1
|
Zhang J, Kwan HLR, Chan CB, Lee CW. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death Differ 2025; 32:546-560. [PMID: 39511403 PMCID: PMC11893767 DOI: 10.1038/s41418-024-01404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells. The release of spatially localized BDNF is tightly controlled by activity-regulated mechanisms in a calcium-dependent manner. Live-cell time-lapse imaging further showed that BDNF-containing vesicles are transported to and captured at PLSs in both aneural and synaptic AChR clusters for spatially restricted release. Functionally, BDNF knockdown or furin-mediated endoproteolytic activity inhibition significantly suppresses aneural AChR cluster formation, which in turn affects synaptic AChR clustering induced by nerve innervation or agrin-coated beads. Lastly, skeletal muscle-specific BDNF knockout (MBKO) mice exhibit structural defects in the formation of aneural AChR clusters and their subsequent recruitment to nerve-induced synaptic AChR clusters during the initial stages of NMJ development in vivo. Together, this study demonstrated the regulatory roles of PLSs in the intracellular trafficking, spatial localization, and activity-dependent release of BDNF in muscle cells and revealed the involvement of muscle-generated BDNF and its proteolytic conversion in regulating the initial formation of aneural and synaptic AChR clusters during early NMJ development in vitro and in vivo.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
Mehrotra P, Jablonski J, Toftegaard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo KCS, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun 2024; 15:9218. [PMID: 39455585 PMCID: PMC11511891 DOI: 10.1038/s41467-024-53276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kelly C S Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary, Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| | - Kirkwood E Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Haghighi AH, Shojaee M, Askari R, Abbasian S, Gentil P. The effects of 12 weeks resistance training and vitamin D administration on neuromuscular joint, muscle strength and power in postmenopausal women. Physiol Behav 2024; 274:114419. [PMID: 38036018 DOI: 10.1016/j.physbeh.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND This study aimed to examine the effects of 12 weeks of resistance training (RT) and vitamin D (VitD) supplementation on muscle strength and C-terminal agrin fragment (CAF) and Neurotrophin-3 (NT-3) concentrations as potential biomarkers in postmenopausal women. METHODS This was a randomized double-blind placebo-controlled study. Forty-four healthy postmenopausal women (55.84 ± 4.70 years and 29.61 ± 4.26 kg/m2) were randomly assigned into four groups: (1) Resistance training + placebo (RT + PLA), (2) Vitamin D supplementation (VitD), (3) Resistance training + vitamin D (RT + VitD), and (4) Placebo (PLA). VitD was supplemented as an oral capsule containing 50000 IU of cholecalciferol every two weeks. RT involved leg press, chest press, leg extension, leg curl, and shoulder press exercises, performed with 3-4 sets at 70-85 % of 1RM, three times a week. RESULTS Circulating levels of CAF and NT-3 did not significantly change following the intervention period in the study groups (p > 0.05). There were significant increases in upper and lower body muscle strength and power for RT + VitD and RT + PLA ( < 0.05), but not for VitD or PLA (p > 0.05). The muscle function gains for RT + VitD and RT + PLA were higher than those for VitD and PLA but did not differ between them. CONCLUSION 12-week of RT interventions resulted in significant increases in muscle strength and power in postmenopausal women. However, VitD supplementation did not result in any additional benefits. The positive changes in muscle function promoted by RT do not seem to be associated with changes in the neuromuscular joint via the CAF or NT-3 as potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Haghighi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Malihe Shojaee
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Roya Askari
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Sadegh Abbasian
- Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Brazil.
| |
Collapse
|
5
|
Mehrotra P, Jablonski J, Toftegard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo K, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. RESEARCH SQUARE 2024:rs.3.rs-3463557. [PMID: 38260278 PMCID: PMC10802751 DOI: 10.21203/rs.3.rs-3463557/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. The onset of PNI is characterized by nerve degeneration distal to the nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generated a mouse model in which NANOG, a pluripotency-associated transcription factor can be expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulated the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression led to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation, and downregulation of key muscle atrophy genes. Further, NANOG mice demonstrated extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice showed greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming the muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY 14214, USA
| | - John Toftegard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kelly Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Susan B. Udin
- Department of Physiology and Biophysics, University at Buffalo, Amherst, NY 14203, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260, USA
| | - Kirkwood E. Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY 14214, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
Lukasiewicz CJ, Tranah GJ, Evans DS, Coen PM, Barnes HN, Huo Z, Esser KA, Lane NE, Kritchevsky SB, Newman AB, Cummings SR, Cawthon PM, Hepple RT. Higher Expression of Denervation-responsive Genes is Negatively Associated with Muscle Volume and Performance Traits in the Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.04.23298090. [PMID: 37961531 PMCID: PMC10635277 DOI: 10.1101/2023.11.04.23298090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
With aging skeletal muscle fibers undergo repeating cycles of denervation and reinnervation. In approximately the 8 th decade of life reinnervation no longer keeps pace, resulting in the accumulation of persistently denervated muscle fibers that in turn cause an acceleration of muscle dysfunction. The significance of denervation in important clinical outcomes with aging is poorly studied. The Study of Muscle, Mobility and Aging (SOMMA) is a large cohort study with the primary objective to assess how aging muscle biology impacts clinically important traits. Using transcriptomics data from vastus lateralis muscle biopsies in 575 participants we have selected 49 denervation-responsive genes to provide insights to the burden of denervation in SOMMA, to test the hypothesis that greater expression of denervation-responsive genes negatively associates with SOMMA participant traits that included time to walk 400 meters, fitness (VO 2peak ), maximal mitochondrial respiration, muscle mass and volume, and leg muscle strength and power. Consistent with our hypothesis, increased transcript levels of: a calcium-dependent intercellular adhesion glycoprotein (CDH15), acetylcholine receptor subunits (Chrna1, Chrnd, Chrne), a glycoprotein promoting reinnervation (NCAM1), a transcription factor regulating aspects of muscle organization (RUNX1), and a sodium channel (SCN5A) were each negatively associated with at least 3 of these traits. VO 2peak and maximal respiration had the strongest negative associations with 15 and 19 denervation-responsive genes, respectively. In conclusion, the abundance of denervation-responsive gene transcripts is a significant determinant of muscle and mobility outcomes in aging humans, supporting the imperative to identify new treatment strategies to restore innervation in advanced age.
Collapse
|
7
|
Upregulation of Sarcolemmal Hemichannels and Inflammatory Transcripts with Neuromuscular Junction Instability during Lower Limb Unloading in Humans. BIOLOGY 2023; 12:biology12030431. [PMID: 36979123 PMCID: PMC10044797 DOI: 10.3390/biology12030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Human skeletal muscle atrophy and a disproportionate force loss occur within a few days of unloading in space and on Earth, but the underlying mechanisms are not fully understood. Disruption of neuromuscular junction homeostasis has been proposed as one of the possible causes. Here, we investigated the potential mechanisms involved in this neuromuscular disruption induced by a 10-day unilateral lower limb suspension (ULLS) in humans. Specifically, we investigated hemichannels’ upregulation, neuromuscular junction and axonal damage, neurotrophins’ receptor downregulation and inflammatory transcriptional signatures. Biomarkers were evaluated at local and systemic levels. At the sarcolemmal level, changes were found to be associated with an increased expression of connexin 43 and pannexin-1. Upregulation of the inflammatory transcripts revealed by deep transcriptomics was found after 10 days of ULLS. The destabilisation of the neuromuscular junction was not accompanied by changes in the secretion of the brain-derived neurotrophic factor and neurotrophin-4, while their receptor, BDNF/NT growth factors receptor (TrkB), decreased. Furthermore, at 5 days of ULLS, there was already a significant upregulation of the serum neurofilament light chain concentration, an established clinical biomarker of axonal injury. At 10 days of ULLS, other biomarkers of early denervation processes appeared. Hence, short periods of muscle unloading induce sarcolemmal hemichannels upregulation, inflammatory transcripts upregulation, neuromuscular junction instability and axonal damage.
Collapse
|
8
|
Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021; 10:cells10123292. [PMID: 34943800 PMCID: PMC8699767 DOI: 10.3390/cells10123292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, 68159 Mannheim, Germany;
- Hector Institute for Translational Brain Research (HITBR gGmbH), 68159 Mannheim, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
- Correspondence:
| |
Collapse
|
9
|
BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc Natl Acad Sci U S A 2019; 116:16111-16120. [PMID: 31320589 DOI: 10.1073/pnas.1900544116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) influences the differentiation, plasticity, and survival of central neurons and likewise, affects the development of the neuromuscular system. Besides its neuronal origin, BDNF is also a member of the myokine family. However, the role of skeletal muscle-derived BDNF in regulating neuromuscular physiology in vivo remains unclear. Using gain- and loss-of-function animal models, we show that muscle-specific ablation of BDNF shifts the proportion of muscle fibers from type IIB to IIX, concomitant with elevated slow muscle-type gene expression. Furthermore, BDNF deletion reduces motor end plate volume without affecting neuromuscular junction (NMJ) integrity. These morphological changes are associated with slow muscle function and a greater resistance to contraction-induced fatigue. Conversely, BDNF overexpression promotes a fast muscle-type gene program and elevates glycolytic fiber number. These findings indicate that BDNF is required for fiber-type specification and provide insights into its potential modulation as a therapeutic target in muscle diseases.
Collapse
|
10
|
Halievski K, Nath SR, Katsuno M, Adachi H, Sobue G, Breedlove SM, Lieberman AP, Jordan CL. Disease Affects Bdnf Expression in Synaptic and Extrasynaptic Regions of Skeletal Muscle of Three SBMA Mouse Models. Int J Mol Sci 2019; 20:ijms20061314. [PMID: 30875922 PMCID: PMC6470984 DOI: 10.3390/ijms20061314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/01/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is a slowly progressive, androgen-dependent neuromuscular disease in men that is characterized by both muscle and synaptic dysfunction. Because gene expression in muscle is heterogeneous, with synaptic myonuclei expressing genes that regulate synaptic function and extrasynaptic myonuclei expressing genes to regulate contractile function, we used quantitative PCR to compare gene expression in these two domains of muscle from three different mouse models of SBMA: the "97Q" model that ubiquitously expresses mutant human androgen receptor (AR), the 113Q knock-in (KI) model that expresses humanized mouse AR with an expanded glutamine tract, and the "myogenic" model that overexpresses wild-type rat AR only in skeletal muscle. We were particularly interested in neurotrophic factors because of their role in maintaining neuromuscular function via effects on both muscle and synaptic function, and their implicated role in SBMA. We confirmed previous reports of the enriched expression of select genes (e.g., the acetylcholine receptor) in the synaptic region of muscle, and are the first to report the synaptic enrichment of others (e.g., glial cell line-derived neurotrophic factor). Interestingly, all three models displayed comparably dysregulated expression of most genes examined in both the synaptic and extrasynaptic domains of muscle, with only modest differences between regions and models. These findings of comprehensive gene dysregulation in muscle support the emerging view that skeletal muscle may be a prime therapeutic target for restoring function of both muscles and motoneurons in SBMA.
Collapse
Affiliation(s)
- Katherine Halievski
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environment Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu Fukuoka 807-8555, Japan.
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - S Marc Breedlove
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Cynthia L Jordan
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
- Physiology Department, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| |
Collapse
|
11
|
Bendella H, Rink S, Grosheva M, Sarikcioglu L, Gordon T, Angelov DN. Putative roles of soluble trophic factors in facial nerve regeneration, target reinnervation, and recovery of vibrissal whisking. Exp Neurol 2017; 300:100-110. [PMID: 29104116 DOI: 10.1016/j.expneurol.2017.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
It is well-known that, after nerve transection and surgical repair, misdirected regrowth of regenerating motor axons may occur in three ways. The first way is that the axons enter into endoneurial tubes that they did not previously occupy, regenerate through incorrect fascicles and reinnervate muscles that they did not formerly supply. Consequently the activation of these muscles results in inappropriate movements. The second way is that, in contrast with the precise target-directed pathfinding by elongating motor nerves during embryonic development, several axons rather than a single axon grow out from each transected nerve fiber. The third way of misdirection occurs by the intramuscular terminal branching (sprouting) of each regenerating axon to culminate in some polyinnervation of neuromuscular junctions, i.e. reinnervation of junctions by more than a single axon. Presently, "fascicular" or "topographic specificity" cannot be achieved and hence target-directed nerve regeneration is, as yet, unattainable. Nonetheless, motor and sensory reinnervation of appropriate endoneurial tubes does occur and can be promoted by brief nerve electrical stimulation. This review considers the expression of neurotrophic factors in the neuromuscular system and how this expression can promote functional recovery, with emphasis on the whisking of vibrissae on the rat face in relationship to the expression of the factors. Evidence is reviewed for a role of neurotrophic factors as short-range diffusible sprouting stimuli in promoting complete functional recovery of vibrissal whisking in blind Sprague Dawley (SD)/RCS rats but not in SD rats with normal vision, after facial nerve transection and surgical repair. Briefly, a complicated time course of growth factor expression in the nerves and denervated muscles include (1) an early increase in FGF2 and IGF2, (2) reduced NGF between 2 and 14days after nerve transection and surgical repair, (3) a late rise in BDNF and (4) reduced IGF1 protein in the denervated muscles at 28days. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of nerve injury-associated neurotrophic factors and cytokines at the neuromuscular junctions of denervated muscles. In particular, the increase of FGF2 and concomittant decrease of NGF during the first week after facial nerve-nerve anastomosis in SD/RCS blind rats may prevent intramuscular axon sprouting and, in turn, reduce poly-innervation of the neuromuscular junction.
Collapse
Affiliation(s)
- Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
12
|
Grosheva M, Nohroudi K, Schwarz A, Rink S, Bendella H, Sarikcioglu L, Klimaschewski L, Gordon T, Angelov DN. Comparison of trophic factors' expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course. Exp Neurol 2016; 279:137-148. [PMID: 26940083 DOI: 10.1016/j.expneurol.2016.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/07/2016] [Accepted: 02/26/2016] [Indexed: 01/08/2023]
Abstract
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates.
Collapse
Affiliation(s)
- Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Alisa Schwarz
- Department of Anatomy I, University of Cologne, Germany
| | - Svenja Rink
- Department of Anatomy I, University of Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Cologne, Germany
| | | | - Lars Klimaschewski
- Division of Neuroanatomy Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Tessa Gordon
- Department of Surgery,The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
13
|
Song W, Jin XA. Brain-derived neurotrophic factor inhibits neuromuscular junction maturation in a cAMP-PKA-dependent way. Neurosci Lett 2015; 591:8-12. [PMID: 25681622 DOI: 10.1016/j.neulet.2015.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 11/28/2022]
Abstract
The development of neuromuscular junction (NMJ) is initiated by motor axon's contact with the skeletal muscle cell that is followed by synaptic maturation. Previous studies showed that brain-derived neurotrophic factor (BDNF) enhanced motoneurons' survival and growth but significantly inhibited synaptogenesis. Here, we report that chronic application of BDNF resulted in inhibition in the maturation process both physiologically and morphologically. The response to BDNF was mediated by its cognate receptor TrkB as the effects were abolished by Trk receptor inhibitor K252a. Protein kinase A (PKA) inhibitor reversed the effects of BDNF in inhibiting NMJ maturation. These results indicate that BDNF suppresses NMJ maturation through cAMP-PKA signaling pathway. Together with the previous studies, these results suggest that BDNF suppresses NMJ formation and maturation despite its effects in enhancing neuronal survival and growth.
Collapse
Affiliation(s)
- Wei Song
- Peking University Health Science Center, Beijing 100191, China; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xiwan Albert Jin
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
14
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Song QX, Chermansky CJ, Birder LA, Li L, Damaser MS. Brain-derived neurotrophic factor in urinary continence and incontinence. Nat Rev Urol 2014; 11:579-88. [PMID: 25224451 DOI: 10.1038/nrurol.2014.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary incontinence adversely affects quality of life and results in an increased financial burden for the elderly. Accumulating evidence suggests a connection between neurotrophins, such as brain-derived neurotrophic factor (BDNF), and lower urinary tract function, particularly with regard to normal physiological function and the pathophysiological mechanisms of stress urinary incontinence (SUI) and bladder pain syndrome/interstitial cystitis (BPS/IC). The interaction between BDNF and glutamate receptors affects both bladder and external urethral sphincter function during micturition. Clinical findings indicate reduced BDNF levels in antepartum and postpartum women, potentially correlating with postpartum SUI. Experiments with animal models demonstrate that BDNF is decreased after simulated childbirth injury, thereby impeding the recovery of injured nerves and the restoration of continence. Treatment with exogenous BDNF facilitates neural recovery and the restoration of continence. Serotonin and noradrenaline reuptake inhibitors, used to treat both depression and SUI, result in enhanced BDNF levels. Understanding the neurophysiological roles of BDNF in maintaining normal urinary function and in the pathogenesis of SUI and BPS/IC could lead to future therapies based on these mechanisms.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Changhai Hospital, Shanghai, PR China
| | - Christopher J Chermansky
- Department of Urology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital of TMMU, Chongqing, PR China
| | - Margot S Damaser
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Gill BC, Damaser MS, Vasavada SP, Goldman HB. Stress incontinence in the era of regenerative medicine: reviewing the importance of the pudendal nerve. J Urol 2013; 190:22-8. [PMID: 23376143 DOI: 10.1016/j.juro.2013.01.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Regenerative medicine will likely facilitate improved stress urinary incontinence treatment via the restoration of its neurogenic, myogenic and structural etiologies. Understanding these pathophysiologies and how each can optimally benefit from cellular, molecular and minimally invasive therapies will become necessary. While stem cells in sphincteric deficiency dominate the regenerative urology literature, little has been published on pudendal nerve regeneration or other regenerative targets. We discuss regenerative therapies for pudendal nerve injury in stress urinary incontinence. MATERIALS AND METHODS A PubMed® search for pudendal nerve combined individually with regeneration, injury, electrophysiology, measurement and activity produced a combined but nonindependent 621 results. English language articles were reviewed by title for relevance, which identified a combined but nonindependent 68 articles. A subsequent Google Scholar™ search and a review of the references of the articles obtained aided in broadening the discussion. RESULTS Electrophysiological studies have associated pudendal nerve dysfunction with stress urinary incontinence clinically and assessed pudendal nerve regeneration functionally, while animal models have provided physiological insight. Stem cell treatment has improved continence clinically, and ex vivo sphincteric bulk and muscle function gains have been noted in the laboratory. Stem cells, neurotrophic factors and electrical stimulation have benefited pudendal nerve regeneration in animal models. CONCLUSIONS Most regenerative studies to date have focused on stem cells restoring sphincteric function and bulk but whether a sphincter denervated by pudendal nerve injury will benefit is unclear. Pudendal nerve regeneration appears possible through minimally invasive therapies that show significant clinical potential. Treating poor central control and coordination of the neuromuscular continence mechanism remains another challenge.
Collapse
Affiliation(s)
- Bradley C Gill
- Glickman Urological and Kidney Institute and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
17
|
Gill BC, Balog BM, Dissaranan C, Jiang HH, Steward JB, Lin DL, Damaser MS. Neurotrophin therapy improves recovery of the neuromuscular continence mechanism following simulated birth injury in rats. Neurourol Urodyn 2013; 32:82-7. [PMID: 22581583 PMCID: PMC3419785 DOI: 10.1002/nau.22264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/03/2012] [Indexed: 12/31/2022]
Abstract
AIMS Stress urinary incontinence (SUI) affects women both acutely and chronically after vaginal delivery. Current SUI treatments assume the neuromuscular continence mechanism, comprised of the pudendal nerve (PN) and external urethral sphincter (EUS), is either intact or irreparable. This study investigated the ability of neurotrophin therapy to facilitate recovery of the neuromuscular continence mechanism. METHODS Virgin, Sprague Dawley rats received simulated childbirth injury or sham injury and treatment with continuous infusion of brain-derived neurotrophic factor (BDNF) or saline placebo to the site of PN injury. Continence was assessed by leak point pressure (LPP) and EUS electromyography (EMG) 14 and 21 days after injury. Structural recovery was assessed histologically. Molecular assessment of the muscular and neuroregenerative response was determined via measurement of EUS BDNF and PN β(II) -tubulin expression respectively, 4, 8, and 12 days after injury. RESULTS Following injury, LPP was significantly reduced with saline compared to either BDNF treatment or sham injury. Similarly, compared to sham injury, resting EUS EMG amplitude and firing rate, as well as amplitude during LPP were significantly reduced with saline but not BDNF treatment. Histology confirmed improved EUS recovery with BDNF treatment. EUS BDNF and PN β(II)-tubulin expression demonstrated that BDNF treatment improved the neurogenerative response and may facilitate sphincteric recovery. CONCLUSIONS Continuous targeted neurotrophin therapy accelerates continence recovery after simulated childbirth injury likely through stimulating neuroregeneration and facilitating EUS recovery and re-innervation. Neurotrophins or other therapies targeting neuromuscular regeneration may be useful for treating SUI related to failure of the neuromuscular continence mechanism.
Collapse
Affiliation(s)
- Bradley C. Gill
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University
- Department of Biomedical Engineering, Case Western Reserve University
- Department of Biomedical Engineering, Cleveland Clinic
| | | | - Charuspong Dissaranan
- Department of Biomedical Engineering, Cleveland Clinic
- Glickman Urological and Kidney Institute, Cleveland Clinic
| | - Hai-Hong Jiang
- Department of Biomedical Engineering, Cleveland Clinic
- Glickman Urological and Kidney Institute, Cleveland Clinic
| | | | - Dan Li Lin
- Department of Biomedical Engineering, Cleveland Clinic
- Research Services, Louis Stokes Cleveland Veterans Affairs Medical Center
| | - Margot S. Damaser
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University
- Department of Biomedical Engineering, Case Western Reserve University
- Department of Biomedical Engineering, Cleveland Clinic
- Glickman Urological and Kidney Institute, Cleveland Clinic
- Research Services, Louis Stokes Cleveland Veterans Affairs Medical Center
| |
Collapse
|
18
|
Personius KE, Parker SD. TrkB expression at the neuromuscular junction is reduced during aging. Muscle Nerve 2012. [PMID: 23180620 DOI: 10.1002/mus.23616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Full-length tyrosine kinase B (TrkB.FL) and truncated TrkB (TrkB.t1) receptors are colocalized with acetylcholine receptors (AChRs) at the neuromuscular junction. We have recently shown that reduced TrkB expression leads to age-related alterations in AChR structure, neurotransmission failure, and muscle weakness. METHODS We investigated whether TrkB expression is reduced in the soleus muscle during aging. RESULTS TrkB protein expression was decreased in senescent (24-month-old) compared with 3-12-month-old mice. Loss of TrkB expression was concurrent with age-related changes in AChR morphology. Changes in mRNA levels did not correlate with protein expression, because TrkB.FL copy number was increased in the senescent soleus. No change was seen in TrkB.t1 levels. CONCLUSIONS The results suggest that reduced TrkB expression during aging may result from reduced TrkB.FL mRNA translation or increased TrkB protein turnover. Thus, maintaining adequate TrkB signaling is a potential therapeutic tool to improve muscle function during senescence.
Collapse
Affiliation(s)
- Kirkwood E Personius
- Program in Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
| | | |
Collapse
|
19
|
Wang J, Luo ZG. The role of Wnt/beta-catenin signaling in postsynaptic differentiation. Commun Integr Biol 2012; 1:158-60. [PMID: 19704879 DOI: 10.4161/cib.1.2.7099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 09/30/2008] [Indexed: 01/05/2023] Open
Abstract
Synapses are basic units that mediate the communication between neurons and their target cells. The formation of synapse is regulated by secreted factors, receptors, adhesion molecules and intracellular signaling molecules. The interplay between positive and negative factors determines synapse assembling, remodeling and elimination, resulting in the formation of precise synaptic connections. However, compared to the abundant identified positive factors, negative factors are largely unknown. We have recently shown that Wnt3a acts as a negative factor that inhibits postsynaptic differentiation at the neuromuscular junction (NMJ), the synapse formed between motor neurons and skeletal muscle fibers. The clustering of acetylcholine receptor (AChR) guarantees efficient and accurate neurotransmission and is a hallmark for postsynaptic differentiation at the NMJ. We found that treatment with Wnt3a or upregulation of beta-catenin inhibited the formation of AChR clusters. Furthermore, we investigated the underlying mechanism and found that Wnt/beta-catenin signaling negatively regulated AChR clustering by downregulating the expression of Rapsyn, an AChR-associated protein required for formation and stabilization of AChR clusters.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Neuroscience and Key Laboratory of Neurobiology; Chinese Academy of Sciences; Shanghai P.R. China
| | | |
Collapse
|
20
|
The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696. [PMID: 21960735 PMCID: PMC3179880 DOI: 10.1155/2011/201696] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/24/2011] [Indexed: 12/31/2022] Open
Abstract
This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.
Collapse
|
21
|
Rimer M. Emerging roles for MAP kinases in agrin signaling. Commun Integr Biol 2011; 4:143-6. [PMID: 21655426 DOI: 10.4161/cib.4.2.14357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022] Open
Abstract
Information between neurons and the target cells they innervate passes through sites of functional contact called synapses. How synapses form and are altered by sensory or cognitive experience is central to understand nervous system function. Studies of synapse formation and plasticity have concentrated on a few "model" synapses. The vertebrate neuromuscular junction (NMJ), the synapse between a motoneuron in the spinal cord and a skeletal muscle fiber, is one such model synapse. The extracellular matrix proteoglycan agrin plays an essential organizing role at the NMJ. Agrin is also present at some synapses in the brain and in other organs in the periphery, but its function outside the NMJ is unclear. The core signaling pathway for agrin at the NMJ, which is still incompletely defined, includes molecules specifically involved in this cascade and molecules used in other signaling pathways in many cells. Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved components of intracellular signaling modules that control a myriad of cellular processes. This article reviews emerging evidence that suggests that MAPKs are involved in agrin signaling at the NMJ and in the putative functions of agrin in the formation of a subset of synapses in the brain.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics; College of Medicine; Texas A&M Health Science Center; College Station, TX USA
| |
Collapse
|
22
|
Kulakowski SA, Parker SD, Personius KE. Reduced TrkB expression results in precocious age-like changes in neuromuscular structure, neurotransmission, and muscle function. J Appl Physiol (1985) 2011; 111:844-52. [PMID: 21737823 DOI: 10.1152/japplphysiol.00070.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute blockade of signaling through the tyrosine kinase receptor B (TrkB) attenuates neuromuscular transmission and fragments postsynaptic acetylcholine receptors (AChRs) in adult mice, suggesting that TrkB signaling is a key regulator of neuromuscular function. Using immunohistochemical, histological, and in vitro muscle contractile techniques, we tested the hypothesis that constitutively reduced TrkB expression would disrupt neuromuscular pre- and postsynaptic structure, neurotransmission, muscle fiber size, and muscle function in the soleus muscle of 6- to 8-mo-old TrkB⁺/⁻ mice compared with age-matched littermates. Age-like expansion of postsynaptic AChR area, AChR fragmentation, and denervation was observed in TrkB⁺/⁻ mice similar to that found in 24-mo-old wild-type mice. Neurotransmission failure was increased in TrkB⁺/⁻ mice, suggesting that these morphologic changes were sufficient to alter synaptic function. Reduced TrkB expression resulted in decreased muscle strength and fiber cross-sectional area. Immunohistochemical and muscle retrograde labeling experiments show that motor neuron number and size are unaffected in TrkB⁺/⁻ mice. These results suggest that TrkB- signaling at the neuromuscular junction plays a role in synaptic stabilization, neurotransmission, and muscle function and may impact the aging process of sarcopenia.
Collapse
Affiliation(s)
- Scott A Kulakowski
- Program in Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | | |
Collapse
|
23
|
Abstract
A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients.
Collapse
Affiliation(s)
- Erin M Johnson-Venkatesh
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
24
|
Recovery of whisking function after manual stimulation of denervated vibrissal muscles requires brain-derived neurotrophic factor and its receptor tyrosine kinase B. Neuroscience 2010; 170:372-80. [PMID: 20600640 DOI: 10.1016/j.neuroscience.2010.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/12/2010] [Accepted: 06/22/2010] [Indexed: 01/27/2023]
Abstract
Functional recovery following facial nerve injury is poor. Neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have shown that this poly-innervation of NMJs can be reduced by manual stimulation (MS) with restoration of whisking function. In addition, we have recently reported that insulin-like growth factor-1 (IGF-1) is required to mediate the beneficial effects of MS. Here we extend our findings to brain derived neurotrophic factor (BDNF). We then examined the effect of MS after facial-facial anastomosis (FFA) in heterozygous mice deficient in BDNF (BDNF(+/-)) or in its receptor TrkB (TrkB(+/-)). We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive terminal Schwann cells. In intact BDNF(+/-) or TrkB(+/-) mice and their wild type (WT) littermates, there were no differences in vibrissal whisking nor in the percentage of bridged NMJ (0% in each genotype). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (27% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (11% more than intact). After FFA and handling in BDNF(+/-) or TrkB(+/-) mice, whisking amplitude was again reduced (53% and 60% lower than intact) and proportion of bridged NMJ increased (24% and 29% more than intact). However, MS failed to improve outcome in both heterozygous strains (whisking amplitude 55% and 58% lower than intact; proportion of bridged NMJ 27% and 18% more than intact). We conclude that BDNF and TRkB are required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function.
Collapse
|
25
|
Jiang HH, Pan HQ, Gustilo-Ashby AM, Gill B, Glaab J, Zaszczurynski P, Damaser M. Dual simulated childbirth injuries result in slowed recovery of pudendal nerve and urethral function. Neurourol Urodyn 2009; 28:229-35. [PMID: 18973146 PMCID: PMC2661359 DOI: 10.1002/nau.20632] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIMS Pelvic floor muscle trauma and pudendal nerve injury have been implicated in stress urinary incontinence (SUI) development after childbirth. In this study, we investigated how combinations of these injuries affect recovery. METHODS Sixty-seven female Sprague-Dawley rats underwent vaginal distension (VD), pudendal nerve crush (PNC), PNC and VD (PNC + VD), pudendal nerve transection (PNT), or served as unmanipulated controls. Four days, 3 weeks, or 6 weeks after injury, we simultaneously recorded pudendal nerve motor branch potentials (PNMBP), external urethral sphincter electromyography (EUS EMG), and transurethral bladder pressure under urethane anesthesia. The presence of a guarding reflex (increased frequency and amplitude of PNMBP or EUS EMG activity) during leak point pressure (LPP) testing was determined. RESULTS Controls consistently demonstrated a guarding reflex. Four days after VD, EUS EMG activity was eliminated, but PNMBP activity reflected the guarding reflex; EUS EMG activity recovered after 3 weeks. Four days after PNC, both EUS EMG and PNMBP activity were eliminated, but demonstrated significant recovery at 3 weeks. Four days after PNC + VD both EUS EMG and nerve activity were eliminated, and little recovery was observed after 3 weeks with significant recovery of the guarding reflex 6 weeks after injury. Little recovery was observed at all time points after PNT. LPP results mirrored the reduction in EUS EMG activity. CONCLUSION Functional recovery occurs more slowly after PNC + VD than after either PNC or VD alone. Future work will be aimed at testing methods to facilitate neuroregeneration and recovery after this clinically relevant dual injury.
Collapse
|
26
|
Wang J, Ruan NJ, Qian L, Lei WL, Chen F, Luo ZG. Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 2008; 283:21668-75. [PMID: 18541538 DOI: 10.1074/jbc.m709939200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynamic interaction between positive and negative signals is necessary for remodeling of postsynaptic structures at the neuromuscular junction. Here we report that Wnt3a negatively regulates acetylcholine receptor (AChR) clustering by repressing the expression of Rapsyn, an AChR-associated protein essential for AChR clustering. In cultured myotubes, treatment with Wnt3a or overexpression of beta-catenin, the condition mimicking the activation of the Wnt canonical pathway, inhibited Agrin-induced formation of AChR clusters. Moreover, Wnt3a treatment promoted dispersion of AChR clusters, and this effect was prevented by DKK1, an antagonist of the Wnt canonical pathway. Next, we investigated possible mechanisms underlying Wnt3a regulation of AChR clustering in cultured muscle cells. Interestingly, we found that Wnt3a treatment caused a decrease in the protein level of Rapsyn. In addition, Rapsyn promoter activity in cultured muscle cells was inhibited by the treatment with Wnt3a or beta-catenin overexpression. Forced expression of Rapsyn driven by a promoter that is not responsive to Wnt3a prevented the dispersing effect of Wnt3a on AChR clusters, suggesting that Wnt3a indeed acts to disperse AChR clusters by down-regulating the expression of Rapsyn. The role of Wnt/beta-catenin signaling in dispersing AChR clusters was also investigated in vivo by electroporation of Wnt3a or beta-catenin into mouse limb muscles, where ectopic Wnt3a or beta-catenin caused disassembly of postsynaptic apparatus. Together, these results suggest that Wnt/beta-catenin signaling plays a negative role for postsynaptic differentiation at the neuromuscular junction, probably by regulating the expression of synaptic proteins, such as Rapsyn.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
27
|
Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses. J Neurosci 2007; 27:11712-24. [PMID: 17959813 DOI: 10.1523/jneurosci.3305-07.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Target-dependent increases in axon growth and varicosities accompany the formation of functional synapses between Aplysia sensory neurons and specific postsynaptic neurons (L7 and not L11). The enhanced growth is regulated in part by a target-dependent increase in the secretion of sensorin, the sensory neuron neuropeptide. We report here that protein kinase C (PKC) activity is required for synapse formation by sensory neurons with L7 and for the target-dependent increases in sensorin synthesis and secretion. Blocking PKC activity reversibly blocked synapse formation and axon growth of sensory neurons contacting L7, but did not affect axon growth of sensory neurons contacting L11 or axon growth of the postsynaptic targets. Blocking PKC activity also blocked the target-induced increase in sensorin synthesis and secretion. Sensorin then activates additional signaling pathways required for synapse maturation and synapse-associated growth. Exogenous anti-sensorin antibody blocked target-induced activation and translocation into sensory neuron nuclei of p42/44 mitogen-activated protein kinase (MAPK), attenuated synapse maturation, and curtailed growth of sensory neurons contacting L7, but not the growth of sensory neurons contacting L11. Inhibitors of MAPK or phosphoinositide 3-kinase also attenuated synapse maturation and curtailed growth and varicosity formation of sensory neurons contacting L7, but not growth of sensory neurons contacting L11. These results suggest that PKC activity regulated by specific cell-cell interactions initiates the formation of specific synapses and the subsequent synthesis and release of a neuropeptide to activate additional signaling pathways required for synapse maturation.
Collapse
|
28
|
Ermilov LG, Sieck GC, Zhan WZ, Mantilla CB. Neurotrophins improve synaptic transmission in the adult rodent diaphragm. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Abstract
The peripheral nervous system has the intrinsic capacity to regenerate but the reinnervation of muscles is often suboptimal and results in limited recovery of function. Injuries to nerves that innervate complex organs such as the larynx are particularly difficult to treat. The many functions of the larynx have evolved through the intricate neural regulation of highly specialized laryngeal muscles. In this review, we examine the responses of nerves and muscles to injury, focusing on changes in the expression of neurotrophic factors, and highlight differences between the skeletal limb and laryngeal muscle systems. We also describe how artificial nerve conduits have become a useful tool for delivery of neurotrophic factors as therapeutic agents to promote peripheral nerve repair and might eventually be useful in the treatment of laryngeal nerve injury.
Collapse
Affiliation(s)
- Paul J Kingham
- Blond McIndoe Research Laboratories, University of Manchester, Manchester, UK.
| | | |
Collapse
|
30
|
Song Y, Panzer JA, Wyatt RM, Balice-Gordon RJ. Formation and plasticity of neuromuscular synaptic connections. Int Anesthesiol Clin 2006; 44:145-78. [PMID: 16849961 DOI: 10.1097/00004311-200604420-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Mousavi K, Jasmin BJ. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci 2006; 26:5739-49. [PMID: 16723531 PMCID: PMC6675269 DOI: 10.1523/jneurosci.5398-05.2006] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In skeletal muscle, brain-derived neurotrophic factor (BDNF) has long been thought to serve as a retrograde trophic factor for innervating motor neurons throughout their lifespan. However, its localization in mature muscle fibers has remained elusive. Given the postulated roles of BDNF in skeletal muscle, we performed a series of complementary experiments aimed at defining the localization of BDNF and its transcripts in adult muscle. By reverse transcription-PCR, in situ hybridization, and immunofluorescence, we show that BDNF, along with the receptor p75NTR, is not expressed at significant levels within mature myofibers and that it does not accumulate preferentially within subsynaptic regions of neuromuscular junctions. Interestingly, expression of BDNF correlated with that of Pax3, a marker of muscle progenitor cells, in several different adult skeletal muscles. Additionally, BDNF was expressed in Pax7+ satellite cells where it colocalized with p75NTR. In complementary cell culture experiments, we detected high levels of BDNF and p75NTR in myoblasts. During myogenic differentiation, expression of BDNF became drastically reduced. Using small interfering RNA (siRNA) technology to knock down BDNF expression, we demonstrate enhanced myogenic differentiation of myoblasts. This accelerated rate of myogenic differentiation seen in myoblasts expressing BDNF siRNA was normalized by administration of recombinant BDNF. Collectively, these findings show that BDNF plays an important regulatory function during myogenic differentiation. In addition, the expression of BDNF in satellite cells is coherent with the notion that BDNF serves a key role in maintaining the population of muscle progenitors in adult muscle.
Collapse
|
33
|
Chevrel G, Hohlfeld R, Sendtner M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 2006; 33:462-76. [PMID: 16228973 DOI: 10.1002/mus.20444] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of development, maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors not only modulates survival and function of innervating motoneurons and proprioceptive neurons but also development and differentiation of myoblasts and muscle fibers. Neurotrophins and neurotrophin receptors play a role in the coordination of muscle innervation and functional differentiation of neuromuscular junctions. However, neurotrophin receptors are also expressed in differentiating muscle cells, in particular at early developmental stages in myoblasts before they fuse. In adults with pathological conditions such as human degenerative and inflammatory muscle disorders, variations of neurotrophin expression are found, but the role of neurotrophins under such conditions is still not clear. The goal of this review is to provide a basis for a better understanding and future studies on the role of these factors under such pathological conditions and for treatment of human muscle diseases.
Collapse
Affiliation(s)
- Guillaume Chevrel
- Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
34
|
Irintchev A, Simova O, Eberhardt KA, Morellini F, Schachner M. Impacts of lesion severity and tyrosine kinase receptor B deficiency on functional outcome of femoral nerve injury assessed by a novel single-frame motion analysis in mice. Eur J Neurosci 2005; 22:802-8. [PMID: 16115204 DOI: 10.1111/j.1460-9568.2005.04274.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional recovery after peripheral nerve injury is often poor. Comprehension of cellular and molecular mechanisms limiting or promoting restoration of function and design of efficient therapeutic approaches remain serious challenges for neuroscience and medicine. Progress has been restricted by the lack of reliable methods for evaluation of motor functions in laboratory animals. We describe a novel approach for assessment of muscle function in mice after femoral nerve damage, an injury causing impairment of knee extension. The functional deficit can be precisely estimated by angle and distance measurements on single video frames recorded during movements of the animals with or without body weight support. Using this method we describe here the precise time-course and degree of functional recovery after femoral nerve crush and transection. In addition, we show that restoration of function is considerably impaired in mice with a reduced expression level of the tyrosine kinase receptor B, a cognate receptor for the neurotrophin brain-derived neurotrophic factor. This finding is consistent with known functions of brain-derived neurotrophic factor and tyrosine kinase receptor B and demonstrates the potential of the method. The principles of the approach are highly relevant for the development of novel functional assays in other peripheral and, in particular, central nervous system injury paradigms.
Collapse
Affiliation(s)
- Andrey Irintchev
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, Lee KF. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 2005; 46:569-79. [PMID: 15944126 DOI: 10.1016/j.neuron.2005.04.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 12/23/2004] [Accepted: 04/03/2005] [Indexed: 10/25/2022]
Abstract
Synapse formation requires interactions between pre- and postsynaptic cells to establish the connection of a presynaptic nerve terminal with the neurotransmitter receptor-rich postsynaptic apparatus. At developing vertebrate neuromuscular junctions, acetylcholine receptor (AChR) clusters of nascent postsynaptic apparatus are not apposed by presynaptic nerve terminals. Two opposing activities subsequently promote the formation of synapses: positive signals stabilize the innervated AChR clusters, whereas negative signals disperse those that are not innervated. Although the nerve-derived protein agrin has been suggested to be a positive signal, the negative signals remain elusive. Here, we show that cyclin-dependent kinase 5 (Cdk5) is activated by ACh agonists and is required for the ACh agonist-induced dispersion of the AChR clusters that have not been stabilized by agrin. Genetic elimination of Cdk5 or blocking ACh production prevents the dispersion of AChR clusters in agrin mutants. Therefore, we propose that ACh negatively regulates neuromuscular synapse formation through a Cdk5-dependent mechanism.
Collapse
Affiliation(s)
- Weichun Lin
- The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Hu JY, Goldman J, Wu F, Schacher S. Target-dependent release of a presynaptic neuropeptide regulates the formation and maturation of specific synapses in Aplysia. J Neurosci 2005; 24:9933-43. [PMID: 15525778 PMCID: PMC6730238 DOI: 10.1523/jneurosci.3329-04.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The correct wiring of neurons is critical for the normal functioning of the nervous system. Sensory neurons of Aplysia form synapses with specific postsynaptic targets. Interaction with appropriate target cells in culture induces a significant increase in axon growth, the number of sensory neuron varicosities with release sites contacting the target, and regulates the expression and distribution of mRNAs encoding presynaptic proteins such as syntaxin and the sensory neuron-specific neuropeptide sensorin. Synapse stabilization is accompanied by the maintenance of presynaptic varicosities and target-dependent regulation of mRNA distributions. We report here that specific targets induce the release of sensorin from sensory neurons, which then regulates synaptic efficacy, axonal growth associated with synapse formation, the maintenance of synaptic contacts, and the specific distribution of mRNAs. Bath application of an antisensorin antibody during the early phase of synapse formation blocked the expected increase in synaptic strength, the growth and formation of new presynaptic varicosities, and the target-dependent regulation of mRNA distribution. In contrast, bath application of sensorin accelerated the increase in synaptic strength and enhanced the formation of new varicosities and target-dependent regulation of mRNA distribution in sensory neurons. As synapses stabilize, sensorin secretion declines but is required for the maintenance of synaptic efficacy, presynaptic varicosities, and mRNA distributions. These results suggest that a retrograde target signal regulates the secretion and actions of a presynaptic neuropeptide critical for the formation and maintenance of specific synapses.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
37
|
Achim CL, White MG. Brain derived neurotrophic factor and neurodegeneration. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.9.12.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Reddy T, Kablar B. Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine receptor transformation in the esophagus ofMyf5−/−:MyoD−/−andNT-3−/−embryos. Dev Dyn 2004; 231:683-92. [PMID: 15497153 DOI: 10.1002/dvdy.20165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The primary aim of our study was to determine whether the esophageal innervation (i.e., vagal and enteric) and the skeletal muscle-secreted neurotrophins have a role in smooth-to-skeletal muscle transdifferentiation and in the muscarinic-to-nicotinic acetylcholine receptor type transition. To that end, we used genetically engineered embryos and immunohistochemistry. We found that, in the absence of Myf5 and MyoD, the esophageal muscle cells failed to develop the striated phenotype of acetylcholine receptors. In addition, the development of vagal and enteric innervation was delayed in Myf5(-/-):MyoD(-/-) and NT-3(-/-) mutants, but it was reestablished 2 days before the end of gestation. The smooth muscle cells in the esophagus appeared to be a distinct subpopulation of cells and their ability to transdifferentiate was based on their competence to express neurotrophins and their receptors. Finally, our data suggest a role for NT-3 in the esophageal muscle transdifferentiation.
Collapse
Affiliation(s)
- Tyler Reddy
- Dalhousie University, Department of Anatomy and Neurobiology, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Mittaud P, Camilleri AA, Willmann R, Erb-Vögtli S, Burden SJ, Fuhrer C. A single pulse of agrin triggers a pathway that acts to cluster acetylcholine receptors. Mol Cell Biol 2004; 24:7841-54. [PMID: 15340048 PMCID: PMC515067 DOI: 10.1128/mcb.24.18.7841-7854.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrin triggers signaling mechanisms of high temporal and spatial specificity to achieve phosphorylation, clustering, and stabilization of postsynaptic acetylcholine receptors (AChRs). Agrin transiently activates the kinase MuSK; MuSK activation has largely vanished when AChR clusters appear. Thus, a tyrosine kinase cascade acts downstream from MuSK, as illustrated by the agrin-evoked long-lasting activation of Src family kinases (SFKs) and their requirement for AChR cluster stabilization. We have investigated this cascade and report that pharmacological inhibition of SFKs reduces early but not later agrin-induced phosphorylation of MuSK and AChRs, while inhibition of Abl kinases reduces late phosphorylation. Interestingly, SFK inhibition applied selectively during agrin-induced AChR cluster formation caused rapid cluster dispersal later upon agrin withdrawal. We also report that a single 5-min agrin pulse, followed by extensive washing, triggered long-lasting MuSK and AChR phosphorylation and efficient AChR clustering. Following the pulse, MuSK phosphorylation increased and, beyond a certain level, caused maximal clustering. These data reveal novel temporal aspects of tyrosine kinase action in agrin signaling. First, during AChR cluster formation, SFKs initiate early phosphorylation and an AChR stabilization program that acts much later. Second, a kinase mechanism rapidly activated by agrin acts thereafter autonomously in agrin's absence to further increase MuSK phosphorylation and cluster AChRs.
Collapse
Affiliation(s)
- Peggy Mittaud
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The high local concentration of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction results from their aggregation by the agrin/MuSK signaling pathway and their synthetic up-regulation by the neuregulin/ErbB pathway. Here, we show a novel role for the neuregulin/ErbB pathway, the inhibition of AChR aggregation on the muscle surface. Treatment of C2C12 myotubes with the neuregulin epidermal growth factor domain decreased the number of both spontaneous and agrin-induced AChR clusters, in part by increasing the rate of cluster disassembly. Upon cluster disassembly, AChRs were internalized into caveolae (as identified by caveolin-3). Time-lapse microscopy revealed that individual AChR clusters fragmented into puncta, and application of neuregulin accelerated the rate at which AChR clusters decreased in area without affecting the density of AChRs remaining in individual clusters (as measured by the fluorescence intensity/unit area). We propose that this novel action of neuregulin regulates synaptic competition at the developing neuromuscular junction.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Elmariah SB, Crumling MA, Parsons TD, Balice-Gordon RJ. Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J Neurosci 2004; 24:2380-93. [PMID: 15014113 PMCID: PMC6729485 DOI: 10.1523/jneurosci.4112-03.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosine receptor kinase B (TrkB)-mediated signaling modulates synaptic structure and strength in hippocampal and other neurons, but the underlying mechanisms are poorly understood. Full-length and truncated TrkB are diffusely distributed throughout the dendrites and soma of rat hippocampal neurons grown in vitro. Manipulation of TrkB-mediated signaling resulted in dramatic changes in the number and synaptic localization of postsynaptic NMDA receptor (NMDAR) and GABA(A) receptor (GABA(A)R) clusters. BDNF treatment resulted in an increase in the number of NMDAR and GABA(A)R clusters and increased the proportion of clusters apposed to presynaptic terminals. Downregulation of TrkB signaling resulted in a decrease in receptor cluster number and synaptic localization. Examination of the time course of the effects of BDNF on receptor clusters showed that the increase in GABA(A)R clusters preceded the increase in NMDAR clusters by at least 12 hr. Moreover, the TrkB-mediated effects on NMDAR clusters were dependent on GABA(A)R activation. Although TTX, APV, and CNQX treatment had no effect, blockade of GABA(A)Rs with bicuculline abolished the BDNF-mediated increase in NMDAR cluster number and synaptic localization. In contrast, application of exogenous GABA prevented the decrease in NMDAR clusters induced by BDNF scavenging. Together, these results suggest that TrkB-mediated signaling modulates the clustering of postsynaptic GABA(A)Rs and that receptor activity is required for a subsequent upregulation of NMDAR clusters. Therefore, TrkB-mediated effects on postsynaptic neurotransmitter clusters may be part of a mechanism that balances inhibitory and excitatory synaptic transmission in developing neural circuits.
Collapse
Affiliation(s)
- Sarina B Elmariah
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA
| | | | | | | |
Collapse
|
42
|
Tiraihi T, Rezaie MJ. Synaptic lesions and synaptophysin distribution change in spinal motoneurons at early stages following sciatic nerve transection in neonatal rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:97-103. [PMID: 14757523 DOI: 10.1016/j.devbrainres.2003.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The purpose of this investigation was to evaluate the rate of synaptic stripping, changes in the synaptophysin distribution, and synapses ultrastructure of spinal motoneurons at early stages of sciatic nerve axotomy in newborn rats. Seven groups were used in the experiment, which were sacrificed after 1, 3, 6, 12, 24, 48 and 72 h. L4-L6 spinal segments from the animals of the above groups were prepared and processed for indirect immunoperoxidase. Accordingly, tissue samples were prepared from similar groups for routine electron microscopy. Synaptophysin-labeled motoneurons were classified into intact, partial, cytoplasmic and negative patterns. Synaptophysin immunoreactivity in both the axotomized and non-axotomized sides showed no negative pattern at the first three time points, while this pattern significantly increased in the 12, 24, 48 and 72 h groups at the axotomized side, moreover, there was a progressive reduction in the percentage of the intact pattern at the axotomized side. The percentages of the cytoplasmic and partial patterns also increased during the time course. The rate of synaptic stripping was five time higher in the axotomized side than that of non-axotomized side. The results of the ultrastructural study showed synaptic membranes irregularity, synaptic vesicles displacement, synaptic membrane detachment and ensheathment of degenerated synapses. The conclusion of the study was that early synaptophysin immunoreactivity changes were seen in both the axotomized and non-axotomized sides, but the rate of change in the axotomized side was more rapid than that of the non-axotomized side.
Collapse
Affiliation(s)
- Taki Tiraihi
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran.
| | | |
Collapse
|
43
|
Deschenes MR, Wilson MH. Age-related differences in synaptic plasticity following muscle unloading. ACTA ACUST UNITED AC 2004; 57:246-56. [PMID: 14608661 DOI: 10.1002/neu.10271] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of the present investigation was to determine the effects of muscle unloading-a form of subtotal disuse- on the morphology of the neuromuscular junction (NMJ) in younger and aged animals. Sixteen aged (22 months) and 16 young adult (8 months) male Fischer 344 rats were assigned to control and hindlimb suspension (HS) conditions (n=8/group). At the conclusion of the 4 week experimental period, soleus muscles were collected, and immunofluorescent procedures were used to visualize acetylcholine (ACh) vesicles and receptors, nerve terminal branching, as well as NCAM and NT-4 expression. Quantitative analyses revealed that aged controls displayed significant (p<0.05) reductions in area and perimeter length of ACh vesicle and receptor regions, without affecting nerve terminal branch number or length. In contrast to younger NMJs, which were resilient to the effects of unloading, NMJs of aged HS rats demonstrated significant expansion of ACh vesicle and receptor dimensions compared to aged controls. Qualitative analyses of NCAM staining indicated that aging alone somewhat increased this molecule's expression (aged controls>young controls). Among the four groups, however, the greatest amount of NCAM content was detected among aged HS muscles, matching the degree of synaptic plasticity exhibited in those muscles. Unlike NCAM, the expression of NT-4 did not appear to differ among the treatment groups. These data suggest that although young adult muscle maintains normal NMJ structure during prolonged exposure to unloading, aged NMJs experience significant adaptation to that stimulus.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology, The College of William & Mary, Williamsburg, Virginia 23187-8795, USA.
| | | |
Collapse
|
44
|
Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 2003. [PMID: 12832528 DOI: 10.1523/jneurosci.23-12-05050.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have shown that the survival of mammalian motoneurons in vitro is promoted by neurotrophins (NTs) and cAMP. There is also evidence that neurotrophins enhance transmitter release. We thus investigated whether these agents also promote synaptogenesis. Cultured Xenopus spinal cord neurons were treated with a mixture of BDNF, glia-derived neurotrophic factor, NT-3, and NT-4, in addition to forskolin and IBMX or the cell-permeant form of cAMP, to elevate the cAMP level. The outgrowth and survival of neurons were dramatically increased by this trophic stimulation. However, when these neurons were cocultured with muscle cells, the trophic agents resulted in a failure of synaptogenesis. Specifically, the induction of ACh receptor (AChR) clustering in cultured muscle cells was inhibited at nerve-muscle contacts, in sharp contrast to control, untreated cocultures. Because AChR clustering induced by agrin or growth factor-coated beads in muscle cells was unaffected by trophic stimulation, its effect on synaptogenesis is presynaptic in origin. In the control, agrin was deposited along the neurite and at nerve-muscle contacts. This was significantly downregulated in cultures treated with trophic stimuli. Reverse transcriptase-PCR analyses showed that this decrease in agrin deposition was caused by an inhibition of agrin synthesis by trophic stimuli. Both agrin synthesis and induction of AChR clustering were restored under trophic stimulation when Schwann cell-conditioned medium was introduced. These results suggest that trophic stimulation maintains spinal neurons in the growth state, and Schwann cell-derived factors allow them to switch to the synaptogenic state.
Collapse
|
45
|
Heinrich G. A novel BDNF gene promoter directs expression to skeletal muscle. BMC Neurosci 2003; 4:11. [PMID: 12812528 PMCID: PMC165605 DOI: 10.1186/1471-2202-4-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2003] [Accepted: 06/18/2003] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF) is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. RESULTS The cloning and analysis of three additional zebrafish (Danio rerio) BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes) and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. CONCLUSION The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are expressed in an independently regulated and cell-specific fashion. An initial structural and functional analysis has shown that the regions controlling zebrafish BDNF gene expression have been cloned and identified. They can now be subjected to detailed molecular and genetic analyses to identify the cellular mechanisms by which the transcription factors that act on these regions control BDNF gene expression.
Collapse
Affiliation(s)
- Gerhard Heinrich
- Medical Service, VA Northern California Health Care System, 150 Muir Road, Martinez, CA 94553, USA.
| |
Collapse
|
46
|
Peng HB, Yang JF, Dai Z, Lee CW, Hung HW, Feng ZH, Ko CP. Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 2003; 23:5050-60. [PMID: 12832528 PMCID: PMC6741189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Recent studies have shown that the survival of mammalian motoneurons in vitro is promoted by neurotrophins (NTs) and cAMP. There is also evidence that neurotrophins enhance transmitter release. We thus investigated whether these agents also promote synaptogenesis. Cultured Xenopus spinal cord neurons were treated with a mixture of BDNF, glia-derived neurotrophic factor, NT-3, and NT-4, in addition to forskolin and IBMX or the cell-permeant form of cAMP, to elevate the cAMP level. The outgrowth and survival of neurons were dramatically increased by this trophic stimulation. However, when these neurons were cocultured with muscle cells, the trophic agents resulted in a failure of synaptogenesis. Specifically, the induction of ACh receptor (AChR) clustering in cultured muscle cells was inhibited at nerve-muscle contacts, in sharp contrast to control, untreated cocultures. Because AChR clustering induced by agrin or growth factor-coated beads in muscle cells was unaffected by trophic stimulation, its effect on synaptogenesis is presynaptic in origin. In the control, agrin was deposited along the neurite and at nerve-muscle contacts. This was significantly downregulated in cultures treated with trophic stimuli. Reverse transcriptase-PCR analyses showed that this decrease in agrin deposition was caused by an inhibition of agrin synthesis by trophic stimuli. Both agrin synthesis and induction of AChR clustering were restored under trophic stimulation when Schwann cell-conditioned medium was introduced. These results suggest that trophic stimulation maintains spinal neurons in the growth state, and Schwann cell-derived factors allow them to switch to the synaptogenic state.
Collapse
Affiliation(s)
- H Benjamin Peng
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The mammalian cerebral cortex requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between hundreds of thousands of differentiating neurons. Although the development of the cerebral cortex has been well described anatomically, the cellular and molecular mechanisms that guide neuronal differentiation and formation of connections are just beginning to be understood. Moreover, despite evidence that coordinated patterns of activity underlie reorganization of brain circuits during critical periods of development, the molecular signals that translate activity into structural and functional changes in connections remain unknown. Recently, the neurotrophins have emerged as attractive candidates not only for regulating neuronal differentiation in the developing brain, but also for mediating activity-dependent synaptic plasticity. The neurotrophins meet many of the criteria required for molecular signals involved in neuronal differentiation and plasticity. They are present in the cerebral cortex during development and their expression is regulated by synaptic activity. In turn, the neurotrophins themselves strongly influence both short-term synaptic plasticity and long-term potentiation and depression. In addition to their functional effects, the neurotrophins also profoundly regulate the structural changes that underlie axonal and dendritic differentiation. Finally, the neurotrophins have been implicated in mediating synaptic competition required for activity-dependent plasticity during the critical period. This chapter presents and discusses the rapidly accumulating evidence that the neurotrophins are critical for neuronal differentiation and that they may be involved in activity-dependent synaptic refinement in the developing cerebral cortex.
Collapse
Affiliation(s)
- A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, California 95616, USA
| |
Collapse
|
48
|
Abstract
The proteins of the mammalian neurotrophin family (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5)) were originally identified as neuronal survival factors. During the last decade, evidence has accumulated implicating them (especially BDNF) in addition in the regulation of synaptic transmission and synaptogenesis in the CNS. However, a detailed understanding of the secretion of neurotrophins from neurons is required to delineate their role in regulating synaptic function. Some crucial questions that need to be addressed include the sites of neurotrophin secretion (i.e. axonal versus dendritic; synaptic versus extrasynaptic) and the neuronal and synaptic activity patterns that trigger the release of neurotrophins. In this article, we review the current knowledge in the field of neurotrophin secretion, focussing on activity-dependent synaptic release of BDNF. The modality and the site of neurotrophin secretion are dependent on the processing and subsequent targeting of the neurotrophin precursor molecules. Therefore, the available data regarding formation and trafficking of neurotrophins in the secreting neurons are critically reviewed. In addition, we discuss existing evidence that the characteristics of neurotrophin secretion are similar (but not identical) to those of other neuropeptides. Finally, since BDNF has been proposed to play a critical role as an intercellular synaptic messenger in long-term potentiation (LTP) in the hippocampus, we try to reconcile this possible role of BDNF in LTP with the recently described features of synaptic BDNF secretion.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Department of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | | | | |
Collapse
|
49
|
Sharma SK, Wallace BG. Lithium inhibits a late step in agrin-induced AChR aggregation. JOURNAL OF NEUROBIOLOGY 2003; 54:346-57. [PMID: 12500310 DOI: 10.1002/neu.10134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Agrin activates an intracellular signaling pathway to induce the formation of postsynaptic specializations on muscle fibers. In myotubes in culture, this pathway has been shown to include autophosphorylation of the muscle-specific kinase MuSK, activation of Src-family kinases, tyrosine phosphorylation of the acetylcholine receptor (AChR) beta subunit, a decrease in receptor detergent extractability, and the accumulation of AChRs into high-density aggregates. Here we report that treating chick myotubes with lithium prevented any detectable agrin-induced change in AChR distribution without affecting the number of AChRs or the agrin-induced change in AChR tyrosine phosphorylation and detergent extractability. Lithium treatment also increased the rate at which AChR aggregates disappeared when agrin was removed. The effects of lithium developed slowly over the course of approximately 12 h. Thus, sensitivity to lithium identifies a late step in the agrin signaling pathway, after agrin-induced MuSK and AChR phosphorylation, that is necessary for the recruitment of AChRs into visible aggregates.
Collapse
Affiliation(s)
- S K Sharma
- Department of Physiology and Biophysics, C240, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
50
|
Miles K, Wagner M. Overexpression of nPKC theta is inhibitory for agrin-induced nicotinic acetylcholine receptor clustering in C2C12 myotubes. J Neurosci Res 2003; 71:188-95. [PMID: 12503081 DOI: 10.1002/jnr.10467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein kinase C (PKC) activity has been implicated in nicotinic acetylcholine receptor (nAChR) cluster disruption but the specific PKC isoforms involved have not been identified. We first tested whether phorbol esters, which activate PKCs, regulate agrin-induced nAChR clustering in C(2)C(12) cells. We found that extended phorbol ester treatment (6 hr) increased nAChR clustering by two-fold. This increase correlated in time with downregulation of PKCs, as indicated by the disappearance of cPKC alpha, suggesting that the presence of PKCs is inhibitory for maximal nAChR clustering. To address the question whether nPKC theta, a specific PKC isoform restricted in expression to skeletal muscle and localized to neuromuscular junctions, regulates agrin-induced nAChR cluster formation we overexpressed an nPKC theta -green fluorescent protein (GFP) fusion protein in C(2)C(12) myotubes. The number of nAChR clusters was significantly reduced in nPKC theta-GFP compared to GFP overexpressing myotubes at less-than-maximal clustering concentrations of agrin. These data indicate that nPKC theta activity inhibits nAChR cluster formation. To examine whether nPKC theta activation by phorbol esters regulates agrin-induced nAChR clustering, we treated overexpressing myotubes overnight with maximal agrin concentrations followed by phorbol esters for 1 hr. Phorbol ester treatment reduced preexisting nAChR cluster numbers in nPKC theta-GFP compared to GFP-overexpressing myotubes, suggesting that stimulating nPKC theta activity disrupts nAChR clusters in the presence of maximal clustering concentrations of agrin. Together these findings, that nPKC theta activity inhibits agrin-induced nAChR cluster formation and disrupts preexisting agrin-induced nAChR clusters, suggest that nPKC theta activity is inhibitory for agrin function.
Collapse
Affiliation(s)
- Kathryn Miles
- Department of Anatomy and Cell Biology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|