1
|
Kawasumi-Kita A, Lee SW, Ohtsuka D, Niimi K, Asakura Y, Kitajima K, Sakane Y, Tamura K, Ochi H, Suzuki KIT, Morishita Y. hoxc12/c13 as key regulators for rebooting the developmental program in Xenopus limb regeneration. Nat Commun 2024; 15:3340. [PMID: 38649703 PMCID: PMC11035627 DOI: 10.1038/s41467-024-47093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.
Collapse
Affiliation(s)
- Aiko Kawasumi-Kita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Daisuke Ohtsuka
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Kaori Niimi
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Yoshifumi Asakura
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Keiichi Kitajima
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuto Sakane
- Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ken-Ichi T Suzuki
- Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
| |
Collapse
|
2
|
Perez CJ, Mecklenburg L, Fernandez A, Cantero M, de Souza TA, Lin K, Dent SY, Montoliu L, Awgulewitsch A, Benavides F. Naked (N) mutant mice carry a nonsense mutation in the homeobox of Hoxc13. Exp Dermatol 2022; 31:330-340. [PMID: 34657330 PMCID: PMC11892394 DOI: 10.1111/exd.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/23/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Loss of function mutations in HOXC13 have been associated with Ectodermal Dysplasia-9, Hair/Nail Type (ECTD9) in consanguineous families, characterized by sparse to complete absence of hair and nail dystrophy. Here we characterize the spontaneous mouse mutation Naked (N) as a terminal truncation in the Hoxc13 (homeobox C13) gene. Similar to previous reports for homozygous Hoxc13 knock-out (KO) mice, homozygous N/N mice exhibit generalized alopecia with abnormal nails and a short lifespan. However, in contrast to Hoxc13 heterozygous KO mice, N/+ mice show generalized or partial alopecia, associated with loss of hair fibres, along with normal lifespan and fertility. Our data point to a lack of nonsense-mediated Hoxc13 transcript decay and the presence of the truncated mutant protein in N/N and N/+ hair follicles, thus suggesting a dominant-negative mutation. To our knowledge, this is the first report of a semi-dominant and potentially dominant-negative mutation affecting Hoxc13/HOXC13. Furthermore, recreating the N mutant allele in mice using CRISPR/Cas9-mediated genome editing resulted in the same spectrum of deficiencies as those associated with the spontaneous Naked mutation, thus confirming that N is indeed a Hoxc13 mutant allele. Considering the low viability of the Hoxc13 KO mice, the Naked mutation provides an attractive new model for studying ECTD9 disease mechanisms.
Collapse
Affiliation(s)
- Carlos J. Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | | | - Almudena Fernandez
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid, Spain and CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid, Spain and CIBERER-ISCIII, Madrid, Spain
| | - Tiago Antonio de Souza
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374 - ICB II, São Paulo - SP, Brazil
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sharon Y.R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Texas, USA
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid, Spain and CIBERER-ISCIII, Madrid, Spain
| | - Alexander Awgulewitsch
- Department of Medicine and Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina (MUSC), 173 Ashley Avenue, CRI 606, Charleston, SC 29425
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Texas, USA
| |
Collapse
|
3
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
4
|
Mammalian-specific ectodermal enhancers control the expression of Hoxc genes in developing nails and hair follicles. Proc Natl Acad Sci U S A 2020; 117:30509-30519. [PMID: 33199643 PMCID: PMC7720164 DOI: 10.1073/pnas.2011078117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.
Collapse
|
5
|
Zhang H, Zhang Y, Zhou X, Wright S, Hyle J, Zhao L, An J, Zhao X, Shao Y, Xu B, Lee HM, Chen T, Zhou Y, Chen X, Lu R, Li C. Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. eLife 2020; 9:e57858. [PMID: 33001025 PMCID: PMC7599066 DOI: 10.7554/elife.57858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Xinyue Zhou
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| | - Lianzhong Zhao
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Jie An
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research HospitalMemphisUnited States
| | - Yang Zhou
- Department of Biomedical Engineering School of Engineering, University of Alabama at BirminghamBirminghamUnited States
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Rui Lu
- Division of Hematology/Oncology, University of Alabama at BirminghamBirminghamUnited States
- O’Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research HospitalMemphisUnited States
- Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children’s Research HospitalMemphisUnited States
| |
Collapse
|
6
|
Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA. Wnt Signaling Separates the Progenitor and Endocrine Compartments during Pancreas Development. Cell Rep 2020; 27:2281-2291.e5. [PMID: 31116975 DOI: 10.1016/j.celrep.2019.04.083] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/23/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022] Open
Abstract
In vitro differentiation of pluripotent cells into β cells is a promising alternative to cadaveric-islet transplantation as a cure for type 1 diabetes (T1D). During the directed differentiation of human embryonic stem cells (hESCS) by exogenous factors, numerous genes that affect the differentiation process are turned on and off autonomously. Manipulating these reactions could increase the efficiency of differentiation and provide a more complete control over the final composition of cell populations. To uncover in vitro autonomous responses, we performed single-cell RNA sequencing on hESCs as they differentiate in spherical clusters. We observed that endocrine cells and their progenitors exist beside one another in separate compartments that activate distinct genetic pathways. WNT pathway inhibition in the endocrine domain of the differentiating clusters reveals a necessary role for the WNT inhibitor APC during islet formation in vivo. Accordingly, WNT inhibition in vitro causes an increase in the proportion of differentiated endocrine cells.
Collapse
Affiliation(s)
- Nadav Sharon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jordan Vanderhooft
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Jonas Mueller
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Raghav Chawla
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Quan Zhou
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Elise N Engquist
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular & Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Liu C, Tanaka K, Katsube T, Varès G, Maruyama K, Ninomiya Y, Fardous Z, Sun C, Fujimori A, Moreno SG, Nenoi M, Wang B. Altered Response to Total Body Irradiation of C57BL/6-Tg (CAG-EGFP) Mice. Dose Response 2020; 18:1559325820951332. [PMID: 32922229 PMCID: PMC7453463 DOI: 10.1177/1559325820951332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Application of green fluorescent protein (GFP) in a variety of biosystems as a unique bioindicator or biomarker has revolutionized biological research and made groundbreaking achievements, while increasing evidence has shown alterations in biological properties and physiological functions of the cells and animals overexpressing transgenic GFP. In this work, response to total body irradiation (TBI) was comparatively studied in GFP transgenic C57BL/6-Tg (CAG-EGFP) mice and C57BL/6 N wild type mice. It was demonstrated that GFP transgenic mice were more sensitive to radiation-induced bone marrow death, and no adaptive response could be induced. In the nucleated bone marrow cells of GFP transgenic mice exposed to a middle dose, there was a significant increase in both the percentage of cells expressing pro-apoptotic gene Bax and apoptotic cell death. While in wild type cells, lower expression of pro-apoptotic gene Bax and higher expression of anti-apoptotic gene Bcl-2, and significant lower induction of apoptosis were observed compared to GFP transgenic cells. Results suggest that presence of GFP could alter response to TBI at whole body, cellular and molecular levels in mice. These findings indicate that there could be a major influence on the interpretation of the results obtained in GFP transgenic mice.
Collapse
Affiliation(s)
- Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, People’s Republic of Bangladesh
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Stéphanie G. Moreno
- LRTS—François Jacob Institute of Biology, Fundamental Research Division, Atomic Energy and Alternative Energies Commission, Inserm, Fontenay-aux-Roses Cedex, France
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
8
|
Abstract
Heat shock transcription factors (Hsfs) regulate transcription of heat shock proteins as well as other genes whose promoters contain heat shock elements (HSEs). There are at least five Hsfs in mammalian cells, Hsf1, Hsf2, Hsf3, Hsf4, and Hsfy (Wu, Annu Rev Cell Dev Biol 11:441-469, 1995; Morimoto, Genes Dev 12:3788-3796, 1998; Tessari et al., Mol Hum Repord 4:253-258, 2004; Fujimoto et al., Mol Biol Cell 21:106-116, 2010; Nakai et al., Mol Cell Biol 17:469-481, 1997; Sarge et al., Genes Dev 5:1902-1911, 1991). To understand the physiological roles of Hsf1, Hsf2, and Hsf4 in vivo, we generated knockout mouse lines for these factors (Zhang et al., J Cell Biochem 86:376-393, 2002; Wang et al., Genesis 36:48-61, 2003; Min et al., Genesis 40:205-217, 2004). Numbers of other laboratories have also generated Hsf1 (Xiao et al., EMBO J 18:5943-5952, 1999; Sugahara et al., Hear Res 182:88-96, 2003), Hsf2 (McMillan et al., Mol Cell Biol 22:8005-8014, 2002; Kallio et al., EMBO J 21:2591-2601, 2002), and Hsf4 (Fujimoto et al., EMBO J 23:4297-4306, 2004) knockout mouse models. In this chapter, we describe the design of the targeting vectors, the plasmids used, and the successful generation of mice lacking the individual genes. We also briefly describe what we have learned about the physiological functions of these genes in vivo.
Collapse
Affiliation(s)
- Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Binnur Eroglu
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Hox Genes in Cardiovascular Development and Diseases. J Dev Biol 2016; 4:jdb4020014. [PMID: 29615581 PMCID: PMC5831787 DOI: 10.3390/jdb4020014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022] Open
Abstract
Congenital heart defects (CHD) are the leading cause of death in the first year of life. Over the past 20 years, much effort has been focused on unraveling the genetic bases of CHD. In particular, studies in human genetics coupled with those of model organisms have provided valuable insights into the gene regulatory networks underlying CHD pathogenesis. Hox genes encode transcription factors that are required for the patterning of the anterior–posterior axis in the embryo. In this review, we focus on the emerging role of anteriorly expressed Hox genes (Hoxa1, Hoxb1, and Hoxa3) in cardiac development, specifically their contribution to patterning of cardiac progenitor cells and formation of the great arteries. Recent evidence regarding the cooperative regulation of heart development by Hox proteins with members of the TALE-class of homeodomain proteins such as Pbx and Meis transcription factors is also discussed. These findings are highly relevant to human pathologies as they pinpoint new genes that increase susceptibility to cardiac anomalies and provide novel mechanistic insights into CHD.
Collapse
|
10
|
Smurthwaite CA, Williams W, Fetsko A, Abbadessa D, Stolp ZD, Reed CW, Dharmawan A, Wolkowicz R. Genetic barcoding with fluorescent proteins for multiplexed applications. J Vis Exp 2015:52452. [PMID: 25938804 PMCID: PMC4541556 DOI: 10.3791/52452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded 'indefinitely'. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.
Collapse
|
11
|
YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues. Mol Cell Biol 2015; 35:1449-61. [PMID: 25691658 DOI: 10.1128/mcb.00765-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.
Collapse
|
12
|
Gurunathan S, Woong Han J, Kim E, Kwon DN, Park JK, Kim JH. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. J Nanobiotechnology 2014; 12:41. [PMID: 25273520 PMCID: PMC4193993 DOI: 10.1186/s12951-014-0041-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Graphene is the 2D form of carbon that exists as a single layer of atoms arranged in a honeycomb lattice and has attracted great interest in the last decade in view of its physical, chemical, electrical, elastic, thermal, and biocompatible properties. The objective of this study was to synthesize an environmentally friendly and simple methodology for the preparation of graphene using a recombinant enhanced green fluorescent protein (EGFP). RESULTS The successful reduction of GO to graphene was confirmed using UV-vis spectroscopy, and FT-IR. DLS and SEM were employed to demonstrate the particle size and surface morphology of GO and EGFP-rGO. The results from Raman spectroscopy suggest the removal of oxygen-containing functional groups from the surface of GO and formation of graphene with defects. The biocompatibility analysis of GO and EGFP-rGO in human embryonic kidney (HEK) 293 cells suggests that GO induces significant concentration-dependent cell toxicity in HEK cells, whereas graphene exerts no adverse effects on HEK cells even at a higher concentration (100 μg/mL). CONCLUSIONS Altogether, our findings suggest that recombinant EGFP can be used as a reducing and stabilizing agent for the preparation of biocompatible graphene. The novelty and originality of this work is that it describes a safe, simple, and environmentally friendly method for the production of graphene using recombinant enhanced green fluorescent protein. Furthermore, the synthesized graphene shows excellent biocompatibility with HEK cells; therefore, biologically synthesized graphene can be used for biomedical applications. To the best of our knowledge, this is the first and novel report describing the synthesis of graphene using recombinant EGFP.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul, 143-701 South Korea
- />GS Institute of Bio and Nanotechnology, Coimbatore, Tamil Nadu 641024 India
| | - Jae Woong Han
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul, 143-701 South Korea
| | - Eunsu Kim
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul, 143-701 South Korea
| | - Deug-Nam Kwon
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul, 143-701 South Korea
| | - Jin-Ki Park
- />Animal Biotechnology Division, National Institute of Animal Science, Suwon, 441-350 Korea
| | - Jin-Hoi Kim
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul, 143-701 South Korea
| |
Collapse
|
13
|
|
14
|
Tschopp P, Duboule D. The genetics of murine Hox loci: TAMERE, STRING, and PANTHERE to engineer chromosome variants. Methods Mol Biol 2014; 1196:89-102. [PMID: 25151159 DOI: 10.1007/978-1-4939-1242-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Following their duplications at the base of the vertebrate clade, Hox gene clusters underwent remarkable sub- and neo-functionalization events. Many of these evolutionary innovations can be associated with changes in the transcriptional regulation of their genes, where an intricate relationship between the structure of the gene cluster and the architecture of the surrounding genomic landscape is at play. Here, we report on a portfolio of in vivo genome engineering strategies in mice, which have been used to probe and decipher the genetic and molecular underpinnings of the complex regulatory mechanisms implemented at these loci.
Collapse
Affiliation(s)
- Patrick Tschopp
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | | |
Collapse
|
15
|
Li H, Wei H, Wang Y, Tang H, Wang Y. Enhanced green fluorescent protein transgenic expression in vivo is not biologically inert. J Proteome Res 2013; 12:3801-8. [PMID: 23827011 DOI: 10.1021/pr400567g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced green fluorescent protein (EGFP) is a widely used biological reporter. However, the effects of EGFP expression in vivo are still unclear. To investigate the effects of EGFP transgenic expression in vivo, we employed an NMR-based metabonomics method to analyze the metabonome of EGFP transgenic mice. The results show that the metabonomes of urine, liver, and kidney of the EGFP transgenic mice are different from their wild-type counterparts. The EGFP mice expressed high levels of urinary 3-ureidopropionate, which is due to the down-regulated transcriptional level of β-ureidopropionase. The expression of EGFP in vivo also affects other metabolic pathways, including nucleic acid metabolism, energy utilization, and amino acids catabolism. These findings indicate that EGFP transgenic expression is not as inert as has been considered. Our investigation provides a holistic view on the effect of EGFP expression in vivo, which is useful when EGFP is employed as a functional biological indicator. Our work also highlights the potential of a metabonomics strategy in studying the association between molecular phenotypes and gene function.
Collapse
Affiliation(s)
- Hongde Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | | | | | | | | |
Collapse
|
16
|
Makki N, Capecchi MR. Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet 2011; 21:26-31. [PMID: 21940751 DOI: 10.1093/hmg/ddr434] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Congenital heart disease is one of the most common human birth defects, yet many genes and pathways regulating heart development remain unknown. A recent study in humans revealed that mutations in a single Hox gene, HOXA1 (Athabascan Brainstem Dysgenesis Syndrome, Bosley-Salih-Alorainy Syndrome), can cause severe cardiovascular malformations, some of which are lethal without surgical intervention. Since the discovery of the human syndromes, there have been no reports of any Hox mouse mutants with cardiac defects, hampering studies to explore the developmental causes of the human disease. In this study, we identify severe cardiovascular malformations in a Hox mouse model, which mimic the congenital heart defects in HOXA1 syndrome patients. Hoxa1 null mice show defects such as interrupted aortic arch, aberrant subclavian artery and Tetralogy of Fallot, demonstrating that Hoxa1 is required for patterning of the great arteries and outflow tract of the heart. We show that during early embryogenesis, Hoxa1 is expressed in precursors of cardiac neural crest cells (NCCs), which populate the heart. We further demonstrate that Hoxa1 acts upstream of several genes, important for neural crest specification. Thus, our data allow us to suggest a model in which Hoxa1 regulates heart development through its influence on cardiac NCCs, providing insight into the mechanisms underlying the human disease.
Collapse
Affiliation(s)
- Nadja Makki
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
17
|
Reshuffling genomic landscapes to study the regulatory evolution of Hox gene clusters. Proc Natl Acad Sci U S A 2011; 108:10632-7. [PMID: 21670281 DOI: 10.1073/pnas.1102985108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The emergence of Vertebrata was accompanied by two rounds of whole-genome duplications. This enabled paralogous genes to acquire novel functions with high evolutionary potential, a process suggested to occur mostly by changes in gene regulation, rather than in protein sequences. In the case of Hox gene clusters, such duplications favored the appearance of distinct global regulations. To assess the impact of such "regulatory evolution" upon neo-functionalization, we developed PANTHERE (PAN-genomic Translocation for Heterologous Enhancer RE-shuffling) to bring the entire megabase-scale HoxD regulatory landscape in front of the HoxC gene cluster via a targeted translocation in vivo. At this chimeric locus, Hoxc genes could both interpret this foreign regulation and functionally substitute for their Hoxd counterparts. Our results emphasize the importance of evolving regulatory modules rather than their target genes in the process of neo-functionalization and offer a genetic tool to study the complexity of the vertebrate regulatory genome.
Collapse
|
18
|
Abstract
Heat-shock transcription factors (Hsfs) regulate transcription of heat-shock proteins as well as other genes whose promoters contain heat-shock elements. There are at least five Hsfs in mammalian cells, Hsf1, Hsf2, Hsf3, Hsf4, and Hsfy. To understand the physiological roles of Hsf1, Hsf2, and Hsf4 in vivo, we generated knockout mouse lines for these factors. In this chapter, we describe the design of the targeting vectors, the plasmids used, and the successful generation of mice lacking the individual genes. We also briefly describe what we have learned about the physiological functions of these genes in vivo.
Collapse
Affiliation(s)
- Xiongjie Jin
- Center for Molecular Chaperone/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | |
Collapse
|
19
|
Makki N, Capecchi MR. Hoxa1 lineage tracing indicates a direct role for Hoxa1 in the development of the inner ear, the heart, and the third rhombomere. Dev Biol 2010; 341:499-509. [PMID: 20171203 DOI: 10.1016/j.ydbio.2010.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/22/2010] [Accepted: 02/10/2010] [Indexed: 11/16/2022]
Abstract
Loss of Hoxa1 function results in severe defects of the brainstem, inner ear, and cranial ganglia in humans and mice as well as cardiovascular abnormalities in humans. Because Hoxa1 is expressed very transiently during an early embryonic stage, it has been difficult to determine whether Hoxa1 plays a direct role in the precursors of the affected organs or if all defects result from indirect effects due to mispatterning of the hindbrain. In this study we use a Hoxa1-IRES-Cre mouse to genetically label the early Hoxa1-expressing cells and determine their contribution to each of the affected organs, allowing us to conclude in which precursor tissue Hoxa1 is expressed. We found Hoxa1 lineage-labeled cells in all tissues expected to be derived from the Hoxa1 domain, such as the facial and abducens nuclei and nerves as well as r4 neural crest cells. In addition, we detected the lineage in derivatives that were not thought to have expressed Hoxa1 during development. In the brainstem, the anterior border of the lineage was found to be in r3, which is more anterior than previously reported. We also observed an interesting pattern of the lineage in the inner ear, namely a strong contribution to the otic epithelium with the exception of sensory patches. Moreover, lineage-labeled cells were detected in the atria and outflow tract of the developing heart. In conclusion, Hoxa1 lineage tracing uncovered new domains of Hoxa1 expression in rhombomere 3, the otic epithelium, and cardiac precursors, suggesting a more direct role for Hoxa1 in development of these tissues than previously believed.
Collapse
Affiliation(s)
- Nadja Makki
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
20
|
Tessarollo L, Palko ME, Akagi K, Coppola V. Gene targeting in mouse embryonic stem cells. Methods Mol Biol 2009; 530:141-64. [PMID: 19266325 DOI: 10.1007/978-1-59745-471-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The scientific value of a mouse model with a targeted mutation depends greatly upon how carefully the mutation has been engineered. Until recently, our ability to alter the mouse genome has been limited by both the lack of technologies to conditionally target a locus and by conventional cloning. The "cre/loxP" and "recombineering" technologies have overcome some of these limitations and have greatly enhanced our ability to manipulate the mouse genome in a sophisticated way. However, there are still some practical aspects that need to be considered to successfully target a specific genetic locus. Here, we describe the process to engineer a targeted mutation to generate a mouse model. We include a tutorial using the publicly available informatic tools that can be downloaded for processing the genetic information needed to generate a targeting vector.
Collapse
Affiliation(s)
- Lino Tessarollo
- Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The axial skeleton in all vertebrates is composed of similar components that extend from anterior to posterior along the body axis: the occipital skull bones and cervical, thoracic, lumbar, sacral, and caudal vertebrae. Despite significant changes in the number and size of these elements during evolution, the basic character of these anatomical elements, as well as the order in which they appear in vertebrate skeletons, have remained remarkably similar. Through extensive expression analyses, classic morphological perturbation experiments in chicken and targeted loss-of-function analyses in mice, Hox genes have proven to be critical regulators in the establishment of axial skeleton morphology. The convergence of these studies to date allows an emerging understanding of Hox gene function in patterning the vertebrate axial skeleton. This review summarizes genetic and embryologic findings regarding the role of Hox genes in establishing axial morphology and how these combined results impact our current understanding of the vertebrate Hox code.
Collapse
Affiliation(s)
- Deneen M Wellik
- University of Michigan Medical Center, Department of Internal Medicine, Division of Molecular Medicine & Genetics, and Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200, USA.
| |
Collapse
|
22
|
Knosp WM, Saneyoshi C, Shou S, Bächinger HP, Stadler HS. Elucidation, Quantitative Refinement, and in Vivo Utilization of the HOXA13 DNA Binding Site. J Biol Chem 2007; 282:6843-53. [PMID: 17200107 DOI: 10.1074/jbc.m610775200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in Hoxa13 cause malformations of the appendicular skeleton and genitourinary tract, including digit loss, syndactyly, and hypospadias. To determine the molecular basis for these defects, the DNA sequences bound by HOXA13 were empirically determined, revealing a novel high affinity binding site. Correlating the utilization of this high affinity binding site with genes exhibiting perturbed expression in Hoxa13 mutant limbs, we identified that HOXA13 suppresses the expression of the BMP antagonist, Sostdc1. In the absence of HOXA13 function, Sostdc1 is ectopically expressed in the distal limb, causing reduced expression of BMP-activated genes and decreased SMAD phosphorylation. Limb chromatin immunoprecipitation revealed HOXA13 binding at its high affinity site in two conserved Sostdc1 regulatory sites in vivo. In vitro, HOXA13 represses gene expression through the Sostdc1 high affinity binding sites in a dosage-dependent manner. Together, these findings confirm that the high affinity HOXA13 binding site deduced by quantitative analyses is used in vivo to facilitate HOXA13 target gene regulation, providing a critical advance toward understanding the molecular basis for defects associated with the loss of HOXA13 function.
Collapse
Affiliation(s)
- Wendy M Knosp
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
23
|
Paraguison RC, Higaki K, Yamamoto K, Matsumoto H, Sasaki T, Kato N, Nanba E. Enhanced autophagic cell death in expanded polyhistidine variants of HOXA1 reduces PBX1-coupled transcriptional activity and inhibits neuronal differentiation. J Neurosci Res 2007; 85:479-87. [PMID: 17131398 DOI: 10.1002/jnr.21137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HOXA1 is a member of the homeobox gene family and is involved in early brain development. In our previous study, we identified novel variants of polyhistidine repeat tract in HOXA1 gene and showed that ectopic expression of expanded variants led to enhanced intranuclear aggregation and accelerated cell death in a time-dependent manner. Here, we further investigate the implications of polyhistidine variants on HOXA1 function. Aside from intranuclear aggregation, we observed cytosolic aggregates during the early stages of expression. Rapamycin, an autophagy inducer, resulted in decreased protein aggregation and cell death. Here, we also show an interaction between variants of HOXA1 and one of the HOX protein known cofactors, PBX1. Expanded HOXA1 variants exhibited reduced PBX1-coupled transcriptional activity through a regulatory enhancer of HOXB1. Moreover, we demonstrate that both deleted and expanded variants inhibited neurite outgrowth in retinoic acid-induced neuronal differentiation in neuroblastoma cells. These results provide further evidence that expanded polyhistidine repeats in HOXA1 enhance aggregation and cell death, resulting in impaired neuronal differentiation and cooperative binding with PBX1.
Collapse
Affiliation(s)
- Rubigilda C Paraguison
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Guillemot F, Cerutti I, Auffray C, Devignes MD. A transgenic mouse model engineered to investigate human brain-derived neurotrophic factor in vivo. Transgenic Res 2007; 16:223-37. [PMID: 17225071 DOI: 10.1007/s11248-006-9060-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/21/2006] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is an attractive component for the treatment of various neurodegenerative diseases such as Alzheimer's or Parkinson's disease. Innovative non-invasive therapeutic approaches involve appropriate pharmacological induction of endogenous BDNF synthesis in brain. A transgenic mouse model has been established to study human BDNF gene expression and permit the screening of compounds capable of stimulating its activity. A 145-kb yeast artificial chromosome carrying the human BDNF gene has been engineered to produce the transgene which contains the extended BDNF promoter and 3' flanking regions and has integrated the enhanced green fluorescent protein (E-GFP) coding sequence in place of the BDNF coding exon. Five transgenic lines have been obtained through microinjection of the YAC into fertilized mouse oocytes. From the three lines expressing the transgene, one displays the specific pattern of BDNF expression. Faithful tissue-restricted transcription of BDNF 5' exons and localization of the fluorescent reporter gene product in the expected brain subregions are reported. This line constitutes an exploitable system for investigating human BDNF gene regulation in vivo.
Collapse
Affiliation(s)
- Fabrice Guillemot
- Genexpress, Génomique Fonctionnelle et Biologie Systémique pour la Santé, CNRS et Université Pierre et Marie Curie Paris VI, LGN, UMR 7091, 7 rue Guy Moquet, BP8, 94801 Villejuif, France
| | | | | | | |
Collapse
|
25
|
Peters JL, Dufner-Beattie J, Xu W, Geiser J, Lahner B, Salt DE, Andrews GK. Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell-specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis. Genesis 2007; 45:339-52. [PMID: 17506078 DOI: 10.1002/dvg.20297] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fourteen members of the Slc39a superfamily of metal ion uptake transporters have been identified in mice and humans, but the physiological functions of most remain obscure. Herein, we created mice with Zip2 (Slc39a2) genes in which the open reading frame was replaced with that of the enhanced green fluorescent protein (EGFP), to study temporal and spatial patterns of Zip2 gene expression and examine the physiological roles of this transporter. Expression of this gene was remarkably cell-type specific and developmentally regulated in pericentral hepatocytes, developing keratinocytes, and a subset of immature dendritic cells in the immune system. In addition, the Zip2 gene was transiently expressed in giant trophoblast cells in the placenta. Although the Zip2 gene was not essential under conditions of normal dietary zinc, it played an important role in adapting to dietary zinc deficiency during pregnancy, and in the homeostasis of iron in the liver as well as iron and calcium in developing embryos. These studies suggest that active expression of the Zip2 gene in these few specific cell types, aforementioned, plays a particularly important role during zinc deficiency. These studies further reveal novel interactions between zinc transporter function and the homeostasis of other essential metals.
Collapse
Affiliation(s)
- Jennifer L Peters
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Alam SMK, Konno T, Dai G, Lu L, Wang D, Dunmore JH, Godwin AR, Soares MJ. A uterine decidual cell cytokine ensures pregnancy-dependent adaptations to a physiological stressor. Development 2006; 134:407-15. [PMID: 17166917 DOI: 10.1242/dev.02743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mouse, decidual cells differentiate from uterine stromal cells in response to steroid hormones and signals arising from the embryo. Decidual cells are crucially involved in creating the intrauterine environment conducive to embryonic development. Among their many functions is the production of cytokines related to prolactin (PRL), including decidual prolactin-related protein (DPRP). DPRP is a heparin-binding cytokine, which is abundantly expressed in uterine decidua. In this investigation, we have isolated the mouse Dprp gene, characterized its structure and evaluated its biological role. Dprp-null mice were made by replacing exons 2 to 6 of the Dprp gene with an in-frame enhanced green fluorescent protein (EGFP) gene and a neomycin (neo) resistance cassette. Heterozygous intercross breeding of the mutant mice yielded the expected mendelian ratio. Pregnant heterozygote females expressed EGFP within decidual tissue in locations identical to endogenous Dprp mRNA and protein expression. Homozygous Dprp-null mutant male and female mice were viable, exhibited normal postnatal growth rates, were fertile and produced normal litter sizes. A prominent phenotype was observed when pregnant Dprp-null mice were exposed to a physiological stressor. DPRP deficiency interfered with pregnancy-dependent adaptations to hypoxia resulting in pregnancy failure. Termination of pregnancy was associated with aberrations in mesometrial decidual cells, mesometrial vascular integrity, and disruptions in chorioallantoic placenta morphogenesis. The observations suggest that DPRP participates in pregnancy-dependent adaptations to a physiological stressor.
Collapse
Affiliation(s)
- S M Khorshed Alam
- Department of Pathology and Laboratory Medicine, Institute of Maternal-Fetal Biology, Division of Cancer and Developmental Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tvrdik P, Capecchi MR. Reversal of Hox1 gene subfunctionalization in the mouse. Dev Cell 2006; 11:239-50. [PMID: 16890163 DOI: 10.1016/j.devcel.2006.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/23/2006] [Accepted: 06/30/2006] [Indexed: 02/02/2023]
Abstract
In vertebrates, paralogous Hox genes play diverse biological roles. We examined the interchangeability of Hoxa1 and Hoxb1 in mouse development by swapping their protein-coding regions. Remarkably, the mice expressing the Hox-B1 protein from the Hoxa1 locus, and vice versa, are essentially normal. We noted, nonetheless, a specific facial nerve hypomorphism in hemizygous Hoxb1(A1/-) mice and decreased viability in homozygous Hoxa1(B1/B1) embryos. Further, we established a mouse line in which we have inserted the 107 bp Hoxb1 autoregulatory enhancer into the Hoxa1 promoter. Strikingly, the newly generated autoregulatory Hoxa1 gene can deliver the functionality of both paralogs in these mice, providing normal viability as well as proper facial nerve formation even in the Hoxb1 mutant background. This study affirms that subfunctionalization of the transcriptional regulatory elements has a principal role in the diversification of paralogous Hox genes. Moreover, we show that the ancestral vertebrate Hox1 gene can still be experimentally reconstructed.
Collapse
Affiliation(s)
- Petr Tvrdik
- Howard Hughes Medical Institute, University of Utah, 15 North 2030 East, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
28
|
Passamaneck YJ, Di Gregorio A, Papaioannou VE, Hadjantonakis AK. Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc Res Tech 2006; 69:160-7. [PMID: 16538622 DOI: 10.1002/jemt.20284] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although we have advanced in our understanding of the molecular mechanisms intrinsic to the morphogenesis of chordate embryos, the question of how individual developmental events are integrated to generate the final morphological form is still unresolved. Microscopic observation is a pivotal tool in developmental biology, both for determining the normal course of events and for contrasting this with the results of experimental and pathological perturbations. Since embryonic development takes place in three dimensions over time, to fully understand the events required to build an embryo we must investigate embryo morphogenesis in multiple dimensions in situ. Recent advances in the isolation of naturally fluorescent proteins, and the refinement of techniques for in vivo microscopy offer unprecedented opportunities to study the cellular and molecular events within living, intact embryos using optical imaging. These technologies allow direct visual access to complex events as they happen in their native environment, and thus provide greater insights into cell behaviors operating during embryonic development. Since most fluorescent protein probes and modes of data acquisition are common across species, we have chosen the mouse and the ascidian, two model organisms at opposite ends of the chordate clade, to review the use of some of the current genetically-encoded fluorescent proteins and their visualization in vivo in living embryos for the generation of high-resolution imaging data.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
29
|
Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK. MouseZIP1 andZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 2006; 44:239-51. [PMID: 16652366 DOI: 10.1002/dvg.20211] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Subfamily II of the solute-linked carrier 39A superfamily contains three well-conserved zinc transporters (ZIPs1, 2, 3) whose physiological functions are unknown. We generated mice homozygous for knockout alleles of ZIP1 and both ZIP1 and ZIP 3 (double-knockout). These mice were apparently normal when dietary zinc was replete, but when dietary zinc was limited during pregnancy embryos from ZIP1 or ZIP3 knockout mice were two to three times more likely to develop abnormally than those in wildtype mice, and 91% (71/78) of embryos developed abnormally in ZIP1, ZIP3 double-knockout mice. Analysis of the patterns of expression of these genes in mice revealed predominate expression in intestinal stromal cells, nephric-tubular epithelial cells, pancreatic ductal epithelial cells, and hepatocytes surrounding the central vein. This suggests that these zinc transporters function, at least in part, in the redistribution and/or retention of zinc rather than its acquisition from the diet. In conclusion, mutations in the ZIP1 and ZIP3 zinc transporter genes are silent when dietary intake of zinc is normal, but can dramatically compromise the success of pregnancy when dietary intake of zinc is limiting.
Collapse
Affiliation(s)
- Jodi Dufner-Beattie
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
30
|
Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK. Generation and characterization of mice lacking the zinc uptake transporter ZIP3. Mol Cell Biol 2005; 25:5607-15. [PMID: 15964816 PMCID: PMC1156975 DOI: 10.1128/mcb.25.13.5607-5615.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse ZIP3 (SLC39A3) gene encodes an eight-transmembrane-domain protein that has been conserved in mammals and can function to transport zinc. To analyze the expression of ZIP3 in the early embryo and neonate and to determine its in vivo function, we generated ZIP3 null mice in which the ZIP3 open reading frame was replaced with that of the enhanced green fluorescent protein (EGFP) reporter. EGFP fluorescence revealed that ZIP3 was expressed in the inner cell mass of the blastocyst and later during embryonic development in many tissues. Elevated expression was apparent in the embryonic brain and neurotube and neonatal gonads. Homozygous knockout mice were viable and fertile and under normal growth conditions exhibited no obvious phenotypic abnormalities. Deletion of ZIP3 did not alter zinc homeostasis at the molecular level as assessed by essential metal levels and the expression of zinc-responsive genes. In knockout mice stressed with a zinc-deficient diet during pregnancy or at weaning, a subtle increase in the sensitivity to abnormal morphogenesis of the embryo and to depletion of thymic pre-T cells, respectively, was noted. These results suggest that this protein plays an ancillary role in zinc homeostasis in mice.
Collapse
Affiliation(s)
- Jodi Dufner-Beattie
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, University of Kansas Medical Center, 39th and Rainbow Blvd., Kansas City, Kansas 66160-7421, USA
| | | | | | | | | |
Collapse
|
31
|
Usuku T, Nishi M, Morimoto M, Brewer JA, Muglia LJ, Sugimoto T, Kawata M. Visualization of glucocorticoid receptor in the brain of green fluorescent protein–glucocorticoid receptor knockin mice. Neuroscience 2005; 135:1119-28. [PMID: 16154291 DOI: 10.1016/j.neuroscience.2005.06.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/19/2005] [Accepted: 06/24/2005] [Indexed: 11/16/2022]
Abstract
Glucocorticoids exert various neuroendocrinological effects, including stress response, in the central nervous system via glucocorticoid receptor (GR). GRs are transported from the cytoplasm to the nucleus upon ligand binding, and then exert the transcriptional activity. Although it is important for unraveling the actual property of the GR in vivo, subcellular dynamics of the GR are still unclear within the brain tissue in which the neuronal circuitry is maintained. To address this issue, we generated green fluorescent protein (GFP)-GR knockin mice, whose GR has been replaced by a GFP-GR fusion protein that is functionally indistinguishable from endogenous GR. In fixed brain sections of the GFP-GR knockin mice, the distribution of the green fluorescence was similar to that of GR immunoreactivity. By subtracting autofluorescence using fluorescent emission fingerprinting method with confocal laser scanning microscope, nuclear localization of GFP-GR was identifiable in the hippocampal CA3 subregion, where subcellular localization of the GR has been unsolved compared with other areas. To examine the subcellular trafficking of GFP-GR in vivo, we performed adrenalectomy on the GFP-GR knockin mice. GFP-GR was translocated from the nucleus to the cytoplasm and neurites two days after adrenalectomy. Furthermore, laser scanning cytometry by which fluorescence intensity in situ can be quantitatively measured revealed the entire GFP-GR expression level was increased. We then examined the dynamic changes in the subcellular localization of GFP-GR in living hippocampal neurons both in dissociated culture and in tissue slices. GFP-GR was localized in not only the perikarya but also neurites in the absence of ligand, and nuclear translocation following ligand treatment was observed. This is the first report visualizing subcellular trafficking of the GR in the mouse brain in more physiological condition. The present results propose new avenues for the research of the GR dynamics both in vitro and in vivo.
Collapse
Affiliation(s)
- T Usuku
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Magin TM, Hesse M, Meier-Bornheim R, Reichelt J. Developing Mouse Models to Study Intermediate Filament Function. Methods Cell Biol 2004; 78:65-94. [PMID: 15646616 DOI: 10.1016/s0091-679x(04)78004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Thomas M Magin
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
Manipulation of the mouse genome through mis-expressing, knocking out, and introducing mutations into genes of interest has provided important insights into the genetic pathways responsible for human skeletal development. These pathways contribute to the sequential phases of skeletal morphogenesis that include patterning, condensation, and overt organogenesis of the membranous and endochondral embryonic skeletons and to subsequent linear growth. Disturbances in these pathways account for many developmental syndromes and disorders of the human skeleton. Recurrent themes include establishment of interlocking regulatory circuits involving growth factors, receptors, signalling pathways, and transcription factors that control cellular programmes such as migration, adhesion, proliferation, differentiation, and apoptosis, and use of common molecules for different purposes. Technical advances suggest that genetic engineering in mice will continue to be highly instructive in the field of skeletal biology.
Collapse
Affiliation(s)
- William A Horton
- Shriners Hospital for Children, Oregon Health and Science University, 3101 Sam Jackson Park Road, Portland, OR 97239-3009, USA.
| |
Collapse
|
34
|
Scarff KL, Ung KS, Sun J, Bird PI. A retained selection cassette increases reporter gene expression without affecting tissue distribution in SPI3 knockout/GFP knock-in mice. Genesis 2003; 36:149-57. [PMID: 12872246 DOI: 10.1002/gene.10210] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human serpin, proteinase inhibitor 6 (PI-6/SERPINB6), is a protease inhibitor expressed in many tissues. It inhibits a large number of proteases, including cathepsin G in granulocytes and monocytes. To determine the temporal and spatial distribution of PI-6, mice were generated in which exon 2 of the PI-6 ortholog SPI3 (Serpinb6) was replaced with a green fluorescent protein (GFP) reporter gene. This placed GFP under the control of the regulatory elements and initiation codon of the SPI3 gene. The neomycin selection cassette was flanked by loxP sites to allow excision from the targeted allele. GFP expression in heterozygous and SPI3-deficient mice accurately reflected the tissue distribution of SPI3 in all organs tested and allowed precise comparisons of expression levels. Interestingly, retention of the neomycin cassette in targeted mice resulted in 2-10-fold increases of GFP in leukocytes, but without affecting tissue-specific expression patterns. This is the first example of selection cassette retention specifically increasing reporter gene expression in targeted mice and reinforces the view that selection cassettes must be removed to avoid confounding effects on reporter gene expression patterns.
Collapse
Affiliation(s)
- Katrina L Scarff
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Wang G, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 2003; 36:48-61. [PMID: 12748967 DOI: 10.1002/gene.10200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heat shock transcription factors (Hsfs) are major transactivators of heat shock protein (Hsp) genes in the response to stress stimuli, but are also thought to be involved in embryonic development and spermatogenesis. Among the three known mammalian Hsfs, Hsf1 is recognized as the most effective transactivator of Hsps in response to thermal challenge, but the role of Hsf2 in regulation of genes under normal or increased stress conditions in vivo remains elusive. To study its physiological function in vivo, we generated mice deficient in hsf2 by gene targeting. We report here that hsf2(-/-) mice exhibit multiple phenotypes, including an increased prenatal lethality occurring between mid-gestation to birth, with fetal death probably due to central nervous system defects including collapse of the lateral ventricles and ventricular hemorrhages. Approximately 30% of hsf2(-/-) animals surviving to adulthood exhibited brain abnormalities characterized by marked dilation of the third and lateral ventricles. In addition, disruption of hsf2 resulted in reduced female fertility; however, despite ubiquitous expression in the testes and markedly reduced testis size and sperm count, only a small reduction in fertility was apparent in hsf2(-/-) male mice. Immunoblotting and gene expression microarray analysis of hsf2(-/-) embryos did not reveal reduced Hsp expression levels, indicating that the defects observed in hsf2(-/-) embryos may not result from disruption of Hsp expression. These findings suggest that hsf2 has a major function in controlling expression of genes important for embryonic development and maintenance of sperm production.
Collapse
Affiliation(s)
- Guanghu Wang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
36
|
Takahashi T, Takahashi K, St John PL, Fleming PA, Tomemori T, Watanabe T, Abrahamson DR, Drake CJ, Shirasawa T, Daniel TO. A mutant receptor tyrosine phosphatase, CD148, causes defects in vascular development. Mol Cell Biol 2003; 23:1817-31. [PMID: 12588999 PMCID: PMC151692 DOI: 10.1128/mcb.23.5.1817-1831.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPeta), participates in developmental vascularization. A mutant allele, CD148(DeltaCyGFP), was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions.
Collapse
Affiliation(s)
- Takamune Takahashi
- Nephrology Division and Center for Vascular Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yu YA, Szalay AA, Wang G, Oberg K. Visualization of molecular and cellular events with green fluorescent proteins in developing embryos: a review. LUMINESCENCE 2003; 18:1-18. [PMID: 12536374 DOI: 10.1002/bio.701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During the past 5 years, green fluorescent protein (GFP) has become one of the most widely used in vivo protein markers for studying a number of different molecular processes during development, such as promoter activation, gene expression, protein trafficking and cell lineage determination. GFP fluorescence allows observation of dynamic developmental processes in real time, in both transiently and stably transformed cells, as well as in live embryos. In this review, we include the most up-to-date use of GFP during embryonic development and point out the unique contribution of GFP visualization, which resulted in novel discoveries.
Collapse
Affiliation(s)
- Yong A Yu
- Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
38
|
Hart AH, Hartley L, Sourris K, Stadler ES, Li R, Stanley EG, Tam PPL, Elefanty AG, Robb L. Mixl1is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 2002; 129:3597-608. [PMID: 12117810 DOI: 10.1242/dev.129.15.3597] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Xenopus, the Mix/Bix family of homeobox genes has been implicated in mesendoderm development. Mixl1 is the only known murine member of this family. To examine the role of Mixl1 in murine embryogenesis, we used gene targeting to create mice bearing a null mutation of Mixl1. Homozygous Mixl1 mutant embryos can be distinguished from their littermates by a marked thickening of the primitive streak. By the early somite stage, embryonic development is arrested, with the formation of abnormal head folds, foreshortened body axis, absence of heart tube and gut, deficient paraxial mesoderm, and an enlarged midline tissue mass that replaces the notochord. Development of extra-embryonic structures is generally normal except that the allantois is often disproportionately large for the size of the mutant embryo. In chimeras, Mixl1–/– mutant cells can contribute to all embryonic structures, with the exception of the hindgut, suggesting that Mixl1 activity is most crucial for endodermal differentiation. Mixl1 is therefore required for the morphogenesis of axial mesoderm, the heart and the gut during embryogenesis.
Collapse
Affiliation(s)
- Adam H Hart
- The Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Vic 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pasqualetti M, Ren SY, Poulet M, LeMeur M, Dierich A, Rijli FM. AHoxa2 knockin allele that expresses EGFP upon conditional Cre-mediated recombination. Genesis 2002. [DOI: 10.1002/gene.10053] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, Rowe D. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 2002; 17:15-25. [PMID: 11771662 DOI: 10.1359/jbmr.2002.17.1.15] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green fluorescent protein (GFP)-expressing transgenic mice were produced containing a 3.6-kilobase (kb; pOBCol3.6GFPtpz) and a 2.3-kb (pOBCol2.3GFPemd) rat type I collagen (Col1a1) promoter fragment. The 3.6-kb promoter directed strong expression of GFP messenger RNA (mRNA) to bone and isolated tail tendon and lower expression in nonosseous tissues. The 2.3-kb promoter expressed the GFP mRNA in the bone and tail tendon with no detectable mRNA elsewhere. The pattern of fluorescence was evaluated in differentiating calvarial cell (mouse calvarial osteoblast cell [mCOB]) and in marrow stromal cell (MSC) cultures derived from the transgenic mice. The pOBCol3.6GFPtpz-positive cells first appeared in spindle-shaped cells before nodule formation and continued to show a strong signal in cells associated with bone nodules. pOBCol2.3GFPemd fluorescence first appeared in nodules undergoing mineralization. Histological analysis showed weaker pOBCol3.6GFPtpz-positive fibroblastic cells in the periosteal layer and strongly positive osteoblastic cells lining endosteal and trabecular surfaces. In contrast, a pOBCol2.3GFPemd signal was limited to osteoblasts and osteocytes without detectable signal in periosteal fibroblasts. These findings suggest that Col1a1GFP transgenes are marking different subpopulations of cells during differentiation of skeletal osteoprogenitors. With the use of other promoters and color isomers of GFP, it should be possible to develop experimental protocols that can reflect the heterogeneity of cell differentiation in intact bone. In primary culture, this approach will afford isolation of subpopulations of these cells for molecular and cellular analysis.
Collapse
Affiliation(s)
- I Kalajzic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Stadler HS, Higgins KM, Capecchi MR. Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development 2001; 128:4177-88. [PMID: 11684655 DOI: 10.1242/dev.128.21.4177] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesenchymal patterning is an active process whereby genetic commands coordinate cell adhesion, sorting and condensation, and thereby direct the formation of morphological structures. In mice that lack the Hoxa13 gene, the mesenchymal condensations that form the autopod skeletal elements are poorly resolved, resulting in missing digit, carpal and tarsal elements. In addition, mesenchymal and endothelial cell layers of the umbilical arteries (UAs) are disorganized, resulting in their stenosis and in embryonic death. To further investigate the role of Hoxa13 in these phenotypes, we generated a loss-of-function allele in which the GFP gene was targeted into the Hoxa13 locus. This allele allowed FACS isolation of mesenchymal cells from Hoxa13 heterozygous and mutant homozygous limb buds. Hoxa13GFP expressing mesenchymal cells from Hoxa13 mutant homozygous embryos are defective in forming chondrogenic condensations in vitro. Analysis of pro-adhesion molecules in the autopod of Hoxa13 mutants revealed a marked reduction in EphA7 expression in affected digits, as well as in micromass cell cultures prepared from mutant mesenchymal cells. Finally, antibody blocking of the EphA7 extracellular domain severely inhibits the capacity of Hoxa13GFP heterozygous cells to condense and form chondrogenic nodules in vitro, which is consistent with the hypothesis that reduction in EphA7 expression affects the capacity of Hoxa13–/– mesenchymal cells to form chondrogenic condensations in vivo and in vitro. EphA7 and EphA4 expression were also decreased in the mesenchymal and endothelial cells that form the umbilical arteries in Hoxa13 mutant homozygous embryos. These results suggest that an important role for Hoxa13 during limb and UA development is to regulate genes whose products are required for mesenchymal cell adhesion, sorting and boundary formation.
Collapse
Affiliation(s)
- H S Stadler
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | | | |
Collapse
|
42
|
Kalantry S, Manning S, Haub O, Tomihara-Newberger C, Lee HG, Fangman J, Disteche CM, Manova K, Lacy E. The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 2001; 27:412-6. [PMID: 11279523 DOI: 10.1038/86912] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fate-mapping experiments in the mouse have revealed that the primitive streak can be divided into three functional regions: the proximal region gives rise to germ cells and the extra-embryonic mesoderm of the yolk sac; the distal region generates cardiac mesoderm and node-derived axial mesendoderm; and the middle streak region produces the paraxial, intermediate and lateral plate mesoderm of the trunk. To gain insight into the mechanisms that mediate the assembly of the primitive streak into these functional regions, we have cloned and functionally identified the gene disrupted in the amnionless (amn) mouse, which has a recessive, embryonic lethal mutation that interferes specifically with the formation and/or specification of the middle primitive streak region during gastrulation. Here we report that the gene Amn encodes a novel type I transmembrane protein that is expressed exclusively in the extra-embryonic visceral endoderm layer during gastrulation. The extracellular region of the Amn protein contains a cysteine-rich domain with similarity to bone morphogenetic protein (BMP)-binding cysteine-rich domains in chordin, its Drosophila melanogaster homolog (Short gastrulation) and procollagen IIA (ref. 3). Our findings indicate that Amn may direct the production of trunk mesoderm derived from the middle streak by acting in the underlying visceral endoderm to modulate a BMP signaling pathway.
Collapse
Affiliation(s)
- S Kalantry
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11149956 PMCID: PMC14636 DOI: 10.1073/pnas.021548898] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adrenomedullin, a recently identified potent vasodilator, is expressed widely and has been suggested to have functions ranging from reproduction to blood pressure regulation. To elucidate these functions and define more precisely sites of Adm expression, we replaced the coding region of the Adm gene in mice with a sequence encoding enhanced green fluorescent protein while leaving the Adm promoter intact. We find that Adm(-/-) embryos die at midgestation with extreme hydrops fetalis and cardiovascular abnormalities, including overdeveloped ventricular trabeculae and underdeveloped arterial walls. These data suggest that genetically determined absence of Adm may be one cause of nonimmune hydrops fetalis in humans.
Collapse
|
44
|
Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A 2001; 98:615-9. [PMID: 11149956 PMCID: PMC14636 DOI: 10.1073/pnas.98.2.615] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adrenomedullin, a recently identified potent vasodilator, is expressed widely and has been suggested to have functions ranging from reproduction to blood pressure regulation. To elucidate these functions and define more precisely sites of Adm expression, we replaced the coding region of the Adm gene in mice with a sequence encoding enhanced green fluorescent protein while leaving the Adm promoter intact. We find that Adm(-/-) embryos die at midgestation with extreme hydrops fetalis and cardiovascular abnormalities, including overdeveloped ventricular trabeculae and underdeveloped arterial walls. These data suggest that genetically determined absence of Adm may be one cause of nonimmune hydrops fetalis in humans.
Collapse
Affiliation(s)
- K M Caron
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | |
Collapse
|
45
|
Gaufo GO, Flodby P, Capecchi MR. Hoxb1 controls effectors of sonic hedgehog and Mash1 signaling pathways. Development 2000; 127:5343-54. [PMID: 11076756 DOI: 10.1242/dev.127.24.5343] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diverse neuronal subtypes in the adult central nervous system arise from progenitor cells specified by the combined actions of anteroposterior (AP) and dorsoventral (DV) signaling molecules in the neural tube. Analyses of the expression and targeted disruption of the homeobox gene Hoxb1 demonstrate that it is essential for patterning progenitor cells along the entire DV axis of rhombomere 4 (r4). Hoxb1 accomplishes this function by acting very early during hindbrain neurogenesis to specify effectors of the sonic hedgehog and Mash1 signaling pathways. In the absence of Hoxb1 function, multiple neurons normally specified within r4 are instead programmed for early cell death. The findings reported here provide evidence for a genetic cascade in which an AP-specified transcription factor, Hoxb1, controls the commitment and specification of neurons derived from both alar and basal plates of r4.
Collapse
Affiliation(s)
- G O Gaufo
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
46
|
Pratt T, Sharp L, Nichols J, Price DJ, Mason JO. Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev Biol 2000; 228:19-28. [PMID: 11087623 DOI: 10.1006/dbio.2000.9935] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have generated embryonic stem (ES) cells and transgenic mice carrying a tau-tagged green fluorescent protein (GFP) transgene under the control of a powerful promoter active in all cell types including those of the central nervous system. GFP requires no substrate and can be detected in fixed or living cells so is an attractive genetic marker. Tau-tagged GFP labels subcellular structures, including axons and the mitotic machinery, by binding the GFP to microtubules. This allows cell morphology to be visualized in exquisite detail. We test the application of cells derived from these mice in several types of cell-mixing experiments and demonstrate that the morphology of tau-GFP-expressing cells can be readily visualized after they have integrated into unlabeled host cells or tissues. We anticipate that these ES cells and transgenic mice will prove a novel and powerful tool for a wide variety of applications including the development of neural transplantation technologies in animal models and fundamental research into axon pathfinding mechanisms. A major advantage of the tau-GFP label is that it can be detected in living cells and labeled cells and their processes can be identified and subjected to a variety of manipulations such as electrophysiological cell recording.
Collapse
Affiliation(s)
- T Pratt
- Department of Biomedical Sciences, Centre for Developmental Biology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Lüers GH, Jess N, Franz T. Reporter-linked monitoring of transgene expression in living cells using the ecdysone-inducible promoter system. Eur J Cell Biol 2000; 79:653-7. [PMID: 11043406 DOI: 10.1078/0171-9335-00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inducible promoter systems such as the ecdysone-inducible system or the tetracycline-regulated expression systems have proven to be powerful tools in studying gene function. In practice, such systems have met with the difficulty that either the vector expressing the transactivator gene or the vector carrying the response element are frequently silenced by flanking genomic sequences after stable integration. In order to identify those cells in a heterogeneous population in which a transgene is expressed from an ecdysone-inducible promoter, we have created the vector p2ER-EGFP/mcs that contains two ecdysone-inducible expression cassettes in tandem. Using two reporter genes, lacZ and green fluorescent protein (EGFP), we demonstrate that the expression of both genes can be co-induced from a very low baseline in CHO cells expressing the modified ecdysone receptor and the retinoid X receptor. The expression of EGFP and lacZ from vector p2ER-EGFP/lacZ follows the same Muristerone A concentration-dependence as that of EGFP from vector pER-EGFP, indicating that the juxtaposition of the two inducible promoters in vector p2ER-EGFP/mcs does not cause cross interference between them. We suggest that this modification of the ecdysone-inducible promoter system will allow for the visual control of the induced expression of other genes by Muristerone A.
Collapse
Affiliation(s)
- G H Lüers
- University of Bonn, Institute for Anatomy, Germany
| | | | | |
Collapse
|
48
|
Abstract
Flow cytometry is extensively used for the isolation of discreet populations of cells from complex pools. The advent of autofluorescent (AFP) reporters such as wild type Green Fluorescent Protein (wtGFP) (Chalfie et al., 1994) and its variants, including enhanced green fluorescent protein (EGFP) and enhanced yellow fluorescent protein (EYFP) (Cormack et al., 1996), as vital reporters opens up the possibility of sorting live reporter-expressing cells. Moreover the use of these reporters in transgenics (Okabe et al., 1997) or mice carrying homologously targeted loci (Godwin et al., 1998) should enable the direct isolation of reporter-expressing cells from any desired lineage. Here we have assessed this approach in transgenic mice. ES cell-mediated transgenesis was used for generating a line of mice that express an autofluorescent EYFP reporter in the heart and part of the neural tube at midgestation. Pools of fluorescent cells harboring and expressing the EYFP reporter were isolated from defined regions of embryos and their origin confirmed by assaying the expression of domain-defined marker genes. Such a tool should prove useful for gaining access to any given lineage that can be fluorescent protein reporter tagged.
Collapse
Affiliation(s)
- A K Hadjantonakis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
49
|
Hancock CR, Wetherington JP, Lambert NA, Condie BG. Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem Biophys Res Commun 2000; 271:418-21. [PMID: 10799312 DOI: 10.1006/bbrc.2000.2631] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic stem cells (ES cells) are developmentally pluripotent cells isolated from pre-implantation mammalian embryos. In cell culture ES cells can be easily differentiated to generate cultures of neural progenitors. We present a simple method for the cryopreservation of these ES-derived neural progenitors. Cryopreserved neural progenitor stocks can be thawed, expanded with FGF2, and differentiated into functional neurons. This method will facilitate studies using ES-derived neural progenitor cells as a cell culture model system for neural development and differentiation. It will also aid studies designed to test the ability of these progenitor cells to functionally engraft and repair damaged neural tissue.
Collapse
Affiliation(s)
- C R Hancock
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, 30912, USA
| | | | | | | |
Collapse
|
50
|
Huang WY, Aramburu J, Douglas PS, Izumo S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 2000; 6:482-3. [PMID: 10802676 DOI: 10.1038/74914] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|