1
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
2
|
Xiong-Hang K, Haynes CL. Plasmodium chabaudi Affects Mast Cell Degranulation as Measured by Carbon-Fiber Microelectrode Amperometry. ACS Infect Dis 2021; 7:1650-1656. [PMID: 33856187 DOI: 10.1021/acsinfecdis.0c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mast cells (MCs) are effector cells of the immune system commonly known for their role in asthma and allergy. They are present throughout biological systems in various tissues, serving as an interface between the biological system and environment. Previous work characterizing the impact of malaria on MCs revealed contradictory results, showing minimal to strong correlation between MC degranulation and disease progression. This work seeks to reveal how MC degranulation is impacted in the presence of malaria, induced by Plasmodium chabaudi, using a mouse model and a single cell measurement technique that reveals exquisite biophysical detail about any impacts to the degranulation process. It was hypothesized that the malaria parasites would impact MC degranulation response during live infection, and the differences would be revealed via carbon-fiber microelectrode amperometry. In fact, the data collected show that different stages of malaria infection affect MC degranulation differently, affirming the importance of considering different infection stages in future studies of malarial immune response. Furthermore, a comparison of MC degranulation response to that measured from platelets under similar circumstances shows similar trends in quantitative degranulation, suggesting that MC and platelet exocytosis machinery are affected similarly despite their distinct biological roles. However, based on the small number of mouse replicates, the studies herein suggest that there should be further study about cellular and disease processes. Overall, the work herein reveals important details about the role of MCs in malaria progression, relevant during treatment decisions, as well as a potentially generalizable impact on chemical messenger secretion from cells during malarial progression.
Collapse
Affiliation(s)
- Kang Xiong-Hang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Xiao F, Zhou H, Lin H, Li H, Zou T, Wu Y, Guo Z. A fast scan cyclic voltammetric digital circuit with precise ohmic drop compensation by online measuring solution resistance and its biosensing application. Anal Chim Acta 2021; 1175:338744. [PMID: 34330443 DOI: 10.1016/j.aca.2021.338744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
In this work, a novel fast scan digital circuit for voltammetric analysis with precious ohmic drop compensation is developed, which is achieved through online measuring solution resistance first and then proportionally feedbacking the output signal to potentiostat's in-phase input through a potentiometer. It mainly consists of a solution resistance measurement module based on AD5933 chip, an ohmic drop automatic compensation module and a STM32F103ZET6 microcontroller. The performance of the circuit is checked successively using pure resistances, RC dummy cells, RC dummy cells incorporating a pseudo-faradaic component, and the ferrocene redox system. Results show that, precise ohmic drop compensation can be realized online and automatically, affording fast scan cyclic voltammetric (FSCV) analysis for theoretical electrochemical cells at 2000 V/s and that for practical electrochemical system using conventional electrodes at 1600 V/s. Based on this circuit, a very simple DNA biosensor for ultrasensitive detection of mercuric ions was explored. Benefitting from the high sensitivity brought by the high scan rate, the limit of quantitation (LOQ) can reach 1 pmol/L, demonstrating the application potential of FSCV in the field of ultrasensitive electrochemical detection.
Collapse
Affiliation(s)
- Fengming Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Hongze Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Tinglang Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Yangbo Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
4
|
Nakatsuka N, Faillétaz A, Eggemann D, Forró C, Vörös J, Momotenko D. Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes. Anal Chem 2021; 93:4033-4041. [PMID: 33596063 DOI: 10.1021/acs.analchem.0c05038] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report artificial nanopores in the form of quartz nanopipettes with ca. 10 nm orifices functionalized with molecular recognition elements termed aptamers that reversibly recognize serotonin with high specificity and selectivity. Nanoscale confinement of ion fluxes, analyte-specific aptamer conformational changes, and related surface charge variations enable serotonin sensing. We demonstrate detection of physiologically relevant serotonin amounts in complex environments such as neurobasal media, in which neurons are cultured in vitro. In addition to sensing in physiologically relevant matrices with high sensitivity (picomolar detection limits), we interrogate the detection mechanism via complementary techniques such as quartz crystal microbalance with dissipation monitoring and electrochemical impedance spectroscopy. Moreover, we provide a novel theoretical model for structure-switching aptamer-modified nanopipette systems that supports experimental findings. Validation of specific and selective small-molecule detection, in parallel with mechanistic investigations, demonstrates the potential of conformationally changing aptamer-modified nanopipettes as rapid, label-free, and translatable nanotools for diverse biological systems.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Alix Faillétaz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dominic Eggemann
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| |
Collapse
|
5
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
6
|
|
7
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
8
|
Puthongkham P, Lee ST, Venton BJ. Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes. Anal Chem 2019; 91:8366-8373. [PMID: 31194511 DOI: 10.1021/acs.analchem.9b01178] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Histamine plays an important role in neuromodulation and the biological immune response. Although many electrochemical methods have been developed for histamine detection, the mechanism of its redox reaction has not been directly investigated. Here, we studied the mechanism of histamine oxidation at carbon electrodes and used that mechanistic information to design better fast-scan cyclic voltammetry (FSCV) methods for histamine. Using amperometry, cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS), we demonstrate that histamine oxidation requires a potential of at least +1.1 V vs Ag/AgCl. We propose that histamine undergoes one-electron oxidation on an imidazole nitrogen that produces a radical. The radical species dimerize and continue to undergo oxidation, leading to electropolymerization, which fouls the electrode. CV shows a peak at 1.3 V that is pH dependent, consistent with a one-proton, one-electron oxidation reaction. This mechanism is confirmed using 1- and 3-methylhistamine, which do not electropolymerize, compared to Nα-methylhistamine, which does. XPS also revealed a nitrogen-containing product adsorbed on the electrode surface after histamine oxidation. For FSCV detection of histamine at carbon-fiber microelectrodes, histamine oxidation was adsorption-controlled, and the anodic peak was observed at +1.2 V on the backward scan because of the rapid scan rate. However, the oxidation fouled the electrode and convoluted the FSCV temporal response; therefore, we implemented Nafion coating to alleviate the electrode fouling and preserve the time response of FSCV. Knowing the mechanism of histamine oxidation will facilitate design of better electrochemical methods for real-time monitoring of histamine.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Scott T Lee
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - B Jill Venton
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
9
|
Slamet Soetanto T, Liu S, Sahid MNA, Toyama K, Maeyama K, Mogi M. Histamine uptake mediated by plasma membrane monoamine transporter and organic cation transporters in rat mast cell lines. Eur J Pharmacol 2019; 849:75-83. [DOI: 10.1016/j.ejphar.2019.01.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
|
10
|
Golan Y, Alhadeff R, Warshel A, Assaraf YG. ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion. PLoS Comput Biol 2019; 15:e1006882. [PMID: 30893306 PMCID: PMC6443192 DOI: 10.1371/journal.pcbi.1006882] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/01/2019] [Accepted: 02/18/2019] [Indexed: 01/29/2023] Open
Abstract
Zinc is a vital trace element crucial for the proper function of some 3,000 cellular proteins. Specifically, zinc is essential for key physiological processes including nucleic acid metabolism, regulation of gene expression, signal transduction, cell division, immune- and nervous system functions, wound healing, and apoptosis. Consequently, impairment of zinc homeostasis disrupts key cellular functions resulting in various human pathologies. Mammalian zinc transport proceeds via two transporter families ZnT and ZIP. However, the detailed mechanism of action of ZnT2, which is responsible for vesicular zinc accumulation and zinc secretion into breast milk during lactation, is currently unknown. Moreover, although the putative coupling of zinc transport to the proton gradient in acidic vesicles has been suggested, it has not been conclusively established. Herein we modeled the mechanism of action of ZnT2 and demonstrated both computationally and experimentally, using functional zinc transport assays, that ZnT2 is indeed a proton-coupled zinc antiporter. Bafilomycin A1, a specific inhibitor of vacuolar-type proton ATPase (V-ATPase) which alkalizes acidic vesicles, abolished ZnT2-dependent zinc transport into intracellular vesicles. Moreover, using LysoTracker Red and Lyso-pHluorin, we further showed that upon transient ZnT2 overexpression in intracellular vesicles and addition of exogenous zinc, the vesicular pH underwent alkalization, presumably due to a proton-zinc antiport; this phenomenon was reversed in the presence of TPEN, a specific zinc chelator. Finally, based on computational energy calculations, we propose that ZnT2 functions as an antiporter with a stoichiometry of 2H+/Zn2+ ion. Hence, ZnT2 is a proton motive force-driven, electroneutral vesicular zinc exchanger, concentrating zinc in acidic vesicles on the expense of proton extrusion to the cytoplasm. Herein we explored the mechanism of action of the human ZnT2 zinc transporter. ZnT2 is essential for zinc accumulation in breast milk and is therefore of paramount medical significance. Expanding on our previous study, we herein present energy calculations suggesting that ZnT2 functions as a proton/zinc antiporter. Our calculations consist of electrostatic and pKa calculations as well as zinc binding free-energy curves. Upon integration of our calculation results, we conclude that ZnT2 functions as an antiporter with a 2H+/Zn2+ stoichiometry, construct a Monte Carlo model to test this mode of ZnT2 transport activity, and validate our computational results experimentally using live human breast epithelial cells. These functional experiments reveal that ZnT2 cannot function in the absence of protons suggesting that it operates as a substrate-induced alternating-access transporter, displaying an apparent 2H+/Zn2+ stoichiometry.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Raphael Alhadeff
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
11
|
High-throughput screening system for dynamic monitoring of exocytotic vesicle trafficking in mast cells. PLoS One 2018; 13:e0198785. [PMID: 29883480 PMCID: PMC5993286 DOI: 10.1371/journal.pone.0198785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/28/2018] [Indexed: 01/08/2023] Open
Abstract
Mast cells, in addition to endocrine cells and neurons, are typical secretory cells. Their function in allergic inflammation is to secrete inflammatory mediators from secretory vesicles. Intracellular synthesized inflammatory mediators are transported by vesicular monoamine transporters (VMATs) to vesicles where they are stored. After stimulation, the contents of the secretory vesicles are released via exocytosis. This study established a high throughput imaging screening system to monitor the functions of secretory vesicles in mast cells, including molecular uptake via VMAT2 and the exocytotic process, by using a novel fluorescent probe, FFN206, which was developed as a VMAT2 substrate. After loading with FFN206, the rapid uptake of FFN206 was observed and secretory vesicles in mouse bone marrow derived mast cells and a cultured mast cell line were clearly visualized. FFN206 uptake by secretory vesicles was time-dependent and was blocked by reserpine. Furthermore, exocytotic trafficking was monitored dynamically by real-time high-throughput fluorescence quantitation. In the present study, we verified the application of FFN206 for the monitoring of functional vesicles. This high-throughput screening system may benefit instinctive drug evaluation.
Collapse
|
12
|
Diverse exocytic pathways for mast cell mediators. Biochem Soc Trans 2018; 46:235-247. [PMID: 29472369 DOI: 10.1042/bst20170450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases.
Collapse
|
13
|
Dunevall J, Majdi S, Larsson A, Ewing A. Vesicle impact electrochemical cytometry compared to amperometric exocytosis measurements. CURRENT OPINION IN ELECTROCHEMISTRY 2017; 5:85-91. [PMID: 29218327 PMCID: PMC5714305 DOI: 10.1016/j.coelec.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three new tools are discussed for understanding chemical communication between cells and primarily to delve into the content and structure of nanometer transmitter vesicles. These are amperometric measurements of exocytosis, vesicle impact electrochemical cytometry, and intracellular vesicle impact electrochemical cytometry. These are combining in the end nanoscale mass spectrometry imaging to begin determination of vesicle structure. These methods have provided solid evidence for the concept of open and closed exocytosis leading to partial release of the vesicle content during normal exocytosis. They have also been used to discover cases where the fraction of transmitter released is not changed, and other cases where the vesicle transmitter fraction released is altered, as with zinc, thought to alter cognition. Overall, the combination of these methods is showing us details of vesicular processes that would not be measureable without these micro and nano electrochemical methods.
Collapse
Affiliation(s)
- Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Larsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Corresponding author: Ewing, Andrew ()
| |
Collapse
|
14
|
Mackey E, Ayyadurai S, Pohl CS, D' Costa S, Li Y, Moeser AJ. Sexual dimorphism in the mast cell transcriptome and the pathophysiological responses to immunological and psychological stress. Biol Sex Differ 2016; 7:60. [PMID: 27895892 PMCID: PMC5120457 DOI: 10.1186/s13293-016-0113-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Background Biological sex plays a prominent role in the prevalence and severity of a number of important stress-related gastrointestinal and immune-related diseases including IBS and allergy/anaphylaxis. Despite the establishment of sex differences in these diseases, the underlying mechanisms contributing to sex differences remain poorly understood. The objective of this study was to define the role of biological sex on mast cells (MCs), an innate immune cell central to the pathophysiology of many GI and allergic disorders. Methods Twelve-week-old C57BL/6 male and female mice were exposed to immunological stress (2 h of IgE-mediated passive systemic anaphylaxis (PSA)) or psychological stress (1 h of restraint stress (RS)) and temperature, clinical scores, serum histamine, and intestinal permeability (for RS) were measured. Primary bone marrow-derived MCs (BMMCs) were harvested from male and female mice and analyzed for MC degranulation, signaling pathways, mediator content, and RNA transcriptome analysis. Results Sexually dimorphic responses were observed in both models of PSA and RS and in primary MCs. Compared with male mice, female mice exhibited increased clinical scores, hypothermia, and serum histamine levels in response to PSA and had greater intestinal permeability and serum histamine responses to RS. Primary BMMCs from female mice exhibited increased release of β-hexosaminidase, histamine, tryptase, and TNF-α upon stimulation with IgE/DNP and A23187. Increased mediator release in female BMMCs was not associated with increased upstream phospho-tyrosine signaling pathways or downstream Ca2+ mobilization. Instead, increased mediator release in female MCs was associated with markedly increased capacity for synthesis and storage of MC granule-associated immune mediators as determined by MC mediator content and RNA transcriptome analysis. Conclusions These results provide a new understanding of sexual dimorphic responses in MCs and have direct implications for stress-related diseases associated with a female predominance and MC hyperactivity including irritable bowel syndrome, allergy, and anaphylaxis. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0113-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, MI 48824 USA ; Comparative Biomedical Sciences Program, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27603 USA
| | - Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, MI 48824 USA ; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Calvin S Pohl
- Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, MI 48824 USA ; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Susan D' Costa
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, MI 48824 USA ; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, MI 48824 USA ; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA ; Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA ; Department of Physiology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
15
|
Samaranayake S, Abdalla A, Robke R, Wood KM, Zeqja A, Hashemi P. In vivo histamine voltammetry in the mouse premammillary nucleus. Analyst 2016; 140:3759-65. [PMID: 25902865 DOI: 10.1039/c5an00313j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histamine plays a major role in the mediation of allergic reactions such as peripheral inflammation. This classical monoamine is also a neurotransmitter involved in the central nervous system but its role in this context is poorly understood. Studying histamine neurotransmission is important due to its implications in many neurological disorders. The sensitivity, selectivity and high temporal resolution of fast scan cyclic voltammetry (FSCV) offer many advantages for studying electroactive neurotransmitters. Histamine has previously been studied with FSCV; however, the lack of a robust Faradaic electrochemical signal makes it difficult to selectively identify histamine in complex media, as found in vivo. In this work, we optimize an electrochemical waveform that provides a stimulation-locked and unique electrochemical signal towards histamine. We describe in vitro waveform optimization and a novel in vivo physiological model for stimulating histamine release in the mouse premammillary nucleus via stimulation of the medial forebrain bundle. We demonstrate that a robust signal can be used to effectively identify histamine and characterize its in vivo kinetics.
Collapse
|
16
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
17
|
Identification of a mammalian vesicular polyamine transporter. Sci Rep 2014; 4:6836. [PMID: 25355561 PMCID: PMC4213795 DOI: 10.1038/srep06836] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/10/2014] [Indexed: 01/11/2023] Open
Abstract
Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H(+). SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT).
Collapse
|
18
|
Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 2014; 111:9977-82. [PMID: 24979780 DOI: 10.1073/pnas.1402134111] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.
Collapse
|
19
|
Hallgren J, Gurish MF. Granule maturation in mast cells: histamine in control. Eur J Immunol 2014; 44:33-6. [PMID: 24319003 DOI: 10.1002/eji.201344262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 01/05/2023]
Abstract
Mast cells are derived from committed progenitors that originate in the BM. They mature into histochemically distinguishable, metachromatic mast cells containing numerous cytoplasmic secretory granules. Accumulating evidence demonstrates that mast cell granule maturation is very tightly regulated by many factors including different granule components such as proteoglycans. In this issue of the European Journal of Immunology, Nakazawa et al. [Eur. J. Immunol. 2014. 44: 204-214] highlight a role for mast cell derived histamine as another factor critical for mast cell maturation. Using histidine decarboxylase (HDC) deficient mice that are unable to make histamine, they show poorly formed secretory granules and decreased secretory granule protease expression in peritoneal mast cells. Co-culturing BM-derived mast cells with fibroblasts normally drives granule maturation, but HDC-deficient BM-derived mast cells fail to do so. Exogenously provided histamine partly restores granule differentiation as evidenced by increased tryptase and chymase activity, and this is histamine receptor type H4 -dependent. However, H4 -deficient mice have intact granule formation in peritoneal mast cells, suggesting that when HDC is functional, the intrinsic histamine production is sufficient for most granule maturation processes and H4 is dispensable. This study highlights the role of histamine in the regulation of mast cell maturation, although the cytosolic target remains unknown.
Collapse
Affiliation(s)
- Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
20
|
Cook NP, Archer CM, Fawver JN, Schall HE, Rodriguez-Rivera J, Dineley KT, Martı́ AA, Murray IVJ. Ruthenium red colorimetric and birefringent staining of amyloid-β aggregates in vitro and in Tg2576 mice. ACS Chem Neurosci 2013; 4:379-84. [PMID: 23509974 DOI: 10.1021/cn300219n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease most notably characterized by the misfolding of amyloid-β (Aβ) into fibrils and its accumulation into plaques. In this Article, we utilize the affinity of Aβ fibrils to bind metal cations and subsequently imprint their chirality to bound molecules to develop novel imaging compounds for staining Aβ aggregates. Here, we investigate the cationic dye ruthenium red (ammoniated ruthenium oxychloride) that binds calcium-binding proteins, as a labeling agent for Aβ deposits. Ruthenium red stained amyloid plaques red under light microscopy, and exhibited birefringence under crossed polarizers when bound to Aβ plaques in brain tissue sections from the Tg2576 mouse model of AD. Staining of Aβ plaques was confirmed via staining of the same sections with the fluorescent amyloid binding dye Thioflavin S. In addition, it was confirmed that divalent cations such as calcium displace ruthenium red, consistent with a mechanism of binding by electrostatic interaction. We further characterized the interaction of ruthenium red with synthetic Aβ fibrils using independent biophysical techniques. Ruthenium red exhibited birefringence and induced circular dichroic bands at 540 nm upon binding to Aβ fibrils due to induced chirality. Thus, the chirality and cation binding properties of Aβ aggregates could be capitalized for the development of novel amyloid labeling methods, adding to the arsenal of AD imaging techniques and diagnostic tools.
Collapse
Affiliation(s)
| | - Clarissa M. Archer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| | - Janelle N. Fawver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| | - Hayley E. Schall
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| | - Jennifer Rodriguez-Rivera
- Department
of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas
77555, United States
| | - Kelly T. Dineley
- Department
of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas
77555, United States
| | | | - Ian V. J. Murray
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| |
Collapse
|
21
|
Cervantes-Durán C, Pineda-Farias JB, Bravo-Hernández M, Quiñonez-Bastidas GN, Vidal-Cantú GC, Barragán-Iglesias P, Granados-Soto V. Evidence for the participation of peripheral 5-HT₂A, 5-HT₂B, and 5-HT₂C receptors in formalin-induced secondary mechanical allodynia and hyperalgesia. Neuroscience 2012; 232:169-81. [PMID: 23219842 DOI: 10.1016/j.neuroscience.2012.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/27/2022]
Abstract
The role of 5-HT₂A/₂B/₂C receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia. Pre-treatment for five consecutive days with compound 48/80 (1, 3, 10, 10, and 10 μg/paw) prevented formalin-induced secondary allodynia and hyperalgesia. Ipsilateral, but not contralateral, peripheral pre-treatment (nmol/paw) with the 5-HT₂ receptor agonist DOI (3-30), 5-HT (10-100) or fluoxetine (0.3-3) significantly increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. The pronociceptive effect of DOI (10 nmol/paw), 5-HT (100 nmol/paw) and fluoxetine (1 nmol/paw) was blocked by selective 5-HT₂A (ketanserin), 5-HT₂B (RS-127445), and 5-HT₂C (RS-102221) receptor antagonists. Furthermore, ipsilateral pre-treatment (nmol/paw) with ketanserin (1, 10, and 100), RS-127445 (0.01, 0.1 and 1) or RS-102221 (1, 10 and 100) prevented while post-treatment reversed 1% formalin-induced secondary allodynia and hyperalgesia in both paws. In marked contrast, contralateral injection of the greatest tested dose of 5-HT₂A/₂B/₂C receptor antagonists did not modify long-lasting secondary allodynia and hyperalgesia. These results suggest that 5-HT released from mast cells after formalin injection sensitizes primary afferent neurons via 5-HT₂A/₂B/₂C receptors leading to the development and maintenance of secondary allodynia and hyperalgesia.
Collapse
Affiliation(s)
- C Cervantes-Durán
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - J B Pineda-Farias
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - M Bravo-Hernández
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - G N Quiñonez-Bastidas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - G C Vidal-Cantú
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - P Barragán-Iglesias
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - V Granados-Soto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico.
| |
Collapse
|
22
|
Lin TK, Man MQ, Santiago JL, Park K, Roelandt T, Oda Y, Hupe M, Crumrine D, Lee HJ, Gschwandtner M, Thyssen JP, Trullas C, Tschachler E, Feingold KR, Elias PM. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol 2012; 133:469-78. [PMID: 23014339 PMCID: PMC3532566 DOI: 10.1038/jid.2012.335] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective, if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by: i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and ii) enhanced epidermal lipid synthesis and secretion. Since barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamine. In four immunologically-diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis), or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, while H1/2r antagonists improved inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly-systemic to a topical approach.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, UCSF, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim D, Koseoglu S, Manning BM, Meyer AF, Haynes CL. Electroanalytical eavesdropping on single cell communication. Anal Chem 2011; 83:7242-9. [PMID: 21766792 PMCID: PMC3184337 DOI: 10.1021/ac200666c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article reviews measurement of single cell exocytosis with microelectrodes, covering history, basic instrumentation, cell types investigated, and fundamental insight gained.
Collapse
|
24
|
Ohtsu H. Histamine synthesis and lessons learned from histidine decarboxylase deficient mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 709:21-31. [PMID: 21618884 DOI: 10.1007/978-1-4419-8056-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This chapter summarizes the information about the transcriptional regulation of histidine decarboxylase (HDC), which is the catabolic enzyme of histamine synthesis, and the activity of histamine in vivo as clarified using HDC gene deficient mice (HDC-KO). The research of the regulatory mechanism of histamine synthesis has been focused on transcriptional and posttranslational aspects. The generation ofHDC-KO mice clarified several new pathophysiological functions of histamine. It is now recognized that the activity of histamine is not limited to allergic, peptic and neurological functions as in the old paradigm, but extends to other fields such as cardiology, immunology and infectious diseases. Therefore, this chapter will focus on these newly revealed functions of histamine. For example, histamine was known to be involved in the effector phase of allergic responses, but a role has now been shown in the sensitization phases and in innate immunity. In the allergic bronchial asthma model using HDC-KO mice it was found that histamine positively controls eosinophilia, but not bronchial hypersensitivity. The effect on eosinophils was afterwards shown to be mediated through the activity of the histamine H4 receptor. The recent advances in the understanding of histamine synthesis and the activity of HDC have dramatically expanded our understanding of the scope of histamine function.
Collapse
Affiliation(s)
- Hiroshi Ohtsu
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
25
|
Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse. J Pineal Res 2011; 50:97-109. [PMID: 20964710 DOI: 10.1111/j.1600-079x.2010.00819.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress is reported as one of the most widely accepted mechanisms of maneb (MB)- and paraquat (PQ)-induced nigrostriatal dopaminergic neurodegeneration leading to the Parkinson's disease (PD) phenotype. The study investigated the effects of silymarin, an antioxidant of plant origin, and melatonin, an indoleamine produced in all species, in MB- and PQ-induced mouse model of PD. The mice were treated intraperitoneally daily with silymarin (40mg/kg) or melatonin (30mg/kg) along with respective controls for 9wk. Subsets of these animals were also treated with MB (30mg/kg) and PQ (10mg/kg), twice a week, for 9wk, 2hr after silymarin/melatonin treatment. Locomotor activities along with striatal dopamine content, tyrosine hydroxylase (TH) immunoreactivity, number of degenerating neurons, lipid peroxidation and nitrite content were estimated. Additionally, mRNA expression of vesicular monoamine transporter, cytochrome P-450 2E1 (CYP2E1), and glutathione-S-transferase A4-4 (GSTA4-4), catalytic activities of CYP2E1 and GSTA4-4 and protein expressions of unphosphorylated and phosphorylated p53 (p53 and P-p53), Bax and caspase 9 were measured in control and MB- and PQ-treated mice with either silymarin or melatonin treatments. Silymarin/melatonin significantly offset MB- and PQ-mediated reductions in locomotor activities, dopamine content, TH immunoreactivity, VMAT 2 mRNA expression and the expression of p53 protein. Silymarin/melatonin attenuated the increases in lipid peroxidation, number of degenerating neurons, nitrite content, mRNA expressions of cytochrome P-450 2E1 (CYP2E1) and GSTA4-4, catalytic activities of CYP2E1 and GST and P-p53, Bax and caspase 9 protein expressions. The results demonstrate that silymarin and melatonin offer nigrostriatal dopaminergic neuroprotection against MB- and PQ-induced PD by the modulation of oxidative stress and apoptotic machinery.
Collapse
Affiliation(s)
- Naveen Kumar Singhal
- Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), M. G. Marg, Lucknow, UP, India Jamia Hamdard, New Delhi, India
| | | | | | | | | |
Collapse
|
26
|
Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors. Anal Bioanal Chem 2009; 394:17-32. [PMID: 19274456 DOI: 10.1007/s00216-009-2703-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/07/2009] [Accepted: 02/10/2009] [Indexed: 02/05/2023]
Abstract
Communication between cells by release of specific chemical messengers via exocytosis plays crucial roles in biological process. Electrochemical detection based on ultramicroelectrodes (UMEs) has become one of the most powerful techniques in real-time monitoring of an extremely small number of released molecules during very short time scales, owing to its intrinsic advantages such as fast response, excellent sensitivity, and high spatiotemporal resolution. Great successes have been achieved in the use of UME methods to obtain quantitative and kinetic information about released chemical messengers and to reveal the molecular mechanism in vesicular exocytosis. In this paper, we review recent developments in monitoring exocytosis by use of UMEs-electrochemical-based techniques including electrochemical detection using micrometer and nanometer-sized sensors, scanning electrochemical microscopy (SECM), and UMEs implemented in lab-on-a-chip (LOC) microsystems. These advances are of great significance in obtaining a better understanding of vesicular exocytosis and chemical communications between cells, and will facilitate developments in many fields, including analytical chemistry, biological science, and medicine. Furthermore, future developments in electrochemical probing of exocytosis are also proposed.
Collapse
|
27
|
Prasad P, Yanagihara AA, Small-Howard AL, Turner H, Stokes AJ. Secretogranin III directs secretory vesicle biogenesis in mast cells in a manner dependent upon interaction with chromogranin A. THE JOURNAL OF IMMUNOLOGY 2008; 181:5024-34. [PMID: 18802106 DOI: 10.4049/jimmunol.181.7.5024] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are granular immunocytes that reside in the body's barrier tissues. These cells orchestrate inflammatory responses. Proinflammatory mediators are stored in granular structures within the mast cell cytosol. Control of mast cell granule exocytosis is a major therapeutic goal for allergic and inflammatory diseases. However, the proteins that control granule biogenesis and abundance in mast cells have not been elucidated. In neuroendocrine cells, whose dense core granules are strikingly similar to mast cell granules, granin proteins regulate granulogenesis. Our studies suggest that the Secretogranin III (SgIII) protein is involved in secretory granule biogenesis in mast cells. SgIII is abundant in mast cells, and is organized into vesicular structures. Our results show that over-expression of SgIII in mast cells is sufficient to cause an expansion of a granular compartment in these cells. These novel granules store inflammatory mediators that are released in response to physiological stimuli, indicating that they function as bona fide secretory vesicles. In mast cells, as in neuroendocrine cells, we show that SgIII is complexed with Chromogranin A (CgA). CgA is granulogenic when complexed with SgIII. Our data show that a novel non-granulogenic truncation mutant of SgIII (1-210) lacks the ability to interact with CgA. Thus, in mast cells, a CgA-SgIII complex may play a key role in secretory granule biogenesis. SgIII function in mast cells is unlikely to be limited to its partnership with CgA, as our interaction trap analysis suggests that SgIII has multiple binding partners, including the mast cell ion channel TRPA1.
Collapse
Affiliation(s)
- Prerna Prasad
- Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
28
|
Romero-Calderón R, Uhlenbrock G, Borycz J, Simon AF, Grygoruk A, Yee SK, Shyer A, Ackerson LC, Maidment NT, Meinertzhagen IA, Hovemann BT, Krantz DE. A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system. PLoS Genet 2008; 4:e1000245. [PMID: 18989452 PMCID: PMC2570955 DOI: 10.1371/journal.pgen.1000245] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/30/2008] [Indexed: 01/02/2023] Open
Abstract
Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.
Collapse
Affiliation(s)
- Rafael Romero-Calderón
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Guido Uhlenbrock
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Jolanta Borycz
- Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anne F. Simon
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Anna Grygoruk
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Susan K. Yee
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Amy Shyer
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Larry C. Ackerson
- Hatos Center for Neuropharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nigel T. Maidment
- Hatos Center for Neuropharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | - David E. Krantz
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
29
|
Mundroff ML, Wightman RM. Amperometry and cyclic voltammetry with carbon fiber microelectrodes at single cells. ACTA ACUST UNITED AC 2008; Chapter 6:Unit 6.14. [PMID: 18428562 DOI: 10.1002/0471142301.ns0614s18] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amperometry and cyclic voltammetry are two electrochemical techniques that enable the detection of electroactive neurotransmitters that are released from single cells. These techniques have provided the first chemical view of the events that occur during exocytosis. This unit describes the isolation of several cell types known for their exocytotic properties, the fabrication and calibration of carbon fiber microelectrodes, as well as some of the equipment and software requirements for obtaining electrochemically generated data.
Collapse
Affiliation(s)
- Michelle L Mundroff
- The University of north carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
30
|
Ge S, Wittenberg NJ, Haynes CL. Quantitative and real-time detection of secretion of chemical messengers from individual platelets. Biochemistry 2008; 47:7020-4. [PMID: 18557631 DOI: 10.1021/bi800792m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon-fiber microelectrochemical methods were utilized in this study to measure individual exocytotic events of secretion of serotonin and histamine from washed rabbit platelets. The quantal release of serotonin was quantitatively characterized with a delta-granule serotonin concentration of 0.6 M and secretion time course of 7 ms. Additionally, extracellular osmolarity influences quantal size, causing quantal size increases under hypotonic conditions, presumably due to the influx of cytosolic serotonin into the halo region of the delta-granules.
Collapse
Affiliation(s)
- Shencheng Ge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
31
|
Ohtsu H. Progress in allergy signal research on mast cells: the role of histamine in immunological and cardiovascular disease and the transporting system of histamine in the cell. J Pharmacol Sci 2008; 106:347-53. [PMID: 18360091 DOI: 10.1254/jphs.fm0070294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Since its discovery in 1910, histamine has been regarded as one of the most important biogenic amines in the medical and biological fields. This article summarizes the information about the role of histamine in allergic situations, atherosclerosis, and autoimmune encephalomyelitis, especially focusing on our study with histidine decarboxylase gene knockout mouse. In the allergic bronchial asthma model, histamine positively controls eosinophilia but not bronchial hypersensitivity. Histamine is proved to be an important substance that controls body temperature and respiration in systemic anaphylaxis but its role in controlling blood pressure is minor. Histamine also plays a role in inducing atherosclerosis in the mouse model. We showed that experimental autoimmune encephalomyelitis (EAE) is significantly more severe in histamine-deficient mice with diffuse inflammatory infiltrates in the brain and cerebellum, including a prevalent granulocytic component. Histamine is mainly produced in mast cells and basophils in hematopoietic cells. We've shown that mast cells not only produce histamine, but also uptake it from the environmental medium and release it by allergic stimulants. The protein used for the plasma transport of histamine in basophils was identified as organic cation transporter (OCT3).
Collapse
Affiliation(s)
- Hiroshi Ohtsu
- Applied Quantum Medical Engineering, Tohoku University School of Engineering, Japan.
| |
Collapse
|
32
|
Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci U S A 2008; 105:2580-5. [PMID: 18250339 DOI: 10.1073/pnas.0707854105] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mast cells degranulate and release the contents of intracellular secretory granules in response to the cross-linking of FcepsilonRI by multivalent antigens. These granules contain a variety of biologically active inflammatory mediators; however, it is not clear whether these granules are homogenous or whether there is heterogeneity within the secretory granule population in mast cells. By using genetically altered mice lacking specific vesicle-associated SNARE membrane fusion proteins, we found that VAMP-8-deficient mast cells exhibited defects in FcepsilonRI-regulated exocytosis, whereas synaptobrevin 2- or VAMP-3-deficient mast cells did not. Surprisingly, the defect in secretion in VAMP-8-deficient mice was limited to the subpopulation of mast cell secretory granules containing serotonin and cathepsin D, whereas regulated exocytosis of secretory granules containing histamine and TNF-alpha was normal. Confocal microscopy confirmed that serotonin and histamine were present in distinct intracellular granules and that most serotonin-containing granules were VAMP-8-positive. Thus, this study demonstrates that mast cells do indeed possess distinct subsets of secretory granules and that these subsets use different SNARE isoforms for exocytosis.
Collapse
|
33
|
Abstract
Carbon fiber amperometry is a popular method for measuring single exocytotic events; however, the functional interpretation of the data can prove hazardous. For example, changes to vesicle transmitter levels can appear to cause changes in the timing and rate of the fusion process itself. Use of an analytical technique based on differentiation revealed that an increase in dense-core granule catecholamine content by exogenous application of l-DOPA did not affect initial release rates. Changes to the timing and amplitude of amperometric spikes from l-DOPA-treated cells are, then, likely a reflection of the increased quantal size rather than any direct effect on exocytosis itself. Applying this new analysis to individual fusion events from cells expressing Munc-18-1 with various specific point mutations demonstrated that Munc-18-1 functions at a late stage involved in the determination of the initial rate of fusion. Furthermore, a mutation of the protein that inhibits its biochemical interaction with the t-SNARE syntaxin-1 in a closed conformation caused premature termination of the fusion event. Through these two late-stage functions, Munc-18-1 could act as a key protein involved in the presynaptic control of signaling strength and duration.
Collapse
|
34
|
Abstract
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.
Collapse
Affiliation(s)
- Robert H Edwards
- Department of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
35
|
Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A. VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Mol Med (Berl) 2007; 86:5-16. [PMID: 17665159 DOI: 10.1007/s00109-007-0242-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/06/2007] [Accepted: 06/27/2007] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. The two main forms of the disease are distinguished by different pathogenesis, natural histories, and population distributions and indicated as either type 1 (T1DM) or type 2 diabetes mellitus (T2DM). It is well established that T1DM is an autoimmune disease whereby beta-cells of pancreatic islets are destroyed leading to loss of endogenous insulin production. Albeit less dramatic, beta-cell mass (BCM) also drops in T2DM. Therefore, it is realistic to expect that noninvasive measures of BCM might provide useful information in the diabetes-care field. Preclinical studies have demonstrated that BCM measurements by positron emission tomography scanning, using the vesicular monoamine transporter type 2 (VMAT2) as a tissue-specific surrogate marker of insulin production and [11C] Dihydrotetrabenazine (DTBZ) as the radioligand specific for this molecule, is feasible in animal models. Unfortunately, the mechanisms underlying beta-cell-specific expression of VMAT2 are still largely unexplored, and a much better understanding of the regulation of VMAT2 gene expression and of its function in beta-cells will be required before the full utility of this technique in the prediction and treatment of individuals with diabetes can be understood. In this review, we summarize much of what is understood about the regulation of VMAT2 and identify questions whose answers may help in understanding what measurements of VMAT2 density mean in the context of diabetes.
Collapse
Affiliation(s)
- Paul E Harris
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Boulland JL, Ferhat L, Tallak Solbu T, Ferrand N, Chaudhry FA, Storm-Mathisen J, Esclapez M. Changes in vesicular transporters for gamma-aminobutyric acid and glutamate reveal vulnerability and reorganization of hippocampal neurons following pilocarpine-induced seizures. J Comp Neurol 2007; 503:466-85. [PMID: 17503488 DOI: 10.1002/cne.21384] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reorganizations of the overall intrinsic glutamatergic and gamma-aminobutyric acid (GABA)-ergic hippocampal networks as well as the time course of these reorganizations during development of pilocarpine-induced temporal lobe epilepsy were studied with in situ hybridization and immunohistochemistry experiments for the vesicular glutamate transporter 1 (VGLUT1) and the vesicular GABA transporter (VGAT). These transporters are particularly interesting as specific markers for glutamatergic and GABAergic neurons, respectively, whose expression levels could reflect the demand for synaptic transmission and their average activity. We report that 1) concomitantly with the loss of some subpopulations of VGAT-containing neurons, there was an up-regulation of VGAT synthesis in all remaining GABA neurons as early as 1 week after pilocarpine injection. This enhanced synthesis is characterized by marked increases in the relative amount of VGAT mRNAs in interneurons associated with increased intensity of axon terminal labeling for VGAT in all hippocampal layers. 2) There was a striking loss of mossy cells during the latent period, demonstrated by a long-term decrease of VGLUT1 mRNA-containing hilar neurons and associated loss of VGLUT1-containing terminals in the dentate gyrus inner molecular layer. 3) There were aberrant VGLUT1-containing terminals at the chronic stage resulting from axonal sprouting of granule and pyramidal cells. This is illustrated by a recovery of VGLUT1 immunoreactivity in the inner molecular layer and an increased VGLUT1 immunolabeling in the CA1-CA3 dendritic layers. These data indicate that an increased activity of remaining GABAergic interneurons occurs during the latent period, in parallel with the loss of vulnerable glutamatergic and GABAergic neurons preceding the reorganization of glutamatergic networks.
Collapse
Affiliation(s)
- Jean-Luc Boulland
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, N-0349 Norway
| | | | | | | | | | | | | |
Collapse
|
37
|
Brunk I, Höltje M, von Jagow B, Winter S, Sternberg J, Blex C, Pahner I, Ahnert-Hilger G. Regulation of vesicular monoamine and glutamate transporters by vesicle-associated trimeric G proteins: new jobs for long-known signal transduction molecules. Handb Exp Pharmacol 2007:305-25. [PMID: 16722242 DOI: 10.1007/3-540-29784-7_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters of neurons and neuroendocrine cells are concentrated first in the cytosol and then in either small synaptic vesicles ofpresynaptic terminals or in secretory vesicles by the activity of specific transporters of the plasma and the vesicular membrane, respectively. In the central nervous system the postsynaptic response depends--amongst other parameters-on the amount of neurotransmitter stored in a given vesicle. Neurotransmitter packets (quanta) vary over a wide range which may be also due to a regulation of vesicular neurotransmitter filling. Vesicular filling is regulated by the availability of transmitter molecules in the cytoplasm, the amount of transporter molecules and an electrochemical proton-mediated gradient over the vesicular membrane. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq. Galphao2 and Galphaq regulate vesicular monoamine transporter (VMAT) activities in brain and platelets, respectively. Galphao2 also regulates vesicular glutamate transporter (VGLUT) activity by changing its chloride dependence. It appears that the vesicular content activates the G protein, suggesting a signal transduction from the luminal site which might be mediated by a vesicular G protein-coupled receptor or as an alternative possibility by the transporter itself. Thus, G proteins control transmitter storage and thereby probablylink the regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- I Brunk
- AG Funktionelle Zellbiologie, Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N. Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 2006; 58:850-77. [PMID: 16996640 DOI: 10.1016/j.addr.2006.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/13/2006] [Indexed: 12/17/2022]
Abstract
Two-photon excitation imaging is the least invasive optical approach to study living tissues. We have established two-photon extracellular polar-tracer (TEP) imaging with which it is possible to visualize and quantify all exocytic events in the plane of focus within secretory tissues. This technology also enables estimate of the precise diameters of vesicles independently of the spatial resolution of the optical microscope, and determination of the fusion pore dynamics at nanometer resolution using TEP-imaging based quantification (TEPIQ). TEP imaging has been applied to representative secretory glands, e.g., exocrine pancreas, endocrine pancreas, adrenal medulla and a pheochromocytoma cell line (PC12), and has revealed unexpected diversity in the spatial organization of exocytosis and endocytosis crucial for the physiology and pathology of secretory tissues and neurons. TEP imaging and TEPIQ analysis are powerful tools for elucidating the molecular and cellular mechanisms of exocytosis and certain related diseases, such as diabetes mellitus, and the development of new therapeutic agents and diagnostic tools.
Collapse
Affiliation(s)
- Haruo Kasai
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Brunk I, Blex C, Rachakonda S, Höltje M, Winter S, Pahner I, Walther DJ, Ahnert-Hilger G. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem 2006; 281:33373-85. [PMID: 16926160 DOI: 10.1074/jbc.m603204200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of vesicular monoamine transporters (VMATs) is down-regulated by the G-protein alpha-subunits of G(o2) and G(q), but the signaling pathways are not known. We show here that no such regulation is observed when VMAT1 or VMAT2 are expressed in Chinese hamster ovary (CHO) cells. However, when the intracellular compartments of VMAT-expressing CHO cells are preloaded with different monoamines, transport becomes susceptible to G-protein-dependent regulation, with differences between the two transporter isoforms. Epinephrine induces G-protein-mediated inhibition of transmitter uptake in CHOVMAT1 cells but prevents inhibition induced by dopamine in CHOVMAT2 cells. Epinephrine also antagonizes G-protein-mediated inhibition of monoamine uptake by VMAT2 expressing platelets or synaptic vesicles. In CHOVMAT2 cells G-protein-mediated inhibition of monoamine uptake can be induced by 5-hydroxytryptamine (serotonin) 1B receptor agonists, whereas alpha1 receptor agonists modulate uptake into CHOVMAT1 cells. Accordingly, 5-hydroxytryptamine 1B receptor antagonists prevent G-protein-mediated inhibition of uptake in partially filled platelets and synaptic vesicles expressing VMAT2. CHO cells expressing VMAT mutants with a shortened first vesicular loop transport monoamines. However, no or a reduced G-protein regulation of uptake can be initiated. In conclusion, vesicular content is involved in the activation of vesicle associated G-proteins via a structure sensing the luminal monoamine content. The first luminal loop of VMATs may represent a G-protein-coupled receptor that adapts vesicular filling.
Collapse
Affiliation(s)
- Irene Brunk
- Functional Cell Biology, Centre for Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Heien MLAV, Johnson MA, Wightman RM. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem 2006; 76:5697-704. [PMID: 15456288 DOI: 10.1021/ac0491509] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon-fiber microelectrodes are frequently used as chemical sensors in biological preparations. In this work, we evaluated the ability of cyclic voltammograms recorded at fast-scan rates to resolve neurochemicals when analyzed by principal component regression. A calibration set of 30 cyclic voltammograms was constructed from 9 different substances at a variety of concentrations. The set was reduced by principal component analysis, and it was found that 99.5% of the variance in the data could be captured with five principal components. This set was used to evaluate cyclic voltammograms obtained with one or two compounds present in solution. In most cases, satisfactory predictions of the identity and concentration of analytes were obtained. Chemical dynamics were also resolved from a set of fast-scan cyclic voltammograms obtained with the electrode implanted in a region of a brain slice that contains dopaminergic terminals. Following stimulation, principal component regression of the data resolved the changes in dopamine and pH that were evoked. In a second test of the method, vesicular release was measured from adrenal medullary cells and the data were evaluated with a calibration set composed of epinephrine and norepinephrine. Cells that secreted one or the other were identified. Overall, the results show that principal component regression with appropriate calibration data allows resolution of substances that give overlapping cyclic voltammograms.
Collapse
Affiliation(s)
- Michael L A V Heien
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | | | |
Collapse
|
41
|
Winter S, Brunk I, Walther DJ, Höltje M, Jiang M, Peter JU, Takamori S, Jahn R, Birnbaumer L, Ahnert-Hilger G. Galphao2 regulates vesicular glutamate transporter activity by changing its chloride dependence. J Neurosci 2006; 25:4672-80. [PMID: 15872115 PMCID: PMC6725018 DOI: 10.1523/jneurosci.0549-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical neurotransmitters, including monoamines, acetylcholine, glutamate, GABA, and glycine, are loaded into synaptic vesicles by means of specific transporters. Vesicular monoamine transporters are under negative regulation by alpha subunits of trimeric G-proteins, including Galpha(o2) and Galpha(q). Furthermore, glutamate uptake, mediated by vesicular glutamate transporters (VGLUTs), is decreased by the nonhydrolysable GTP-analog guanylylimidodiphosphate. Using mutant mice lacking various Galpha subunits, including Galpha(o1), Galpha(o2), Galpha(q), and Galpha11, and a Galpha(o2)-specific monoclonal antibody, we now show that VGLUTs are exclusively regulated by Galpha(o2). G-protein activation does not affect the electrochemical proton gradient serving as driving force for neurotransmitter uptake; rather, Galpha(o2) exerts its action by specifically affecting the chloride dependence of VGLUTs. All VGLUTs show maximal activity at approximately 5 mm chloride. Activated Galpha(o2) shifts this maximum to lower chloride concentrations. In contrast, glutamate uptake by vesicles isolated from Galpha(o2-/-) mice have completely lost chloride activation. Thus, Galpha(o2) acts on a putative regulatory chloride binding domain that appears to modulate transport activity of vesicular glutamate transporters.
Collapse
Affiliation(s)
- Sandra Winter
- AG Funktionelle Zellbiologie, Centrum für Anatomie, Charité Universitätsmedizin Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Greer CL, Grygoruk A, Patton DE, Ley B, Romero-Calderon R, Chang HY, Houshyar R, Bainton RJ, Diantonio A, Krantz DE. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. ACTA ACUST UNITED AC 2005; 64:239-58. [PMID: 15849736 DOI: 10.1002/neu.20146] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vesicular monoamine transporters (VMATs) mediate the transport of dopamine (DA), serotonin (5HT), and other monoamines into secretory vesicles. The regulation of mammalian VMAT and the related vesicular acetylcholine transporter (VAChT) has been proposed to involve membrane trafficking, but the mechanisms remain unclear. To facilitate a genetic analysis of vesicular transporter function and regulation, we have cloned the Drosophila homolog of the vesicular monoamine transporter (dVMAT). We identify two mRNA splice variants (DVMAT-A and B) that differ at their C-terminus, the domain responsible for endocytosis of mammalian VMAT and VAChT. DVMAT-A contains trafficking motifs conserved in mammals but not C. elegans, and internalization assays indicate that the DVMAT-A C-terminus is involved in endocytosis. DVMAT-B contains a divergent C-terminal domain and is less efficiently internalized from the cell surface. Using in vitro transport assays, we show that DVMAT-A recognizes DA, 5HT, octopamine, tyramine, and histamine as substrates, and similar to mammalian VMAT homologs, is inhibited by the drug reserpine and the environmental toxins 2,2,4,5,6-pentachlorobiphenyl and heptachlor. We have developed a specific antiserum to DVMAT-A, and find that it localizes to dopaminergic and serotonergic neurons as well as octopaminergic, type II terminals at the neuromuscular junction. Surprisingly, DVMAT-A is co-expressed at type II terminals with the Drosophila vesicular glutamate transporter. Our data suggest that DVMAT-A functions as a vesicular transporter for DA, 5HT, and octopamine in vivo, and will provide a powerful invertebrate model for the study of transporter trafficking and regulation.
Collapse
Affiliation(s)
- Christina L Greer
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Gonda (Goldschmied) Center for Genetic and Neuroscience Research, 695 Charles Young Drive, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Anlauf M, Schäfer MKH, Schwark T, von Wurmb-Schwark N, Brand V, Sipos B, Horny HP, Parwaresch R, Hartschuh W, Eiden LE, Klöppel G, Weihe E. Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem 2005; 54:201-13. [PMID: 16116033 DOI: 10.1369/jhc.5a6739.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uptake of monoamines into secretory granules is mediated by the vesicular monoamine transporters VMAT1 and VMAT2. In this study, we analyzed their expression in inflammatory and hematopoietic cells and in patients suffering from systemic mastocytosis (SM) and chronic myelogenous leukemia (CML). Normal human and monkey tissue specimens and tissues from patients suffering from SM and CML were analyzed by means of immunohistochemistry, radioactive in situ hybridization, real time RT-PCR, double fluorescence confocal laser scanning microscopy, and immunoelectron microscopy. In normal tissue specimens, VMAT2, but not VMAT1, was expressed in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells. Further hematopoietic and lymphoid cells showed no expression of VMATs. VMAT2 was expressed in all types of SM, as indicated by coexpression with the mast cell marker tryptase. In CML, VMAT2 expression was retained in neoplastic megakaryocytes and basophil granulocytes. In conclusion, the identification of VMAT2 in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells provides evidence that these cells possess molecular mechanisms for monoamine storage and handling. VMAT2 identifies normal and neoplastic mast cells, megakaryocytes, and basophil granulocytes and may therefore become a valuable tool for the diagnosis of mastocytosis and malignant systemic diseases involving megakaryocytes and basophil granulocytes.
Collapse
MESH Headings
- Animals
- Basophils/metabolism
- Biomarkers, Tumor/biosynthesis
- Blood Platelets/metabolism
- Bone Marrow Cells/metabolism
- Hematopoiesis
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Langerhans Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macaca mulatta
- Mast Cells/metabolism
- Mastocytosis, Systemic/blood
- Mastocytosis, Systemic/metabolism
- Mastocytosis, Systemic/pathology
- Megakaryocytes/metabolism
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Organ Specificity
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Vesicular Monoamine Transport Proteins/biosynthesis
- Vesicular Monoamine Transport Proteins/genetics
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Pathology, University of Kiel, Michaelisstr. 11, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lin Z, Walther D, Yu XY, Li S, Drgon T, Uhl GR. SLC18A2 promoter haplotypes and identification of a novel protective factor against alcoholism. Hum Mol Genet 2005; 14:1393-404. [PMID: 15829504 DOI: 10.1093/hmg/ddi148] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vesicular monoamine transporter 2 (VMAT2, SLC18A2) takes up cytosolic monoamines into intracellular secretory vesicles, preventing their neurotoxicity in the cytosol and discharging them into extracellular space by exocytosis. It has been shown that one-copy deletion of the VMAT2 gene increases locomotion activity significantly in response to drug treatments and dopamine neuron death rate in response to neurotoxin treatments in knockout mice. Little is known about promoter polymorphisms and their influence on SLC18A2 promoter activity. We have re-sequenced a 17.4 kb DNA in the SLC18A2 promoter region for Caucasians and revealed 47 polymorphisms that confer 13 haplotypes. One of the haplotypes reaches a frequency as high as 65%, likely due to positive selection. In vitro analysis showed a 20% difference in promoter activity between two frequent haplotypes and identified some of the polymorphisms that influence promoter activity. Four haplotype-defining single nucleotide polymorphisms (hdSNPs) can define the frequent haplotypes and by genotyping these hdSNPs, we find that haplotypes with -14234G and -2504C of SLC18A2 promoter region represent a protective factor against alcoholism (P = 0.0038 by Fisher's exact tests). Therefore, SLC18A2 promoter haplotypes defined here create a foundation for transcriptional characterization of individuality and for association study on monoamine-related human diseases.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Garris PA, Ensman R, Poehlman J, Alexander A, Langley PE, Sandberg SG, Greco PG, Wightman RM, Rebec GV. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J Neurosci Methods 2005; 140:103-15. [PMID: 15589340 DOI: 10.1016/j.jneumeth.2004.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 04/19/2004] [Indexed: 11/23/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) provides exquisite temporal and spatial resolution for monitoring brain chemistry. The utility of this approach has recently been demonstrated by measuring sub-second dopamine changes associated with behavior. However, one drawback is the cable link between animal and recording equipment that restricts behavior and precludes monitoring in complex environments. As a first step towards developing new instrumentation to overcome this technical limitation, the goal of the present study was to establish proof of principle for the wireless transmission of FSCV at a CFM. Proof of principle was evaluated in terms of measurement stability, fidelity, and susceptibility to ambient electrical noise. Bluetooth digital telemetry provided bi-directional communication between remote and home-base units and stable, high-fidelity data transfer comparable to conventional, wired systems when tested using a dummy cell (i.e., a resistor and capacitor in series simulating electrical properties of a CFM), and dopamine measurements with flow injection analysis and in the anesthetized rat with electrical stimulation. The wireless system was also less susceptible to interference from ambient electrical noise. Taken together, the present findings establish proof of principle for the wireless transmission of FSCV at a CFM.
Collapse
Affiliation(s)
- Paul A Garris
- Cellular and Integrative Physiology Section, Department of Biological Sciences, Illinois State University, 210 Julian Hall, Normal, IL 61791-4120, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
A number of recent studies have led to a reappraisal of the functional capacities of histamine in immunity and hematopoiesis. This change of perspective was provided by the following findings: (1) the evidence for multiple cellular sources of histamine, differing from mature basophils and mast cells by their ability to newly synthesize and liberate the mediator without prior storage, (2) the discovery of a novel histamine receptor (H4R), preferentially expressed on hematopoietic and immunocompetent cells, (3) the potential intracellular activity of histamine through cytochrome P450 and (4) the demonstration of a histamine-cytokine cross-talk. Indeed, cytokines not only modulate the degranulation process of histamine but also control its neosynthesis by the histamine-forming enzyme, histidine decarboxylase (HDC), at transcriptional and post-transcriptional levels. In turn, histamine intervenes in the intricate cytokine network, regulating cytokine production by immune cells through distinct receptors signaling distinct biological effects. This type of regulation is particularly relevant in the context of TH1/TH2 differentiation, autoimmunity and tumor immunotherapy.
Collapse
Affiliation(s)
- Michel Dy
- CNRS UMR 8147, Paris V University, Hôpital Necker, 161 rue de Sèvres, 75743 Paris Cedex 15, France.
| | | |
Collapse
|
47
|
Croft BG, Fortin GD, Corera AT, Edwards RH, Beaudet A, Trudeau LE, Fon EA. Normal biogenesis and cycling of empty synaptic vesicles in dopamine neurons of vesicular monoamine transporter 2 knockout mice. Mol Biol Cell 2004; 16:306-15. [PMID: 15496457 PMCID: PMC539174 DOI: 10.1091/mbc.e04-07-0559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.
Collapse
Affiliation(s)
- Benjamin G Croft
- Centre for Neuronal Survival and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Anlauf M, Schafer MKH, Depboylu C, Hartschuh W, Eiden LE, Kloppel G, Weihe E. The vesicular monoamine transporter 2 (VMAT2) is expressed by normal and tumor cutaneous mast cells and Langerhans cells of the skin but is absent from Langerhans cell histiocytosis. J Histochem Cytochem 2004; 52:779-88. [PMID: 15150286 DOI: 10.1369/jhc.4a6264.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Monoamine storage in secretory granules is mediated by the vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2). The aim of our study was to identify monoamine-handling normal and neoplastic inflammatory cells in the skin by their expression of VMAT1 and VMAT2. Normal skin from various parts of the body, as well as 21 cases of cutaneous mastocytosis and 10 cases of cutaneous Langerhans cell histiocytosis were analyzed by immunohistochemistry, radioactive in situ hybridization, and double-fluorescence confocal microscopy. VMAT2-positive cells in the subepidermal layer were identified as mast cells by their expression of tryptase. Neoplastic mast cells in all cases of cutaneous mastocytosis retained their VMAT2 positivity. The intraepidermal VMAT2-expressing cells were identified as Langerhans cells by their CD1a positivity. VMAT2 was absent from Langerhans cell histiocytosis. VMAT2 is an excellent marker for normal and neoplastic mast cells. The expression of VMAT2 demonstrates the capacity of mast cells for monoamine storage and handling. The presence of VMAT2 in epidermal Langerhans cells revealed a previously unrecognized monoamine-handling phenotype of these cells and indicates possible involvement of amine storage and release associated with antigen presentation. Absence of VMAT2 in neoplastic Langerhans cells indicates a loss of monoamine handling capacity of these cells during tumorigenesis.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Pavlinkova G, Yanagawa Y, Kikuchi K, Iwabuchi K, Onoé K. Effects of histamine on functional maturation of dendritic cells. Immunobiology 2004; 207:315-25. [PMID: 14575147 DOI: 10.1078/0171-2985-00247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is increasing evidence that histamine affects dendritic cell (DC) activation, maturation, and preference for Th1/Th2 differentiation. In this paper we report that histamine affects interleukin (IL)-12 and IL-6 production in an immature DC (iDC) line derived from murine spleen. Histamine treatment of iDC significantly increased the IL-12 p40 mRNA and protein levels compared to histamine untreated iDC. In the presence of tumor necrosis factor (TNF)-alpha histamine also increased IL-12 p40 and IL-6 production. However, histamine significantly decreased IL-12 p40 production by lipopolysaccharide (LPS)-stimulated DC in a concentration dependent manner. When expressions of histamine H1 (H1R) and H2 (H2R) receptors in DC were analyzed by RT-PCR, both receptors were down-regulated after LPS or TNF-alpha stimulation compared to unstimulated iDC. Histamine treatment significantly increased the expression of H2R mRNA in iDC and H1R mRNA in LPS-activated DC. However, histamine treatment decreased the expression of both histamine receptors in TNF-alpha-stimulated DC. Similar results were obtained by flow cytometry with FITC-conjugated histamine. These results demonstrate that histamine can regulate the expression of its own receptors and activate iDC, which may influence subsequent functional states of mature DC in a maturation signal-dependent manner. Consequently, histamine may contribute to an immune response outcome.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
50
|
Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 2004; 150:140-60. [PMID: 14517724 DOI: 10.1007/s10254-003-0020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Institut für Anatomie und Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstr. 12, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|