to S. Typhimurium infection, old mice failed to increase ex vivo production of IFN-gamma and TNF-alpha in the spleen and mesenteric lymph node cells to the same degree as observed in young mice; this was associated with their inability to maintain the presence of neutrophils and macrophages at a 'youthful' level. These results indicate that Sm-pretreated C57BL/6 old mice are more susceptible to S. Typhimurium infection than young mice, which might be due to impaired IFN-gamma and TNF-alpha production as well as a corresponding change in the number of neutrophils and macrophages in response to S. Typhimurium infection compared to young mice.
Collapse
Affiliation(s)
- Zhihong Ren
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Raina Gay
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Adam Thomas
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Munkyong Pae
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Lauren Logsdon
- Department of Microbiology and Molecular Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Joan Mecsas
- Department of Microbiology and Molecular Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
30
|
Santos RL, Raffatellu M, Bevins CL, Adams LG, Tükel C, Tsolis RM, Bäumler AJ. Life in the inflamed intestine, Salmonella style. Trends Microbiol 2009; 17:498-506. [PMID: 19819699 DOI: 10.1016/j.tim.2009.08.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 12/12/2022]
Abstract
The lower gastrointestinal tract is densely populated with resident microbial communities (microbiota), which do not elicit overt host responses but rather provide benefit to the host, including niche protection from pathogens. However, introduction of bacteria into the underlying tissue evokes acute inflammation. Non-typhoidal Salmonella serotypes (NTS) elicit this stereotypic host response by actively penetrating the intestinal epithelium and surviving in tissue macrophages. Initial responses generated by bacterial host cell interaction are amplified in tissue through the interleukin (IL)-18/interferon-gamma and IL-23/IL-17 axes, resulting in the activation of mucosal barrier functions against NTS dissemination. However, the pathogen is adapted to survive antimicrobial defenses encountered in the lumen of the inflamed intestine. This strategy enables NTS to exploit inflammation to outcompete the intestinal microbiota, and promotes the Salmonella transmission by the fecal/oral route.
Collapse
Affiliation(s)
- Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|
31
|
Xu T, Maloy S, McGuire KL. Macrophages influence Salmonella host-specificity in vivo. Microb Pathog 2009; 47:212-22. [DOI: 10.1016/j.micpath.2009.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 07/23/2009] [Accepted: 07/27/2009] [Indexed: 01/21/2023]
|
32
|
Spehlmann ME, Dann SM, Hruz P, Hanson E, McCole DF, Eckmann L. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. THE JOURNAL OF IMMUNOLOGY 2009; 183:3332-43. [PMID: 19675161 DOI: 10.4049/jimmunol.0900600] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal disease in young children, yet symptoms and duration are highly variable for unknown reasons. Citrobacter rodentium, a murine model pathogen that shares important functional features with EPEC, colonizes mice in colon and cecum and causes inflammation, but typically little or no diarrhea. We conducted genome-wide microarray studies to define mechanisms of host defense and disease in C. rodentium infection. A significant fraction of the genes most highly induced in the colon by infection encoded CXC chemokines, particularly CXCL1/2/5 and CXCL9/10, which are ligands for the chemokine receptors CXCR2 and CXCR3, respectively. CD11b(+) dendritic cells were the major producers of CXCL1, CXCL5, and CXCL9, while CXCL2 was mainly induced in macrophages. Infection of gene-targeted mice revealed that CXCR3 had a significant but modest role in defense against C. rodentium, whereas CXCR2 had a major and indispensable function. CXCR2 was required for normal mucosal influx of neutrophils, which act as direct antibacterial effectors. Moreover, CXCR2 loss led to severe diarrhea and failure to express critical components of normal ion and fluid transport, including ATPase beta(2)-subunit, CFTR, and DRA. The antidiarrheal functions were unique to CXCR2, since other immune defects leading to increased bacterial load and inflammation did not cause diarrhea. Thus, CXCR2-dependent processes, particularly mucosal neutrophil influx, not only contribute to host defense against C. rodentium, but provide protection against infection-associated diarrhea.
Collapse
Affiliation(s)
- Martina E Spehlmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
33
|
Schulz SM, Köhler G, Holscher C, Iwakura Y, Alber G. IL-17A is produced by Th17, gammadelta T cells and other CD4- lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance. Int Immunol 2008; 20:1129-38. [PMID: 18599501 DOI: 10.1093/intimm/dxn069] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
T(h)17 cells represent a new pro-inflammatory T(h) cell lineage distinct from T(h)1 and T(h)2 cells. T(h)17 cells have been shown to be involved in extracellular bacterial infection but their role in intracellular infection remains unclear. We found antigen-specific IL-17A production during a systemic infection of mice with the facultative intracellular bacterium Salmonella enterica serovar Enteritidis (S. Enteritidis) and examined the function and cellular source of IL-17A during the adaptive immune response to S. Enteritidis. Infected IL-17A-/- mice survived completely after inoculation with the highest infection dose found to be sub-lethal for wild-type (WT) C57BL/6 mice. However, at 20 and 80 days post-infection (d.p.i.), we repeatedly found mildly elevated bacterial burden in spleen and liver of IL-17A-/- mice as compared with WT mice. Overall, IL-17A-/- mice showed reduced clearance of S. Enteritidis. S. Enteritidis-specific IL-17A production was induced in splenocytes and lymph node cells of infected WT mice at both time points, 20 and 80 d.p.i. Classical CD4+ T(h)17 cells developed upon infection with Salmonella. CD4- gammadelta TCR+ and CD4- gammadelta TCR- cells were found to be additional IL-17A-producing cell populations. In infected IL-17A-/- mice, a normal T(h)1 cytokine profile was observed consistent with the overall subtle phenotype. Nevertheless, in the absence of IL-17A, recruitment of neutrophils and delayed-type hypersensitivity (DTH) reactivity was significantly compromised. Our data indicate that IL-17A responses are induced by Salmonella and mildly contribute to protective immunity during S. Enteritidis infection. Thus, IL-17A complements the IL-12/IFN-gamma axis which is essential for protective immunity against salmonellosis in mice and men.
Collapse
Affiliation(s)
- Silke M Schulz
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
34
|
Morton J, Coles B, Wright K, Gallimore A, Morrow JD, Terry ES, Anning PB, Morgan BP, Dioszeghy V, Kühn H, Chaitidis P, Hobbs AJ, Jones SA, O'Donnell VB. Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in the vasculature of healthy mice. Blood 2008; 111:5187-94. [PMID: 18281503 PMCID: PMC2602588 DOI: 10.1182/blood-2007-10-117283] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 02/12/2008] [Indexed: 12/29/2022] Open
Abstract
Whether leukocytes exert an influence on vascular function in vivo is not known. Here, genetic and pharmacologic approaches show that the absence of neutrophils leads to acute blood pressure dysregulation. Following neutrophil depletion, systolic blood pressure falls significantly over 3 days (88.0 +/- 3.5 vs 104.0 +/- 2.8 mm Hg, day 3 vs day 0, mean +/- SEM, P < .001), and aortic rings from neutropenic mice do not constrict properly. The constriction defect is corrected using l-nitroarginine-methyl ester (L-NAME) or the specific inducible nitric oxide synthase (iNOS) inhibitor 1400W, while acetylcholine relaxation is normal. iNOS- or IFNgamma-deficient mice are protected from neutropenia-induced hypotension, indicating that iNOS-derived nitric oxide (NO) is responsible and that its induction involves IFNgamma. Oral enrofloxacin partially inhibited hypotension, implicating bacterial products. Roles for cyclooxygenase, complement C5, or endotoxin were excluded, although urinary prostacyclin metabolites were elevated. Neutrophil depletion required complement opsinization, with no evidence for intravascular degranulation. In summary, circulating neutrophils contribute to maintaining physiological tone in the vasculature, at least in part through suppressing early proinflammatory effects of infection. The speed with which hypotension developed provides insight into early changes that occur in the absence of neutrophils and illustrates the importance of constant surveillance of mucosal sites by granulocytes in healthy mice.
Collapse
Affiliation(s)
- Jonathan Morton
- Department of Medical Biochemistry & Immunology, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Geddes K, Cruz F, Heffron F. Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog 2008; 3:e196. [PMID: 18159943 PMCID: PMC2151088 DOI: 10.1371/journal.ppat.0030196] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/06/2007] [Indexed: 11/25/2022] Open
Abstract
The type III secretion systems (TTSS) encoded in Salmonella pathogenicity island-1 and -2 (SPI-1 and -2) are virulence factors required for specific phases of Salmonella infection in animal hosts. However, the host cell types targeted by the TTSS have not been determined. To investigate this, we have constructed translational fusions between the ß-lactamase reporter and a broad array of TTSS effectors secreted via SPI-1, SPI-2, or both. Secretion of the fusion protein to a host cell was determined by cleavage of a specific fluorescent substrate. In cultured cells, secretion of all six effectors could be observed. However, two to four days following i.p. infection of mice, only effectors secreted by SPI-2 were detected in spleen cells. The cells targeted were identified via staining with nine different cell surface markers followed by FACS analysis as well as by conventional cytological methods. The targeted cells include B and T lymphocytes, neutrophils, monocytes, and dendritic cells, but not mature macrophages. To further investigate replication in these various cell types, Salmonella derivatives were constructed that express a red fluorescent protein. Bacteria could be seen in each of the cell types above; however, most viable bacteria were present in neutrophils. We find that Salmonella is capable of targeting most phagocytic and non-phagocytic cells in the spleen but has a surprisingly high preference for neutrophils. These findings suggest that Salmonella specifically target splenic neutrophils presumably to attenuate their microbicidal functions, thereby promoting intracellular survival and replication in the mouse. Bacteria of the Salmonella genus are important human pathogens and a leading cause of food-borne illness. Salmonella species' ability to cause disease relies on the activities of two sophisticated molecular syringes that allow the bacteria to pump proteins into cells that they infect. The activities of these syringes have been studied extensively in cells grown under laboratory conditions and shown to be essential for the infectious process in animal models. However, the specific cells within infected organs that are targeted by these syringes have not been identified. In this work we describe the specific spleen cells targeted by Salmonella in the mouse. We find that Salmonella is capable of targeting most cell types using their molecular syringes. Quite surprisingly, we find that Salmonella mostly targets neutrophils, a cell type not thought to be associated with live Salmonella in host tissues. These findings challenge our current views of Salmonella infection and may lead to new insight for treating the disease.
Collapse
Affiliation(s)
- Kaoru Geddes
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | | | | |
Collapse
|
36
|
Zala SM, Chan BK, Bilbo SD, Potts WK, Nelson RJ, Penn DJ. Genetic resistance to infection influences a male's sexual attractiveness and modulation of testosterone. Brain Behav Immun 2008; 22:381-7. [PMID: 17945466 DOI: 10.1016/j.bbi.2007.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/17/2007] [Accepted: 09/06/2007] [Indexed: 11/20/2022] Open
Abstract
Females may be attracted to males genetically resistant to infectious diseases, and one potential mechanism for this mating bias is that such males may be better able to maintain high testosterone. To test these two hypotheses, we collected scent-marks from male house mice (Mus domesticus) genetically resistant and susceptible to Salmonella due to a single locus (Nramp 1, also known as Slc11a1). We tested whether females are more attracted to the scent-marks of resistant males, and whether such males are better able to maintain testosterone concentrations during an experimental Salmonella infection. We found that females preferred the scent-marks of genetically resistant males compared to susceptible ones; but they showed no preferences 5d after males were infected. As predicted, genetically resistant males maintained their testosterone concentrations during the experimental infection, whereas susceptible males showed a significant decline 14 d after inoculation. These differences in the males' ability to modulate testosterone, however, do not explain females' attraction to resistant males. Thus, our results indicate that females sometimes prefer males genetically resistant to infection, and they provide the first evidence that males modulate their testosterone depending upon their genetic resistance to infection; however, we found no evidence to link these two findings.
Collapse
Affiliation(s)
- Sarah M Zala
- Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoyenstr. 1a, 1160 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
37
|
Mizuno T, McLennan M, Trott D. Intramuscular vaccination of young calves with aSalmonellaDublin metabolic-drift mutant provides superior protection to oral delivery. Vet Res 2008; 39:26. [DOI: 10.1051/vetres:2008001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 12/17/2007] [Indexed: 11/14/2022] Open
|
38
|
Woo H, Okamoto S, Guiney D, Gunn JS, Fierer J. A model of Salmonella colitis with features of diarrhea in SLC11A1 wild-type mice. PLoS One 2008; 3:e1603. [PMID: 18270590 PMCID: PMC2225501 DOI: 10.1371/journal.pone.0001603] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/14/2008] [Indexed: 11/23/2022] Open
Abstract
Background Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1G169D allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1G169) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10–14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPH-deficient (gp91phox) mice. However, strain 14028s caused severe colitis and diarrhea in gp91phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. Conclusions S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore, a Salmonella phoP mutant can be cleared from the colon by non-oxidative host defenses.
Collapse
Affiliation(s)
- Heungjeong Woo
- Department of Infectious Diseases, Veterans Affairs (VA) Healthcare, San Diego, California, United States of America
| | | | | | | | | |
Collapse
|
39
|
Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O'Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L, Karin M. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 2007; 130:918-31. [PMID: 17803913 PMCID: PMC2134986 DOI: 10.1016/j.cell.2007.07.009] [Citation(s) in RCA: 534] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 05/16/2007] [Accepted: 07/06/2007] [Indexed: 01/03/2023]
Abstract
IKKbeta-dependent NF-kappaB activation plays a key role in innate immunity and inflammation, and inhibition of IKKbeta has been considered as a likely anti-inflammatory therapy. Surprisingly, however, mice with a targeted IKKbeta deletion in myeloid cells are more susceptible to endotoxin-induced shock than control mice. Increased endotoxin susceptibility is associated with elevated plasma IL-1beta as a result of increased pro-IL-1beta processing, which was also seen upon bacterial infection. In macrophages enhanced pro-IL-1beta processing depends on caspase-1, whose activation is inhibited by NF-kappaB-dependent gene products. In neutrophils, however, IL-1beta secretion is caspase-1 independent and depends on serine proteases, whose activity is also inhibited by NF-kappaB gene products. Prolonged pharmacologic inhibition of IKKbeta also augments IL-1beta secretion upon endotoxin challenge. These results unravel an unanticipated role for IKKbeta-dependent NF-kappaB signaling in the negative control of IL-1beta production and highlight potential complications of long-term IKKbeta inhibition.
Collapse
Affiliation(s)
- Florian R Greten
- Second Department of Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Regulatory T (T(reg)) cells show promise for treating autoimmune diseases, but their induction to elevated potency has been problematic when the most optimally derived cells are from diseased animals. To circumvent reliance on auto-antigen reactive T(reg) cells, stimulation to vaccine antigens (Ags) may offer a viable alternative while maintaining potency to protect against proinflammatory diseases. Our Salmonella vaccine expressing colonization factor Ag I (CFA/I) possesses anti-inflammatory properties, evident by elevated Th2 cell responses, reduced inflammatory cell infiltrates in the Peyer's patches, and an absence of proinflammatory cytokine production by infected macrophages. Given these findings, we hypothesized whether this vaccine would be protective against experimental autoimmune encephalomyelitis (EAE). As such, Salmonella-CFA/I protected in both prophylactic and therapeutic paradigms against proteolipid protein (PLP(139-151))-mediated EAE in SJL mice. The protected mice showed significantly reduced clinical disease and subsequent resolution when compared to PBS-treated controls. Histopathological studies showed reduced demyelination and no inflammation of spinal cords when compared to PBS- or Salmonella vector-treated mice. To ascertain whether the observed immune deviation was in part supported by T(reg) cells, analysis revealed involvement of FoxP3(+) CD25(+) CD4(+) T cells. Adoptive transfer of induced TGF-beta (+) T(reg) cells from vaccinated mice showed complete protection against PLP(139-151) challenge, but not by naive T(reg) cells. Partial protection to EAE was also achieved by the adoptive transfer of CD25(-) CD4(+) T cells, suggesting that Th2 cells also contributed. Thus, these data show that T(reg) cells are induced by oral vaccination with Salmonella-CFA/I contributing to the efficacious treatment of autoimmune disease.
Collapse
Affiliation(s)
- D W Pascual
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610, USA.
| | | | | | | |
Collapse
|
41
|
Wick MJ. Monocyte and dendritic cell recruitment and activation during oral Salmonella infection. Immunol Lett 2007; 112:68-74. [PMID: 17720254 DOI: 10.1016/j.imlet.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 07/13/2007] [Accepted: 07/15/2007] [Indexed: 12/24/2022]
Abstract
Immunity to bacterial infection involves the joint effort of the innate and adaptive immune systems. The innate immune response is triggered when the body senses bacterial components, such as lipopolysaccharide, that alarm the body of the invader. An array of cell types function in the innate response. These cells are rapidly recruited to the infection site and activated to optimally perform their functions. The adaptive immune response follows the innate response, and one cell type in particular, dendritic cells (DCs), are the critical link between the innate and adaptive responses. This review will summarize recent data concerning the events that occur early during oral infection with the intracellular pathogen Salmonella, with emphasis on the phagocytic cells involved in combating the infection in the gut-associated lymphoid tissues. In particular, recent findings concerning the recruitment and activation of mononuclear phagocyte populations and dendritic cell subsets will be presented after an overview of the Salmonella infection model.
Collapse
Affiliation(s)
- Mary Jo Wick
- Department of Microbiology and Immunology, Göteborg University, Box 435, S-405 30 Göteborg, Sweden.
| |
Collapse
|
42
|
Makri S, Purdy AE, Bartlett D, Fierer J. Pathogenicity of environmental isolates of V. cholerae in mice. Microbes Infect 2007; 9:1351-8. [PMID: 17890125 DOI: 10.1016/j.micinf.2007.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/24/2022]
Abstract
Environmental V. cholerae (Vc) have the potential for virulence in people and they may also be a reservoir of accessory virulence genes. We infected mice with two non-O1, non-O139 Vc (TP and SIO) that were isolated in San Diego County and compared them to Vc O1 El Tor N16961 using a model of pneumonia in adult mice. Live but not heat killed Vc El Tor and TP caused fatal hemorrhagic pneumonia despite a >90% decrease in CFU in 24h suggesting the disease was toxin mediated. SIO did not cause pneumonia in normal mice but neutropenic, gp91phox and complement (C3) mice were more susceptible to all three strains. TP and SIO lack ctx but have rtxA, hlyA, and hapA, genes that encode virulence factors in Vc El Tor. The explanation for the enhanced virulence of TP remains to be determined.
Collapse
Affiliation(s)
- Stamatoula Makri
- Division of Infectious Diseases, VA Medical Center, San Diego, CA, USA
| | | | | | | |
Collapse
|
43
|
Medina FA, de Almeida CJ, Dew E, Li J, Bonuccelli G, Williams TM, Cohen AW, Pestell RG, Frank PG, Tanowitz HB, Lisanti MP. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect Immun 2006; 74:6665-74. [PMID: 16982844 PMCID: PMC1698056 DOI: 10.1128/iai.00949-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of studies have shown an association of pathogens with caveolae. To this date, however, there are no studies showing a role for caveolin-1 in modulating immune responses against pathogens. Interestingly, expression of caveolin-1 has been shown to occur in a regulated manner in immune cells in response to lipopolysaccharide (LPS). Here, we sought to determine the role of caveolin-1 (Cav-1) expression in Salmonella pathogenesis. Cav-1(-/-) mice displayed a significant decrease in survival when challenged with Salmonella enterica serovar Typhimurium. Spleen and tissue burdens were significantly higher in Cav-1(-/-) mice. However, infection of Cav-1(-/-) macrophages with serovar Typhimurium did not result in differences in bacterial invasion. In addition, Cav-1(-/-) mice displayed increased production of inflammatory cytokines, chemokines, and nitric oxide. Regardless of this, Cav-1(-/-) mice were unable to control the systemic infection of Salmonella. The increased chemokine production in Cav-1(-/-) mice resulted in greater infiltration of neutrophils into granulomas but did not alter the number of granulomas present. This was accompanied by increased necrosis in the liver. However, Cav-1(-/-) macrophages displayed increased inflammatory responses and increased nitric oxide production in vitro in response to Salmonella LPS. These results show that caveolin-1 plays a key role in regulating anti-inflammatory responses in macrophages. Taken together, these data suggest that the increased production of toxic mediators from macrophages lacking caveolin-1 is likely to be responsible for the marked susceptibility of caveolin-1-deficient mice to S. enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Freddy A Medina
- Department of Cancer Biology, Kimmel Cancer Center, Bluemle Life Sciences Building, Room 933, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Johansson C, Ingman M, Jo Wick M. Elevated neutrophil, macrophage and dendritic cell numbers characterize immune cell populations in mice chronically infected with Salmonella. Microb Pathog 2006; 41:49-58. [PMID: 16782300 DOI: 10.1016/j.micpath.2006.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 01/22/2023]
Abstract
The present study characterizes immune cell populations in mice chronically infected with Salmonella. Mice were characterized as chronically infected based on persistently high titers of Salmonella-reactive immunoglobulins in the serum >6 months after a single oral dose of S. enterica serovar Typhimurium. These mice had a visibly enlarged spleen but not liver, while both organs harbored bacteria and had increased total cellularity up to 11 months post-infection. Flow cytometry analysis revealed significantly elevated numbers of neutrophils, dendritic cells (DC) and macrophages in the spleen of chronically infected mice. In contrast, no significant increase in the absolute number of T and B cells was apparent in the spleen and DX5+ cells, which includes NK cells, some NK T cells and possibly some activated T cells, appears to correlate with chronic Salmonella infection in the liver but not the spleen. In situ analyses revealed that CD8alpha+ DC and Gr-1+ cells (neutrophils) increased in the splenic red pulp of chronically infected mice. In addition, Gr-1+ cells, CD68+ cells and CD11c+ cells (DC), the latter lacking detectable staining for CD8alpha and CD4, accumulated around hepatic blood vessels and in the hepatic network in the liver of mice chronically harboring bacteria. These data provide insight into changes that occur within immune cell populations, most notably within splenic and hepatic phagocytic cell populations, that accompany chronic infection with the intracellular bacterium Salmonella.
Collapse
Affiliation(s)
- Cecilia Johansson
- Department of Cell and Molecular Biology, Section for Immunology, Lund University, 221 84 Lund, Sweden
| | | | | |
Collapse
|
45
|
Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun 2005; 73:6771-6781. [PMID: 16177355 PMCID: PMC1230954 DOI: 10.1128/iai.73.10.6771-6781.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/20/2022] Open
Abstract
Immune defense at an interface with the external environment reflects the functions of physical and chemical barriers provided by epithelial and immune cells. Resident epithelial cells, such as keratinocytes, produce numerous peptides with direct antimicrobial activity but also provide a physical barrier against invading pathogens and signal the recruitment of circulating immune cells, such as neutrophils. Antimicrobial peptides such as cathelicidin are produced constitutively by neutrophils and are inducible in keratinocytes in response to infection. The multiplicity of antimicrobial peptides and their cellular sources has resulted in an incomplete understanding of the role of cathelicidin production by epithelial cells in cutaneous immune defense. Therefore, this study sought to evaluate keratinocyte antimicrobial activity and the potential contribution of keratinocyte cathelicidin to host protection against two leading human skin pathogens. Wild-type mice and those with a targeted deletion of the cathelicidin gene, Cnlp, were rendered neutropenic prior to cutaneous infection. Interestingly, Cnlp-deficient mice remained more susceptible to group A streptococcus infection than mice with Cnlp intact, suggesting the involvement of epithelial cell-derived cathelicidin in host immune defense. Keratinocytes were then isolated in culture and found to inhibit the growth of Staphylococcus aureus, an effect that was partially dependent on their ability to synthesize and activate cathelicidin. Further, lentivirus-mediated delivery of activated human cathelicidin enhanced keratinocyte antimicrobial activity. Combined, these data illustrate the potential contribution of keratinocyte cathelicidin to the innate immune defense of skin against bacterial pathogens and highlight the need to consider epithelial antimicrobial function in the diagnosis and therapy of skin infection.
Collapse
Affiliation(s)
- Marissa H Braff
- Department of Medicine, Department of Pediatrics, University of California, San Diego, USA
| | | | | | | | | |
Collapse
|
46
|
Lee SC, Ju SA, Pack HN, Heo SK, Suh JH, Park SM, Choi BK, Kwon BS, Kim BS. 4-1BB (CD137) is required for rapid clearance of Listeria monocytogenes infection. Infect Immun 2005; 73:5144-51. [PMID: 16041031 PMCID: PMC1201223 DOI: 10.1128/iai.73.8.5144-5151.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/11/2004] [Accepted: 03/17/2005] [Indexed: 11/20/2022] Open
Abstract
4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily, is a T-cell-costimulatory receptor that is expressed on activated T cells, dendritic cells, and NK cells. Little has been reported about its role in early host defense against bacterial infection. In this study, we report that 4-1BB-deficient (4-1BB(-/-)) mice are much more susceptible to Listeria monocytogenes (intracellular bacteria) infections than wild-type mice. Upon L. monocytogenes infection, 4-1BB(-/-) mice showed a lower survival rate, a higher bacterial burden in organs, and larger hepatic microabscesses than 4-1BB(+/+) mice. 4-1BB(-/-) mice also had impairment in clearance of bacteria from the bloodstream. Neutrophils from 4-1BB(+/+) mice constitutively expressed 4-1BB, which could be activated to induce intracellular Ca(2+) influx by ligation with anti-4-1BB antibody. On the other hand, neutrophils from 4-1BB(-/-) mice were defective in reactive oxygen species generation, phagocytic activities, and intracellular Ca(2+) mobilization. In addition, mice pretreated with anti-4-1BB monoclonal antibody were much more resistant to L. monocytogenes infection than control antibody-treated mice. Our results support the notion that 4-1BB may play a major role in host defense against intracellular pathogens through neutrophil activation.
Collapse
Affiliation(s)
- Sang-C Lee
- Immunomodulation Research Center, University of Ulsan, San 29, Mukeo-dong, Nam-ku, Ulsan, Republic of Korea, 680-749
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eckmann L, Kagnoff MF. Intestinal mucosal responses to microbial infection. ACTA ACUST UNITED AC 2005; 27:181-96. [PMID: 15928914 DOI: 10.1007/s00281-005-0207-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 12/28/2022]
Abstract
Infections of the human intestinal tract with foodborne and waterborne pathogens are among the leading causes of morbidity and death in the world. Upon ingestion, such pathogens commonly pass through the stomach in sufficient numbers to establish infection in the small intestine or colon. The subsequent interactions with the host depend critically on the particular pathogen, ranging from mere presence in the intestinal lumen and minimal interaction with the epithelium to highly mucosal invasive with rapid systemic spread. This article addresses the morphological and molecular changes that occur in the intestinal mucosa after infection with a selected yet representative spectrum of enteric pathogens, ranging from luminally restricted but epithelial adherent, epithelial invasive, to mucosally invasive, with a focus on intestinal epithelial responses.
Collapse
Affiliation(s)
- Lars Eckmann
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
48
|
Teixeira CFP, Chaves F, Zamunér SR, Fernandes CM, Zuliani JP, Cruz-Hofling MA, Fernandes I, Gutiérrez JM. Effects of neutrophil depletion in the local pathological alterations and muscle regeneration in mice injected with Bothrops jararaca snake venom. Int J Exp Pathol 2005; 86:107-15. [PMID: 15810982 PMCID: PMC2517402 DOI: 10.1111/j.0959-9673.2005.00419.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In order to study the role of neutrophils in the acute local pathological alterations induced by Bothrops jararaca snake venom, and in the process of skeletal muscle regeneration that follows, an experimental model was developed in mice pretreated with either an anti-mouse granulocyte rat monoclonal immunoglobulin G, which induces a profound neutropenia, or an isotype-matched control antibody. B. jararaca venom induced prominent haemorrhage and oedema, but only a moderate myonecrosis. No significant differences were observed in the extent of local haemorrhage, oedema and myonecrosis between neutropenic and control mice, suggesting that neutrophils do not play a determinant role in the acute pathological alterations induced by B. jararaca venom in this experimental model. Moreover, no differences were observed in skeletal muscle regeneration between these two experimental groups. In both the cases, limited areas of myonecrosis were associated with a drastic damage to the microvasculature and a scarce inflammatory infiltrate, with the consequent lack of removal of necrotic debris during the first week, resulting in a poor regenerative response at this time interval. Subsequently, a similar regenerative process occurred in both groups, and by 30 days, necrotic areas were substituted by groups of small regenerating muscle fibres. It is suggested that the drastic effect exerted by B. jararaca venom in the microvasculature precludes an effective access of inflammatory cells to necrotic areas, thereby compromising an effective removal of necrotic debris; this explains the poor regenerative response observed during the first week and the fact that there were no differences between neutropenic and control mice. As neutropenia in this model lasted only 7 days, the successful regenerative process observed at 30 days is associated with revascularization of necrotic regions and with a successful removal by phagocytes of necrotic debris in both groups.
Collapse
Affiliation(s)
| | - Fernando Chaves
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa RicaSan José, Costa Rica
| | - Stella R Zamunér
- Laboratorio de Farmacología, Instituto ButantanSao Paulo, Brazil
| | | | | | | | - Irene Fernandes
- Laboratorio de Imunopatología, Instituto ButantanSao Paulo, Brazil
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa RicaSan José, Costa Rica
| |
Collapse
|
49
|
Scorpio DG, Akkoyunlu M, Fikrig E, Dumler JS. CXCR2 blockade influences Anaplasma phagocytophilum propagation but not histopathology in the mouse model of human granulocytic anaplasmosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:963-8. [PMID: 15358660 PMCID: PMC515272 DOI: 10.1128/cdli.11.5.963-968.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils and causes human granulocytic anaplasmosis. Infection induces neutrophil secretion of interleukin-8 or murine homologs and perpetuates infection by recruiting susceptible neutrophils. We hypothesized that antibody blockade of CXCR2 would decrease A. phagocytophilum tissue load by interrupting neutrophil recruitment but would not influence murine hepatic pathology. C3H-scid mice were treated with CXCR2 antiserum or control prior to or on day 14 after infection. Quantitative PCR and immunohistochemistry for A. phagocytophilum were performed and severity of liver histopathology was ranked. Control mice had more infected cells in tissues than the anti-CXCR2-treated group. The histopathological rank was not different between treated and control animals. Infected cells of control mice clustered in tissue more than in treated mice. The results support the hypothesis of bacterial propagation through chemokine induction and confirm that tissue injury is unrelated to A. phagocytophilum tissue load.
Collapse
Affiliation(s)
- Diana G Scorpio
- Department of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
50
|
Guiney DG, Lesnick M. Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin Immunol 2005; 114:248-55. [PMID: 15721835 DOI: 10.1016/j.clim.2004.07.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Many bacterial pathogens produce virulence factors that alter the host cell cytoskeleton to promote infection. Salmonella strains target cellular actin in a carefully orchestrated series of interactions that promote bacterial uptake into host cells and the subsequent proliferation and intercellular spread of the organisms. The Salmonella Pathogenicity Island 1 (SPI1) locus encodes a type III protein secretion system (TTSS) that translocates effector proteins into epithelial cells to promote bacterial invasion through actin cytoskeletal rearrangements. SPI1 effectors interact directly with actin and also alter the cytoskeleton through activation of the regulatory proteins, Cdc42 and Rac, to produce membrane ruffles that engulf the bacteria. SPI1 also restores normal cellular actin dynamics through the action of another effector, SptP. A second TTSS, Salmonella Pathogenecity Island 2 (SPI2), translocates effectors that promote intracellular survival and growth, accompanied by focal actin polymerization around the Salmonella-containing vacuole (SCV). A number of Salmonella strains also carry the spv virulence locus, encoding an ADP-ribosyl transferase, the SpvB protein, which acts later during intracellular infection to depolymerize the actin cytoskeleton. SpvB produces a cytotoxic effect on infected host cells leading to apoptosis. The SpvB effect appears to promote intracellular infection and may facilitate cell-to-cell spread of the organism, thereby enhancing virulence.
Collapse
Affiliation(s)
- Donald G Guiney
- Department of Medicine 0640, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA.
| | | |
Collapse
|