1
|
Boghean L, Singh S, Mangalaparthi KK, Kizhake S, Umeta L, Wishka D, Grothaus P, Pandey A, Natarajan A. A Selective MAP3K1 Inhibitor Facilitates Discovery of NPM1 as a Member of the Network. Molecules 2025; 30:2001. [PMID: 40363807 PMCID: PMC12073402 DOI: 10.3390/molecules30092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The quinoxaline core is found in several biologically active compounds, with Erdafitinib being the first FDA-approved quinoxaline derivative that targets a kinase and exhibits anti-cancer properties. We previously reported a quinoxaline analog (84) that displayed anti-cancer effects by inhibiting IKKβ, a key kinase in the NFκB pathway. Here, we present the synthesis of a regioisomer (51-106) and its characterization as a selective MAP3K1 inhibitor with improved metabolic stability and oral bioavailability. We used the small molecule MAP3K1 inhibitor in a proteomics study that identified NPM1 as a member of the MAP3K1 network.
Collapse
Affiliation(s)
- Lidia Boghean
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kiran K. Mangalaparthi
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (K.K.M.); (A.P.)
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lelisse Umeta
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donn Wishka
- Drug Synthesis and Chemistry Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA (P.G.)
| | - Paul Grothaus
- Drug Synthesis and Chemistry Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA (P.G.)
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (K.K.M.); (A.P.)
- Department of Community Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Li L, Qiu H. Asperulosidic Acid Restrains Hepatocellular Carcinoma Development and Enhances Chemosensitivity Through Inactivating the MEKK1/NF-κB Pathway. Appl Biochem Biotechnol 2024; 196:1-17. [PMID: 37097403 DOI: 10.1007/s12010-023-04500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Asperulosidic acid (ASPA) is a plant-extracted iridoid terpenoid with tumor-suppressive and anti-inflammatory properties. At present, the antitumor function of ASPA and its related mechanisms in hepatocellular carcinoma (HCC) cells were explored. Human normal hepatocytes HL-7702 and HCC cells (Huh7 and HCCLM3) were treated with varying concentrations (0 to 200 μg/mL) of ASPA. Cell viability, proliferation, apoptosis, migration, and invasion were checked. The expression of proteins was detected by Western blot. Furthermore, the effect of ASPA (100 μg/mL) on the sensitivity of HCC cells to chemotherapeutic agents, including doxorubicin and cisplatin, was evaluated. A subcutaneous xenografted tumor model was set up in nude mice, and the antitumor effects of ASPA were evaluated. ASPA hindered HCC cells' proliferation, migration, and invasion, and amplified their apoptosis and sensitivity to chemotherapeutic agents. Additionally, ASPA inactivated the MEKK1/NF-κB pathway. Overexpression of MEKK1 increased HCC proliferation, migration, and invasion and facilitated chemoresistance. ASPA treatment alleviated the carcinogenic effect mediated by MEKK1 overexpression. MEKK1 knockdown slowed down HCC progression. However, ASPA could not exert additional antitumor effects in MEKK1 knockdown cells. In vivo results displayed that ASPA substantially curbed tumor growth and inactivated the MEKK1/NF-κB pathway in mice. All over, ASPA exerts antitumor effects in HCC by suppressing the MEKK1/NF-κB pathway.
Collapse
Affiliation(s)
- Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No.1882 South Zhong Huan Road, Jiaxing City, Zhejiang Province, 314001, China
| | - Huiwen Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No.1882 South Zhong Huan Road, Jiaxing City, Zhejiang Province, 314001, China.
| |
Collapse
|
3
|
Guan J, Fan Y, Wang S, Zhou F. Functions of MAP3Ks in antiviral immunity. Immunol Res 2023; 71:814-832. [PMID: 37286768 PMCID: PMC10247270 DOI: 10.1007/s12026-023-09401-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Immune signal transduction is crucial to the body's defense against viral infection. Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
Collapse
Affiliation(s)
- Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yao Fan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Liu S, Ren J, Liu S, Zhao X, Liu H, Zhou T, Wang X, Liu H, Tang L, Chen H. Resveratrol inhibits autophagy against myocardial ischemia-reperfusion injury through the DJ-1/MEKK1/JNK pathway. Eur J Pharmacol 2023; 951:175748. [PMID: 37149277 DOI: 10.1016/j.ejphar.2023.175748] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Resveratrol (RES), a natural polyphenolic compound found in red wine and grape skins, has attracted significant attention due to its cardioprotective properties. DJ-1, a multifunctional protein that participated in transcription regulation and antioxidant defense, was shown to provide a significant protective impact in cardiac cells treated with ischemia-reperfusion. We created a myocardial ischemia-reperfusion (I/R) model in vivo and in vitro by ligating the left anterior descending branch of rats and subjecting H9c2 cells to anoxia/reoxygenation (A/R) to investigate whether RES reduces myocardial ischemia-reperfusion injury by upregulating DJ-1. We discovered that RES dramatically enhanced cardiac function in rats with I/R. Subsequently, we found that RES prevented the rise in autophagy (P62 degradation and LC3-II/LC3-I increase) induced by cardiac ischemia-reperfusion in vitro and in vivo. Notably, the autophagic agonist rapamycin (RAPA) eliminated RES-induced cardioprotective effects. In addition, Further data showed that RES significantly increased the expression of DJ-1 in the myocardium with the treatment of I/R. At the same time, pretreatment with RES reduced phosphorylation of MAPK/ERK kinase kinase 1 (MEKK1) and Jun N-terminal Kinase (JNK) stimulated by cardiac ischemia-reperfusion, and Beclin-1 mRNA and protein levels while decreasing lactate dehydrogenase (LDH) and improving cell viability. However, the lentiviral shDJ-1 and JNK agonist anisomycin disrupted the effects of RES. In summary, RES could inhibit autophagy against myocardial ischemia-reperfusion injury through DJ-1 modulation of the MEKK1/JNK pathway, providing a novel therapeutic strategy for cardiac homeostasis.
Collapse
Affiliation(s)
- Song Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jianmin Ren
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shiyi Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhao
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huiru Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Zhou
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xueying Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Haoyue Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lei Tang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Heping Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
5
|
Abdullah MAF, McWhirter SM, Suo Z. Modulation of Kinase Activities In Vitro by Hepatitis C Virus Protease NS3/NS4A Mediated-Cleavage of Key Immune Modulator Kinases. Cells 2023; 12:406. [PMID: 36766748 PMCID: PMC9913602 DOI: 10.3390/cells12030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C Virus NS3/NS4A, a serine protease complex, has been found to interact with many host proteins and cause various adverse effects on cellular function and immune response. For example, the cleavage of important immune factors by NS3/NS4A has been suggested as a mechanism for the hepatitis C virus to evade innate immunity. The spectrum of susceptible substrates for NS3/NS4A cleavage certainly includes important immune modulator kinases such as IKKα, IKKβ, IKKε, and TBK1, as demonstrated in this paper. We show that the kinase activities of these four host kinases were transformed in unexpected ways by NS3/NS4A. Treatment with NS3/NS4A caused a significant reduction in the kinase activities of both IKKα and IKKβ, suggesting that HCV might use its NS3/NS4A protease activity to deactivate the NF-κB-associated innate immune responses. In contrast, the kinase activities of both IKKε and TBK1 were enhanced after NS3/NS4A treatment, and more strikingly, the enhancement was more than 10-fold within 20 min of treatment. Our mass spectroscopic results suggested that the cleavage after Cys89 in the kinase domain of IKKε by NS3/NS4A led to their higher kinase activities, and three potential mechanisms were discussed. The observed kinase activity enhancement might facilitate the activation of both IKKε- and TBK1-dependent cellular antiviral pathways, likely contributing to spontaneous clearance of the virus and observed acute HCV infection. After longer than 20 min cleavage, both IKKε- and TBK1 gradually lost their kinase activities and the relevant antiviral pathways were expected to be inactivated, facilitating the establishment of chronic HCV infection.
Collapse
Affiliation(s)
| | - Sarah M. McWhirter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Differential Expression of Immune Genes in the Rhipicephalus microplus Gut in Response to Theileria equi Infection. Pathogens 2022; 11:pathogens11121478. [PMID: 36558812 PMCID: PMC9782190 DOI: 10.3390/pathogens11121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Rhipicephalus microplus is the only tick species known to serve as a biological vector of Theileria equi for horses and other equids in Brazil. The protozoan T. equi is one of the causal agents of equine piroplasmosis, a major threat in horse breeding systems. Vector competence is closely linked to the pathogens' ability to evade tick defense mechanisms. However, knowledge of tick immune response against infections by hemoparasites of the Theileria genus is scarce. In the present study, the expression of genes involved in immune signaling pathways of R. microplus adults' guts when challenged with a high or low parasitic load of T. equi was evaluated. This research demonstrates divergences in the immune gene expression pattern linked to T. equi infection in R. microplus since the Toll, IMD, and JNK signaling pathways were transcriptionally repressed in the guts of adult ticks infected with T. equi. Moreover, the results showed that different infectious doses of T. equi induce differential gene expression of key components of immune signaling cascades in R. microplus gut, suggesting a link between the intensity of infection and the activation of tick immunity response. The present study adds knowledge to elucidate the gut immune signaling response of R. microplus to T. equi infection. In addition, the generated data can serve as a basis for further investigations to develop strategies for controlling and preventing equine piroplasmosis.
Collapse
|
7
|
Calcium Dobesilate Modulates PKCδ-NADPH Oxidase- MAPK-NF-κB Signaling Pathway to Reduce CD14, TLR4, and MMP9 Expression during Monocyte-to-Macrophage Differentiation: Potential Therapeutic Implications for Atherosclerosis. Antioxidants (Basel) 2021; 10:antiox10111798. [PMID: 34829669 PMCID: PMC8615002 DOI: 10.3390/antiox10111798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Monocyte-to-macrophage differentiation results in the secretion of various inflammatory mediators and oxidative stress molecules necessary for atherosclerosis pathogenesis. Consequently, this differentiation represents a potential clinical target in atherosclerosis. Calcium dobesilate (CaD), an established vasoactive and angioprotective drug in experimental models of diabetic microvascular complications reduces oxidative stress and inhibits inflammation via diverse molecular targets; however, its effect on monocytes/macrophages is poorly understood. In this study, we investigated the anti-inflammatory mechanism of CaD during phorbol 12-myristate 13-acetate (PMA)-induced monocyte-to-macrophage differentiation in in vitro models of sepsis (LPS) and hyperglycemia, using THP-1 monocytic cell line. CaD significantly suppressed CD14, TLR4, and MMP9 expression and activity, lowering pro-inflammatory mediators, such as IL1β, TNFα, and MCP-1. The effects of CaD translated through to studies on primary human macrophages. CaD inhibited reactive oxygen species (ROS) generation, PKCδ, MAPK (ERK1/2 and p38) phosphorylation, NOX2/p47phox expression, and membrane translocation. We used hydrogen peroxide (H2O2) to mimic oxidative stress, demonstrating that CaD suppressed PKCδ activation via its ROS-scavenging properties. Taken together, we demonstrate for the first time that CaD suppresses CD14, TLR4, MMP9, and signature pro-inflammatory cytokines, in human macrophages, via the downregulation of PKCδ/NADPH oxidase/ROS/MAPK/NF-κB-dependent signaling pathways. Our data present novel mechanisms of how CaD alleviates metabolic and infectious inflammation.
Collapse
|
8
|
Chandrasekaran A, Dittlau KS, Corsi GI, Haukedal H, Doncheva NT, Ramakrishna S, Ambardar S, Salcedo C, Schmidt SI, Zhang Y, Cirera S, Pihl M, Schmid B, Nielsen TT, Nielsen JE, Kolko M, Kobolák J, Dinnyés A, Hyttel P, Palakodeti D, Gorodkin J, Muddashetty RS, Meyer M, Aldana BI, Freude KK. Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Reports 2021; 16:2736-2751. [PMID: 34678206 PMCID: PMC8581052 DOI: 10.1016/j.stemcr.2021.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration. FTD3 iPSC-derived astrocytes display impaired autophagy Impaired autophagy affects mitochondria turnover, glucose hypometabolism and TCA cycle FTD3 astrocytes contribute to reactive gliosis by increased C3, LCN2, IL6, and IL8 Reactive astrocyte phenotypes are present in both in vitro and in vivo models
Collapse
Affiliation(s)
- Abinaya Chandrasekaran
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Katarina Stoklund Dittlau
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Giulia I Corsi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Nadezhda T Doncheva
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sarayu Ramakrishna
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; The University of Trans-Disciplinary Health Sciences and Technology, Bangalore 560064, India
| | - Sheetal Ambardar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sissel I Schmidt
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Yu Zhang
- Department of Experimental Medical Science, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | | | - Troels Tolstrup Nielsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen E Nielsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | | | | | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Jan Gorodkin
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Ravi S Muddashetty
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
9
|
Ning X, Sun L. Identification and characterization of immune-related lncRNAs and lncRNA-miRNA-mRNA networks of Paralichthys olivaceus involved in Vibrio anguillarum infection. BMC Genomics 2021; 22:447. [PMID: 34130627 PMCID: PMC8204505 DOI: 10.1186/s12864-021-07780-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) structurally resemble mRNAs and exert crucial effects on host immune defense against pathogen infection. Japanese flounder (Paralichthys olivaceus) is an economically important marine fish susceptible to Vibrio anguillarum infection. To date, study on lncRNAs in flounder is scarce. RESULTS Here, we reported the first systematic identification and characterization of flounder lncRNAs induced by V. anguillarum infection at different time points. A total of 2,368 lncRNAs were identified, 414 of which were differentially expressed lncRNAs (DElncRNAs) that responded significantly to V. anguillarum infection. For these DElncRNAs, 3,990 target genes (named DETGs) and 42 target miRNAs (named DETmiRs) were identified based on integrated analyses of lncRNA-mRNA and lncRNA-miRNA expressions, respectively. The DETGs were enriched in a cohort of functional pathways associated with immunity. In addition to modulating mRNAs, 36 DElncRNAs were also found to act as competitive endogenous RNAs (ceRNAs) that regulate 37 DETGs through 16 DETmiRs. The DETmiRs, DElncRNAs, and DETGs formed ceRNA regulatory networks consisting of 114 interacting DElncRNAs-DETmiRs-DETGs trinities spanning 10 immune pathways. CONCLUSIONS This study provides a comprehensive picture of lncRNAs involved in V. anguillarum infection. The identified lncRNAs and ceRNA networks add new insights into the anti-bacterial immunity of flounder.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, 210023, Nanjing, Jiangsu, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, 222005, Lianyungang, Jiangsu, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
10
|
Lin X, Zhang J, Fan D, Hou J, Wang H, Zhu L, Tian R, An X, Yan M. Frutescone O from Baeckea frutescens Blocked TLR4-Mediated Myd88/NF-κB and MAPK Signaling Pathways in LPS Induced RAW264.7 Macrophages. Front Pharmacol 2021; 12:643188. [PMID: 33986676 PMCID: PMC8112673 DOI: 10.3389/fphar.2021.643188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Frutescone O was isolated from the aerial parts of Baeckea frutescens L., which was commonly used as a folk medicinal material for treating anti-inflammatory disease in South East Asia. This study aimed to investigate the anti-inflammatory activity and related signaling cascade of Frutescone O (Fru) in LPS induced RAW264.7 cells. The anti-inflammation activity of Frutescone O was determined according to the inhibitory effects on the secretion of nitric oxide (NO), expression of inducible NO synthase, and pro-inflammatory cytokines. The regulation of Myeloid differentiation factor 88 (Myd88), inhibition of NF-κB, and MAPK pathways were further investigated for molecular mechanisms. Fru significantly decreased the expression of iNOS and the production of NO in LPS-stimulated RAW264.7 cells. It also dose-dependently suppressed LPS induced expression of IL-1β, IL-6, and TNF-α. Furthermore, Fru remarkably inhibited the upregulation of NF-κB (p50) expression in the nucleus and the phosphorylation ratio of p38, JNK, ERK, and Myd88 signaling protein. The molecular docking and cellular thermal shift assay (CETSA) results indicated that Fru participated in a robust and stable interaction with the active site of TLR4-MD2. Thus, Fru suppressed the LPS induced inflammation in RAW264.7 cells by blocking the TLR4 mediated signal transduction through the NF-κB and MAPK signaling pathways and inhibiting the Myd88 and iNOS expression.
Collapse
Affiliation(s)
- Xiaobing Lin
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Junhan Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Decai Fan
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Jiqin Hou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lin Zhu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruina Tian
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Yan
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Gentile S, Eskandari N, Rieger MA, Cuevas BD. MEKK1 Regulates Chemokine Expression in Mammary Fibroblasts: Implications for the Breast Tumor Microenvironment. Front Oncol 2021; 11:609918. [PMID: 33868996 PMCID: PMC8044940 DOI: 10.3389/fonc.2021.609918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Breast tumors contain both transformed epithelial cells and non-transformed stroma cells producing secreted factors that can promote metastasis. Previously, we demonstrated that the kinase MEKK1 regulates cell migration and gene expression, and that transgene-induced breast tumor metastasis is markedly inhibited in MEKK1-deficient mice. In this report, we examined the role of MEKK1 in stroma cell gene expression and the consequent effect on breast tumor cell function. Using a heterotypic cell system to quantify the effect of stroma cells on breast tumor cell function, we discovered that MEKK1-/- fibroblasts are significantly less effective at inducing tumor cell invasion than MEKK1+/+ fibroblasts. Expression array analysis revealed that both baseline and tumor cell-induced expression of the chemokines CCL3, CCL4, and CCL5 were markedly reduced in MEKK1-/- mammary fibroblasts. By focusing on the role of MEKK1 in CCL5 regulation, we discovered that MEKK1 kinase activity promotes CCL5 expression, and inactive mutant MEKK1 strongly inhibits CCL5 transcription. CCL5 and the other MEKK1-dependent chemokines are ligands for the GPCR CCR5, and we show that the CCR5 antagonist Maraviroc strongly inhibits fibroblast-induced tumor cell migration. Finally, we report that fibroblast growth factor 5 (FGF-5) is secreted by MDA-MB 231 cells, that FGF-5 activates MEKK1 effectors ERK1/2 and NFκB in fibroblasts, and that chemical inhibition of NFκB inhibits CCL5 expression. Our results suggest that MEKK1 contributes to the formation of a breast tumor microenvironment that supports metastasis by promoting expression of stroma cell chemokine genes in response to tumor cell-induced paracrine signaling.
Collapse
Affiliation(s)
- Saverio Gentile
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Najmeh Eskandari
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Michael A Rieger
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Bruce D Cuevas
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
12
|
Abstract
The protein kinase MEKK1 activates stress-signaling pathways in response to various cellular stressors, including chemotherapies that disrupt dynamics of the tubulin cytoskeleton. We show that MEKK1 contains a previously uncharacterized domain that can preferentially bind to the curved tubulin heterodimer—which is found in soluble tubulin and at sites of microtubule assembly and disassembly. Mutations that interfere with MEKK1−tubulin binding disrupt microtubule networks in migrating cells and are enriched in patient-derived tumor sequences. These results suggest that MEKK1−tubulin binding may be relevant to cancer progression, and the efficacy of microtubule-disrupting chemotherapies that require the activity of MEKK1. The MEKK1 protein is a pivotal kinase activator of responses to cellular stress. Activation of MEKK1 can trigger various responses, including mitogen-activated protein (MAP) kinases, NF-κB signaling, or cell migration. Notably, MEKK1 activity is triggered by microtubule-targeting chemotherapies, among other stressors. Here we show that MEKK1 contains a previously unidentified tumor overexpressed gene (TOG) domain. The MEKK1 TOG domain binds to tubulin heterodimers—a canonical function of TOG domains—but is unusual in that it appears alone rather than as part of a multi-TOG array, and has structural features distinct from previously characterized TOG domains. MEKK1 TOG demonstrates a clear preference for binding curved tubulin heterodimers, which exist in soluble tubulin and at sites of microtubule polymerization and depolymerization. Mutations disrupting tubulin binding decrease microtubule density at the leading edge of polarized cells, suggesting that tubulin binding may play a role in MEKK1 activity at the cellular periphery. We also show that MEKK1 mutations at the tubulin-binding interface of the TOG domain recur in patient-derived tumor sequences, suggesting selective enrichment of tumor cells with disrupted MEKK1–microtubule association. Together, these findings provide a direct link between the MEKK1 protein and tubulin, which is likely to be relevant to cancer cell migration and response to microtubule-modulating therapies.
Collapse
|
13
|
Gesser B, Rasmussen MK, Iversen L. Dimethyl Fumarate Targets MSK1, RSK1, 2 and IKKα/β Kinases and Regulates NF-κB /p65 Activation in Psoriasis: A Demonstration of the Effect on Peripheral Blood Mononuclear Cells, Drawn from Two Patients with Severe Psoriasis Before and After Treatment with Dimethyl Fumarate. PSORIASIS-TARGETS AND THERAPY 2020; 10:1-11. [PMID: 32309199 PMCID: PMC7138529 DOI: 10.2147/ptt.s234151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/03/2020] [Indexed: 01/09/2023]
Abstract
Background Dimethyl fumarate (DMF) has an inhibitory effect on the production of pro-inflammatory proteins from different cells which participate in the immune reaction in psoriatic skin. Most recently it was shown that DMF is an allosteric covalent inhibitor of the p90 ribosomal S6 kinases (RSK1, 2), determined by X-ray crystallography. DMF binds to a specific cysteine residue in RSK2 and in the closely related mitogen and stress-activated kinases 1 (MSK1) which inhibits further downstream activation. Objectives The aim of this study was to review the literature on the effects of DMF on activation of MSK1, RSK1, 2 kinases, and downstream transcription factors NF-κB/p65 and IκBα in cells contributing to the pathogenesis of psoriasis. We also hypothesized and studied if treatment with DMF would inhibit the activation of MSK1, RSK1, 2 kinases in peripheral blood mononuclear cells (PBMCs) in psoriatic patients. Methods PBMCs were purified from patients with severe psoriasis before and after 90 days of treatment with DMF. Cells were stimulated with anisomycin, IL-1β or EGF for 10 and 20 minutes. The levels of phosphorylation of MSK1, RSK1, 2 or NF-κB/p65, IκBα were analyzed by Western blotting. Results Our case study showed that treatment with DMF inhibited the activation of MSK1 and RSK1, 2 kinases in PBMCs in patients. This supports that DMF is the active metabolite in vivo in psoriatic patients during DMF treatment. Conclusion Pro-inflammatory proteins are induced through activation of MSK1 and NF-κB/p65 at (S276). The extracellular signal-regulated kinases (ERK1/2) control cell survival by activating both MSK1 and RSK1, 2 kinases. P-RSK1, 2 activates P-κBα and NF-κB/p65 at (S536). The phosphorylation of NF-κB/p65 at (S276) and (S536) controls different T cell and dendritic cell functions. DMF´s inhibitory effect on MSK1 and RSK1, 2 kinase activations reduces multiple immune reactions in psoriatic patients.
Collapse
Affiliation(s)
- Borbala Gesser
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mads K Rasmussen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Soto-Mercado V, Mendivil-Perez M, Urueña-Pinzon C, Fiorentino S, Velez-Pardo C, Jimenez-Del-Rio M. TPEN Exerts Antitumor Efficacy in Murine Mammary Adenocarcinoma Through an H2O2 Signaling Mechanism Dependent on Caspase-3. Anticancer Agents Med Chem 2019; 18:1617-1628. [PMID: 29697031 DOI: 10.2174/1871520618666180426111520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is the second most common cancer worldwide. N, N, N', N'-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) is a lipid-soluble zinc metal chelator that induces apoptosis in cancer cells through oxidative stress (OS). However, the effectiveness and the mechanisms involved in TPENinduced cell death in mammary adenocarcinoma cells in vitro and in vivo are still unclear. OBJECTIVE This study aimed to evaluate the cytotoxic effect of TPEN in mouse embryonic fibroblasts (MEFs, as normal control cells) and mammary adenocarcinoma cancer cells (TS/A cells) in vitro and in a mammary tumor model in vivo. METHODS Cells were treated with TPEN (0-3 µM), and changes in nuclear chromatin and DNA, mitochondrial membrane potential (ΔΨm), and intracellular reactive oxygen species (ROS) levels were determined by both fluorescence microscopy and flow cytometry. Cell proliferation and the cell cycle were also analyzed. Cellular markers of apoptosis were evaluated by Western blot. Finally, the effect of TPEN in a mammary adenocarcinoma tumor model in vivo was determined by immunohistological analyses. RESULTS TPEN induced apoptosis in TS/A cells in a dose-dependent manner, increasing nuclear chromatin condensation, DNA fragmentation, cell cycle arrest and ΔΨm loss. Additionally, TPEN increased dichlorofluorescein fluorescence (DCF+) intensity, indicative of ROS production; increased DJ-1-Cys106-sulfonate expression, a marker of intracellular H2O2 stress; induced p53 and PUMA upregulation; and activated caspase-3. Moreover, TPEN induced mammary cancer cell elimination and tumor size reduction in vivo 48 h after treatment through an OS-induced apoptotic mechanism. CONCLUSION TPEN selectively induces apoptosis in TS/A cells through an H2O2-mediated signaling pathway. Our findings support the use of TPEN as a potential treatment for breast cancer.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412; SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412; SIU Medellin, Colombia
| | - Claudia Urueña-Pinzon
- Grupo de Inmunobiologia y Biologia Celular, Facultad de Ciencias, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogota, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiologia y Biologia Celular, Facultad de Ciencias, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogota, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412; SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412; SIU Medellin, Colombia
| |
Collapse
|
15
|
Li XH, Gaynor RB. Regulation of NF-kappaB by the HTLV-1 Tax protein. Gene Expr 2018; 7:233-45. [PMID: 10440224 PMCID: PMC6174672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The Tax protein encoded by the human T-cell leukemia virus type 1 (HTLV-1) activates viral gene expression via the ATF/CREB pathway. Tax also induces a variety of cellular genes through activation of the transcription factor NF-kappaB. The ability of Tax to activate the NF-kappaB pathway plays an essential role in HTLV-1-induced cellular transformation. This review briefly summarizes the remarkable discoveries of the past several years that have greatly advanced our knowledge on signal-mediated activation of the NF-kappaB pathway. It highlights our current understanding of how viral agents like Tax modulate cellular signaling machinery to activate the NF-kappaB pathway.
Collapse
Affiliation(s)
- Xiao Hua Li
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235-8594
| | - Richard B. Gaynor
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235-8594
- Address correspondence to Richard B. Gaynor, Division of Hematology-Oncology, Department of Medicine, U.T. Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-8594. Tel: (214) 648-7570; Fax: (214) 648-8862; E-mail:
| |
Collapse
|
16
|
Avivar-Valderas A, McEwen R, Taheri-Ghahfarokhi A, Carnevalli LS, Hardaker EL, Maresca M, Hudson K, Harrington EA, Cruzalegui F. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget 2018; 9:21444-21458. [PMID: 29765551 PMCID: PMC5940413 DOI: 10.18632/oncotarget.25118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2), decreased function in tumor suppressors (e.g. PTEN) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3KαH1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides mechanistic and in vivo evidence indicating a role for MAP3K1 as a tumor suppressor gene at least in the context of PIK3CA-mutant backgrounds. Further, our work predicts that MAP3K1 mutational status may be considered as a predictive biomarker for efficacy in PI3K pathway inhibitor trials.
Collapse
Affiliation(s)
- Alvaro Avivar-Valderas
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: TiGenix, Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Robert McEwen
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | | | - Marcello Maresca
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kevin Hudson
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: 2TheNth, Adelphi Mill, Bollington, Macclesfield, UK
| | | | - Francisco Cruzalegui
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: Pierre Fabre R&D Centre, Toulouse, France
| |
Collapse
|
17
|
Yu QW, Wang H, Huo JT, An XF, Gao P, Jiang ZZ, Zhang LY, Yan M. Suppression of Baeckea frutescens L. and its components on MyD88-dependent NF-κB pathway in MALP-2-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 207:92-99. [PMID: 28576579 DOI: 10.1016/j.jep.2017.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/07/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baeckea frutescens L. is commonly used as a folk medicinal material. There are nineteen components in its volatile oil, including Pcymol which has effects of eliminating phlegm, relieving asthma and antiviral. This study was aimed to investigate the anti-infectious inflammatory activities of Baeckea frutescens L. and its conponents and analyzing the mechanisms. MATERIALS AND METHODS The anti-infectious inflammation of Baeckea frutescens L. were studied by using macrophage activating lipopeptide-2 (MALP-2)-stimulated RAW264.7 cell model in vitro. Secretion of nitric oxide (NO), expression of inducible NO synthase (iNOS) and cytokines were detected as classic inflammatory index. Expression of Myeloid differentiation factor 88 (MyD88), degradation of inhibitory κBα (IκBα) and nuclear translocation of NF-κB p65 were further investigated. RESULTS The results suggested that Baeckea frutescens L. has effect on suppression of MALP-2-mediated inflammation in RAW264.7 cells. The secretion of NO and the expression of iNOS could be inhibited. The secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were also declined. Baeckea frutescens L. significantly decreased the expression of MyD88, therefore, inhibited the degradation of IκBα, reduced the level of nuclear translocation of p65. CONCLUSION The results of this study indicated that Baeckea frutescens L. and its components could inhibit the anti-infectious inflammatory events and iNOS expression in MALP-2 stimulated RAW264.7 cells. Among them, BF-2 might play a role through the inhibition of the MyD88 and NF-κB pathway. Our study might provide a new strategy to design and develop this kind of drug towards mycoplasma-infected inflammation.
Collapse
Affiliation(s)
- Qin-Wei Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Ting Huo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Fei An
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210008, China
| | - Peng Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Chadha R, Bhalla Y, Jain A, Chadha K, Karan M. Dietary Soy Isoflavone: A Mechanistic Insight. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Soy, a major component of the diet for centuries contains the largest concentration of isoflavones, a class of phytoestrogens. A variety of health benefits are associated with the consumption of soy primarily because of the isoflavones genistein, daidzein, and glycitein with a potential protective effect against a number of chronic diseases. Owing to the pharmaceutical and nutraceutical properties allied with isoflavonoids and their use in functional foods, there is a growing interest in these compounds. This review throws light on the chemistry, and significant pharmacological and biopharmaceutical aspects of soy isoflavones. This article critically describes the mechanisms of action, infers conclusions and shows opportunity for future research.
Collapse
Affiliation(s)
- Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Yashika Bhalla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ankita Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kunal Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Tan J, Tedrow JR, Nouraie M, Dutta JA, Miller DT, Li X, Yu S, Chu Y, Juan-Guardela B, Kaminski N, Ramani K, Biswas PS, Zhang Y, Kass DJ. Loss of Twist1 in the Mesenchymal Compartment Promotes Increased Fibrosis in Experimental Lung Injury by Enhanced Expression of CXCL12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2269-2285. [PMID: 28179498 PMCID: PMC5337810 DOI: 10.4049/jimmunol.1600610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/12/2017] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow-derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury.
Collapse
Affiliation(s)
- Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - John R Tedrow
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Justin A Dutta
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - David T Miller
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shibing Yu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanxia Chu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brenda Juan-Guardela
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
20
|
Al-Sadi R, Guo S, Ye D, Rawat M, Ma TY. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1151-1165. [PMID: 26948423 PMCID: PMC4861759 DOI: 10.1016/j.ajpath.2015.12.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor (TNF)-α, a key mediator of intestinal inflammation, causes an increase in intestinal epithelial tight junction (TJ) permeability by activating myosin light chain kinase (MLCK; official name MYLK3) gene. However, the precise signaling cascades that mediate the TNF-α-induced activation of MLCK gene and increase in TJ permeability remain unclear. Our aims were to delineate the upstream signaling mechanisms that regulate the TNF-α modulation of intestinal TJ barrier function with the use of in vitro and in vivo intestinal epithelial model systems. TNF-α caused a rapid activation of both canonical and noncanonical NF-κB pathway. NF-κB-inducing kinase (NIK) and mitogen-activated protein kinase kinase-1 (MEKK-1) were activated in response to TNF-α. NIK mediated the TNF-α activation of inhibitory κB kinase (IKK)-α, and MEKK1 mediated the activation of IKK complex, including IKK-β. NIK/IKK-α axis regulated the activation of both NF-κB p50/p65 and RelB/p52 pathways. Surprisingly, the siRNA induced knockdown of NIK, but not MEKK-1, prevented the TNF-α activation of both NF-κB p50/p65 and RelB/p52 and the increase in intestinal TJ permeability. Moreover, NIK/IKK-α/NF-κB p50/p65 axis mediated the TNF-α-induced MLCK gene activation and the subsequent MLCK increase in intestinal TJ permeability. In conclusion, our data show that NIK/IKK-α/regulates the activation of NF-κB p50/p65 and plays an integral role in the TNF-α-induced activation of MLCK gene and increase in intestinal TJ permeability.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Dongmei Ye
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| | - Thomas Y Ma
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico.
| |
Collapse
|
21
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
22
|
Liu C, Wang S, Zhu S, Wang H, Gu J, Gui Z, Jing J, Hou X, Shao Y. MAP3K1-targeting therapeutic artificial miRNA suppresses the growth and invasion of breast cancer in vivo and in vitro. SPRINGERPLUS 2016; 5:11. [PMID: 26759750 PMCID: PMC4700027 DOI: 10.1186/s40064-015-1597-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023]
Abstract
Recent investigations have highlighted that therapeutic artificial microRNAs could be promising candidates for cancer therapy through the modulation of tumor promoter or suppressor. MEK kinase 1 (MEKK1) is expressed by mitogen-activated kinase kinase kinase 1 (MAP3K1), an important kinase that links Ras activation to MAPK signaling. In the present study, we showed that synthetic MAP3K1-targeting artificial miRNA may provide considerable beneficial effects in the prevention of breast cancer growth and metastasis. We showed that MEKK1 was highly expressed in human breast cancer specimens, compared with adjacent normal tissues. Using a miRNA-expressing lentivirus system, we delivered a artificial miRNA (Map3k1 amiRNA) that targets MAP3K1 into 4T1 breast cancer cells and investigated the impact of MAP3K1-targeting miRNA on the growth and invasive behavior of breast cancer in vitro and in vivo. We found that overexpression of Map3k1 amiRNA led to impaired activities of p-ERK and p-p38. In addition, Map3k1 amiRNA induced marked proliferative impairment and invasive attenuation in breast cancer cells. However, Map3k1 amiRNA did not have evident influence on the apoptotic response of 4T1 cells. Moreover, using in vivo nude mice model, we identified that Map3k1 amiRNA attenuated tumor growth and lung metastasis of breast cancer cells. Taken together, our findings explicitly indicated that MEKK1 exerted important oncogenic property in breast cancer development, and MAP3K1-targeting artificial miRNA may provide promising therapeutic effects in the treatment of breast cancer.
Collapse
Affiliation(s)
- Chun Liu
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| | - Shengjie Wang
- Kangda College of Nanjing Medical University, 88 Chunhui Road, Lianyungang, Jiangsu People's Republic of China
| | - Shunxing Zhu
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| | - Haifeng Wang
- Kangda College of Nanjing Medical University, 88 Chunhui Road, Lianyungang, Jiangsu People's Republic of China
| | - Jiayi Gu
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| | - Zeping Gui
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| | - Jin Jing
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| | - Xiaofan Hou
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| | - Yixiang Shao
- Laboratory animal center of Nantong University, 19 Qixiu Road, Nantong, Jiangsu People's Republic of China
| |
Collapse
|
23
|
Ashley AK, Hinds AI, Hanneman WH, Tjalkens RB, Legare ME. DJ-1 mutation decreases astroglial release of inflammatory mediators. Neurotoxicology 2015; 52:198-203. [PMID: 26691871 DOI: 10.1016/j.neuro.2015.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/10/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Mutations in DJ-1, reactive gliosis and concomitant inflammatory processes are implicated in the pathogenesis and progression of Parkinson's disease (PD). To study the physiological consequences of DJ-1 mutation in the context of neuroinflammatory insult, primary cortical astrocytes were isolated from DJ-1 knockout mice. Astrocytes were exposed to 1μg/mL lipopolysaccharide (LPS) for 24h following 2h pre-exposure to inhibitors of MEK (U0126), JNK (JNK inhibitor II) or p38 (SB203580). Real-time PCR was used to assess the LPS-induced expression of pro-inflammatory mediators cyclooxygenase 2 (COX2), inducible nitric oxide synthetase (NOS2), and tumor necrosis factor α (TNFα). LPS-induced expression of COX2 decreased similarly in DJ-1(+/+) and DJ-1(-/-) astrocytes in response to inhibition of p38, but was unaffected by inhibition of MEK or JNK. No significant alterations in NOS2 expression were observed in any inhibitor-treated cells. The inhibitors did not affect expression of TNFα; however, DJ-1(-/-) astrocytes had consistently lower expression compared to DJ-1(+/+) counterparts. Secretion of TNFα and prostaglandin E2 (PGE2) into the culture medium was significantly decreased in DJ-1(-/-) astrocytes, and inhibition of p38 decreased this secretion in both genotypes. In conclusion, DJ-1(-/-) astrocytes may provide decreased neuroprotection to surrounding neurons due to alterations in pro-inflammatory mediator expression.
Collapse
Affiliation(s)
- A K Ashley
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - A I Hinds
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - W H Hanneman
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - R B Tjalkens
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - M E Legare
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States.
| |
Collapse
|
24
|
Di Zanni E, Fornasari D, Ravazzolo R, Ceccherini I, Bachetti T. Identification of novel pathways and molecules able to down-regulate PHOX2B gene expression by in vitro drug screening approaches in neuroblastoma cells. Exp Cell Res 2015; 336:43-57. [PMID: 25882494 DOI: 10.1016/j.yexcr.2015.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
PHOX2B is a transcription factor involved in the regulation of neurogenesis and in the correct differentiation of the autonomic nervous system. The pathogenetic role of PHOX2B in neuroblastoma (NB) is supported by mutations in familial, sporadic and syndromic cases of NB and overexpression of PHOX2B and its target ALK in tumor samples and NB cell lines. Starting from these observations, we have performed in vitro drug screening approaches targeting PHOX2B overexpression as a potential pharmacological means in NB. In particular, in order to identify molecules able to decrease PHOX2B expression, we have evaluated the effects of 70 compounds in IMR-32 cell line stably expressing the luciferase gene under the control of the PHOX2B promoter. Curcumin, SAHA and trichostatin A showed to down-regulate the PHOX2B promoter activity which resulted in a decrease of both protein and mRNA expressions. In addition, we have observed that curcumin acts by interfering with PBX-1/MEIS-1, NF-κB and AP-1 complexes, in this work demonstrated for the first time to regulate the transcription of the PHOX2B gene. Finally, combined drug treatments showed successful effects in down-regulating the expression of both PHOX2B and its target ALK genes, thus supporting the notion of the effectiveness of molecule combination in tumor therapy.
Collapse
Affiliation(s)
| | - Diego Fornasari
- Dipartimento di Farmacologia, Università degli Studi di Milano e CNR-Istituto di Neuroscienze, Italy
| | - Roberto Ravazzolo
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Italy; Università degli Studi di Genova, Italy
| | | | | |
Collapse
|
25
|
Chen X, Miao J, Wang H, Zhao F, Hu J, Gao P, Wang Y, Zhang L, Yan M. The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:72-80. [PMID: 25975516 DOI: 10.1016/j.jep.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/06/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ainsliaea fragrans Champ. (A. fragrans) is a traditional Chinese herbal that contains components like 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. It exhibits anti-inflammatory activities which has been used for the treatment of gynecological diseases for many years in China. The aims of the present study were to investigate the anti-inflammatory activities of A. fragrans and elucidate the underlying mechanisms with regard to its molecular basis of action for the best component. MATERIALS AND METHODS The anti-inflammatory effects of A. fragrans were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS) and pro-inflammatory cytokines, inhibitory κBα (IκBα) degradation and nuclear translocation of NF-κB p65 were further investigated. RESULTS The present study demonstrated that A. fragrans could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. Further investigations showed A. fragrans could suppress iNOS expression. A. fragrans also inhibited the expression of tumor necrosis factor-alpha and interleukin-6. A. fragrans significantly decreased the degradation of IκBα, reduced the level of nuclear translocation of p65. All these results suggested the inhibitory effects of A. fragrans on the production of inflammatory mediators through the inhibition of the NF-κB activation pathway. CONCLUSION Our results indicated that A. fragrans inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of NF-κB pathway. This study gives scientific evidence that validate the use of A. fragrans in treatment of patients with gynecological diseases in clinical practice in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingshan Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, PR China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Fang Zhao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jie Hu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Peng Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yue Wang
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China.
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
26
|
NF-κB Upregulates Type 5 Phosphodiesterase in N9 Microglial Cells: Inhibition by Sildenafil and Yonkenafil. Mol Neurobiol 2015; 53:2647-58. [PMID: 26108184 DOI: 10.1007/s12035-015-9293-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/08/2015] [Indexed: 01/02/2023]
Abstract
Our previous studies showed that the phosphodiesterase-5 (PDE5) inhibitor sildenafil inhibited the microglial activation induced by lipopolysaccharide (LPS). However, whether yonkenafil, a novel PDE5 inhibitor, also inhibits microglial activation and the underlying mechanism of inhibition remain elusive. Here we found that yonkenafil significantly suppressed the production of NO, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and the protein expression of inducible NO synthase (iNOS) induced by LPS in microglial cells in a concentration-dependent manner. Knockdown of PDE5 inhibits NO and iNOS protein expression in LPS-stimulated N9 microglia. Moreover, we observed that the nuclear factor-κB (NF-κB) transcriptionally upregulated PDE5 expression, which was inhibited by sildenafil and yonkenafil in LPS-stimulated N9 microglia. Therefore, sildenafil and yonkenafil may exert their inhibitory effects on microglial activation by reducing the expression of PDE5. Furthermore, sildenafil and yonkenafil increased the cyclic guanosine monophosphate (cGMP) level in N9 microglia, and 8-Br-cGMP, an analogue of cGMP, downregulates extracellular signal-regulated kinases 1 and 2 (ERK1/2)/the NF-κB pathway, suggesting that sildenafil and yonkenafil inhibit microglial activation by decreasing PDE5 expression and increasing the cGMP level. Importantly, sildenafil and yonkenafil significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned medium from activated microglia. Together, these findings position PDE5 as a potential therapy target for the treatment of neuroinflammation accompanied by microglial activation.
Collapse
|
27
|
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases. Int J Mol Sci 2015; 16:12648-68. [PMID: 26053397 PMCID: PMC4490466 DOI: 10.3390/ijms160612648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/30/2023] Open
Abstract
This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| |
Collapse
|
28
|
Kundumani-Sridharan V, Subramani J, Das KC. Thioredoxin Activates MKK4-NFκB Pathway in a Redox-dependent Manner to Control Manganese Superoxide Dismutase Gene Expression in Endothelial Cells. J Biol Chem 2015; 290:17505-19. [PMID: 26028649 DOI: 10.1074/jbc.m115.660365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4) is activated via phosphorylation of Ser-257 and Thr-261 by upstream MAP3Ks and activates JNK and p38 MAPKs in response to cellular stress. We show that thioredoxin (Trx), a cellular redox protein, activates MKK4 via Cys-246 and Cys-266 residues as mutation of these residues renders MKK4 insensitive to phosphorylation by MAP3Ks, TNFα, or Trx. MKK4 is activated in vitro by reduced Trx but not oxidized Trx in the absence of an upstream kinase, suggesting that autophosphorylation of this protein occurs due to reduction of Cys-246 and Cys-266 by Trx. Additionally, mutation of Cys-246 and Cys-266 resulted in loss of kinase activity suggesting that the redox state of Cys-246 and Cys-266 is a critical determinant of MKK4 activation. Trx induces manganese superoxide dismutase (MnSOD) gene transcription by activating MKK4 via redox control of Cys-246 and Cys-266, as mutation of these residues abrogates MKK4 activation and MnSOD expression. We further show that MKK4 activates NFκB for its binding to the MnSOD promoter, which leads to AP-1 dissociation followed by MnSOD transcription. Taken together, our studies show that the redox status of Cys-246 and Cys-266 in MKK4 controls its activities independent of MAP3K, demonstrating integration of the endothelial redox environment to MAPK signaling.
Collapse
Affiliation(s)
- Venkatesh Kundumani-Sridharan
- From the Department of Anesthesiology and Center for Excellence in Cardiovascular Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Jaganathan Subramani
- From the Department of Anesthesiology and Center for Excellence in Cardiovascular Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Kumuda C Das
- From the Department of Anesthesiology and Center for Excellence in Cardiovascular Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
29
|
Jin Q, Zhuang L, Lai B, Wang C, Li W, Dolan B, Lu Y, Wang Z, Zhao K, Peng W, Dent SYR, Ge K. Gcn5 and PCAF negatively regulate interferon-β production through HAT-independent inhibition of TBK1. EMBO Rep 2014; 15:1192-201. [PMID: 25269644 DOI: 10.15252/embr.201438990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral infection triggers innate immune signaling, which in turn induces interferon-β (IFN-β) production to establish innate antiviral immunity. Previous studies showed that Gcn5 (Kat2a), a histone acetyltransferase (HAT) with partial functional redundancy with PCAF (Kat2b), and Gcn5/PCAF-mediated histone H3K9 acetylation (H3K9ac) are enriched on the active IFNB gene promoter. However, whether Gcn5/PCAF and H3K9ac regulate IFN-β production is unknown. Here, we show that Gcn5/PCAF-mediated H3K9ac correlates well with, but is surprisingly dispensable for, the expression of endogenous IFNB and the vast majority of active genes in fibroblasts. Instead, Gcn5/PCAF repress IFN-β production and innate antiviral immunity in several cell types in a HAT-independent and non-transcriptional manner: by inhibiting the innate immune signaling kinase TBK1 in the cytoplasm. Our results thus identify Gcn5 and PCAF as negative regulators of IFN-β production and innate immune signaling.
Collapse
Affiliation(s)
- Qihuang Jin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Lenan Zhuang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Binbin Lai
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Chaochen Wang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Wenqian Li
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Brian Dolan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Yue Lu
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Zhibin Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Sharon Y R Dent
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Chen G, Li KK, Fung CH, Liu CL, Wong HL, Leung PC, Ko CH. Er-Miao-San, a traditional herbal formula containing Rhizoma Atractylodis and Cortex Phellodendri inhibits inflammatory mediators in LPS-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway and MAPKs activation. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:711-718. [PMID: 24815219 DOI: 10.1016/j.jep.2014.04.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Er-Miao-San (EMS) is a traditional Chinese herbal formulation that contains combinations of Rhizoma Atractylodis (RA) and Cortex Phellodendri (CP). It exhibits analgesic and anti-inflammatory activities and have been used for the treatment of various "Bi Zheng" for thousand years in China. The aims of the present study were to investigate the anti-inflammatory activities of EMS and elucidate the underlying mechanisms with regard to its molecular basis of action for the best combination. MATERIALS AND METHODS The anti-inflammatory effects of EMS were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) and pro-inflammatory cytokine production in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS), mitogen-activated protein kinases (MAPKs) phosphorylation, p65 phosphorylation, inhibitor-κBα (IκBα) degradation, and NF-κB DNA-binding activity were further investigated. RESULTS The present study demonstrated that EMS could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. However, CP and RA did not have significant inhibitory effect on them. EMS also inhibited the production of tumor necrosis factor-alpha, interleukin-1 beta and macrophage chemotactic protein-1. Further investigations showed EMS could suppress iNOs expression and p38 phosphorylation. EMS significantly decreased the content of IκBα, reduced the level of phosphorylated p65 and suppressed the NF-κB DNA-binding activity. All these results suggested the inhibitory effects of EMS on the production of inflammatory mediators through the inhibition of the NF-κB pathway. CONCLUSIONS Our results indicated that EMS inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of the MAPK and NF-κB pathway. This study gives scientific evidence validating the use of EMS in treatment of patients with "Bi Zheng" in clinical practice in traditional Chinese medicine.
Collapse
Affiliation(s)
- Gang Chen
- School of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Kai-Kai Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chak-Hei Fung
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk-Lun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hing-Lok Wong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ping-Chung Leung
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People׳s Republic of China..
| | - Chun-Hay Ko
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People׳s Republic of China..
| |
Collapse
|
31
|
Sliwa K, Hilfiker-Kleiner D, Petrie MC, Mebazaa A, Pieske B, Buchmann E, Regitz-Zagrosek V, Schaufelberger M, Tavazzi L, van Veldhuisen DJ, Watkins H, Shah AJ, Seferovic PM, Elkayam U, Pankuweit S, Papp Z, Mouquet F, McMurray JJ. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail 2014; 12:767-78. [PMID: 20675664 DOI: 10.1093/eurjhf/hfq120] [Citation(s) in RCA: 620] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karen Sliwa
- Hatter Cardiovascular Research Institute; University of Cape Town; Cape Town South Africa
| | | | - Mark C. Petrie
- Golden Jubilee National Hospital; West of Scotland Regional Heart Centre; Glasgow UK
| | - Alexandre Mebazaa
- Inserm U 942, Hôpital Lariboisière; Université Paris Diderot; Paris France
| | - Burkert Pieske
- Deparment of Cardiologie; Medical University Graz; Graz Austria
| | - Eckhart Buchmann
- Department of Obstetrics and Gynaecology; University of the Witwatersrand and Chris Hani Baragwanath Hospital; Johannesburg South Africa
| | | | - Maria Schaufelberger
- Department of Medicine; Sahlgrenska University Hospital Ostra; Gothenburg Sweden
| | - Luigi Tavazzi
- Maria Cecilia Hospital - GVM Care & Research; Ettore Sansavini Health Science Foundation; Cotignola Italy
| | - Dirk J. van Veldhuisen
- Department of Cardiology; University Medical Center Groningen; Groningen The Netherlands
| | - Hugh Watkins
- University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Ajay J. Shah
- BHF Centre of Excellence; UK King's College London; UK
| | | | - Uri Elkayam
- Keck School of Medicine; University of Southern California; Los Angeles CA USA
| | - Sabine Pankuweit
- Department of Internal Medicine/Cardiology; Philipp's University Marburg; Marburg Germany
| | - Zoltan Papp
- Division of Clinical Physiology, Faculty of Medicine, Institute of Cardiology; University of Debrecen, Medical and Health Science Center; Debrecen Hungary
| | - Frederic Mouquet
- Polyclinique du Bois, et Pole des maladies cardiovasculaires; Hoptial Cardiologique, Centre Hospitalier Universitaire; Lille France
| | - John J.V. McMurray
- British Heart Foundation Cardiovascular Research Centre; University of Glasgow; Glasgow UK
| |
Collapse
|
32
|
Pham TT, Angus SP, Johnson GL. MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis. Genes Cancer 2014; 4:419-26. [PMID: 24386504 DOI: 10.1177/1947601913513950] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/02/2013] [Indexed: 12/15/2022] Open
Abstract
MAP3K1 is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of serine/threonine kinases. MAP3K1 regulates JNK activation and is unique among human kinases in that it also encodes an E3 ligase domain that ubiquitylates c-Jun and ERK1/2. Full length MAP3K1 regulates cell migration and contributes to pro-survival signaling while its caspase 3-mediated cleavage generates a C-terminal kinase domain that promotes apoptosis. The critical function of MAP3K1 in cell fate decisions suggests that it may be a target for deregulation in cancer. Recent large-scale genomic studies have revealed that MAP3K1 copy number loss and somatic missense or nonsense mutations are observed in a significant number of different cancers, being most prominent in luminal breast cancer. The alteration of MAP3K1 in diverse cancer types demonstrates the importance of defining phenotypes for possible therapeutic targeting of tumor cell vulnerabilities created when MAP3K1 function is lost or gained.
Collapse
Affiliation(s)
- Trang T Pham
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Zhao Z, Miao Y, Pan P, Cheng B, Bai G, Wu H. Qingfei Xiaoyan Wan alleviates asthma through multi-target network regulation. Altern Ther Health Med 2013; 13:206. [PMID: 23919426 PMCID: PMC3765495 DOI: 10.1186/1472-6882-13-206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/02/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Qingfei Xiaoyan Wan (QFXY), a traditional Chinese formula, is widely used for relieving cough, asthma, upper respiratory tract infection, bronchitis, pneumonia, and etc. in clinic. Comparing with other anti-asthma drugs, it is characterised with moderate and persistent efficacy as well as few side effects, however, the underlying action mechanism still remains elusive. This study aimed to identify QFXY multi-target network regulation as an asthma controller. METHODS This study established asthma model induced by histamine phosphate and acetylcholine chloride (His&Ach) in guinea pigs, which then were administered orally with QFXY. Hematoxylin-Eosin staining sections were applied for evaluating QFXY effect. In both Model and QFXY groups, customized microarrays and 2D electrophoresis were adopted to detect differentially expressed genes (diff genes) and proteins (diff proteins) respectively, and some diff proteins were identified with MALDI-TOF/MS. The checked diff genes and proteins underwent Cluster, GO and KEGG analysis. Based on GAD and HPRD databases, QFXY-asthma target regulation network was constructed. RESULTS His&Ach-induced asthma model of guinea pigs was established. HE sections presented anti-inflammation and anti-remodelling effects of QFXY. Comparing with the Model group, 55 diff genes and 6 diff proteins were identified in QFXY group. Validation by qPCR and Western blot showed the microarray and 2D data reliable. Furthermore, QFXY-asthma target regulation network was achieved. CONCLUSIONS A primarily combined genomic and proteomic screening of QFXY targets displayed a series of candidate genes and proteins, which indicated that the effect of QFXY relied on the combined mechanism, anti-inflammation and anti-remodelling, as well as influencing signal transduction in vivo.
Collapse
|
34
|
Ishikawa C, Mori N. Epstein-Barr virus latent membrane protein 1 induces CD69 expression through activation of nuclear factor-κB. Int J Oncol 2013; 42:1786-92. [PMID: 23546309 DOI: 10.3892/ijo.2013.1871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/25/2013] [Indexed: 11/05/2022] Open
Abstract
Latent membrane protein‑1 (LMP-1) of Epstein‑Barr virus (EBV) promotes tumorigenesis. Here, we report that LMP-1 activates the immunoregulatory molecule CD69 gene transcription through a nuclear factor-κB (NF-κB)‑dependent pathway. CD69 expression was upregulated in LMP-1‑expressing EBV-immortalized human B-cell lines and an EBV-positive Burkitt's lymphoma cell line. LMP-1 expression increased CD69 expression at the transcriptional level. CD69 promoter was regulated by LMP-1 activation of NF-κB via the carboxy-terminal activation region 1 and 2. Promoter deletion analysis indicated that two NF-κB binding sites are necessary for activation of the CD69 promoter. Electrophoretic mobility shift analysis demonstrated that LMP-1 activates both NF-κB binding sites in the CD69 promoter. This is the first report of the regulation of CD69 expression by LMP-1, and this novel finding may, thus, represent an important link between the EBV oncoprotein LMP-1 and its critical role in the development of EBV-associated diseases.
Collapse
Affiliation(s)
- Chie Ishikawa
- Transdisciplinary Research Organization for Subtropics and Island Studies, Nishihara, Okinawa 903-0213, Japan.
| | | |
Collapse
|
35
|
Lee ST, Wong PF, He H, Hooper JD, Mustafa MR. Alpha-tomatine attenuation of in vivo growth of subcutaneous and orthotopic xenograft tumors of human prostate carcinoma PC-3 cells is accompanied by inactivation of nuclear factor-kappa B signaling. PLoS One 2013; 8:e57708. [PMID: 23437404 PMCID: PMC3578807 DOI: 10.1371/journal.pone.0057708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/25/2013] [Indexed: 11/24/2022] Open
Abstract
Background Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined. Methodology/ Principal Findings In the present study we show that suppression of NF-κB activation by α-tomatine occurs through inhibition of I kappa B alpha (IκBα) kinase activity, leading to sequential suppression of IκBα phosphorylation, IκBα degradation, NF-κB/p65 phosphorylation, and NF-κB p50/p65 nuclear translocation. Consistent with its ability to induce apoptosis, α-tomatine reduced TNF-α induced activation of the pro-survival mediator Akt and its inhibition of NF-κB activation was accompanied by significant reduction in the expression of NF-κB-dependent anti-apoptotic (c-IAP1, c-IAP2, Bcl-2, Bcl-xL, XIAP and survivin) proteins. We also evaluated the antitumor activity of α-tomatine against PC-3 cell tumors grown subcutaneously and orthotopically in mice. Our data indicate that intraperitoneal administration of α-tomatine significantly attenuates the growth of PC-3 cell tumors grown at both sites. Analysis of tumor material indicates that the tumor suppressing effects of α-tomatine were accompanied by increased apoptosis and lower proliferation of tumor cells as well as reduced nuclear translocation of the p50 and p65 components of NF-κB. Conclusion/ Significance Our study provides first evidence for in vivo antitumor efficacy of α-tomatine against the human androgen-independent prostate cancer. The potential usefulness of α-tomatine in prostate cancer prevention and therapy requires further investigation.
Collapse
Affiliation(s)
- Sui-Ting Lee
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Hui He
- Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - John David Hooper
- Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
36
|
Ha SG, Ge XN, Bahaie NS, Kang BN, Rao A, Rao SP, Sriramarao P. ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat Commun 2013; 4:2479. [PMID: 24056518 PMCID: PMC3940275 DOI: 10.1038/ncomms3479] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
ORM (yeast)-like protein isoform 3 (ORMDL3) has recently been identified as a candidate gene for susceptibility to asthma; however, the mechanisms by which it contributes to asthma pathogenesis are not well understood. Here we demonstrate a functional role for ORMDL3 in eosinophils in the context of allergic inflammation. Eosinophils recruited to the airways of allergen-challenged mice express ORMDL3. ORMDL3 expression in bone marrow eosinophils is localized in the endoplasmic reticulum and is induced by interleukin-3 and eotaxin-1. Overexpression of ORMDL3 in eosinophils causes increased rolling, distinct cytoskeletal rearrangement, extracellular signal-regulated kinase (1/2) phosphorylation and nuclear translocation of nuclear factor kappa B. Knockdown of ORMDL3 significantly inhibits activation-induced cell shape changes, adhesion and recruitment to sites of inflammation in vivo, combined with reduced expression of CD49d and CD18. In addition, ORMDL3 regulates interleukin-3-induced expression of CD48 and CD48-mediated eosinophil degranulation. These studies show that ORMDL3 regulates eosinophil trafficking, recruitment and degranulation, further elucidating a role for this molecule in allergic asthma and potentially other eosinophilic disorders.
Collapse
Affiliation(s)
- Sung Gil Ha
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| | - Xiao Na Ge
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| | - Nooshin S. Bahaie
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| | - Bit Na Kang
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| | - Amrita Rao
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| | - Savita P. Rao
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| | - P. Sriramarao
- Laboratory of Allergic Diseases and Inflammation, Departments of Veterinary & Biomedical Sciences and Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, Minnesota 55108, USA
| |
Collapse
|
37
|
Li YF, Xu XB, Chen XH, Wei G, He B, Wang JD. The nuclear factor-κB pathway is involved in matrix metalloproteinase-9 expression in RU486-induced endometrium breakdown in mice. Hum Reprod 2012; 27:2096-106. [PMID: 22587999 DOI: 10.1093/humrep/des110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Progesterone-withdrawal (WP)-induced endometrial breakdown occurs in both physiological and pathological processes such as menstruation and abortion. However, the underlying mechanisms are not clearly understood. As the nuclear factor-κB (NF-κB) pathway has been proposed to play a role in endometrial breakdown, we tested this hypothesis using RU486-induced mouse menstruation-like model. METHODS The activation of NF-κB was evaluated by immunohistochemistry, western blot and immunofluorescence. The expression of matrix metalloproteinase-9 (MMP9) was analyzed by real-time PCR and its proteins by gelatin zymography and western blot. Chromatin immunoprecipitation was used to investigate the direct binding of NF-κB to MMP9 gene promoter. Inhibitors of NF-κB were used to block its signal in vivo and in vitro to analyze the function of NF-κB in the tissue breakdown process. RESULTS Administration of RU486 resulted in increased phospho-IκB levels and nuclear translocation of p65 in decidual stromal cells, accompanied by the up-regulation of NF-κB inducing kinase and IκB kinase β mRNA. The NF-κB inhibitor, 'pyrrolidine dithiocarbamate' partially suppressed the RU486-induced endometrial breakdown, thus verifying the role of this pathway in vivo. MMP9 was up- and down-regulated following the NF-κB activation and inhibition, respectively. RU486 stimulated recruitment of NF-κB p65 to the MMP9 promoter and further increased its expression. Effects of NF-κB activation and inactivation on MMP9 expression were further explored in human stromal cells in vitro. A similar MMP9 expression pattern was observed in cultured human, as well as mouse, decidual stromal cells following RU486 treatment. CONCLUSIONS The activation of the NF-κB pathway induces downstream target genes, including MMP9 from stromal cells to facilitate tissue breakdown in mouse uterus, highlighting the likelihood that this regulatory pattern exists in the human endometrium.
Collapse
Affiliation(s)
- Yun-Feng Li
- Graduate School of Peking Union Medical College, Beijing 100730, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Ishizawa YH, Tamura K, Yamaguchi T, Matsumoto K, Komiyama M, Takamatsu N, Shiba T, Ito M. Xenopus death-domain-containing proteins FADD and RIP1 synergistically activate JNK and NF-κB. Biol Cell 2012; 98:465-78. [PMID: 16597320 DOI: 10.1042/bc20050091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Death receptors (DRs) induce intracellular signalling upon engagement of their cognate ligands, leading to apoptosis, cell survival or pro-inflammatory responses. In mammals, DR signalling is mediated by the recruitment of several DD (death domain)-containing molecules, such as FADD (Fas-associated DD) and RIP1 (receptor-interacting protein 1). RESULTS To elucidate the molecular mechanisms of intracellular DR signalling in Xenopus, we have isolated cDNAs encoding xFADD (Xenopus FADD), and xRIP1 and its short isoform xRIP1beta, which is produced by alternative splicing of the xRIP1 gene. These DD-containing proteins interacted with Xenopus DR members xDR-M1 and xDR-M2 through their DDs in co-transfected HEK-293T cells. Overexpression of xFADD activated not only xCaspase 8, but also AP-1 (activator protein 1), which reflects activation of JNK (c-Jun N-terminal kinase) and NF-kappaB (nuclear factor kappaB). A comparative analysis of xRIP1, a kinase-dead mutant of xRIP1 and xRIP1beta indicated that the kinase activity of xRIP1 was required for the activation of AP-1 and NF-kappaB. Interestingly, xFADD and xRIP1 interacted with each other via their DDs, and the expression of a mutant xRIP1 containing only the DD (xRIP1-DD) repressed the xFADD-induced activation of NF-kappaB and AP-1. xFADD and xRIP1 synergistically induced the activation of AP-1 and NF-kappaB, both of which were partially mediated by TRAF2 (tumour-necrosis-factor-receptor-associated factor 2) and TAK1 (transforming-growth-factor-beta-activated kinase 1). We also found that the activation pathways of NF-kappaB induced by xDR-M2 were inhibited by xRIP1-DD. CONCLUSIONS Xenopus FADD, RIP1 and its splice variant RIP1beta have been characterized. Interaction of xFADD and xRIP1 induced synergistic activation of JNK and NF-kappaB. In addition, the NF-kappaB activation induced by xDR-M2 was partially mediated by xRIP1.
Collapse
Affiliation(s)
- Yo-hei Ishizawa
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara 228-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang X, Chen Y, Zhang H, Ma Q, Zhang YW, Xu H. Salubrinal attenuates β-amyloid-induced neuronal death and microglial activation by inhibition of the NF-κB pathway. Neurobiol Aging 2011; 33:1007.e9-17. [PMID: 22056200 DOI: 10.1016/j.neurobiolaging.2011.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/27/2011] [Accepted: 10/05/2011] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of β-amyloid (Aβ) peptides in the brain, inducing neuronal cell death and microglial activation. Endoplasmic reticulum (ER) stress has been proposed to be a mediator of Aβ neurotoxicity. In this study, we test whether salubrinal, an ER stress inhibitor, can protect against Aβ-mediated neurotoxicity. We show in rat primary cortical neurons and mouse microglial BV-2 cells that short-term treatment with salubrinal attenuates Aβ-induced neuronal death and microglial activation. Remarkably, our results show that salubrinal's neuroprotective effects are not due to inhibition of ER stress. Rather, we demonstrate that salubrinal exerts its effects through the inhibition of IκB kinase (IKK) activation, IκB degradation, and the subsequent nuclear factor-kappa B (NF-κB) activation. These results elucidate inhibition of the NF-κB pathway as a new mechanism responsible for the protective effects of salubrinal against Aβ neurotoxicity. This study also suggests that modulation of Aβ-induced NF-κB activation could be a potential therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Xiumei Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | |
Collapse
|
40
|
Khan S, Shin EM, Choi RJ, Jung YH, Kim J, Tosun A, Kim YS. Suppression of LPS-induced inflammatory and NF-κB responses by anomalin in RAW 264.7 macrophages. J Cell Biochem 2011; 112:2179-88. [PMID: 21480361 DOI: 10.1002/jcb.23137] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The treatment of inflammatory diseases today is largely based on interrupting the synthesis or action of the mediators that drive the host's response to injury. It is on the basis of this concept that most of the anti-inflammatory drugs have been developed. In our continuous search for novel anti-inflammatory agents from traditional medicinal plants, Saposhnikovia divaricata has been a focus of our investigations. Anomalin, a pyranocoumarin constituent of S. divaricata, exhibits potent anti-inflammatory activity. To clarify the cellular signaling mechanisms underlying the anti-inflammatory action of anomalin, we investigated the effect of anomalin on the production of inflammatory molecules in LPS-stimulated murine macrophages. The anomalin dose-dependently inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein expression in LPS-stimulated RAW 264.7 macrophage. Molecular analysis using quantitative real time polymerase chain reaction (qRT-PCR) revealed that several pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were reduced by anomalin, and this reduction correlated with the down-regulation of the NF-κB signaling pathway. In addition, anomalin suppressed the LPS-induced phosphorylation and degradation of IκBα. To further study the mechanisms underlying its anti-inflammatory activity, an electrophoretic mobility shift assay (EMSA) using a (32) P-labeled NF-κB probe was conducted. LPS-induced NF-κB DNA binding was drastically abolished by anomalin. The present data suggest that anomalin is a major anti-inflammatory agent and may be a potential therapeutic candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Salman Khan
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Tumor necrosis factor receptor (TNFR) superfamily members mediate the cellular response to a wide variety of biological inputs. The responses range from cell death, survival, differentiation, proliferation, to the regulation of immunity. All these physiological responses are regulated by a limited number of highly pleiotropic kinases. The fact that the same signaling molecules are involved in transducing signals from TNFR superfamily members that regulate different and even opposing processes raises the question of how their specificity is determined. Regulatory strategies that can contribute to signaling specificity include scaffolding to control kinase specificity, combinatorial use of several signal transducers, and temporal control of signaling. In this review, we discuss these strategies in the context of TNFR superfamily member signaling.
Collapse
Affiliation(s)
- Bärbel Schröfelbauer
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA.
| | | |
Collapse
|
42
|
Okamoto H, Kobayashi A. Tyrosine kinases in rheumatoid arthritis. JOURNAL OF INFLAMMATION-LONDON 2011; 8:21. [PMID: 21861931 PMCID: PMC3170568 DOI: 10.1186/1476-9255-8-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 08/24/2011] [Indexed: 01/09/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Minami-Otsuka Institute of Technology, Minami-Otsuka Clinic, Tokyo, Japan.
| | | |
Collapse
|
43
|
Shibata Y, Tanaka Y, Gohda J, Inoue JI. Activation of the IκB kinase complex by HTLV-1 Tax requires cytosolic factors involved in Tax-induced polyubiquitination. J Biochem 2011; 150:679-86. [PMID: 21862596 DOI: 10.1093/jb/mvr106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of NF-κB by human T cell leukaemia virus type 1 Tax is thought to be crucial in T-cell transformation and the onset of adult T cell leukaemia. Tax activates NF-κB through activation of the IκB kinase (IKK) complex, similar to cytokine-induced NF-κB activation, which involves active signalling complex formation using polyubiquitin chains as a platform. Although polyubiquitination of Tax was reported to be required for IKK activation, most studies have been performed using intact cells, in which secondary NF-κB activation can be induced by various cytokines that are secreted due to Tax-mediated primary NF-κB activation. Therefore, a cell-free assay system, in which IKK can be activated by adding highly purified recombinant Tax to cytosolic extract, was used to analyse Tax-induced IKK activation. In contrast to the cytosolic extract, the purified IKK complex was not activated by Tax, whereas, it was efficiently activated by MEKK1, that does not require polyubiquitination to activate IKK. Moreover, Tax-induced IKK activation was blocked when the cytosolic extract was mixed with either lysine-free, methylated or K63R ubiquitin. These results obtained through our cell-free assay suggest that K63-linked polyubiquitination is critical, but linear polyubiquitination is dispensable or insufficient for Tax-induced IKK activation.
Collapse
Affiliation(s)
- Yuri Shibata
- Department of Cancer Biology, Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
44
|
Park B, Sung B, Yadav VR, Chaturvedi MM, Aggarwal BB. Triptolide, histone acetyltransferase inhibitor, suppresses growth and chemosensitizes leukemic cells through inhibition of gene expression regulated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK pathway. Biochem Pharmacol 2011; 82:1134-44. [PMID: 21820422 DOI: 10.1016/j.bcp.2011.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/24/2023]
Abstract
Triptolide, a diterpene triepoxide, from the Chinese herb Tripterygium wilfordii Hook.f, exerts its anti-inflammatory and immunosuppressive activities by inhibiting the transcription factor nuclear factor-κB (NF-κB) pathway, through a mechanism not yet fully understood. We found that triptolide, in nanomolar concentrations, suppressed both constitutive and inducible NF-κB activation, but did not directly inhibit binding of p65 to the DNA. The diterpene did block TNF-induced ubiquitination, phosphorylation, and degradation of IκBα, the inhibitor of NF-κB and inhibited acetylation of p65 through suppression of binding of p65 to CBP/p300. Triptolide also inhibited the IκBα kinase (IKK) that activates NF-κB and phosphorylation of p65 at serine 276, 536. Furthermore, the NF-κB reporter activity induced by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKKβ was abolished by the triepoxide. Triptolide also abrogated TNF-induced expression of cell survival proteins (XIAP, Bcl-x(L), Bcl-2, survivin, cIAP-1 and cIAP-2), cell proliferative proteins (cyclin D1, c-myc and cyclooxygenase-2), and metastasis proteins (ICAM-1 and MMP-9). This led to enhancement of apoptosis induced by TNF, taxol, and thalidomide by the diterpene and to suppression of tumor invasion. Overall, our results demonstrate that triptolide can block the inflammatory pathway activated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK, sensitizes cells to apoptosis, and inhibits invasion of tumor cells.
Collapse
Affiliation(s)
- Byoungduck Park
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
45
|
Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A 2010; 107:9795-800. [PMID: 20448200 DOI: 10.1073/pnas.0914414107] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.
Collapse
|
46
|
Kannan-Thulasiraman P, Seachrist DD, Mahabeleshwar GH, Jain MK, Noy N. Fatty acid-binding protein 5 and PPARbeta/delta are critical mediators of epidermal growth factor receptor-induced carcinoma cell growth. J Biol Chem 2010; 285:19106-15. [PMID: 20424164 DOI: 10.1074/jbc.m109.099770] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factors and their receptors (EGFRs) promote breast cancer cell proliferation and can drive tumorigenesis. However, the molecular mechanisms that mediate these effects are incompletely understood. We previously showed that mammary tumor development in the mouse model of breast cancer MMTV-neu, a model characterized by amplification of the EGFR ErbB2 in mammary tissue, correlates with a marked up-regulation of fatty acid-binding protein 5 (FABP5). FABP5 functions to deliver ligands to and enhance the transcriptional activity of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta), a receptor whose target genes include genes involved in cell growth and survival. We show here that in MCF-7 mammary carcinoma cells, EGFR signaling directly up-regulates the expression of FABP5. The data demonstrate that treatment of these cells with the EGFR ligand heregulin-beta1 signals through the ERK and the phophatidylinositol-3-kinase cascades, resulting in activation of the transcription factor NF-kappaB. In turn, NF-kappaB induces the expression of FABP5 through two cognate response elements in the promoter of this gene. The observations further demonstrate that FABP5 and PPARbeta/delta are critical mediators of the ability of EGFR to enhance cell proliferation, indicating that this transcriptional pathway plays a key role in EGFR-induced tumorigenesis. Additional observations indicate that the expression of FABP5 is down-regulated by the Krüppel-like factor KLF2, suggesting a tumor suppressor activity for this factor.
Collapse
|
47
|
Chun JN, Choi B, Lee KW, Lee DJ, Kang DH, Lee JY, Song IS, Kim HI, Lee SH, Kim HS, Lee NK, Lee SY, Lee KJ, Kim J, Kang SW. Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS One 2010; 5:e9422. [PMID: 20351780 PMCID: PMC2843631 DOI: 10.1371/journal.pone.0009422] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/18/2010] [Indexed: 01/06/2023] Open
Abstract
Cytoplasmic presence of Hsp60, which is principally a nuclear gene-encoded mitochondrial chaperonin, has frequently been stated, but its role in intracellular signaling is largely unknown. In this study, we demonstrate that the cytosolic Hsp60 promotes the TNF-alpha-mediated activation of the IKK/NF-kappaB survival pathway via direct interaction with IKKalpha/beta in the cytoplasm. Selective loss or blockade of cytosolic Hsp60 by specific antisense oligonucleotide or neutralizing antibody diminished the IKK/NF-kappaB activation and the expression of NF-kappaB target genes, such as Bfl-1/A1 and MnSOD, which thus augmented intracellular ROS production and ASK1-dependent cell death, in response to TNF-alpha. Conversely, the ectopic expression of cytosol-targeted Hsp60 enhanced IKK/NF-kappaB activation. Mechanistically, the cytosolic Hsp60 enhanced IKK activation via upregulating the activation-dependent serine phosphorylation in a chaperone-independent manner. Furthermore, transgenic mouse study showed that the cytosolic Hsp60 suppressed hepatic cell death induced by diethylnitrosamine in vivo. The cytosolic Hsp60 is likely to be a regulatory component of IKK complex and it implicates the first mitochondrial factor that regulates cell survival via NF-kappaB pathway.
Collapse
Affiliation(s)
- Jung Nyeo Chun
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Boae Choi
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Kyung Wha Lee
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Doo Jae Lee
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Dong Hoon Kang
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Joo Young Lee
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - In Sung Song
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hye In Kim
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Sang-Hee Lee
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Korea
| | - Hyeon Soo Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Na Kyung Lee
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Soo Young Lee
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
- Department of Life Science and College of Natural Science, Ewha Womans University, Seoul, Korea
| | - Kong-Joo Lee
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jaesang Kim
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
- Department of Life Science and College of Natural Science, Ewha Womans University, Seoul, Korea
| | - Sang Won Kang
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
- Department of Life Science and College of Natural Science, Ewha Womans University, Seoul, Korea
- * E-mail:
| |
Collapse
|
48
|
Ear T, Fortin CF, Simard FA, McDonald PP. Constitutive Association of TGF-β–Activated Kinase 1 with the IκB Kinase Complex in the Nucleus and Cytoplasm of Human Neutrophils and Its Impact on Downstream Processes. THE JOURNAL OF IMMUNOLOGY 2010; 184:3897-906. [DOI: 10.4049/jimmunol.0902958] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Okamoto H, Yoshio T, Kaneko H, Yamanaka H. Inhibition of NF-κB signaling by fasudil as a potential therapeutic strategy for rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 62:82-92. [DOI: 10.1002/art.25063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
|