1
|
Artemiev D, Todorova MG. Long-term Therapy Results of Topical Dorzolamide Treatment in Enhanced S-Cone Syndrome. Klin Monbl Augenheilkd 2025; 242:432-434. [PMID: 39929204 DOI: 10.1055/a-2495-8656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Affiliation(s)
- Dmitri Artemiev
- Department of Ophthalmology, Cantonal Hospital St. Gallen, Switzerland
| | - Margarita G Todorova
- Department of Ophthalmology, Cantonal Hospital St. Gallen, Switzerland
- Department of Ophthalmology, University of Zurich, Switzerland
| |
Collapse
|
2
|
Wang Y, Kroll TG, Hao L, Wen Z. Orphan nuclear receptor NR2E3 is a new molecular vulnerability in solid tumors by activating p53. Cell Death Dis 2025; 16:15. [PMID: 39809731 PMCID: PMC11733144 DOI: 10.1038/s41419-025-07337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/29/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
The orphan nuclear receptor NR2E3 has emerged as a potential tumor suppressor, yet its precise mechanisms in tumorigenesis require further investigation. Here, we demonstrate that the full-length protein isoform of NR2E3 instead of its short isoform activates wild-type p53 and is capable of rescuing certain p53 mutations in various cancer cell lines. Importantly, we observe a higher frequency of NR2E3 mutations in three solid tumors compared to the reference population, highlighting its potential significance in tumorigenesis. Specifically, we identify a cancer-associated NR2E3R97H mutation, which not only fails to activate p53 but also impedes NR2E3WT-mediated p53 acetylation. Moreover, we show that the small-molecule agonist of NR2E3, 11a, penetrates tumor mass of uterine cancer patients and increases p53 activation. Additionally, both NR2E3 and 11a exhibit similar multifaceted anti-cancer properties, underscoring NR2E3 as a novel molecular vulnerability in cancer cells. We further explore drug repurposing screens of FDA-approved anti-cancer drugs to develop NR2E3-targeted combinatorial treatments, such as the 11a-Romidepsin combination in HeLa cells. The underlying molecular mechanisms of these drug synergies include the activation of p53 pathway and inhibition of oncogenic pathway like MYC. Overall, our findings suggest that NR2E3 holds promise as a therapeutic target for cancer treatment, offering new avenues for effective anti-cancer strategies.
Collapse
Affiliation(s)
- Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Todd G Kroll
- Department of Pathology, Marshfield Medical Center, Marshfield Clinic Health System, Marshfield, WI, USA
- Department of Pathology and Laboratory Medicine, Endeavor Northshore Health System, Evanston, IL, USA
| | - Linhui Hao
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, USA.
| |
Collapse
|
3
|
Parmar T, Parmar V, Malek G. Potential Role of NUR77 in the Aging Retinal Pigment Epithelium and Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:165-169. [PMID: 39930190 DOI: 10.1007/978-3-031-76550-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The underlying mechanisms associated with age-related changes in the morphology and function of retinal pigmented epithelial (RPE) cells are poorly understood. The aging RPE progresses through several structural changes including loss of melanin granules, accumulation of lipofuscin, and cytoskeletal changes, among others. Extracellular to it, there is also thickening of Bruch's membrane and changes in the integrity of the choroid. Recent studies have revealed that aging also affects the metabolic ecosystem of the RPE. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species generation, and increased number of mitochondrial mutations relative to baseline. These changes are also found in age-related macular degeneration (AMD), a late-onset vision-impairing disease, in which the RPE is particularly vulnerable. The orphan nuclear receptor NR4A1/NUR77 is an early response gene and regulator of various cellular processes during development, aging, and disease. Previously we observed decreased levels of Nur77/NUR77 in both mouse and human RPE as a function of age. Current knowledge of the function of this receptor in the RPE is limited. Herein, we discuss the putative roles of NUR77 in the RPE during aging and disease.
Collapse
Affiliation(s)
- Tanu Parmar
- Departments of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Albert Eye Research Institute, Durham, NC, USA.
| | - Vipul Parmar
- Departments of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Departments of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Albert Eye Research Institute, Durham, NC, USA.
- Departments of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Departments of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Choudhary M, Malek G. Potential therapeutic targets for age-related macular degeneration: The nuclear option. Prog Retin Eye Res 2023; 94:101130. [PMID: 36220751 PMCID: PMC10082136 DOI: 10.1016/j.preteyeres.2022.101130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023]
Abstract
The functions and activities of nuclear receptors, the largest family of transcription factors in the human genome, have classically focused on their ability to act as steroid and hormone sensors in endocrine organs. However, they are responsible for a diverse array of physiological functions, including cellular homeostasis and metabolism, during development and aging. Though the eye is not a traditional endocrine organ, recent studies have revealed high expression levels of nuclear receptors in cells throughout the posterior pole. These findings have precipitated an interest in investigating the role of these transcription factors in the eye as a function of age and ocular disease, in particular age-related macular degeneration (AMD). As the leading cause of vision impairment in the elderly, identifying signaling pathways that may be targeted for AMD therapy is of great importance, given the lack of therapeutic options for over 85% of patients with this disease. Herein we review this relatively new field and recent findings supporting the hypothesis that the eye is a secondary endocrine organ, in which nuclear receptors serve as the bedrock for biological processes in cells vulnerable in AMD, including retinal pigment epithelial and choroidal endothelial cells, and discuss the therapeutic potential of targeting these receptors for AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
6
|
Bechet L, Atia R, Zeitz C, Mohand-Saïd S, Sahel JA, Barale PO, Audo I. Management of a case of Enhanced S-cone syndrome with massive foveoschisis treated with pars plana vitrectomy with silicone oil tamponade. Ophthalmic Genet 2021; 42:615-618. [PMID: 33970758 DOI: 10.1080/13816810.2021.1925927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Goldmann Favre Syndrome (GFS) is a vitreoretinal degenerative disease with macular retinoschisis. The current treatment of foveoschisis is topical and oral carbonic anhydrase inhibitors.Case: A 22-year-old male diagnosed with GFS presented a progressive decrease in vision of the right eye. The optical coherence tomography showed a significant macular schisis. A medical treatment with topical and oral carbonic anhydrase inhibitors was ineffective. We performed a pars plana vitrectomy and silicone oil placement which led to an improvement of the visual acuity and a reduction of the foveoschisis.Conclusion: We describe here the first case of surgical treatment for macular schisis in a patient with GFS.
Collapse
Affiliation(s)
- Lorane Bechet
- CHNO des Quinze-Vingts, INSERM-DGOS CIC Paris, France
| | - Raphaël Atia
- CHNO des Quinze-Vingts, INSERM-DGOS CIC Paris, France
| | - Christina Zeitz
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Saddek Mohand-Saïd
- CHNO des Quinze-Vingts, INSERM-DGOS CIC Paris, France.,Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - José-Alain Sahel
- CHNO des Quinze-Vingts, INSERM-DGOS CIC Paris, France.,Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Ophthalmology and Vitreo-retinal Diseases, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, USA.,Department of Neurosciences, Académie des Sciences-Institut de France, Paris, France
| | | | - Isabelle Audo
- CHNO des Quinze-Vingts, INSERM-DGOS CIC Paris, France.,Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
7
|
Magliyah MS, AlSulaiman SM, Schatz P, Nowilaty SR. Evolution of macular hole in enhanced S-cone syndrome. Doc Ophthalmol 2020; 142:239-245. [DOI: 10.1007/s10633-020-09787-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
|
8
|
Abstract
The fovea centralis, an anatomically concave pit located at the center of the macula, is avascular, hypoxic, and characteristic of stem-cell niches of other tissues. We hypothesized that in the fovea, undifferentiated retinal-stem-cell-like cells may exist, and that neurogenesis may occur. Hence, we performed an immunohistological study using cynomolgus monkey retinas. After preparing frozen tissue sections of the retina including the foveal pit, immunostaining was performed for glial fibrillary acidic protein (GFAP), nestin, vimentin, neuron-specific class III β-tubulin (Tuj-1), arrestin 4, neurofilament, CD117, CD44, Ki67, and cellular retinaldehyde-binding protein (CRALBP), followed by fluorescence and/or confocal microscopy examinations. Immunostaining of the tissue sections enabled clear observation of strongly GFAP-positive cells that corresponded to the inner-half layer of the foveolar Müller cell cone. The surface layer of the foveal slope was partially costained with GFAP and vimentin. Tuj-1-positive cells were observed in the innermost layer of the foveolar retina, which spanned to the surrounding ganglion cell layer. Moreover, colocalization of Tuj-1 and GFAP was observed at the foveal pit. The coexpression of CD117 and CD44 was found in the interphotoreceptor matrix of the fovea. The foveolar cone stained positive for both nestin and arrestin 4, however, the photoreceptor layer outside of the foveola displayed weak staining for nestin. Colocalization of nestin and vimentin was observed in the inner half of the Henle layer, while colocalization of nestin and neurofilament was observed in the outer half, predominantly. Scattered Ki67-positive cells were observed in the cellular processes of the outer plexiform layer and the ganglion cell layer around the foveola. Immunostaining for CRALBP was negative in most parts of the GFAP-positive area. The Müller cell cone was divided into GFAP-strongly positive cells, presumably astrocytes, in the inner layer and nestin-positive/GFAP-weakly positive radial glia-like cells in the outer layer. These findings indicated that groups of such undifferentiated cells in the foveola might be involved in maintaining morphology and regeneration.
Collapse
|
9
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The Nuclear Receptor Field: A Historical Overview and Future Challenges. NUCLEAR RECEPTOR RESEARCH 2018; 5:101320. [PMID: 30148160 PMCID: PMC6108593 DOI: 10.11131/2018/101320] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.
Collapse
Affiliation(s)
- Gisela I. Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | - Cecilia M. Lotufo
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | | | - Jeffrey C. Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Olga B. Soto
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Marc B. Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario D. Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| |
Collapse
|
10
|
Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Sci Rep 2017; 7:10662. [PMID: 28878246 PMCID: PMC5587550 DOI: 10.1038/s41598-017-11106-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 08/18/2017] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) plays crucial roles in inflammation, metabolic disorder, and cancer. However, the molecular mechanisms regulating AHR expression remain unknown. Here, we found that an orphan nuclear NR2E3 maintains AHR expression, and forms an active transcriptional complex with transcription factor Sp1 and coactivator GRIP1 in MCF-7 human breast and HepG2 liver cancer cell lines. NR2E3 loss promotes the recruitment of LSD1, a histone demethylase of histone 3 lysine 4 di-methylation (H3K4me2), to the AHR gene promoter region, resulting in repression of AHR expression. AHR expression and responsiveness along with H3K4me2 were significantly reduced in the livers of Nr2e3rd7 (Rd7) mice that express low NR2E3 relative to the livers of wild-type mice. SP2509, an LSD1 inhibitor, fully restored AHR expression and H3K4me2 levels in Rd7 mice. Lastly, we demonstrated that both AHR and NR2E3 are significantly associated with good clinical outcomes in liver cancer. Together, our results reveal a novel link between NR2E3, AHR, and liver cancer via LSD1-mediated H3K4me2 histone modification in liver cancer development.
Collapse
|
11
|
Fulton J, Mazumder B, Whitchurch JB, Monteiro CJ, Collins HM, Chan CM, Clemente MP, Hernandez-Quiles M, Stewart EA, Amoaku WM, Moran PM, Mongan NP, Persson JL, Ali S, Heery DM. Heterodimers of photoreceptor-specific nuclear receptor (PNR/NR2E3) and peroxisome proliferator-activated receptor-γ (PPARγ) are disrupted by retinal disease-associated mutations. Cell Death Dis 2017; 8:e2677. [PMID: 28300834 PMCID: PMC5386588 DOI: 10.1038/cddis.2017.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022]
Abstract
Photoreceptor-specific nuclear receptor (PNR/NR2E3) and Tailless homolog (TLX/NR2E1) are human orthologs of the NR2E group, a subgroup of phylogenetically related members of the nuclear receptor (NR) superfamily of transcription factors. We assessed the ability of these NRs to form heterodimers with other members of the human NRs representing all major subgroups. The TLX ligand-binding domain (LBD) did not appear to form homodimers or interact directly with any other NR tested. The PNR LBD was able to form homodimers, but also exhibited robust interactions with the LBDs of peroxisome proliferator-activated receptor-γ (PPARγ)/NR1C3 and thyroid hormone receptor b (TRb) TRβ/NR1A2. The binding of PNR to PPARγ was specific for this paralog, as no interaction was observed with the LBDs of PPARα/NR1C1 or PPARδ/NR1C2. In support of these findings, PPARγ and PNR were found to be co-expressed in human retinal tissue extracts and could be co-immunoprecipitated as a native complex. Selected sequence variants in the PNR LBD associated with human retinopathies, or a mutation in the dimerization region of PPARγ LBD associated with familial partial lipodystrophy type 3, were found to disrupt PNR/PPARγ complex formation. Wild-type PNR, but not a PNR309G mutant, was able to repress PPARγ-mediated transcription in reporter assays. In summary, our results reveal novel heterodimer interactions in the NR superfamily, suggesting previously unknown functional interactions of PNR with PPARγ and TRβ that have potential importance in retinal development and disease.
Collapse
Affiliation(s)
- Joel Fulton
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Bismoy Mazumder
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | - Chun M Chan
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | - Elizabeth A Stewart
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Winfried M Amoaku
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Zhi X, Zhou XE, Melcher K, Xu HE. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. J Steroid Biochem Mol Biol 2016; 157:27-40. [PMID: 26159912 DOI: 10.1016/j.jsbmb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; Autophagy Research Center, University of Texas Southwestern Medical Center, 6000Harry Hines Blvd., Dallas, TX 75390, USA.
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; VARI-SIMM Center, Key Laboratory of Receptor Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
13
|
Cystoid macular lesions are resistant to topical dorzolamide treatment in enhanced S-cone syndrome child. Doc Ophthalmol 2016; 132:67-73. [DOI: 10.1007/s10633-016-9527-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
14
|
von Alpen D, Tran HV, Guex N, Venturini G, Munier FL, Schorderet DF, Haider NB, Escher P. Differential dimerization of variants linked to enhanced S-cone sensitivity syndrome (ESCS) located in the NR2E3 ligand-binding domain. Hum Mutat 2015; 36:599-610. [PMID: 25703721 DOI: 10.1002/humu.22775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/10/2015] [Indexed: 11/11/2022]
Abstract
NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.
Collapse
Affiliation(s)
- Désirée von Alpen
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hoai Viet Tran
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Francis L Munier
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel F Schorderet
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,EPFL-Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Neena B Haider
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Boston, Massachusetts
| | - Pascal Escher
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
|
16
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
17
|
Bates KE, Molnar J, Robinow S. The unfulfilled gene and nervous system development in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:217-23. [PMID: 24953188 DOI: 10.1016/j.bbagrm.2014.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
The unfulfilled gene of Drosophila encodes a member of the NR2E subfamily of nuclear receptors. Like related members of the NR2E subfamily, UNFULFILLED is anticipated to function as a dimer, binding to DNA response elements and regulating the expression of target genes. The UNFULFILLED protein may be regulated by ligand-binding and may also be post-transcriptionally modified by sumoylation and phosphorylation. unfulfilled mutants display a range of aberrant phenotypes, problems with eclosion and post-eclosion behaviors, compromised fertility, arrhythmicity, and a lack of all adult mushroom body lobes. The locus of the fertility problem has not been determined. The behavioral arrhythmicity is due to the unfulfilled-dependent disruption of gene expression in a set of pacemaker neurons. The eclosion and the mushroom body lobe phenotypes of unfulfilled mutants are the result of developmental problems associated with failures in axon pathfinding or re-extension. Interest in genes that act downstream of unfulfilled has resulted in the identification of a growing number of unfulfilled interacting loci, providing the first glimpse into the composition of unfulfilled-dependent gene networks. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA
| | - Janos Molnar
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA
| | - Steven Robinow
- Department of Biology, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
18
|
Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease. PLoS One 2014; 9:e87942. [PMID: 24498227 PMCID: PMC3909326 DOI: 10.1371/journal.pone.0087942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
Collapse
|
19
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
20
|
Salvatore S, Fishman GA, Genead MA. Treatment of cystic macular lesions in hereditary retinal dystrophies. Surv Ophthalmol 2013; 58:560-84. [DOI: 10.1016/j.survophthal.2012.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
|
21
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
22
|
Schorderet DF, Escher P. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP). Hum Mutat 2010; 30:1475-85. [PMID: 19718767 DOI: 10.1002/humu.21096] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.
Collapse
|
23
|
Macular function assessed by microperimetry in patients with enhanced S-cone syndrome. Ophthalmology 2010; 117:1199-1206.e1. [PMID: 20171741 DOI: 10.1016/j.ophtha.2009.10.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 10/30/2009] [Accepted: 10/30/2009] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Enhanced S-cone syndrome (ESCS), also known as Goldmann-Favre syndrome, is a progressive retinal degeneration that frequently presents with night blindness and nummular pigment clumping around the vascular arcades and is caused by recessive mutations in the photoreceptor-specific NR2E3 transcription factor. A unique feature of this disease is the development of retinoschisis of the macula. This study used fine anatomic and functional assessments within this region to determine whether the loss of retinal function was due to progressive schisis or a primary photoreceptor loss, similar to other rod-cone dystrophies. DESIGN Cross-sectional, prospective study. PARTICIPANTS Nine probands (n=18 eyes) and 3 controls (n=6 eyes) were studied at Moorfields Eye Hospital in London, United Kingdom. METHODS Histories were obtained and visual acuity was measured using Early Treatment Diabetic Retinopathy Study protocol. Autofluorescence (AF), fundus photography, and spectral domain optical coherence tomography (OCT) imaging were co-registered to detailed microperimetry (Nidek MP1; NAVIS software version 1.7.2; Nidek Technologies, Padova, Italy) data for statistical analysis. MAIN OUTCOME MEASURES Retinal sensitivity (decibels) in a customized test grid of the macula; retinal structure assessed with OCT and AF. RESULTS Patients were divided into 3 cohorts roughly based on life span and documentation of schisis: (1) no schisis, childhood; (2) macular schisis, young adults; (3) resolved schisis, older adults. Retinal sensitivity was significantly attenuated in those with schisis and did not recover in those whose schisis had resolved despite retinal thickness comparable to that of controls. All probands exhibited loss of AF peripherally (and corresponding loss of retinal sensitivity), but there was relative preservation of AF within the macula. CONCLUSIONS Development of macular retinoschisis in ESCS is an important feature of the disease and contributes to attenuated retinal sensitivity that persists after resolution of retinoschisis. The central macula appears to be compromised more by foveoschisis than photoreceptor loss. In contrast, the peripheral retina (ordinarily a rod-rich region) is affected early in the disease process and degenerates rapidly because of photoreceptor loss. Thus, 2 distinct mechanisms of retinal degeneration may exist in ESCS, corresponding to regions of the retina that may experience either normal or abnormal photoreceptor development.
Collapse
|
24
|
Bates KE, Sung CS, Robinow S. The unfulfilled gene is required for the development of mushroom body neuropil in Drosophila. Neural Dev 2010; 5:4. [PMID: 20122139 PMCID: PMC2829026 DOI: 10.1186/1749-8104-5-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mushroom bodies (MBs) of Drosophila are required for complex behaviors and consist of three types of neurons, gamma, alpha'/beta' and alpha/beta. Previously, roles for transcription factors in MB neuronal differentiation have only been described for a subset of MB neurons. We are investigating the roles of unfulfilled (unf; HR51, CG16801) in MB development. unf encodes a nuclear receptor that is orthologous to the nuclear receptors fasciculation of axons defective 1 (FAX-1) of the nematode and photoreceptor specific nuclear receptor (PNR) of mammals. Based on our previous observations that unf transcripts accumulate in MB neurons at all developmental stages and the presence of axon pathfinding defects in fax-1 mutants, we hypothesized that unf regulates MB axon growth and pathfinding. RESULTS We show that unf mutants exhibit a range of highly penetrant axon stalling phenotypes affecting all neurons of the larval and adult MBs. Phenotypic analysis of unfX1 mutants revealed that alpha'/beta' and alpha/beta neurons initially project axons but stall prior to the formation of medial or dorsal MB lobes. unfZ0001 mutants form medial lobes, although these axons fail to branch, which results in a failure to form the alpha or alpha' dorsal lobes. In either mutant background, gamma neurons fail to develop larval-specific dorsal projections. These mutant gamma neurons undergo normal pruning, but fail to re-extend axons medially during pupal development. unfRNAi animals displayed phenotypes similar to those seen in unfZ0001 mutants. Unique asymmetrical phenotypes were observed in unfX1/unfZ0001 compound heterozygotes. Expression of UAS-unf transgenes in MB neurons rescues the larval and adult unf mutant phenotypes. CONCLUSIONS These data support the hypothesis that unf plays a common role in the development of all types of MB neurons. Our data indicate that unf is necessary for MB axon extension and branching and that the formation of dorsal collaterals is more sensitive to the loss of unf function than medial projections. The asymmetrical phenotypes observed in compound heterozygotes support the hypothesis that the earliest MB axons may serve as pioneers for the later-born MB neurons, providing evidence for pioneer MB axon guidance in post-embryonic development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
25
|
Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 2009; 29:12865-77. [PMID: 19828801 DOI: 10.1523/jneurosci.3382-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertebrate retinal progenitor cells (RPCs) are pluripotent, but pass through competence states that progressively restrict their developmental potential (Cepko et al., 1996; Livesey and Cepko, 2001; Cayouette et al., 2006). In the rodent eye, seven retinal cell classes differentiate in overlapping waves, with RGCs, cone photoreceptors, horizontals, and amacrines forming predominantly before birth, and rod photoreceptors, bipolars, and Müller glia differentiating postnatally. Both intrinsic and extrinsic factors regulate each retinal cell type (for review, see Livesey and Cepko, 2001). Here, we conditionally deleted the transcription factor Rbpj, a critical integrator of multiple Notch signals (Jarriault et al., 1995; Honjo, 1996; Kato et al., 1997; Han et al., 2002), during prenatal mouse retinal neurogenesis. Removal of Rbpj caused reduced proliferation, premature neuronal differentiation, apoptosis, and profound mispatterning. To determine the cell autonomous requirements for Rbpj during RGC and cone formation, we marked Cre-generated retinal lineages with GFP expression, which showed that Rbpj autonomously promotes RPC mitotic activity, and suppresses RGC and cone fates. In addition, the progressive loss of Rbpj-/- RPCs resulted in a diminished progenitor pool available for rod photoreceptor formation. This circumstance, along with the overproduction of Rbpj-/- cones, revealed that photoreceptor development is under homeostatic regulation. Finally, to understand how the Notch pathway regulates the simultaneous formation of multiple cell types, we compared the RGC and cone phenotypes of Rbpj to Notch1 (Jadhav et al., 2006b; Yaron et al., 2006), Notch3, and Hes1 mutants. We found particular combinations of Notch pathway genes regulate the development of each retinal cell type.
Collapse
|
26
|
Sung C, Wong LE, Chang Sen LQ, Nguyen E, Lazaga N, Ganzer G, McNabb SL, Robinow S. Theunfulfilled/DHR51gene ofDrosophila melanogastermodulates wing expansion and fertility. Dev Dyn 2009; 238:171-82. [DOI: 10.1002/dvdy.21817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Webber AL, Hodor P, Thut CJ, Vogt TF, Zhang T, Holder DJ, Petrukhin K. Dual role of Nr2e3 in photoreceptor development and maintenance. Exp Eye Res 2008; 87:35-48. [PMID: 18547563 DOI: 10.1016/j.exer.2008.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/10/2008] [Accepted: 04/16/2008] [Indexed: 11/17/2022]
Abstract
Nr2e3 is a photoreceptor-specific nuclear receptor believed to play a role in photoreceptor development, differentiation, and survival. Much research has focused on the interaction of Nr2e3 with other transcription factors in determining the milieu of target gene expression in photoreceptors of the neonatal and adult retina. To investigate the downstream targets of Nr2e3 and thereby shed light on the functional pathways relevant to photoreceptor development and maintenance, expression profiling was performed on retinas from two different mouse knockout lines, one containing a targeted disruption of the Nr2e3 gene (Nr2e3 -/-), the other containing a spontaneous null allele of the Nr2e3 locus (rd7). Using whole genome microarrays, mRNA expression profiles of retinas from the two mutant strains were compared to those of wildtype C57BL/6 mice over a time course that ranged from postnatal day (p) 2 to 6months of age (p180). Additionally, expression profiling was performed on retinal explants treated with a putative NR2E3 agonist. The molecular profiling of Nr2e3 -/- and rd7/rd7 retinas identified 281 putative Nr2e3-dependent genes that were differentially expressed between wildtype and mutant retinas during at least one time point. Consistent with previous reports that Nr2e3 is necessary for the repression of cone-specific genes, increased expression of cone-specific genes was observed in the mutant samples, thereby providing proof-of-concept for the microarray screen. Further annotation of these data sets revealed ten predominant functional classes involved in the Nr2e3-mediated development and/or maintenance of photoreceptors. Interestingly, differences in the expression of Nr2e3-dependent genes exhibited two distinct temporal patterns. One group of genes showed a sustained difference in expression as compared to wildtype over the entire time course of the study, whereas a second group showed only transient differences which were largest around p10. Comparison of gene expression changes in Nr2e3 -/- and rd7/rd7 retinas with those uncovered by treating retinal explants with a putative NR2E3 agonist revealed four genes that were down-regulated in mutant retinas that lack Nr2e3 function but were up-regulated in agonist-treated explants. These results strongly suggest that the four genes may be direct targets of Nr2e3. Our identification of two sets of Nr2e3-regulated genes provides further evidence of a dual role for Nr2e3 in specification of photoreceptor fate during development as well as photoreceptor maintenance in the adult.
Collapse
Affiliation(s)
- Andrea L Webber
- Department of Ophthalmology, Merck & Co Inc, West Point, PA 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
DeMeo SD, Lombel RM, Cronin M, Smith EL, Snowflack DR, Reinert K, Clever S, Wightman B. Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue. BMC Mol Biol 2008; 9:2. [PMID: 18179707 PMCID: PMC2225407 DOI: 10.1186/1471-2199-9-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 01/07/2008] [Indexed: 11/30/2022] Open
Abstract
Background The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes C. elegans nhr-67, Drosophila tailless and dissatisfaction, and vertebrate Tlx (NR2E2, NR2E4, NR2E1), and the NR2E3 subclass, which includes C. elegans fax-1 and vertebrate PNR (NR2E5, NR2E3). PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members. Results We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind in vivo. Conclusion These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1 and NR2E3 subclasses. For the NR2E1 protein NHR-67, Asp-19 permits binding to AAGTCA half-sites, while Asn-19 permits binding to AGGTCA half-sites. The apparent conservation of DNA-binding properties between vertebrate and nematode NR2E receptors allows for the possibility of evolutionarily-conserved regulatory patterns.
Collapse
Affiliation(s)
- Stephen D DeMeo
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Katyal S, Gao Z, Liu RZ, Godbout R. Evolutionary conservation of alternative splicing in chicken. Cytogenet Genome Res 2007; 117:146-57. [PMID: 17675855 PMCID: PMC3726401 DOI: 10.1159/000103175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/13/2006] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals.
Collapse
Affiliation(s)
- S Katyal
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
30
|
Hennig AK, Peng GH, Chen S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res 2007; 1192:114-33. [PMID: 17662965 PMCID: PMC2266892 DOI: 10.1016/j.brainres.2007.06.036] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/13/2007] [Accepted: 06/20/2007] [Indexed: 01/31/2023]
Abstract
Rod and cone photoreceptors in the mammalian retina are special types of neurons that are responsible for phototransduction, the first step of vision. Development and maintenance of photoreceptors require precisely regulated gene expression. This regulation is mediated by a network of photoreceptor transcription factors centered on Crx, an Otx-like homeodomain transcription factor. The cell type (subtype) specificity of this network is governed by factors that are preferentially expressed by rods or cones or both, including the rod-determining factors neural retina leucine zipper protein (Nrl) and the orphan nuclear receptor Nr2e3; and cone-determining factors, mostly nuclear receptor family members. The best-documented of these include thyroid hormone receptor beta2 (Tr beta2), retinoid related orphan receptor Ror beta, and retinoid X receptor Rxr gamma. The appropriate function of this network also depends on general transcription factors and cofactors that are ubiquitously expressed, such as the Sp zinc finger transcription factors and STAGA co-activator complexes. These cell type-specific and general transcription regulators form complex interactomes; mutations that interfere with any of the interactions can cause photoreceptor development defects or degeneration. In this manuscript, we review recent progress on the roles of various photoreceptor transcription factors and interactions in photoreceptor subtype development. We also provide evidence of auto-, para-, and feedback regulation among these factors at the transcriptional level. These protein-protein and protein-promoter interactions provide precision and specificity in controlling photoreceptor subtype-specific gene expression, development, and survival. Understanding these interactions may provide insights to more effective therapeutic interventions for photoreceptor diseases.
Collapse
Affiliation(s)
- Anne K. Hennig
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110
- Corresponding Author: Shiming Chen, Ph.D., Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO 63110. Phone: (314) 747−4350; Fax: (314) 747−4211;
| |
Collapse
|
31
|
Fradot M, Lorentz O, Wurtz JM, Sahel JA, Léveillard T. The loss of transcriptional inhibition by the photoreceptor-cell specific nuclear receptor (NR2E3) is not a necessary cause of enhanced S-cone syndrome. Mol Vis 2007; 13:594-601. [PMID: 17438525 PMCID: PMC2669504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate functional consequence on photoreceptor-cell specific nuclear receptor (NR2E3) transcriptional activity of enhanced S-cone syndrome (ESCS) mutations localized in ligand binding domain (LBD). METHODS Point mutations were introduced into the LBD of full length and Gal4 chimeric NR2E3 receptors and transcriptional activity was investigated by using transient co-transfection assay on corresponding luciferase reporters. Expression and DNA binding properties of transfected mutant and wild-type receptors were tested by Western blotting and gel shift assay. RESULTS Our analysis show that two ESCS mutations, missense mutations R385P and M407K, abolished NR2E3 repressive activity in the context of full-length and Gal4 chimeric receptors, while W234S and R311Q mutants retained their repressive activity in both assays. All mutant receptors maintained their stability and DNA binding ability. CONCLUSIONS These results showed that NR2E3 mutations localized in LBD induce ESCS disease without affecting inhibitory activity as recorded in vitro. This demonstrates the absence of correlation between transcriptional inhibition and ESCS phenotype. This analysis suggests that NR2E3 might have transcriptional activation properties not yet identified.
Collapse
Affiliation(s)
- Mathias Fradot
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France
| | - Olivier Lorentz
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France
| | - Jean-Marie Wurtz
- Departement de Biologie et de Génomique Structurales, IGBMC, CNRS/Inserm/Université Louis Pasteur, BP10142, Illkirch Cedex, France
| | - José-Alain Sahel
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France,University College of London, Institute of Ophthalmology, UK
| | - Thierry Léveillard
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
32
|
Kitambi SS, Hauptmann G. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain. Gene Expr Patterns 2007; 7:521-8. [PMID: 17127102 DOI: 10.1016/j.modgep.2006.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 11/24/2022]
Abstract
Mammalian Nr2e1 (Tailless, Mtll or Tlx) and Nr2e3 (photoreceptor-specific nuclear receptor, Pnr) are highly related orphan nuclear receptors, that are expressed in eye and forebrain-derived structures. In this study, we analyzed the developmental expression patterns of zebrafish nr2e1 and nr2e3. RT-PCR analysis showed that nr2e1 and nr2e3 are both expressed during embryonic and post-embryonic development. To examine the spatial distribution of nr2e1 and nr2e3 during development whole-mount in situ hybridization was performed. At tailbud stage, initial nr2e1 expression was localized to the rostral brain rudiment anterior to pax2.1 and eng2 expression at the prospective midbrain-hindbrain boundary. During subsequent stages, nr2e1 became widely expressed in fore- and midbrain primordia, eye and olfactory placodes. At 24hpf, strong nr2e1 expression was detected in telencephalon, hypothalamus, dorsal thalamus, pretectum, midbrain tectum, and retina. At 2dpf, the initially widespread nr2e1 expression became more restricted to distinct regions within the fore- and midbrain and to the retinal ciliary margin, the germinal zone which gives rise to retina and presumptive iris. Expression of nr2e3 was exclusively found in the developing retina and epiphysis. In both structures, nr2e3 expression was found in photoreceptor cells. The developmental expression profile of zebrafish nr2e1 and nr2e3 is consistent with evolutionary conserved functions in eye and rostral brain structures.
Collapse
Affiliation(s)
- Satish Srinivas Kitambi
- School of Life Sciences, Södertörns University College, Department of Biosciences and Nutrition, Karolinska Institutet, Alfred Nobels Allé 3, 14152 Huddinge, Sweden
| | | |
Collapse
|
33
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wolkenberg SE, Zhao Z, Kapitskaya M, Webber AL, Petrukhin K, Tang YS, Dean DC, Hartman GD, Lindsley CW. Identification of potent agonists of photoreceptor-specific nuclear receptor (NR2E3) and preparation of a radioligand. Bioorg Med Chem Lett 2006; 16:5001-4. [PMID: 16879962 DOI: 10.1016/j.bmcl.2006.07.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 11/22/2022]
Abstract
Agonists of NR2E3 (PNR, RNR) have been identified and optimized to EC(50)< 200 nM. A tritiated analogue of one agonist was prepared to aid in the development of a binding assay.
Collapse
Affiliation(s)
- Scott E Wolkenberg
- Department of Medicinal Chemistry, Technology Enabled Synthesis Group, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kapitskaya M, Cunningham ME, Lacson R, Kornienko O, Bednar B, Petrukhin K. Development of the High Throughput Screening Assay for Identification of Agonists of an Orphan Nuclear Receptor. Assay Drug Dev Technol 2006; 4:253-62. [PMID: 16834531 DOI: 10.1089/adt.2006.4.253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retina-specific nuclear receptor (RNR), also known as PNR and NR2E3, is an orphan nuclear receptor expressed exclusively in photoreceptor cells of the retina. Here we describe homogeneous cell-based resonance energy transfer assay for identification of RNR agonists using beta-lactamase as the reporter gene. Bacterial beta-lactamase reporter construct containing GAL4 response elements was randomly integrated into the genome with subsequent selection of responsive cell pools by fluorescence-activated cell sorting. Chimeric RNR (RNR hinge and ligand-binding domains fused to GAL4 DNA-binding domain) was stably transfected into mammalian Flp-In Chinese hamster ovary cells using Flp-mediated recombination into a single pre-integrated Flp recombination target site. Since no RNR ligand could be used as a control for monitoring the development of the RNR assay, we developed a parallel cell line with the functionally related well-characterized thyroid hormone nuclear receptor. This parallel thyroid hormone nuclear receptor system was used as a "guide" in optimizing the RNR assay for ultra-high-throughput screening in 3,456-well nanoplate format. The assay was successfully used to screen a large compound collection for RNR agonists. In this study we demonstrated the feasibility of developing and optimization of the high-throughput screening-compatible assay for the orphan nuclear receptor in the absence of its cognitive ligand.
Collapse
Affiliation(s)
- Marianna Kapitskaya
- Department of Ophthalmics Research, Merck Research Laboratories, West Point, PA 19486-0004, USA
| | | | | | | | | | | |
Collapse
|
36
|
Wightman B, Ebert B, Carmean N, Weber K, Clever S. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes. Dev Biol 2005; 287:74-85. [PMID: 16183052 DOI: 10.1016/j.ydbio.2005.08.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/28/2005] [Accepted: 08/18/2005] [Indexed: 11/28/2022]
Abstract
The fax-1 gene of the nematode C. elegans encodes a conserved nuclear receptor that is the ortholog of the human PNR gene and functions in the specification of neuron identities. Mutations in fax-1 result in locomotion defects. FAX-1 protein accumulates in the nuclei of 18 neurons, among them the AVA, AVB, and AVE interneuron pairs that coordinate body movements. The identities of AVA and AVE interneurons are defective in fax-1 mutants; neither neuron expresses the NMDA receptor subunits nmr-1 and nmr-2. Other ionotropic glutamate receptor subunits are expressed normally in the AVA and AVE neurons. The unc-42 homeobox gene also regulates AVA and AVE identity; however, unc-42 mutants display the complementary phenotype: NMDA receptor subunit expression is normal, but some non-NMDA glutamate receptor subunits are not expressed. These observations support a combinatorial role for fax-1 and unc-42 in specifying AVA and AVE identity. However, in four other neuron types, fax-1 is regulated by unc-42, and both transcriptional regulators function in the regulation of the opt-3 gene in the AVE neurons and the flp-1 and ncs-1 genes in the AVK neurons. Therefore, while fax-1 and unc-42 act in complementary parallel pathways in some cells, they function in overlapping or linear pathways in other cellular contexts, suggesting that combinatorial relationships among transcriptional regulators are complex and cannot be generalized from one neuron type to another.
Collapse
Affiliation(s)
- Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA.
| | | | | | | | | |
Collapse
|
37
|
Chen J, Rattner A, Nathans J. The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J Neurosci 2005; 25:118-29. [PMID: 15634773 PMCID: PMC6725199 DOI: 10.1523/jneurosci.3571-04.2005] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study addresses one genetic regulatory mechanism that establishes the distinct identities of rod and cone photoreceptors. Previous work has shown that mutations in either humans or mice in the gene coding for photoreceptor-specific nuclear receptor Nr2e3 cause a progressive retinal degeneration characterized by increased numbers of short-wave cones. In the present work, we have examined the cellular and developmental pattern of Nr2e3 protein localization in mammals and fish, identified an optimal Nr2e3 DNA-binding site using cycles of binding to recombinant Nr2e3, characterized the transcriptional activity of wild type and one of the disease-associated point mutations in Nr2e3 in transfected cells, and characterized the transcriptional defects in the naturally occurring Nr2e3 mutant (rd7) mouse. These experiments indicate that in the mature vertebrate retina Nr2e3 is expressed exclusively in rods, that expression of Nr2e3 is one of the earliest events in the pathway of rod-specific photoreceptor development, and that Nr2e3 functions, either directly or indirectly, as a repressor of cone-specific genes in rod photoreceptor cells.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
38
|
Abstract
Regenerative medicine constitutes a potentially promising therapy for blind people suffering from retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. For the realization of retinal regeneration, it is necessary to establish 1) a method to produce functional photoreceptor cells in vitro and 2) successful transplantation of the donor cells to connect their axons to the recipient secondary neurons so that they can function properly. The results of experimental transplantation of human retinal photoreceptor cells from cadaveric eyes or of fetal retinal cells into the retina of RP patients have not been satisfactory, but encouraging enough to indicate that the transplantation of developing retinal cells may have beneficial results. Recently, attempts have been made to generate photoreceptor-like cells from stem cells, but it remains to be seen whether they are in fact photoreceptor cells. It is therefore important to fully understand the mechanisms involved in the development of these cells, and to characterize them not only by transcriptome but also by functional analysis.
Collapse
Affiliation(s)
- Masayuki Akimoto
- Translational Research Center, Kyoto University Hospital, Japan.
| |
Collapse
|
39
|
Mori M, Metzger D, Picaud S, Hindelang C, Simonutti M, Sahel J, Chambon P, Mark M. Retinal dystrophy resulting from ablation of RXR alpha in the mouse retinal pigment epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:701-10. [PMID: 14742273 PMCID: PMC1602254 DOI: 10.1016/s0002-9440(10)63157-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vitamin A (retinol) actions in eye development are mediated by retinoic acid receptors (RARs and RXRs). Using the Cre/loxP system, we have selectively ablated RXR alpha in the retinal pigment epithelium (RPE), a cell monolayer critically involved in visual retinoid renewal and phagocytosis of photoreceptor outer segments. In the mutant (RXR alpha (rpe-/-)) mice, RPE cells are morphologically and functionally abnormal and display decreased expression of proteins involved in the visual retinoid cycle, namely RPE65, CRALBP, and RGR. RXR alpha (rpe-/-) mice also show alterations of photoreceptor cells including: 1) decrease in their number; 2) outer segment shortening and disorganization, and 3) reduced light responses in electroretinograms. These results indicate that RXR alpha is required for normal maturation of the RPE, which is known to play essential roles in photoreceptor cell function and survival, and point to a possible involvement of RXR alpha signaling pathways in the RPE in human retinal diseases.
Collapse
Affiliation(s)
- Mikiro Mori
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collège de France, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Thyroid hormone appears to play a critical, yet not fully understood, role in the development of the neuroretina. This review focuses on recent experiments in the rodent, chicken, and amphibian, with an emphasis on how the hormone and its receptor isoforms influence retinal cell proliferation and cell fate decisions. The initial results are fueling the next generation of experiments in the retina, which promise to provide insights into the mechanisms of thyroid hormone action in a wide variety of developing neural tissue.
Collapse
Affiliation(s)
- Sanjiv Harpavat
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Abstract
Unusual neuro-ophthalmologic symptoms and signs that go unexplained should warrant a thorough investigation for paraneoplastic syndromes. Although these syndromes are rare, these clinical manifestations can herald an unsuspected, underlying malignancy that could be treated early and aggressively. This point underscores the importance of distinguishing and understanding the various, sometimes subtle, presentations of ocular paraneoplastic syndromes. Outlined in this review article are diagnostic features useful in differentiating cancer-associated retinopathy, melanoma-associated retinopathy, and paraneoplastic optic neuropathy. These must also be distinguished from non-cancer-related eye disorders that may clinically resemble cancer-associated retinopathy. The associated antibodies and histopathology of each syndrome are presented to help in the understanding of these autoimmune phenomena. Treatment outcomes from reported cases are summarized, and some potential novel immunotherapies are also discussed.
Collapse
Affiliation(s)
- Jane W Chan
- Department of Internal Medicine, Division of Neurology, University of Nevada School of Medicine, Las Vegas 89102, USA
| |
Collapse
|
42
|
Eaton MJ, Skatchkov SN, Brune A, Biedermann B, Veh RW, Reichenbach A. SURI and Kir6.1 subunits of K(ATP)-channels are co-localized in retinal glial (Müller) cells. Neuroreport 2002; 13:57-60. [PMID: 11924895 DOI: 10.1097/00001756-200201210-00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ATP-sensitive potassium channels (K(ATP)), unlike other inwardly rectifying potassium (Kir) channels, require two structurally diverse subunits to form functional channels: one member of the Kir6 channel family (Kir6.1 or Kir6.2), and one sulfonylurea receptor (SUR) of the ATP-binding cassette superfamily (SURI, SUR2A or SUR2B). We have previously shown that two pore-forming subunits of K(ATP)-channels are differently distributed in frog retina. Kir6.1 is localized in Miller (glial) cells, whereas Kir6.2 is found in neurons. Using immunocytochemistry, the present study reveals that in adult frog retina, SURI is restricted to Müller (glial) cells whereas SUR2A and SUR2B are found in neurons. These data suggest that functional K(ATP) channels in Müller cells may be formed by Kir6.1/SURI, and in neurons by Kir6.2/SUR2A and/or Kir6.2/SUR2B.
Collapse
Affiliation(s)
- Misty J Eaton
- CMBN, Department of Biochemistry, Universidad Central del Caribe, Bayamén, PR, 00960-6032, USA
| | | | | | | | | | | |
Collapse
|
43
|
Eichen JG, Dalmau J, Demopoulos A, Wade D, Posner JB, Rosenfeld MR. The photoreceptor cell-specific nuclear receptor is an autoantigen of paraneoplastic retinopathy. J Neuroophthalmol 2001; 21:168-72. [PMID: 11725181 DOI: 10.1097/00041327-200109000-00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To report a novel antibody associated with paraneoplastic retinopathy and to characterize the retinal autoantigen. METHODS Immunohistochemistry of rat and human tissues was used to identify antiretinal antibodies. Serologic screening of a bovine retinal cDNA expression library was performed to clone the target antigen. RESULTS A 72-year-old woman presented with a 6-month history of progressive visual loss, bilateral central scotomas, light flashes, and night blindness. Visual acuity was 20/40 OD and 20/30 OS. There was generalized loss of retinal pigment and narrow arterioles; discs were normal in appearance. The electroretinogram showed no response. Chest computed tomograph scan demonstrated a right lung mass; biopsy revealed poorly differentiated carcinoma. The patients' serum contained antibodies that immunolabeled nuclei of cells of the outer--and to a lesser extent, the inner--nuclear layer of the adult rat retina. No reactivity was identified with nonretinal adult human or rat tissues. Reactivity was seen in the developing rat embryo. Serologic screening of a bovine retinal library resulted in the isolation of three overlapping clones, encoding a protein highly homologous to the human photoreceptor cell-specific nuclear receptor gene product. CONCLUSIONS The target antigen of an antibody associated with paraneoplastic retinopathy is the photoreceptor cellspecific nuclear receptor, a member of a conserved family of nuclear receptors involved in photoreceptor cell development or maintenance.
Collapse
Affiliation(s)
- J G Eichen
- Department of Neurology and Laboratory of Neuro-Oncology, University of Arkansas for Medical Sciences and the Arkansas Cancer Research Center, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kutty RK, Kutty G, Samuel W, Duncan T, Bridges CC, El-Sherbeeny A, Nagineni CN, Smith SB, Wiggert B. Molecular characterization and developmental expression of NORPEG, a novel gene induced by retinoic acid. J Biol Chem 2001; 276:2831-40. [PMID: 11042181 DOI: 10.1074/jbc.m007421200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized NORPEG, a novel gene from human retinal pigment epithelial cells (ARPE-19), in which its expression is induced by all-trans-retinoic acid. Two transcripts ( approximately 3 and approximately 5 kilobases in size) have been detected for this gene, which is localized to chromosome band 5p13.2-13.3. Placenta and testis showed the highest level of expression among various human tissues tested. Six ankyrin repeats and a long coiled-coil domain are present in the predicted sequence of the NORPEG protein, which contains 980 amino acid residues. This approximately 110-kDa protein was transiently expressed in COS-7 cells as a FLAG fusion protein and immunolocalized to the cytoplasm. Confocal microscopic analysis of the NORPEG protein in ARPE-19 cells showed threadlike projections in the cytoplasm reminiscent of the cytoskeleton. Consistent with this localization, the expressed NORPEG protein showed resistance to solubilization by Triton X-100 and KCl. An ortholog of NORPEG characterized from mouse encoded a protein that showed 91% sequence similarity to the human NORPEG protein. The expression of Norpeg mRNA was detected in mouse embryo at embryonic day 9.5 by in situ hybridization, and the expression appears to be developmentally regulated. In adult mouse, the highest level of expression was detected in the seminiferous tubules of testis.
Collapse
Affiliation(s)
- R K Kutty
- Biochemistry Section, Laboratory of Retinal Cell and Molecular Biology, and the Immunology and Virology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2740, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kobayashi M, Yu RT, Yasuda K, Umesono K. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX. Mol Cell Biol 2000; 20:8731-9. [PMID: 11073974 PMCID: PMC86495 DOI: 10.1128/mcb.20.23.8731-8739.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2000] [Accepted: 09/18/2000] [Indexed: 12/13/2022] Open
Abstract
Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.
Collapse
Affiliation(s)
- M Kobayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | |
Collapse
|
46
|
Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, Beck G, Hockey R, Hanna DB, Gorman S, Duhl D, Carmi R, Bennett J, Weleber RG, Fishman GA, Wright AF, Stone EM, Sheffield VC. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 2000; 24:127-31. [PMID: 10655056 DOI: 10.1038/72777] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary human retinal degenerative diseases usually affect the mature photoreceptor topography by reducing the number of cells through apoptosis, resulting in loss of visual function. Only one inherited retinal disease, the enhanced S-cone syndrome (ESCS), manifests a gain in function of photoreceptors. ESCS is an autosomal recessive retinopathy in which patients have an increased sensitivity to blue light; perception of blue light is mediated by what is normally the least populous cone photoreceptor subtype, the S (short wavelength, blue) cones. People with ESCS also suffer visual loss, with night blindness occurring from early in life, varying degrees of L (long, red)- and M (middle, green)-cone vision, and retinal degeneration. The altered ratio of S- to L/M-cone photoreceptor sensitivity in ESCS may be due to abnormal cone cell fate determination during retinal development. In 94% of a cohort of ESCS probands we found mutations in NR2E3 (also known as PNR), which encodes a retinal nuclear receptor recently discovered to be a ligand-dependent transcription factor. Expression of NR2E3 was limited to the outer nuclear layer of the human retina. Our results suggest that NR2E3 has a role in determining photoreceptor phenotype during human retinogenesis.
Collapse
Affiliation(s)
- N B Haider
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|