1
|
Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, Bakhshian A, Fitisemanu FM, Jiménez-González ML, Flinn L, Pezacki AT, Lanzirotti A, Ortiz Frade LA, Chang CJ, Navea JG, Blaby-Haas CE, Hainer SJ, Padilla-Benavides T. Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation and metal homeostasis. PLoS Genet 2024; 20:e1011495. [PMID: 39637238 DOI: 10.1371/journal.pgen.1011495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions. mCrip2 binds two to four Cu+ ions with high affinity and presents limited redox potential. CRISPR/Cas9-mediated deletion of mCrip2 impaired myogenesis, likely due to Cu accumulation in cells. CUT&RUN and transcriptome analyses revealed its association with gene promoters, including MyoD1 and metallothioneins, suggesting a novel Cu-responsive regulatory role for mCrip2. Our work describes the significance of mCrip2 in skeletal muscle differentiation and metal homeostasis, expanding understanding of the Cu-network in myoblasts. Copper (Cu) is essential for various cellular processes, including respiration and stress response, but imbalances can cause serious health issues. This study reveals a new Cu-binding protein (Cu-BP) involved in muscle development in primary myoblasts. Using unbiased metalloproteomic techniques and high throughput sequencing, we identified mCrip2 as a key Cu-BP found in cell nuclei and cytoplasm. mCrip2 binds up to four Cu+ ions and has a limited redox potential. Deleting mCrip2 using CRISPR/Cas9 disrupted muscle formation due to Cu accumulation. Further analyses showed that mCrip2 regulates the expression of genes like MyoD1, essential for muscle differentiation, and metallothioneins in response to copper supplementation. This research highlights the importance of mCrip2 in muscle development and metal homeostasis, providing new insights into the Cu-network in cells.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - David C Klein
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry. Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Jaime Carrazco-Carrillo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Denzel Bonilla-Pinto
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Antonio Rivera
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Arpie Bakhshian
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Fa'alataitaua M Fitisemanu
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Martha L Jiménez-González
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Santiago de Querétaro, Querétaro, México
| | - Lyra Flinn
- Chemistry Department. Skidmore College, Saratoga Springs, New York, United States of America
| | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry. University of California, Berkeley, California, United States of America
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Lemont, Illinois, United States of America
| | - Luis Antonio Ortiz Frade
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Santiago de Querétaro, Querétaro, México
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry. University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology. University of California, Berkeley, California, United States of America
| | - Juan G Navea
- Chemistry Department. Skidmore College, Saratoga Springs, New York, United States of America
| | - Crysten E Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California & DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sarah J Hainer
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvanian United States of America
| | - Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
2
|
Liu L, Li F, Zhang L, Cheng Y, Wu L, Tie R, Jiang X, Gao W, Liu B, Wei Y, Chang P, Xu J, Zhao H, Zhang L. Cysteine and glycine-rich protein 2 is crucial for maintaining the malignant phenotypes of gliomas through its action on Notch signalling cascade. Toxicol Appl Pharmacol 2024; 487:116969. [PMID: 38744347 DOI: 10.1016/j.taap.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Cysteine and glycine-rich protein 2 (CSRP2) is expressed differently in numerous cancers and plays a key role in carcinogenesis. However, the role of CSRP2 in glioma is unknown. This study sought to determine the expression profile and clinical significance of CSRP2 in glioma and explore its biological functions and mechanisms via lentivirus-mediated CSRP2 silencing experiments. Increased CSRP2 was frequently observed in gliomas, which was associated with clinicopathological characteristics and an unfavourable prognosis. Decreasing CSRP2 led to the suppression of malignant proliferation, metastasis and stemness in glioma cells while causing hypersensitivity to chemotherapeutic drugs. Mechanistic investigations revealed that CSRP2 plays a role in mediating the Notch signalling cascade. Silencing CSRP2 decreased the levels of Notch1, cleaved Notch1, HES1 and HEY1, suppressing the Notch signalling cascade. Reactivation of Notch markedly diminished the tumour-inhibiting effects of CSRP2 silencing on the malignant phenotypes of glioma cells. Notably, CSRP2-silencing glioma cells exhibited reduced potential in the formation of xenografts in nude mice in vivo, which was associated with an impaired Notch signalling cascade. These results showed that CSRP2 is overexpressed in glioma and has a crucial role in sustaining the malignant phenotypes of glioma, suggesting that targeting CSRP2 could be a promising strategy for glioma treatment.
Collapse
Affiliation(s)
- Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu 610072, China
| | - Fei Li
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lingxue Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yingying Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lin Wu
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Ru Tie
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Wenwen Gao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Bochuan Liu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yao Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Jun Xu
- Department of Neurosurgery, Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China
| | - Haikang Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China.
| | - Liang Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China; Department of Neurosurgery, Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China; Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an 710127, China.
| |
Collapse
|
3
|
Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, Fitisemanu F, Jiménez-González ML, Flinn L, Pezacki AT, Lanzirotti A, Ortiz-Frade LA, Chang CJ, Navea JG, Blaby-Haas C, Hainer SJ, Padilla-Benavides T. Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592485. [PMID: 38746126 PMCID: PMC11092763 DOI: 10.1101/2024.05.03.592485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells. In this context, our lab investigates the contributions of novel Cu-BPs in skeletal muscle differentiation using murine primary myoblasts. Through an unbiased synchrotron X-ray fluorescence-mass spectrometry (XRF/MS) metalloproteomic approach, we identified the murine cysteine rich intestinal protein 2 (mCrip2) in a sample that showed enriched Cu signal, which was isolated from differentiating primary myoblasts derived from mouse satellite cells. Immunolocalization analyses showed that mCrip2 is abundant in both nuclear and cytosolic fractions. Thus, we hypothesized that mCrip2 might have differential roles depending on its cellular localization in the skeletal muscle lineage. mCrip2 is a LIM-family protein with 4 conserved Zn2+-binding sites. Homology and phylogenetic analyses showed that mammalian Crip2 possesses histidine residues near two of the Zn2+-binding sites (CX2C-HX2C) which are potentially implicated in Cu+-binding and competition with Zn2+. Biochemical characterization of recombinant human hsCRIP2 revealed a high Cu+-binding affinity for two and four Cu+ ions and limited redox potential. Functional characterization using CRISPR/Cas9-mediated deletion of mCrip2 in primary myoblasts did not impact proliferation, but impaired myogenesis by decreasing the expression of differentiation markers, possibly attributed to Cu accumulation. Transcriptome analyses of proliferating and differentiating mCrip2 KO myoblasts showed alterations in mRNA processing, protein translation, ribosome synthesis, and chromatin organization. CUT&RUN analyses showed that mCrip2 associates with a select set of gene promoters, including MyoD1 and metallothioneins, acting as a novel Cu-responsive or Cu-regulating protein. Our work demonstrates novel regulatory functions of mCrip2 that mediate skeletal muscle differentiation, presenting new features of the Cu-network in myoblasts.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, CT, 06459. USA
| | - David C. Klein
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, PA. 15207. USA
| | - Lorena Novoa-Aponte
- Present address: Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD. USA
| | | | - Denzel Bonilla-Pinto
- Department of Molecular Biology and Biochemistry, Wesleyan University, CT, 06459. USA
| | - Antonio Rivera
- Department of Molecular Biology and Biochemistry, Wesleyan University, CT, 06459. USA
| | | | | | - Lyra Flinn
- Chemistry Department. Skidmore College, Saratoga Springs New York, 12866. USA
| | - Aidan T. Pezacki
- Department of Chemistry. University of California, Berkeley, California, 94720. USA
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Lemont, IL 60439. USA
| | | | - Christopher J. Chang
- Department of Chemistry. University of California, Berkeley, California, 94720. USA
- Department of Molecular and Cell Biology. University of California, Berkeley, California, 94720. USA
| | - Juan G. Navea
- Chemistry Department. Skidmore College, Saratoga Springs New York, 12866. USA
| | - Crysten Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA & DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA. USA
| | - Sarah J. Hainer
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, PA. 15207. USA
| | | |
Collapse
|
4
|
Wang H, Zhang Y, Zhong B, Geng Y, Hao J, Jin Q, Hou W. Cysteine and glycine-rich protein 2 retards platelet-derived growth factor-BB-evoked phenotypic transition of airway smooth muscle cells by decreasing YAP/TAZ activity. Cell Biochem Funct 2024; 42:e3896. [PMID: 38081793 DOI: 10.1002/cbf.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Hao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoyan Jin
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Hou
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Zhang D, Wu J, Zhang S, Wu J. Identification of Immune Infiltration-Related ceRNAs as Novel Biomarkers for Prognosis of Patients With Primary Open-Angle Glaucoma. Front Genet 2022; 13:838220. [PMID: 35692841 PMCID: PMC9184720 DOI: 10.3389/fgene.2022.838220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally; hence, relevant clinical biomarkers are necessary to enable diagnosis, early detection, and development of novel therapies. The differentially expressed genes were annotated and visualized using Gene Ontology and Kyoto Encyclopedia. In addition, a competitive endogenous ribonucleic acids network was constructed using Cytoscape, which explained the regulation of gene expression in glaucoma. The CIBERSORT algorithm was employed to analyze the immune microenvironment. We validated that the core genes could predict glaucoma occurrence and development and identified potential molecular mechanism pathways, which were associated with immune infiltration and participated in endogenous regulation networks. Our data may partially explain the pathogenesis of glaucoma and they provide potential theoretical support for targeted therapy.
Collapse
Affiliation(s)
- Daowei Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| | - Jihong Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| |
Collapse
|
6
|
Chen CH, Ho HH, Jiang WC, Ao-Ieong WS, Wang J, Orekhov AN, Sobenin IA, Layne MD, Yet SF. Cysteine-rich protein 2 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice. J Biomed Sci 2022; 29:25. [PMID: 35414069 PMCID: PMC9004090 DOI: 10.1186/s12929-022-00808-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a relatively common and often fatal condition. A major histopathological hallmark of AAA is the severe degeneration of aortic media with loss of vascular smooth muscle cells (VSMCs), which are the main source of extracellular matrix (ECM) proteins. VSMCs and ECM homeostasis are essential in maintaining structural integrity of the aorta. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed protein; however, the role of CRP2 in AAA formation is unclear. Methods To investigate the function of CRP2 in AAA formation, mice deficient in Apoe (Apoe−/−) or both CRP2 (gene name Csrp2) and Apoe (Csrp2−/−Apoe−/−) were subjected to an angiotensin II (Ang II) infusion model of AAA formation. Aortas were harvested at different time points and histological analysis was performed. Primary VSMCs were generated from Apoe−/− and Csrp2−/−Apoe−/− mouse aortas for in vitro mechanistic studies. Results Loss of CRP2 attenuated Ang II-induced AAA incidence and severity, accompanied by preserved smooth muscle α-actin expression and reduced elastin degradation, matrix metalloproteinase 2 (MMP2) activity, deposition of collagen, particularly collagen III (Col III), aortic tensile strength, and blood pressure. CRP2 deficiency decreased the baseline MMP2 and Col III expression in VSMCs and mitigated Ang II-induced increases of MMP2 and Col III via blunting Erk1/2 signaling. Rescue experiments were performed by reintroducing CRP2 into Csrp2−/−Apoe−/− VSMCs restored Ang II-induced Erk1/2 activation, MMP2 expression and activity, and Col III levels. Conclusions Our results indicate that in response to Ang II stimulation, CRP2 deficiency maintains aortic VSMC density, ECM homeostasis, and structural integrity through Erk1/2–Col III and MMP2 axis and reduces AAA formation. Thus, targeting CRP2 provides a potential therapeutic strategy for AAA. Supplementary information The online version contains supplementary material available at 10.1186/s12929-022-00808-z.
Collapse
Affiliation(s)
- Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan
| | - Hua-Hui Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan
| | - Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan
| | - Wai-Sam Ao-Ieong
- Department of Chemical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | | | - Igor A Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552, Moscow, Russia
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
7
|
Chen L, Long X, Duan S, Liu X, Chen J, Lan J, Liu X, Huang W, Geng J, Zhou J. CSRP2 suppresses colorectal cancer progression via p130Cas/Rac1 axis-meditated ERK, PAK, and HIPPO signaling pathways. Am J Cancer Res 2020; 10:11063-11079. [PMID: 33042270 PMCID: PMC7532686 DOI: 10.7150/thno.45674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a major cause of death in patients with colorectal cancer (CRC). Cysteine-rich protein 2 (CSRP2) has been recently implicated in the progression and metastasis of a variety of cancers. However, the biological functions and underlying mechanisms of CSRP2 in the regulation of CRC progression are largely unknown. Methods: Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB) were used to detect the expression of CSRP2 in CRC tissues and paracancerous tissues. CSRP2 function in CRC was determined by a series of functional tests in vivo and in vitro. WB and immunofluorescence were used to determine the relation between CSRP2 and epithelial-mesenchymal transition (EMT). Co-immunoprecipitation and scanning electron microscopy were used to study the molecular mechanism of CSRP2 in CRC. Results: The CSRP2 expression level in CRC tissues was lower than in adjacent normal tissues and indicated poor prognosis in CRC patients. Functionally, CSRP2 could suppress the proliferation, migration, and invasion of CRC cells in vitro and inhibit CRC tumorigenesis and metastasis in vivo. Mechanistic investigations revealed a physical interaction between CSRP2 and p130Cas. CSRP2 could inhibit the activation of Rac1 by preventing the phosphorylation of p130Cas, thus activating the Hippo signaling pathway, and simultaneously inhibiting the ERK and PAK/LIMK/cortactin signaling pathways, thereby inhibiting the EMT and metastasis of CRC. Rescue experiments showed that blocking the p130Cas and Rac1 activation could inhibit EMT induced by CSRP2 silencing. Conclusion: Our results suggest that the CSRP2/p130Cas/Rac1 axis can inhibit CRC aggressiveness and metastasis through the Hippo, ERK, and PAK signaling pathways. Therefore, CSRP2 may be a potential therapeutic target for CRC.
Collapse
|
8
|
Choi MR, Han JS, Chai YG, Jin YB, Lee SR, Kim DJ. Gene expression profiling in the hippocampus of adolescent rats after chronic alcohol administration. Basic Clin Pharmacol Toxicol 2019; 126:389-398. [PMID: 31628824 DOI: 10.1111/bcpt.13342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
In South Korea, the average age of onset of alcohol drinking is 13.3 years and half of adolescents drink alcohol more than once a month; 8.45% of the Korean adolescent population become future high-risk alcohol drinkers. Chronic alcohol abuse causes physical and psychiatric health problems such as alcohol addiction, liver disease, stroke and cognitive impairments. This study aimed to investigate the effect of alcohol on gene expression and their function in the hippocampus of adolescent rats. After chronic alcohol administration in male (control, n = 6; alcohol, n = 6) Sprague-Dawley rats for 6 weeks, we analysed up- or down-regulated genes using RNA-sequencing technology. We found 83 genes more than 1.5-fold up- or down-regulated in the alcohol-treated group. Among them, genes (Dnai1, Cfap206 and Dnah1) associated with cilium movement were up-regulated in the alcohol-treated group. Mlf1, related to cell cycle arrest, was also up-regulated in the alcohol-treated group. On the other hand, genes (Smad3 and Plk5) involved in negative regulation of cell proliferation were down-regulated in the hippocampus by chronic alcohol administration. In addition, expression levels of genes associated with oxidative stress (Krt8 and Car3) and migration (Vim) were changed by chronic alcohol administration. These results pave a path for a better understanding of the neuromolecular mechanisms mediated by chronic alcohol exposure in the hippocampus of adolescents and negative pathology due to chronic alcohol abuse.
Collapse
Affiliation(s)
- Mi Ran Choi
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jasmin Sanghyun Han
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Yeung-Bae Jin
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Sahebekhtiari N, Fernandez-Guerra P, Nochi Z, Carlsen J, Bross P, Palmfeldt J. Deficiency of the mitochondrial sulfide regulator ETHE1 disturbs cell growth, glutathione level and causes proteome alterations outside mitochondria. Biochim Biophys Acta Mol Basis Dis 2018; 1865:126-135. [PMID: 30391543 DOI: 10.1016/j.bbadis.2018.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/14/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The mitochondrial enzyme ETHE1 is a persulfide dioxygenase essential for cellular sulfide detoxification, and its deficiency causes the severe and complex inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of well-described clinical symptoms of the disease, detailed cellular and molecular characterization is still ambiguous. Cellular redox regulation has been described to be influenced in ETHE1 deficient cells, and to clarify this further we applied image cytometry and detected decreased levels of reduced glutathione (GSH) in cultivated EE patient fibroblast cells. Cell growth initiation of the EE patient cells was impaired, whereas cell cycle regulation was not. Furthermore, Seahorse metabolic analyzes revealed decreased extracellular acidification, i. e. decreased lactate formation from glycolysis, in the EE patient cells. TMT-based large-scale proteomics was subsequently performed to broadly elucidate cellular consequences of the ETHE1 deficiency. More than 130 proteins were differentially regulated, of which the majority were non-mitochondrial. The proteomics data revealed a link between ETHE1-deficiency and down-regulation of several ribosomal proteins and LIM domain proteins important for cellular maintenance, and up-regulation of cell surface glycoproteins. Furthermore, several proteins of endoplasmic reticulum (ER) were perturbed including proteins influencing disulfide bond formation (e.g. protein disulfide isomerases and peroxiredoxin 4) and calcium-regulated proteins. The results indicate that decreased level of reduced GSH and alterations in proteins of ribosomes, ER and of cell adhesion lie behind the disrupted cell growth of the EE patient cells.
Collapse
Affiliation(s)
- Navid Sahebekhtiari
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
10
|
Feng Y, Feng J, Zheng H, Wang W, Chen F, Yu Y, Cui J. Molecular cloning, characterization, and expression analysis of the three cysteine and glycine-rich protein genes in the Chinese fire-bellied newt Cynops orientalis. Gene 2018; 647:226-234. [PMID: 29317320 DOI: 10.1016/j.gene.2018.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
The cysteine- and glycine-rich protein (CRP) family members, including the cysteine- and glycine-rich protein 1 (CSRP1), cysteine- and glycine-rich protein 2 (CSRP2), and the cysteine- and glycine-rich protein 3 (CSRP3), have exhibited various cellular functions during cell development and differentiation. However, the sequences of the three CSRP genes and their functions are still poorly understood in newts. In this study, we cloned the complete open reading frame (ORF) sequences of the three CSRP genes from the Chinese fire-bellied newt, Cynops orientalis (C. orientalis). The complete ORF sequences of Co-CSRP1, Co-CSRP2, and Co-CSRP3 were 582, 582, and 576bp, respectively, and encoded 193, 193, and 191 amino acids, respectively. The deduced amino acid sequences of the three CRP members showed high similarities with that of other species, particularly, with amphibians. Co-CSRP1 was highly expressed in the kidney, limb, and stomach, however, the expression was low in the spleen, heart, intestine, liver, and tail (P<0.05). The mRNA expression of Co-CSRP2 was higher in the kidney and heart than that in other organs (P<0.05). It was observed that Co-CSRP3 was only expressed in the heart, limb, and tail. The mRNA expression of Co-CSRP1 and Co-CSRP3 was lower in the digits in comparison to other limb segments. However, there was no significant difference of Co-CSRP2 mRNA expression in the four limb segments. The Co-CSRP1 and Co-CSRP2 mRNA expressions were significantly increased, whereas the expression of Co-CSRP3 was remarkably decreased during the limb regeneration. This study will provide useful information for further elucidating the role of Co-CSRP genes during newt limb regeneration.
Collapse
Affiliation(s)
- Yalong Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Juantao Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanxue Zheng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wenjun Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an 710069, PR China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an 710069, PR China.
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an 710069, PR China.
| |
Collapse
|
11
|
Kihara T, Sugimoto Y, Shinohara S, Takaoka S, Miyake J. Cysteine-rich protein 2 accelerates actin filament cluster formation. PLoS One 2017; 12:e0183085. [PMID: 28813482 PMCID: PMC5558965 DOI: 10.1371/journal.pone.0183085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022] Open
Abstract
Filamentous actin (F-actin) forms many types of structures and dynamically regulates cell morphology and movement, and plays a mechanosensory role for extracellular stimuli. In this study, we determined that the smooth muscle-related transcription factor, cysteine-rich protein 2 (CRP2), regulates the supramolecular networks of F-actin. The structures of CRP2 and F-actin in solution were analyzed by small-angle X-ray solution scattering (SAXS). The general shape of CRP2 was partially unfolded and relatively ellipsoidal in structure, and the apparent cross sectional radius of gyration (Rc) was about 15.8 Å. The predicted shape, derived by ab initio modeling, consisted of roughly four tandem clusters: LIM domains were likely at both ends with the middle clusters being an unfolded linker region. From the SAXS analysis, the Rc of F-actin was about 26.7 Å, and it was independent of CRP2 addition. On the other hand, in the low angle region of the CRP2-bound F-actin scattering, the intensities showed upward curvature with the addition of CRP2, which indicates increasing branching of F-actin following CRP2 binding. From biochemical analysis, the actin filaments were augmented and clustered by the addition of CRP2. This F-actin clustering activity of CRP2 was cooperative with α-actinin. Thus, binding of CRP2 to F-actin accelerates actin polymerization and F-actin cluster formation.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan
| | - Yasunobu Sugimoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Satoko Shinohara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| | - Shunpei Takaoka
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| |
Collapse
|
12
|
Lee S, Lee SH, Yang BK, Park CK. The expression of VEGF, myoglobin and CRP2 proteins regulating endometrial remodeling in the porcine endometrial tissues during follicular and luteal phase. Anim Sci J 2017; 88:1291-1297. [DOI: 10.1111/asj.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/28/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Seunghyung Lee
- College of Animal Life Sciences; Kangwon National University; Chuncheon Republic of Korea
| | - Sang-Hee Lee
- College of Animal Life Sciences; Kangwon National University; Chuncheon Republic of Korea
| | - Boo-Keun Yang
- College of Animal Life Sciences; Kangwon National University; Chuncheon Republic of Korea
| | - Choon-Keun Park
- College of Animal Life Sciences; Kangwon National University; Chuncheon Republic of Korea
| |
Collapse
|
13
|
Molecular cloning, characterization and tissue specificity of the expression of the ovine CSRP2 and CSRP3 genes from Small-tail Han sheep (Ovis aries). Gene 2016; 580:47-57. [DOI: 10.1016/j.gene.2016.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
|
14
|
Modulation of cysteine-rich protein 2 expression in vascular injury and atherosclerosis. Mol Biol Rep 2015; 41:7033-41. [PMID: 25034893 DOI: 10.1007/s11033-014-3591-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Vascular smooth muscle cells (VSMCs) of the arterial wall normally display a differentiated and contractile phenotype. In response to arterial injury, VSMCs switch to a synthetic phenotype, contributing to vascular remodeling. Cysteine-rich protein 2 (CRP2) is a cytoskeletal protein expressed in VSMCs and blunts VSMC migration in part by sequestering the scaffolding protein p130Cas at focal adhesions. CRP2 deficiency in mice increases neointima formation following arterial injury. The goal of this study was to use Csrp2 promoter-lacZ transgenic mice to analyze CRP2 expression during VSMC phenotypic modulation. In a neointima formation model after carotid artery cessation of blood flow, lacZ reporter activity and smooth muscle (SM) α-actin expression in the media were rapidly downregulated 4 days after carotid ligation. Fourteen days after ligation, there was a high level expression of both Csrp2 promoter activity and SM α-actin protein expression in neointimal cells. In atherosclerosis prone mice fed an atherogenic diet, Csrp2 promoter activity was detected within complex atherosclerotic lesions. Interestingly, Csrp2 promoter activity was also present in the fibrous caps of complicated atherosclerotic lesions, indicating that CRP2 might contribute to plaque stability. These findings support the concept that CRP2 contributes to the phenotypic modulation of VSMCs during vascular disease. Modulating transcription to increase CRP2 expression during vascular injury might attenuate vascular remodeling. In addition, increased CRP2 expression at the fibrous caps of advanced lesions might also serve to protect atherosclerotic plaques from rupture.
Collapse
|
15
|
Abstract
Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.
Collapse
|
16
|
Wu ML, Chen CH, Lin YT, Jheng YJ, Ho YC, Yang LT, Chen L, Layne MD, Yet SF. Divergent signaling pathways cooperatively regulate TGFβ induction of cysteine-rich protein 2 in vascular smooth muscle cells. Cell Commun Signal 2014; 12:22. [PMID: 24674138 PMCID: PMC3973006 DOI: 10.1186/1478-811x-12-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 01/31/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular diseases. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed LIM-only protein, which functionally limits VSMC migration and protects against pathological vascular remodeling. The multifunctional cytokine TGFβ has been implicated to play a role in the pathogenesis of atherosclerosis through numerous downstream signaling pathways. We showed previously that TGFβ upregulates CRP2 expression; however, the detailed signaling mechanisms remain unclear. Results TGFβ treatment of VSMCs activated both Smad2/3 and ATF2 phosphorylation. Individually knocking down Smad2/3 or ATF2 pathways with siRNA impaired the TGFβ induction of CRP2, indicating that both contribute to CRP2 expression. Inhibiting TβRI kinase activity by SB431542 or TβRI knockdown abolished Smad2/3 phosphorylation but did not alter ATF2 phosphorylation, indicating while Smad2/3 phosphorylation was TβRI-dependent ATF2 phosphorylation was independent of TβRI. Inhibiting Src kinase activity by SU6656 suppressed TGFβ-induced RhoA and ATF2 activation but not Smad2 phosphorylation. Blocking ROCK activity, the major downstream target of RhoA, abolished ATF2 phosphorylation and CRP2 induction but not Smad2 phosphorylation. Furthermore, JNK inhibition with SP600125 reduced TGFβ-induced ATF2 (but not Smad2) phosphorylation and CRP2 protein expression while ROCK inhibition blocked JNK activation. These results indicate that downstream of TβRII, Src family kinase-RhoA-ROCK-JNK signaling pathway mediates TβRI-independent ATF2 activation. Promoter analysis revealed that the TGFβ induction of CRP2 was mediated through the CRE and SBE promoter elements that were located in close proximity. Conclusions Our results demonstrate that two signaling pathways downstream of TGFβ converge on the CRE and SBE sites of the Csrp2 promoter to cooperatively control CRP2 induction in VSMCs, which represents a previously unrecognized mechanism of VSMC gene induction by TGFβ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
17
|
Smooth muscle phenotype switching in blast traumatic brain injury-induced cerebral vasospasm. Transl Stroke Res 2013; 5:385-93. [PMID: 24323722 DOI: 10.1007/s12975-013-0300-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
Due to increased survival rates among soldiers exposed to explosive blasts, blast-induced traumatic brain injury (bTBI) has become much more prevalent in recent years. Cerebral vasospasm (CVS) is a common manifestation of brain injury whose incidence is significantly increased in bTBI. CVS is characterized by initial vascular smooth muscle cell (VSMC) hypercontractility, followed by prolonged vessel remodeling and lumen occlusion, and is traditionally associated with subarachnoid hemorrhage (SAH), but recent results suggest that mechanical injury during bTBI can cause mechanotransduced VSMC hypercontractility and phenotype switching necessary for CVS development, even in the absence of SAH. Here, we review the mechanisms by which mechanical stimulation and SAH can synergistically drive CVS progression, complicating treatment options in bTBI patients.
Collapse
|
18
|
Chen CH, Ho YC, Ho HH, Chang IC, Kirsch KH, Chuang YJ, Layne MD, Yet SF. Cysteine-rich protein 2 alters p130Cas localization and inhibits vascular smooth muscle cell migration. Cardiovasc Res 2013; 100:461-71. [PMID: 23975851 DOI: 10.1093/cvr/cvt207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS Cysteine-rich protein (CRP) 2, a member of the LIM-only CRP family that contains two LIM domains, is expressed in vascular smooth muscle cells (VSMCs) of blood vessels and functions to repress VSMC migration and vascular remodelling. The goal of this study was to define the molecular mechanisms by which CRP2 regulates VSMC migration. METHODS AND RESULTS Transfection of VSMCs with CRP2-EGFP constructs revealed that CRP2 associated with the actin cytoskeleton. In response to chemoattractant stimulation, Csrp2 (mouse CRP2 gene symbol)-deficient (Csrp2(-/-)) VSMCs exhibited increased lamellipodia formation. Re-introduction of CRP2 abrogated the enhanced lamellipodia formation and migration of Csrp2(-/-) VSMCs following chemoattractant stimulation. Mammalian 2-hybrid and co-immunoprecipitation assays demonstrated that CRP2 interacts with p130Cas, a scaffold protein important for lamellipodia formation and cell motility. Immunofluorescence staining showed that CRP2 colocalized with phospho-p130Cas at focal adhesions (FAs)/terminal ends of stress fibres in non-migrating cells. Interestingly, in migrating cells phospho-p130Cas localized to the leading edge of lamellipodia and FAs, whereas CRP2 was restricted to FAs and stress fibres. Furthermore, we demonstrated that p130Cas expression and phosphorylation promote neointima formation following arterial injury. CONCLUSION These studies demonstrate that CRP2 sequesters p130Cas at FAs, thereby reducing lamellipodia formation and blunting VSMC migration.
Collapse
Affiliation(s)
- Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
He H, Liu XL, Zhang HL, Yang J, Niu FB, Li ZX, Liu Y, Chen L. SNV and haplotype analysis reveals new CSRP1 variants associated with growth and carcass traits. Gene 2013; 522:206-13. [PMID: 23537997 DOI: 10.1016/j.gene.2013.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/08/2013] [Indexed: 11/27/2022]
Abstract
The cysteine and glycine-rich protein 1 and 2 genes (CSRP1 and CSRP2) are an effective growth factor in promoting skeletal muscle growth in vitro and vivo. However, in cattle, the information on the CSRP1 and CSRP2 genes is very limited. The aim of this study was to examine the association of the CSRP1 and CSRP2 variants with growth and carcass traits in cattle breeds. Three single nucleotide variants (SNVs) were identified within the bovine CSRP1 gene, whereas CSRP2 gene has not detected any SNVs, using DNA pooled sequencing, PCR-RFLP, and forced PCR-RFLP methods. These SNVs include g. 801T>C (Intron 2), g. 46T>C (Exon 3) and g. 99C>G (Intron 3). Besides, we also investigated haplotype frequencies and linkage disequilibrium (LD) coefficients for three SNVs in all study populations. LD and haplotype structure of CSRP1 were different between breeds. The result of haplotype analysis demonstrated eight haplotype present in QC (Qinchuan) and one haplotype in CH (Chinese Holstein). Only haplotype 1 (TTC), shared by all two populations, comprised 10.74% and 100.00%, of all haplotypes observed in QC and CH, respectively. Haplotype 5 (CTC) had the highest haplotype frequencies in QC (30.98%) and haplotype 1 had the highest haplotype frequencies in CH (100.00%). The statistical analyses indicated that one single SNV and 19 combined haplotypes were significantly or highly significantly associated with growth and carcass traits in the QC cattle population (P<0.05 or P<0.01). Quantitative real-time PCR (qRT-PCR) analyses showed that the bovine CSRP1 and CSRP2 genes were widely expressed in many tissues. The results of this study suggest that the CSRP1 gene possibly is a strong candidate gene that affects growth and carcass traits in the Chinese beef cattle breeding.
Collapse
Affiliation(s)
- Hua He
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hinterseher I, Erdman R, Elmore JR, Stahl E, Pahl MC, Derr K, Golden A, Lillvis JH, Cindric MC, Jackson K, Bowen WD, Schworer CM, Chernousov MA, Franklin DP, Gray JL, Garvin RP, Gatalica Z, Carey DJ, Tromp G, Kuivaniemi H. Novel pathways in the pathobiology of human abdominal aortic aneurysms. Pathobiology 2012; 80:1-10. [PMID: 22797469 PMCID: PMC3782105 DOI: 10.1159/000339303] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/23/2012] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Abdominal aortic aneurysm (AAA), a dilatation of the infrarenal aorta, typically affects males >65 years. The pathobiological mechanisms of human AAA are poorly understood. The goal of this study was to identify novel pathways involved in the development of AAAs. METHODS A custom-designed 'AAA-chip' was used to assay 43 of the differentially expressed genes identified in a previously published microarray study between AAA (n = 15) and control (n = 15) infrarenal abdominal aorta. Protein analyses were performed on selected genes. RESULTS Altogether 38 of the 43 genes on the 'AAA-chip' showed significantly different expression. Novel validated genes in AAA pathobiology included ADCY7, ARL4C, BLNK, FOSB, GATM, LYZ, MFGE8, PRUNE2, PTPRC, SMTN, TMODI and TPM2. These genes represent a wide range of biological functions, such as calcium signaling, development and differentiation, as well as cell adhesion not previously implicated in AAA pathobiology. Protein analyses for GATM, CD4, CXCR4, BLNK, PLEK, LYZ, FOSB, DUSP6, ITGA5 and PTPRC confirmed the mRNA findings. CONCLUSION The results provide new directions for future research into AAA pathogenesis to study the role of novel genes confirmed here. New treatments and diagnostic tools for AAA could potentially be identified by studying these novel pathways.
Collapse
Affiliation(s)
- Irene Hinterseher
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
- Department of Visceral, Thoracic and Vascular Surgery, Technical University of Dresden, Dresden, Germany
| | - Robert Erdman
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - James R Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Elizabeth Stahl
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Matthew C Pahl
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Kimberly Derr
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Alicia Golden
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - John H Lillvis
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Matthew C Cindric
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Kathryn Jackson
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - William D Bowen
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Charles M Schworer
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Michael A Chernousov
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - David P Franklin
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, Pennsylvania, USA
| | - John L Gray
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Robert P Garvin
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, Pennsylvania, USA
| | | | - David J Carey
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Helena Kuivaniemi
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| |
Collapse
|
21
|
Cardiac remodeling is not modulated by overexpression of muscle LIM protein (MLP). Basic Res Cardiol 2012; 107:262. [DOI: 10.1007/s00395-012-0262-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/17/2022]
|
22
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
23
|
Kihara T, Shinohara S, Fujikawa R, Sugimoto Y, Murata M, Miyake J. Regulation of cysteine-rich protein 2 localization by the development of actin fibers during smooth muscle cell differentiation. Biochem Biophys Res Commun 2011; 411:96-101. [PMID: 21718689 DOI: 10.1016/j.bbrc.2011.06.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/26/2022]
Abstract
Cysteine-rich protein 2 (CRP2) is a cofactor for smooth muscle cell (SMC) differentiation. Here, we examined the mechanism of CRP2 distribution dynamics during SMC differentiation. CRP2 protein directly associated with F-actin through its N-terminal LIM domain and Gly-rich region, as determined by ELISA. In undifferentiated cells that contain few actin stress fibers, CRP2 was broadly distributed throughout the whole cell, including the nucleus. After induction of SMC differentiation, CRP2 localized to actin stress fibers as they formed. The stress fiber-localized CRP2 entered the nucleus because of induced actin depolymerization. These CRP2 dynamics were reproduced by in silico simulation. CRP2 localization dynamics, which affect CRP2 function, are regulated by the formation of actin stress fibers in conjunction with SMC differentiation.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Chen CH, Wu ML, Lee YC, Layne MD, Yet SF. Intronic CArG box regulates cysteine-rich protein 2 expression in the adult but not in developing vasculature. Arterioscler Thromb Vasc Biol 2010; 30:835-42. [PMID: 20075421 DOI: 10.1161/atvbaha.109.197251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE An absence of cysteine-rich protein 2 (CRP2) enhances vascular smooth muscle cell (VSMC) migration and increases neointima formation after arterial injury; therefore, CRP2 plays an important role in the response to vascular injury. The goal of the present study was to elucidate the molecular mechanisms that preserve CRP2 expression in the adult vasculature and thus might serve to inhibit the response to injury. METHODS AND RESULTS We generated a series of transgenic mice harboring potential Csrp2 regulatory regions with a lacZ reporter. We determined that the 12-kb first intron was necessary for transgene activity in adult but not in developing vasculature. Within the intron we identified a 6.3-kb region that contains 2 CArG boxes. Serum response factor preferentially bound to CArG2 box in gel mobility shift and chromatin immunoprecipitation assays; additionally, serum response factor coactivator myocardin factors activated CRP2 expression via the CArG2 box. Mutational analysis revealed that CArG2 box was important in directing lacZ expression in VSMC of adult vessels. CONCLUSIONS Although CRP2 expression during development is independent of CArG box regulatory sites, CRP2 expression in adult VSMC requires CArG2 element within the first intron. Our results suggest that distinct mechanisms regulate CRP2 expression in VSMC that are controlled by separate embryonic and adult regulatory modules.
Collapse
Affiliation(s)
- Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Porcine CSRP3: polymorphism and association analyses with meat quality traits and comparative analyses with CSRP1 and CSRP2. Mol Biol Rep 2009; 37:451-9. [DOI: 10.1007/s11033-009-9632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 07/10/2009] [Indexed: 11/26/2022]
|
26
|
Gao X, Sun JY, Cao ZY, Lin Y, Zha DJ, Wang F, Xue T, Qiao L, Lu LJ, Qiu JH. Polyclonal antibodies to LIM proteins CRP2 and CRIP2 reveal their subcellular localizations in olfactory precursor cells. BIOCHEMISTRY (MOSCOW) 2009; 74:336-41. [PMID: 19364329 DOI: 10.1134/s0006297909030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we describe the presence of CRP2 (cysteine- and glycine-rich protein 2) and CRIP2 (cysteine-rich intestinal protein 2), which are members of group 2 LIM proteins, in rat olfactory precursor cells by reverse transcription polymerase chain reaction. We have developed polyclonal antibodies against CRP2 and CRIP2 individually. Specificity of the antibodies was demonstrated by Western blot analysis, using CRP2 and CRIP2 transfected cells. No cross-reactivity was observed between the antibodies. Furthermore, we used the antibodies to determine the expression and localization of CRP2 and CRIP2 in olfactory precursor cells by Western blot analysis and immunofluorescence staining. Our results demonstrated that in undifferentiated olfactory precursor cells CRP2 was distributed both in the nucleus and the cytoplasm, whereas CRIP2 was predominantly localized in the cytoplasm. While the olfactory precursor cells differentiated into end cells, only the expression of CRIP2 would be detected. The function of these LIM proteins in olfactory precursor cells warrants further study.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cagnin S, Biscuola M, Patuzzo C, Trabetti E, Pasquali A, Laveder P, Faggian G, Iafrancesco M, Mazzucco A, Pignatti PF, Lanfranchi G. Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genomics 2009; 10:13. [PMID: 19134193 PMCID: PMC2654039 DOI: 10.1186/1471-2164-10-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 01/09/2009] [Indexed: 12/24/2022] Open
Abstract
Background Atherosclerosis affects aorta, coronary, carotid, and iliac arteries most frequently than any other body vessel. There may be common molecular pathways sustaining this process. Plaque presence and diffusion is revealed by circulating factors that can mediate systemic reaction leading to plaque rupture and thrombosis. Results We used DNA microarrays and meta-analysis to study how the presence of calcified plaque modifies human coronary and carotid gene expression. We identified a series of potential human atherogenic genes that are integrated in functional networks involved in atherosclerosis. Caveolae and JAK/STAT pathways, and S100A9/S100A8 interacting proteins are certainly involved in the development of vascular disease. We found that the system of caveolae is directly connected with genes that respond to hormone receptors, and indirectly with the apoptosis pathway. Cytokines, chemokines and growth factors released in the blood flux were investigated in parallel. High levels of RANTES, IL-1ra, MIP-1alpha, MIP-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-17, PDGF-BB, VEGF and IFN-gamma were found in plasma of atherosclerotic patients and might also be integrated in the molecular networks underlying atherosclerotic modifications of these vessels. Conclusion The pattern of cytokine and S100A9/S100A8 up-regulation characterizes atherosclerosis as a proinflammatory disorder. Activation of the JAK/STAT pathway is confirmed by the up-regulation of IL-6, STAT1, ISGF3G and IL10RA genes in coronary and carotid plaques. The functional network constructed in our research is an evidence of the central role of STAT protein and the caveolae system to contribute to preserve the plaque. Moreover, Cav-1 is involved in SMC differentiation and dyslipidemia confirming the importance of lipid homeostasis in the atherosclerotic phenotype.
Collapse
Affiliation(s)
- Stefano Cagnin
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sagave JF, Moser M, Ehler E, Weiskirchen S, Stoll D, Günther K, Büttner R, Weiskirchen R. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure. BMC DEVELOPMENTAL BIOLOGY 2008; 8:80. [PMID: 18713466 PMCID: PMC2529283 DOI: 10.1186/1471-213x-8-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/19/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND The cysteine and glycine rich protein 2 (CRP2) encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. RESULTS A approximately 17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central). A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as beta-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. CONCLUSION We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.
Collapse
Affiliation(s)
- Julia F Sagave
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| | - Markus Moser
- Max Planck-Institute for Biochemistry, Martinsried, Germany
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and The Cardiovascular Division, King's College London, UK
| | - Sabine Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| | - Doris Stoll
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| | | | | | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany
| |
Collapse
|
29
|
Lin DW, Chang IC, Tseng A, Wu ML, Chen CH, Patenaude CA, Layne MD, Yet SF. Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2. J Biol Chem 2008; 283:15003-14. [PMID: 18387947 DOI: 10.1074/jbc.m801621200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CRP2 (cysteine-rich protein) is a vascular smooth muscle cell (VSMC)-expressed LIM-only protein. CRP2 associates with the actin cytoskeleton and interacts with transcription factors in the nucleus to mediate smooth muscle cell gene expression. Using Csrp2 (gene symbol of the mouse CRP2 gene)-deficient mice, we previously demonstrated that an absence of CRP2 enhances VSMC migration and increases neointima formation following arterial injury. Despite its importance in vascular injury, the molecular mechanisms controlling CRP2 expression in VSMC are largely unknown. Transforming growth factor beta (TGFbeta), a key factor present in the vessel wall in the early phases of arterial response to injury, plays an important role in modulating lesion formation. Because both CRP2 and TGFbeta are mediators of VSMC responses, we examined the possibility that TGFbeta might regulate CRP2 expression. TGFbeta significantly induced CRP2 mRNA and protein expression in VSMCs. Promoter analysis identified a conserved cAMP-responsive element (CRE)-like site (TAACGTCA) in the Csrp2 promoter that was critical for basal promoter activity and response to TGFbeta. Gel mobility shift assays revealed that mainly ATF2 bound to this CRE-like element, and mutation of the CRE sequences abolished binding. TGFbeta enhanced the activation of ATF2, leading to increased phospho-ATF2 levels within the DNA-protein complexes. Furthermore, ATF2-transactivated Csrp2 promoter activity and TGFbeta enhanced this activation. In addition, a phosphorylation-negative ATF2 mutant construct decreased basal and TGFbeta-mediated Csrp2 promoter activity. Our results show for the first time in VSMC that TGFbeta activates ATF2 phosphorylation and Csrp2 gene expression via a CRE promoter element.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang T, Zhuang S, Casteel DE, Looney DJ, Boss GR, Pilz RB. A cysteine-rich LIM-only protein mediates regulation of smooth muscle-specific gene expression by cGMP-dependent protein kinase. J Biol Chem 2007; 282:33367-33380. [PMID: 17878170 DOI: 10.1074/jbc.m707186200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo phenotypic modulation, changing from a differentiated, contractile to a de-differentiated, synthetic phenotype; the change is associated with decreased expression of smooth muscle (SM)-specific genes and loss of cGMP-dependent protein kinase (PKG), but transfection of PKG into de-differentiated VSMCs restores SM-specific gene expression. We show that small interference RNA-mediated down-regulation or pharmacologic inhibition of PKG reduced SM-specific gene expression in differentiated VSMCs and provide a mechanism for cGMP/PKG regulation of SM-specific genes involving the cysteine-rich LIM-only protein CRP4. PKG associated with CRP4 and phosphorylated the protein in intact cells. CRP4 had no intrinsic transcriptional activity, but exhibited adaptor function, because it acted synergistically with serum response factor (SRF) and GATA6 to activate the SM-alpha-actin promoter. cGMP stimulation of the promoter required PKG and CRP4 co-expression with SRF and GATA6. A phosphorylation-deficient mutant CRP4 and a CRP4 deletion mutant deficient in PKG binding did not support cGMP/PKG stimulation of the SM-alpha-actin promoter. In the presence of wild-type but not mutant CRP4, cGMP/PKG enhanced SRF binding to a probe encoding the distal SM-alpha-actin promoter CArG (CC(AT)(6)GG) element. CRP4 and SRF associated with CArG elements of endogenous SM-specific genes in intact chromatin. Small interference RNA-mediated down-regulation of CRP4 prevented the positive effects of cGMP/PKG on SM-specific gene expression. In the presence of CRP4, cGMP/PKG increased SRF- and GATA6-dependent expression of endogenous SM-specific genes in pluripotent 10T1/2 cells. Thus, CRP4 mediates cGMP/PKG stimulation of SM-specific gene expression, and PKG plays an important role in regulating the phenotype of VSMCs.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Medicine, University of California, San Diego, California, 92093
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, California, 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, California, 92093
| | - David J Looney
- Department of Medicine, University of California, San Diego, California, 92093; Veterans Administration Medical Center, La Jolla, California 92161
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, California, 92093; Cancer Center, University of California, San Diego, California 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, California, 92093; Cancer Center, University of California, San Diego, California 92093.
| |
Collapse
|
31
|
Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT, Verfaillie CM. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 2006; 116:3139-49. [PMID: 17099777 PMCID: PMC1635164 DOI: 10.1172/jci28184] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 09/19/2006] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.
Collapse
Affiliation(s)
- Jeffrey J. Ross
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhigang Hong
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ben Willenbring
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lepeng Zeng
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett Isenberg
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eu Han Lee
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Morayma Reyes
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan A. Keirstead
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - E. Kenneth Weir
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert T. Tranquillo
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Catherine M. Verfaillie
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
32
|
Herrmann J, Borkham-Kamphorst E, Haas U, Van de Leur E, Fraga MF, Esteller M, Gressner AM, Weiskirchen R. The expression of CSRP2 encoding the LIM domain protein CRP2 is mediated by TGF-β in smooth muscle and hepatic stellate cells. Biochem Biophys Res Commun 2006; 345:1526-35. [PMID: 16735029 DOI: 10.1016/j.bbrc.2006.05.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 05/10/2006] [Indexed: 01/20/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a cytokine implicated in differentiation of smooth muscle cells and other mesenchymal-derived cells. During hepatic fibrogenesis, TGF-beta has a pivotal role in the initiation, promotion, and progression of transdifferentiation of hepatic stellate cells into myofibroblasts that play a central role in the synthesis of extracellular matrix components. Both, smooth muscle and activated hepatic stellate cells, express smooth muscle alpha-actin, the calponin-related protein SM22alpha, and CSRP2 encoding the cysteine- and glycine-rich LIM domain protein 2 (CRP2). The aim of the present study was to determine whether the expression of CSRP2 is influenced by TGF-beta. Stimulation as well as sequestering experiments demonstrated that TGF-beta markedly influences CSRP2 gene activity. Inhibition experiments using the ALK5 inhibitor SB-431542 further reveal that the transcriptional stimulation of the CSRP2 gene is mediated via the ALK5/Smad2/Smad3 signalling pathway. By use of bisulfite genomic analysis of CpG islands within the 5' regulatory regions we could exclude methylation-associated silencing, previously found to be responsible for the transcriptional inactivity of CSRP2 in a variety of human cancer cells and in a multistage carcinogenesis model, as a cause for CSRP2 inactivity in hepatocytes or fully transdifferentiated myofibroblasts.
Collapse
MESH Headings
- Activin Receptors, Type I/antagonists & inhibitors
- Activin Receptors, Type I/physiology
- Animals
- Base Sequence
- Benzamides/pharmacology
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cells, Cultured
- DNA Methylation
- Dioxoles/pharmacology
- Gene Expression/drug effects
- Immunohistochemistry
- LIM Domain Proteins
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Male
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/physiology
- Signal Transduction/drug effects
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jens Herrmann
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xing W, Baylink D, Kesavan C, Hu Y, Kapoor S, Chadwick RB, Mohan S. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice. J Cell Biochem 2006; 96:1049-60. [PMID: 16149068 DOI: 10.1002/jcb.20606] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify the genes and signal pathways responsible for mechanical loading-induced bone formation, we evaluated differential gene expression on a global basis in the tibias of C57BL/6J (B6) mice after four days of four-point bending. We applied mechanical loads to the right tibias of the B6 mice at 9 N, 2 Hz for 36 cycles per day, with the left tibias used as unloaded controls. RNA from the tibias was harvested 24 h after last stimulation and subjected to microarray. Of the 20,280 transcripts hybridized to the array, 346 were differentially expressed in the loaded bones compared to the controls. The validity of the microarray data was established with the increased expression of bone-related genes such as pleiotrophin, osteoglycin, and legumain upon four-point bending and confirmation of increased expression of selected genes by real-time PCR. The list of differentially expressed genes includes genes involved in cell growth, differentiation, adhesion, proteolysis, as well as signaling molecules of receptors for growth factors, integrin, Ephrin B2, endothelin, and adhesion G protein coupled receptor. Pathway analyses suggested that 28 out of the 346 genes exhibited a direct biological association. Among the biological network, fibronectin and pleitrophin function as important signaling molecules in regulating periosteal bone formation and resorption in response to four-point bending. Furthermore, some expressed sequence tags (ESTs) with no prior known function have been identified as potential mediators of mechanotransduction signaling pathways. Further studies on these previously unknown genes will improve our understanding of the molecular pathways and mechanisms involved in bone's response to mechanical stress.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, JL Pettis Memorial Veterans Administration Medical Center, Loma Linda, California 92357, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Aust G, Wandel E, Boltze C, Sittig D, Schütz A, Horn LC, Wobus M. Diversity of CD97 in smooth muscle cells. Cell Tissue Res 2006; 324:139-47. [PMID: 16408199 DOI: 10.1007/s00441-005-0103-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
CD97, an epidermal growth factor (EGF)-TM7 receptor, is not restricted to hematopoetic and carcinoma cells but is also found on smooth muscle cells (SMC). We have examined its location and biochemical structure in various normal and tumorigenic SMC-containing tissues. SMC of the urinary bladder, lung bronchi and bronchioles, myometrium, and gastrointestinal tract were immunohistologically stained by using monoclonal antibodies (mabs) to the CD97 stalk region (CD97(stalk)). Mabs directed against an N-glycosylation-dependent epitope within the EGF-domains (CD97(EGF)) did not bind to normal SMC. Vascular SMC, which was also CD97(EGF)-negative, showed further CD97 heterogeneity. Only a few, if any, SMC from the aorta or elastic arteries of the systemic circulation were positive for CD97 mRNA and therefore also for CD97(stalk). CD97(stalk)-positive SMC were slightly more numerous in muscular and peripheral arteries. In contrast, most venous SMC expressed CD97(stalk). A comparison with other SMC molecules revealed a similar but not identical staining pattern for CD97(stalk) and desmin. Further CD97 heterogeneity was observed during SMC transformation. All leiomyomas (n=5) and nine out of 21 leiomyosarcomas were positive for both CD97(stalk) and CD97(EGF). As expected, CD97(EGF)-positive SMC tumors expressed partly N-glycosylated CD97. Seven out of 21 leiomyosarcomas were completely devoid of CD97. Thus, CD97 showed variable expression in vascular and biochemical modification in tumorigenic SMC, suggesting that the function of the molecule is specific for the SMC subtype.
Collapse
Affiliation(s)
- Gabriela Aust
- Department of Surgery, Faculty of Medicine Research Laboratories, Center of Surgery, University of Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wei J, Gorman TE, Liu X, Ith B, Tseng A, Chen Z, Simon DI, Layne MD, Yet SF. Increased neointima formation in cysteine-rich protein 2-deficient mice in response to vascular injury. Circ Res 2005; 97:1323-31. [PMID: 16269651 DOI: 10.1161/01.res.0000194331.76925.5c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to arterial injury, medial vascular smooth muscle cells (VSMCs) proliferate and migrate into the intima, contributing to the development of occlusive vascular disease. The LIM protein cysteine-rich protein (CRP) 2 associates with the actin cytoskeleton and may maintain the cytoarchitecture. CRP2 also interacts with transcription factors in the nucleus to mediate SMC gene expression. To test the hypothesis that CRP2 may be an important regulator of vascular development or function we generated Csrp2 (gene symbol of the mouse CRP2 gene)-deficient (Csrp2(-/-)) mice by targeted mutation. Csrp2(-/-) mice did not have any gross vascular defects or altered expression levels of SM alpha-actin, SM22alpha, or calponin. Following femoral artery injury, CRP2 expression persisted in the vessel wall at 4 days and then decreased by 14 days. Intimal thickening was enhanced 3.4-fold in Csrp2(-/-) compared with wild-type (WT) mice 14 days following injury. Cellular proliferation was similar between WT and Csrp2(-/-) VSMC both in vivo and in vitro. Interestingly, Csrp2(-/-) VSMC migrated more rapidly in response to PDGF-BB and had increased Rac1 activation. Our data demonstrate that CRP2 is not required for vascular development. However, an absence of CRP2 enhanced VSMC migration and increased neointima formation following arterial injury.
Collapse
Affiliation(s)
- Jiao Wei
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kawai-Kowase K, Kumar MS, Hoofnagle MH, Yoshida T, Owens GK. PIAS1 activates the expression of smooth muscle cell differentiation marker genes by interacting with serum response factor and class I basic helix-loop-helix proteins. Mol Cell Biol 2005; 25:8009-23. [PMID: 16135793 PMCID: PMC1234309 DOI: 10.1128/mcb.25.18.8009-8023.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although a critical component of vascular disease is modulation of the differentiated state of vascular smooth muscle cells (SMC), the mechanisms governing SMC differentiation are relatively poorly understood. We have previously shown that E-boxes and the ubiquitously expressed class I basic helix-loop-helix (bHLH) proteins, including E2-2 and E12, are important in regulation of the SMC differentiation marker gene, the SM alpha-actin gene. The aim of the present study was to identify proteins that bind to class I bHLH proteins in SMC and modulate transcriptional regulation of SMC differentiation marker genes. Herein we report that members of the protein inhibitor of activated STAT (PIAS) family interact with class I bHLH factors as well as serum response factor (SRF). PIAS1 interacted with E2-2 and E12 based on yeast two-hybrid screens, mammalian two-hybrid assays, and/or coimmunoprecipitation assays. Overexpression of PIAS1 significantly activated the SM alpha-actin promoter and mRNA expression, as well as SM myosin heavy chain and SM22alpha, whereas a small interfering RNA for PIAS1 decreased activity of these promoters, as well as endogenous mRNA expression, and SRF binding to SM alpha-actin promoter within intact chromatin in cultured SMC. Of significance, PIAS1 bound to SRF and activated SM alpha-actin promoter expression in wild-type but not SRF(-/-) embryonic stem cells. These results provide novel evidence that PIAS1 modulates transcriptional activation of SMC marker genes through cooperative interactions with both SRF and class I bHLH proteins.
Collapse
Affiliation(s)
- Keiko Kawai-Kowase
- Department of Molecular Physiology and Biological Physics, University of Virginia, 415 Lane Road, MR5, Room 1220, P.O. Box 801394, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
37
|
Najwer I, Lilly B. Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. Am J Physiol Cell Physiol 2005; 289:C785-93. [PMID: 15917302 DOI: 10.1152/ajpcell.00098.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle-specific transcription is controlled by a multitude of transcriptional regulators that cooperate to drive expression in a temporospatial manner. Previous analysis of the cysteine-rich protein 1 ( CRP1/Csrp) gene revealed an intronic enhancer that is sufficient for expression in arterial smooth muscle cells and requires a serum response factor-binding CArG element for activity. The presence of a CArG box in smooth muscle regulatory regions is practically invariant; however, it stands to reason that additional elements contribute to the modulation of transcription in concert with the CArG. Because of the potential importance of other regulatory elements for expression of the CRP1 gene, we sought to identify additional motifs within the enhancer that are necessary for expression. In this effort, we identified a conserved cAMP response element (CRE) that, when mutated, diminishes the expression of the enhancer in cultured vascular smooth muscle cells. Using transfection and electrophoretic mobility shift assays, we have shown that the CRE binds the cAMP response element-binding protein (CREB) and is activated by Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), but not by CaMKII. Furthermore, our data demonstrate that CaMKIV stimulates CRP1 expression not only through the CRE but also through the CArG box. These findings represent evidence of a functional CRE within a smooth muscle-specific gene and provide support for a mechanism in which CREB functions as a smooth muscle determinant through CaMKIV activation.
Collapse
Affiliation(s)
- Ida Najwer
- Vascular Biology Center and Department of Obstetrics and Gynecology, Medical College of Georgia, 1459 Laney Walker Blvd., CB3207, Augusta, Georgia 30912-2500, USA
| | | |
Collapse
|
38
|
Daston GP, Naciff JM. Gene expression changes related to growth and differentiation in the fetal and juvenile reproductive system of the female rat: evaluation of microarray results. Reprod Toxicol 2005; 19:381-94. [PMID: 15686872 DOI: 10.1016/j.reprotox.2004.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 08/30/2004] [Accepted: 09/01/2004] [Indexed: 12/22/2022]
Abstract
Microarrays make it possible to evaluate the responses of a major fraction of the genome in response to physiological perturbation or exogenous insult. This represents a huge advance in our ability to detect changes in gene expression that may be responsible for physiological or toxicological responses. Our laboratory is interested in the effects of estrogens on female reproductive system development and function. We have evaluated the changes in gene expression in response to estrogens in the female reproductive tract of rats during embryo/fetal development and in the juvenile rat (which is capable of mounting a uterotrophic response). The results of these experiments indicate that a number of genes (dozens to hundreds) are changed in a reproducible, dose-related manner in response to estrogens. These results have been published elsewhere; the purpose of this review is to evaluate, based on information from the literature, the potential role of selected genes on processes of cell proliferation and differentiation, and to suggest plausible relationships among these genes in eliciting responses at the tissue or organ level. We also discuss the utility of gene-expression experiments in elucidating the shape of the dose-response curve at low doses. In particular, we show that the dose-response for gene expression in the juvenile rat uterus is monotonic down to levels a few orders of magnitude below the NOEL for a uterotrophic response, suggesting that gene expression (and by inference higher order responses) do not follow patterns that are unpredictable based on response at higher dosages.
Collapse
Affiliation(s)
- George P Daston
- Miami Valley Laboratories, The Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253, USA.
| | | |
Collapse
|
39
|
Kim-Kaneyama JR, Suzuki W, Ichikawa K, Ohki T, Kohno Y, Sata M, Nose K, Shibanuma M. Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo. J Cell Sci 2005; 118:937-49. [PMID: 15713747 DOI: 10.1242/jcs.01683] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hic-5 is a focal adhesion protein belonging to the paxillin LIM family that shuttles in and out of the nucleus. In the present study, we examined the expression of Hic-5 among mouse tissues by immunohistochemistry and found its expression only in smooth-muscle cells in several tissues. This result is consistent with a previous report on adult human tissues and contradicts the relatively ubiquitous expression of paxillin, the protein most homologous to Hic-5. One factor characterizing smooth-muscle cells in vivo is a continuous exposure to mechanical stretching in the organs. To study the involvement of Hic-5 in cellular responses to mechanical stress, we exposed mouse embryo fibroblasts to a uni-axial cyclic stretching and found that Hic-5 was relocalized from focal adhesions to stress fibers through its C-terminal LIM domains during the stress. In sharp contrast to this, paxillin did not change its focal-adhesion-based localization. Of the factors tested, which included interacting partners of Hic-5, only CRP2 (an only-LIM protein expressed in vascular smooth-muscle cells) and GIT1 were, like Hic-5, localized to stress fibers during the cyclic stretching. Interestingly, Hic-5 showed a suppressive effect on the contractile capability of cells embedded in three-dimensional collagen gels, and the effect was further augmented when CRP2 co-localized with Hic-5 to fiber structures of those cells. These results suggested that Hic-5 was a mediator of tensional force, translocating directly from focal adhesions to actin stress fibers upon mechanical stress and regulating the contractile capability of cells in the stress fibers.
Collapse
Affiliation(s)
- Joo-ri Kim-Kaneyama
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chang YF, Wei J, Liu X, Chen YH, Layne MD, Yet SF. Identification of a CArG-independent region of the cysteine-rich protein 2 promoter that directs expression in the developing vasculature. Am J Physiol Heart Circ Physiol 2003; 285:H1675-83. [PMID: 12791591 DOI: 10.1152/ajpheart.00165.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cysteine-rich protein (CRP)2 is a member of the LIM-only CRP family that is expressed in vascular smooth muscle cells (VSMC). To gain insight into the transcription of CSRP2 (gene name for CRP2) in VSMC, we analyzed the 5'-flanking sequence of the CSRP2 gene. We showed previously that 4,855 bp of the 5'-flanking sequence of the CSRP2 gene directed lacZ reporter gene expression, primarily in the VSMC of transgenic mice. To further define the regulatory sequences important for CSRP2 expression in VSMC, a series of promoter constructs containing deletions of the 5'-flanking sequence upstream of a nuclear-localized lacZ reporter gene were generated and analyzed. Similar to that observed in the -4855CSRP2-lacZ mice, beta-galactosidase reporter activity was detected in the developing great vessels, aorta, intersegmental arteries, umbilical vessels, endocardial cushions, and neural tube in the -3513-, -2663-, -795-, and -664CSRP2-lacZ lines. However, an internal deletion of bp -573 to -550 abolished the vascular, but not the neural tube, staining. Interestingly, no CArG box [CC(A/T)6GG] was present in the -795-bp fragment. Cotransfection experiments showed that dominant-negative serum response factor (SRF) did not repress CSRP2 promoter activity, which was different from the repressive effect of dominant-negative SRF on the SM22 alpha promoter. Our data suggest the presence of a VSMC-specific element(s) within bp -573 to -550 of the CSRP2 5'-flanking sequence; however, in contrast to many other smooth muscle genes, transcriptional regulation of the CSRP2 gene is not dependent on SRF.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Base Sequence/genetics
- Blood Vessels/embryology
- Blood Vessels/growth & development
- Blood Vessels/metabolism
- Cell Cycle Proteins
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development
- Gene Expression
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Protein Structure, Tertiary/genetics
- Proteins
- Rats
- Rats, Sprague-Dawley
- Repressor Proteins/physiology
- Ribonucleoproteins
- Transcription Factors
- Transgenes
Collapse
Affiliation(s)
- Yung-Fu Chang
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Alterations in the differentiated state of vascular smooth muscle cells (SMCs) are known to play a key role in vascular diseases, yet the mechanisms controlling SMC differentiation are still poorly understand. In this review, we discuss our present knowledge of control of SMC differentiation at the transcriptional level, pointing out some common themes, important paradigms, and unresolved issues in SMC-specific gene regulation. We focus primarily on the serum response factor-CArG box-dependent pathway, because it has been shown to play a critical role in regulation of multiple SMC marker genes. However, we also highlight several other important regulatory elements, such as a transforming growth factor beta control element, E-boxes, and MCAT motifs. We present evidence in support of the notion that SMC-specific gene regulation is not controlled by a few SMC-specific transcription factors but rather by complex combinatorial interactions between multiple general and tissue-specific proteins. Finally, we discuss the implications of chromatin remodeling on SMC differentiation.
Collapse
Affiliation(s)
- Meena S Kumar
- Department of Molecular Physiology and Biological Physics, University of Virginia, 415 Lane Rd, MR5 Room 1220, PO Box 801394, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
42
|
Henderson JR, Pomiès P, Auffray C, Beckerle MC. ALP and MLP distribution during myofibrillogenesis in cultured cardiomyocytes. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:254-65. [PMID: 12589684 DOI: 10.1002/cm.10102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Z-line is a multifunctional macromolecular complex that anchors sarcomeric actin filaments, mediates interactions with intermediate filaments and costameres, and recruits signaling molecules. Antiparallel alpha-actinin homodimers, present at Z-lines, cross-link overlapping actin filaments and also bind other cytoskeletal and signaling elements. Two LIM domain containing proteins, alpha-actinin associated LIM protein (ALP) and muscle LIM protein (MLP), interact with alpha-actinin, distribute in vivo to Z-lines or costameres, respectively, and, when absent, are associated with heart disease. Here we describe the behavior of ALP and MLP during myofibrillogenesis in cultured embryonic chick cardiomyocytes. As myofibrils develop, ALP and MLP are observed in distinct distribution patterns in the cell. ALP is coincident with alpha-actinin from the first stage of myofibrillogenesis and co-distributes with alpha-actinin to Z-lines and intercalated discs in mature myofibrils. Interestingly, we also demonstrate using ALP-GFP transfection experiments and an in vitro binding assay that the ALP-alpha-actinin binding interaction is not required to target ALP to the Z-line. In contrast, MLP localization is not co-incident with that of alpha-actinin until late stages of myofibrillogenesis; however, it is present in premyofibrils and nascent myofibrils prior to the incorporation of other costameric components such as vinculin, vimentin, or desmin. Our observations support the view that ALP function is required specifically at actin anchorage sites. The subcellular distribution pattern of MLP during myofibrillogenesis suggests that it functions during differentiation prior to the establishment of costameres.
Collapse
Affiliation(s)
- James R Henderson
- Department of Biology/Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | | | |
Collapse
|
43
|
Günther K, Stoll D, Jakse G, Gressner AM, Weiskirchen R. Rapid detection of CSRP2 mRNA in mouse, rat, and human using LightCycler-based quantitative real-time polymerase chain reaction. Anal Biochem 2003; 314:144-8. [PMID: 12633614 DOI: 10.1016/s0003-2697(02)00627-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kalle Günther
- Urological Clinic, RWTH-University Hospital, Pauwelsstr.30, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
44
|
Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:533-46. [PMID: 12547711 PMCID: PMC1851161 DOI: 10.1016/s0002-9440(10)63847-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) plays a central role in promoting extracellular matrix protein deposition by promoting the transformation of fibroblasts to myofibroblasts. To gain new insights into the transcriptional programs involved, we profiled human fetal lung fibroblast global gene expression in response to TGF-beta1 up to 24 hours using oligonucleotide microarrays. In this report, we present data for 146 genes that were up-regulated at least twofold at two time points. These genes group into several major functional categories, including genes involved in cytoskeletal reorganization (n = 30), matrix formation (n = 25), metabolism and protein biosynthesis (n = 27), cell signaling (n = 21), proliferation and survival (n = 13), gene transcription (n = 9), and of uncertain function (n = 21). For 80 of these genes, this is the first report that they are TGF-beta1-responsive. The early induction of two members of the inhibitor of differentiation (ID) family of transcriptional regulators, ID1 and ID3, was followed by the up-regulation of a number of genes that are usually expressed by highly differentiated smooth muscle cells, including smooth muscle myosin heavy chain, basic calponin, and smoothelin. These findings were confirmed at the protein level for primary adult lung fibroblasts. ID1 further behaved like a typical immediate-early gene and, unlike ID3, was expressed and induced at the protein level. Immunohistochemical analysis showed that ID1 was highly expressed by (myo)fibroblasts within fibrotic foci in experimentally induced pulmonary fibrosis. ID1 acts as a dominant-negative antagonist of basic helix-loop-helix transcription factors that drive cell lineage commitment and differentiation. These findings have important implications for our understanding of fibroblast transcriptional programming in response to TGF-beta1 during development, oncogenesis, tissue repair, and fibrosis.
Collapse
Affiliation(s)
- Rachel C Chambers
- Centre for Cardiopulmonary Biochemistry and Respiratory Medicine, Royal Free and University College Medical School, University College London, Rayne Institute, London, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Miano JM. Mammalian smooth muscle differentiation: origins, markers and transcriptional control. Results Probl Cell Differ 2003; 38:39-59. [PMID: 12132398 DOI: 10.1007/978-3-540-45686-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joseph M Miano
- Center for Cardiovascular Research, Box 679, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
| |
Collapse
|
46
|
Chang DF, Belaguli NS, Iyer D, Roberts WB, Wu SP, Dong XR, Marx JG, Moore MS, Beckerle MC, Majesky MW, Schwartz RJ. Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors. Dev Cell 2003; 4:107-18. [PMID: 12530967 DOI: 10.1016/s1534-5807(02)00396-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cysteine-rich LIM-only proteins, CRP1 and CRP2, expressed during cardiovascular development act as bridging molecules that associate with serum response factor and GATA proteins. SRF-CRP-GATA complexes strongly activated smooth muscle gene targets. CRP2 was found in the nucleus during early stages of coronary smooth muscle differentiation from proepicardial cells. A dominant-negative CRP2 mutant blocked proepicardial cells from differentiating into smooth muscle cells. Together with SRF and GATA proteins, CRP1 and CRP2 converted pluripotent 10T1/2 fibroblasts into smooth muscle cells, while muscle LIM protein CRP3 inhibited the conversion. Thus, LIM-only proteins of the CRP family play important roles in organizing multiprotein complexes, both in the cytoplasm, where they participate in cytoskeletal remodeling, and in the nucleus, where they strongly facilitate smooth muscle differentiation.
Collapse
Affiliation(s)
- David F Chang
- The Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Identification of genes that are downregulated in the absence of the POU domain transcription factor pou3f1 (Oct-6, Tst-1, SCIP) in sciatic nerve. J Neurosci 2002. [PMID: 12451123 DOI: 10.1523/jneurosci.22-23-10217.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the importance of myelinating Schwann cells in health and disease, little is known about the genetic mechanisms underlying their development. The POU domain transcription factor pou3f1 (Tst-1, SCIP, Oct-6) is required for the normal differentiation of myelinating Schwann cells, but its precise role requires identification of the genes that it regulates. Here we report the isolation of six genes whose expression is reduced in the absence of pou3f1. Only one of these genes, the fatty acid transport protein P2, was known previously to be expressed in Schwann cells. The LIM domain proteins cysteine-rich protein-1 (CRP1) and CRP2 are expressed in sciatic nerve and induced by forskolin in cultured Schwann cells, but only CRP2 requires pou3f1 for normal expression. pou3f1 appears to require the claw paw gene product for activation of at least some of its downstream effector genes. Expression of the novel Schwann cell genes after nerve injury suggests that they are myelin related. One of the genes, tramdorin1, encodes a novel amino acid transport protein that is localized to paranodes and incisures. Our results suggest that pou3f1 functions to activate gene expression in the differentiation of myelinating Schwann cells.
Collapse
|
48
|
Freeman WM, Brebner K, Patel KM, Lynch WJ, Roberts DCS, Vrana KE. Repeated cocaine self-administration causes multiple changes in rat frontal cortex gene expression. Neurochem Res 2002; 27:1181-92. [PMID: 12462416 DOI: 10.1023/a:1020929526688] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Repeated cocaine administration produces changes in gene expression that are thought to contribute to the behavioral alterations observed with cocaine abuse. This study focuses on gene expression changes in the frontal cortex, a component of reinforcement, sensory, associative, and executive circuitries. Changes in frontal cortex gene expression after repeated cocaine self-administration may lead to changes in the behaviors associated with this brain region. Rats self-administered cocaine for 10 days in a continuous access, discrete trial paradigm (averaging 100 mg/kg/day) and were examined for changes in relative frontal cortex mRNA abundance by cDNA hybridization arrays. Among the changes observed following array analysis, increased nerve-growth-factor-induced B (NGFI-B), adenylyl cyclase type VIII (AC VIII), and reduced cysteine-rich protein 2 (CRP2) mRNA were confirmed by quantitative RT-PCR. These changes share commonalities and exhibit differences with previous reports of gene expression changes in the frontal cortex after noncontingent cocaine administration.
Collapse
Affiliation(s)
- Willard M Freeman
- Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem. NC 27157-1083, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Bonnin MA, Edom-Vovard F, Kefalas P, Duprez D. CRP2 transcript expression pattern in embryonic chick limb. Mech Dev 2002; 116:151-5. [PMID: 12128214 DOI: 10.1016/s0925-4773(02)00122-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the cysteine-rich protein (CRP) family are evolutionary conserved proteins that have been implicated in the processes of cell proliferation and differentiation via the cytoskeletal proteins. In this paper, we present the dynamic expression pattern of CPR2 transcripts during chick limb bud development. CRP2 transcripts are located in various tissues, including muscle, arteries, cartilage, ligaments and digit tendons and also in the apical ectodermal ridge and feather buds.
Collapse
Affiliation(s)
- Marie Ange Bonnin
- CNRS, Biologie du développement, UMR 7622, Université P. et M. Curie, Campus du Jussieu, 9 quai St. Bernard, Bât.C, 6 degrees E, Case 24, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
50
|
Ng EKO, Chan KK, Wong CH, Tsui SKW, Ngai SM, Lee SMY, Kotaka M, Lee CY, Waye MMY, Fung KP. Interaction of the heart-specific LIM domain protein, FHL2, with DNA-binding nuclear protein, hNP220. J Cell Biochem 2002. [DOI: 10.1002/jcb.10041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|