1
|
Ni Z, Song F, Zhou H, Xu Y, Wang Z, Chen D. Mechanistic Insights into How the Single Point Mutation Change the Autoantibody Repertoire. Protein J 2024; 43:683-696. [PMID: 39068631 DOI: 10.1007/s10930-024-10225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1. We found that the electrostatic force was not the primary driving force for the interaction between anti-DNA antibodies and the antigen single strand DNA (ssDNA), and that the H-CDR2 largely contributed to the binding of antigen ssDNA, even larger than H-CDR1. The H-F33Y mutation could increase the hydrogen-bond interaction but impair the pi-pi stacking interaction between the antibody and ssDNA. We further found that F33H, W98H and Y95L in the wiletype antibody could form the stable pi-pi stacking interaction with the nucleotide bases of ssDNA. However, the Y33 in mutant could not form the parallel sandwich pi-pi stacking interaction with the ssDNA. To further confirm the importance of pi-pi stacking, the wildtype antibody and the mutants (F33YH, F33AH, W98AH and Y95AL) were experimentally expressed in CHO cells and purified, and the results from ELISA clearly showed that all the mutants lost the ssDNA binding ability. Taken together, our findings may not only deepen the understanding of the underlying interaction mechanism between autoantibody and antigen, but also broad implications in the field of antibody engineer.
Collapse
Affiliation(s)
- Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Fangyuan Song
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huimin Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
An Y, Raju RK, Lu T, Wheeler SE. Aromatic interactions modulate the 5'-base selectivity of the DNA-binding autoantibody ED-10. J Phys Chem B 2014; 118:5653-9. [PMID: 24802982 DOI: 10.1021/jp502069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present detailed computational analyses of the binding of four dinucleotides to a highly sequence-selective single-stranded DNA (ssDNA) binding antibody (ED-10) and selected point mutants. Anti-DNA antibodies are central to the pathogenesis of systemic lupus erythematosus (SLE), and a more complete understanding of the mode of binding of DNA and other ligands will be necessary to elucidate the role of anti-DNA antibodies in the kidney inflammation associated with SLE. Classical molecular mechanics based molecular dynamics simulations and density functional theory (DFT) computations were applied to pinpoint the origin of selectivity for the 5'-nucleotide. In particular, the strength of interactions between each nucleotide and the surrounding residues were computed using MMGBSA as well as DFT applied to a cluster model of the binding site. The results agree qualitatively with experimental binding free energies, and indicate that π-stacking, CH/π, NH/π, and hydrogen-bonding interactions all contribute to 5'-base selectivity in ED-10. Most importantly, the selectivity for dTdC over dAdC arises primarily from differences in the strength of π-stacking and XH/π interactions with the surrounding aromatic residues; hydrogen bonds play little role. These data suggest that a key Tyr residue, which is not present in other anti-DNA antibodies, plays a key role in the 5'-base selectivity, while we predict that the mutation of a single Trp residue can tune the selectivity for dTdC over dAdC.
Collapse
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | |
Collapse
|
3
|
Komissarov AA, Florova G, Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem 2011; 286:41949-41962. [PMID: 21976662 DOI: 10.1074/jbc.m111.301218] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154.
| | - Galina Florova
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154
| | - Steven Idell
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154
| |
Collapse
|
4
|
Ou Z, Bottoms CA, Henzl MT, Tanner JJ. Impact of DNA hairpin folding energetics on antibody-ssDNA association. J Mol Biol 2007; 374:1029-40. [PMID: 18028946 PMCID: PMC2516951 DOI: 10.1016/j.jmb.2007.09.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Deposition of anti-DNA antibodies in the kidney contributes to the pathogenesis of the autoimmune disease, systemic lupus erythematosus. Antibodies that bind to hairpin-forming DNA ligands may be particularly prone to deposition. Here we report the first structure of a Fab complexed with hairpin-forming DNA. The ligand used for co-crystallization is 5'-d [CTG(CCTT)CAG]-3', which has a predicted hairpin structure consisting of a four-nucleotide loop (CCTT) and a stem of three base-pairs. The 1.95 A resolution crystal structure of Fab DNA-1 complexed with this ligand shows that the conformation of the bound ligand differs radically from the predicted hairpin conformation. The three base-pairs in the stem are absent in the bound form. The protein binds to the last six nucleotides at the 3' end of the ligand. These nucleotides form a loop (TTCA) closed by a G:C base-pair in the bound state. Stacking of aromatic side-chains against DNA bases is the dominant interaction in the complex. Interactions with the DNA backbone are conspicuously absent. Thermodynamics of binding are examined using isothermal titration calorimetry. The apparent dissociation constant is 4 microM, and binding is enthalpically favorable and entropically unfavorable. Increasing the number of base-pairs in the DNA stem from three to six decreases binding affinity. These data suggest a conformational selection binding mechanism in which the Fab binds preferentially to the unstructured state of the ligand. In this interpretation, the ligand binding and ligand folding equilibria are coupled, with lower hairpin stability leading to greater effective binding affinity. Thus, pre-organization of the DNA loop into the preferred binding conformation does not play a major role in complexation. Rather, it is argued that the stem of the hairpin serves to reduce the degrees of freedom in the free DNA ligand, thereby limiting the entropic cost attendant to complexation with the Fab.
Collapse
Affiliation(s)
- Zhonghui Ou
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Michael T. Henzl
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Bobeck MJ, Cleary J, Beckingham JA, Ackroyd PC, Glick GD. Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies. Biopolymers 2007; 85:471-80. [PMID: 17252585 DOI: 10.1002/bip.20691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifically and are benign. Among these antibodies, DNA binding properties are mediated by five amino acid differences in primary sequence. Thermodynamic and kinetic parameters associated with recognition of structurally different DNA sequences were determined for each antibody to provide insight toward recognition strategies, and to explore a link between binding properties and disease pathogenesis. A model of 11F8 bound to its high affinity consensus sequence provides a foundation for understanding the differences in thermodynamic and kinetic parameters between the three mAbs. Our data suggest that 11F8 utilizes the proposed ssDNA recognition motif including (Y32)V(L), a hydrogen bonding residue at (91)V(L), and an aromatic residue at the tip of the third heavy chain complementarity determining region. Interestingly, a somatic mutation to arginine at (31)V(H) in 11F8 may afford additional binding site contacts including (R31)V(H), (R96)V(H), and (R98)V(H) that could determine specificity.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
6
|
Sanguineti S, Centeno Crowley JM, Lodeiro Merlo MF, Cerutti ML, Wilson IA, Goldbaum FA, Stanfield RL, de Prat-Gay G. Specific recognition of a DNA immunogen by its elicited antibody. J Mol Biol 2007; 370:183-95. [PMID: 17512945 DOI: 10.1016/j.jmb.2007.04.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/10/2007] [Accepted: 04/18/2007] [Indexed: 11/29/2022]
Abstract
DNA recognition by antibodies is a key feature of autoimmune diseases, yet model systems with structural information are very limited. The monoclonal antibody ED-10 recognizes one of the strands of the DNA duplex used in the immunogenic complex. Modifications of the 5' end decrease the binding affinity and short oligonucleotides retain high binding affinity. We determined crystal structures for the Fab bound to a 6-mer oligonucleotide containing the specific sequence that raised the antibody and compared it with the unliganded Fab. Only the first two bases from the 5' end (dTdC) display electron density and we observe four key hydrogen bonds at the interface. The thymine ring is stacked between TrpH50 and TrpH95, and the cytosine ring is packed against TyrL32. Upon DNA binding, TyrH97 and TrpH95 rearrange to allow subnanomolar binding affinity, five orders of magnitude higher than other reported complexes, possibly because of having gone through affinity maturation. This structure represents the first bona fide antibody DNA immunogen complex described in atomic detail.
Collapse
Affiliation(s)
- Santiago Sanguineti
- Instituto Leloir and CONICET, Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Vaz de Andrade E, Freitas SM, Ventura MM, Maranhão AQ, Brigido MM. Thermodynamic basis for antibody binding to Z-DNA: comparison of a monoclonal antibody and its recombinant derivatives. Biochim Biophys Acta Gen Subj 2005; 1726:293-301. [PMID: 16214293 DOI: 10.1016/j.bbagen.2005.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/24/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.
Collapse
|
8
|
Jin H, Sepúlveda J, Burrone OR. Specific recognition of a dsDNA sequence motif by an immunoglobulin VH homodimer. Protein Sci 2005; 13:3222-9. [PMID: 15557264 PMCID: PMC2287315 DOI: 10.1110/ps.04921704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anti-DNA antibodies have the potential to be applied in vast fields of fundamental as well as medical research. They are found in autoimmune diseases, such as systemic lupus erythemotosus. In most cases, anti-dsDNA antibodies do not present sequence specificity and are of low affinity. The dominant role of VH domains in DNA recognition induced us to search for binders based on VH dimers (VHD), previously reported to bind different protein antigens. We screened a phage displayed homo-VHD library against a 19-bp dsDNA sequence. A sequence-specific binder was selected, which recognizes the terminal located CTGC motif with a Kd of 250 nM. Association of the two identical VH domains of the molecule was shown to be essential for binding.
Collapse
Affiliation(s)
- Hulin Jin
- International Centre for Genetic Engineering and Biotechnology, 34012-Trieste, Italy
| | | | | |
Collapse
|
9
|
Hosomi N, Kawamura-Konishi Y, Kawano R, Fujii I, Suzuki H. Site-directed mutagenesis study of the antibody 2D7 which catalyzes a reaction for insertion of Cu2+ into mesoporphyrin. J Biosci Bioeng 2005; 99:222-9. [PMID: 16233781 DOI: 10.1263/jbb.99.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 12/02/2004] [Indexed: 11/17/2022]
Abstract
Monoclonal antibody 2D7 generated against a transition-state analog N-methyl mesoporphyrin catalyzes a reaction for insertion of a cupric ion into mesoporphyrin. To investigate amino acid residues responsible for the catalytic activity, site-directed mutagenesis of the amino acid residues in the third complementarity determining region of the heavy chain (CDRH3) was performed on the antigen-binding fragment (Fab) of the antibody. Recombinant Fab mutants, in which Arg95 is replaced with Ala (R95A), Asp96 with Asn (D96N) and Met97 with Gly (M97G), were examined in terms of the catalytic efficiency of the reaction (k/K(S)) and the dissociation constant for N-methyl mesoporphyrin binding (K(d)) and these values were compared with those of the wild type. The k/K(S) values of the R95A and D96N mutants were 0.96% and 1.0% of that of the wild type, respectively, whereas the M97G mutant had no detectable catalytic activity. The K(d) values of the R95A and D96N mutants were 165 and 69 times that of the wild type, respectively, while that of the M97G mutant was similar to that of the wild type. The relationship between the k/K(S) and 1/K(d) values in the wild type and the R95A and D96N mutants suggests that Arg95 and Asp96 are responsible for stabilizing the transition-state in the catalytic reaction. The results of the M97G mutant allow us to propose that Met97 plays an important role in the catalytic activity probably due to a subtle and specific conformation of the antibody.
Collapse
Affiliation(s)
- Naoki Hosomi
- Graduate School of Fundamental Life Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | |
Collapse
|
10
|
Landon LA, Harden W, Illy C, Deutscher SL. High-throughput fluorescence spectroscopic analysis of affinity of peptides displayed on bacteriophage. Anal Biochem 2005; 331:60-7. [PMID: 15245997 DOI: 10.1016/j.ab.2004.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 11/21/2022]
Abstract
Fluorescence spectroscopy titrations, although widely used to analyze binding affinity, are not an efficient screening method for detecting high-affinity binding among a large number of available ligands, such as during bacteriophage display selections. We hypothesize that a miniaturized, high-throughput fluorescence spectroscopy assay can be used to efficiently analyze selection results by applying the Langmuir equation to the binding data to estimate affinity constants for a large number of ligands, either as synthesized molecules or as displayed on bacteriophage. Here, bacteriophage-display-derived peptides specific for the Thomsen-Friedenreich disaccharide are used to develop a high-throughput fluorescence spectroscopy screening method, which uses one binding partner labeled with a fluorescent dye and different concentrations of a second partner to analyze binding affinity in bacteriophage display selections. The affinity constants derived from binding isotherms prepared using the new system accurately replicate those derived from standard spectroscopy titrations. Furthermore, the technique correctly defined the affinity constant describing binding of a cognate epitope peptide by a monoclonal antibody. Finally, we have applied the technique to analysis of binding affinity by ligands displayed on bacteriophage, which suggests that this technique could be used to monitor bacteriophage enrichment during selections.
Collapse
Affiliation(s)
- Linda A Landon
- Department of Biochemistry, M743 Medical Sciences Bldg., University of Missouri, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
11
|
Landon LA, Zou J, Deutscher SL. Effective combinatorial strategy to increase affinity of carbohydrate binding by peptides. Mol Divers 2004; 8:35-50. [PMID: 14964786 DOI: 10.1023/b:modi.0000006897.40575.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Thomsen-Friedenreich antigen, a carcinoma-associated disaccharide involved in carcinoma cell homotypic aggregation and increased metastatic potential, has clinical value as a prognostic indicator and a marker of metastasized cells. Hence, it can reasonably be predicted that antigen-binding macromolecules are valuable clinical in vivo diagnostic/therapeutic targeting agents. Recently, we have selected first-generation antigen-binding peptides from a random peptide bacteriophage display library and have applied combinatorial affinity maturation to select functionally-maturated peptides, which target cultured carcinoma cells and inhibit carcinoma cell aggregation. In the current study we hypothesize that a targeted search of sequence space surrounding the antigen-binding consensus sequence will select unpredictable amino acid sequences in the non-consensus portions of the peptides, leading to increased affinity for the carbohydrate and greater solubility in physiological buffers. This comprehensive in vitro analysis demonstrates that preferential evolution of the amino-terminal sequence of the peptides occurred, which correlated, in structure/function studies, with the acquisition of maturated function. The maturated peptides are more soluble than the earlier peptides. Studies of peptide binding to the disaccharide indicate that two maturated peptides (P-30-1, F03) have higher affinity for the antigen and bind with higher intensity to the surface of cultured human carcinoma cells than the first-generation peptides. The results support our hypothesis that affinity maturation can improve carbohydrate binding by peptides and have theoretical importance as the first report of maturation of carbohydrate-binding affinity in a small, soluble peptide.
Collapse
Affiliation(s)
- Linda A Landon
- Department of Biochemistry, M743 Medical Sciences Bldg., University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
12
|
Schuermann JP, Henzl MT, Deutscher SL, Tanner JJ. Structure of an anti-DNA fab complexed with a non-DNA ligand provides insights into cross-reactivity and molecular mimicry. Proteins 2004; 57:269-78. [PMID: 15340914 DOI: 10.1002/prot.20200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibodies that recognize DNA (anti-DNA) are part of the autoimmune response underlying systemic lupus erythematosus. To better understand molecular recognition by anti-DNA antibodies, crystallographic studies have been performed using an anti-ssDNA antigen-binding fragment (Fab) known as DNA-1. The previously determined structure of a DNA-1/dT5 complex revealed that thymine bases insert into a narrow groove, and that ligand recognition primarily involves the bases of DNA. We now report the 1.75-A resolution structure of DNA-1 complexed with the biological buffer HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid). All three light chain complementarity-determining regions (CDRs) and HCDR3 contribute to binding. The HEPES sulfonate hydrogen bonds to His L91, Asn L50, and to the backbone of Tyr H100 and Tyr H100A. The Tyr side-chains of L32, L92, H100, and H100A form nonpolar contacts with the HEPES ethylene and piperazine groups. Comparison to the DNA-1/dT5 structure reveals that the dual recognition of dT5 and HEPES requires a 13-A movement of HCDR3. This dramatic structural change converts the combining site from a narrow groove, appropriate for the edge-on insertion of thymine bases, to one sufficiently wide to accommodate the HEPES sulfonate and piperazine. Isothermal titration calorimetry verified the association of HEPES with DNA-1 under conditions similar those used for crystallization (2 M ammonium sulfate). Interestingly, the presence of 2 M ammonium sulfate increases the affinities of DNA-1 for both HEPES and dT5, suggesting that non-polar Fab-ligand interactions are important for molecular recognition in highly ionic solvent conditions. The structural and thermodynamic data suggest a molecular mimicry mechanism based on structural plasticity and hydrophobic interactions.
Collapse
Affiliation(s)
- Jonathan P Schuermann
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
13
|
Meighan MA, Dickerson MT, Glinskii O, Glinsky VV, Wright GL, Deutscher SL. Recombinant glutamate carboxypeptidase II (prostate specific membrane antigen--PSMA)--cellular localization and bioactivity analyses. ACTA ACUST UNITED AC 2003; 22:317-26. [PMID: 13678295 DOI: 10.1023/a:1025381921943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate Carboxypeptidase II (also known as Prostate Specific Membrane Antigen-PSMA) is an important marker in the diagnosis of prostate cancer, however, relatively little is known about its biochemical and structure-function characteristics. We have expressed mutant forms of PSMA and have started to address the roles of three putative domains of PSMA in its cellular localization and peptidase activity. Three mutants, a full-length recombinant PSMA (rPSMA-FL), one expressing only the proposed extracellular domain of PSMA (rPSMA-ECD) and one form omitting the proposed transmembrane domain (rPSMA-deltaTMD) have been produced in human cells via a mammalian expression vector system. We show that rPSMA-FL is associated with the cell surface membrane; so too is rPSMA-deltaTMD even though it lacks the proposed transmembrane domain, whereas rPSMA-ECD has a cytosolic localization. Only rPSMA-FL retains functional hydrolytic activity and is similarly glycosylated to PSMA found in the cultured prostate cancer cell line LNCaP.
Collapse
Affiliation(s)
- Mark A Meighan
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
14
|
Landon LA, Peletskaya EN, Glinsky VV, Karasseva N, Quinn TP, Deutscher SL. Combinatorial evolution of high-affinity peptides that bind to the Thomsen-Friedenreich carcinoma antigen. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:193-204. [PMID: 12760424 DOI: 10.1023/a:1023483232397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thomsen-Friedenreich (TF) antigen occurs on approximately 90% of human carcinomas, is likely involved in carcinoma cell homotypic aggregation, and has clinical value as a prognostic indicator and marker of metastasized cells. Previously, we isolated anti-TF antigen peptides from bacteriophage display libraries. These bound to TF antigen on carcinoma cells but were of low affinity and solubility. We hypothesized that peptide amino acid sequence changes would result in increased affinity and solubility, which would translate into improved carcinoma cell binding and increased inhibition of aggregation. The new peptides were more soluble and exhibited up to fivefold increase in affinity (Kd approximately equal to 60 nM). They bound cultured human breast and prostate carcinoma cells at low concentrations, whereas the earlier peptides did not. Moreover, the new peptides were potent inhibitors of homotypic aggregation. The maturated peptides will have expanded applications in basic studies of the TF antigen and particular utility as clinical carcinoma-targeting agents.
Collapse
Affiliation(s)
- Linda A Landon
- Department of Biochemistry, M121 Medical Sciences Bldg., University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | | | | | |
Collapse
|
15
|
Cleary J, Glick GD. Mutational analysis of a sequence-specific ssDNA binding lupus autoantibody. Biochemistry 2003; 42:30-41. [PMID: 12515537 DOI: 10.1021/bi0203942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
11F8 is a murine anti-ssDNA monoclonal autoantibody isolated from a lupus prone autoimmune mouse. This mAb binds sequence specifically, and prior studies have defined the thermodynamic and kinetic basis for sequence-specific recognition of ssDNA (Ackroyd, P. C., et al. (2001) Biochemistry 40, 2911-2922; Beckingham, J. A. and Glick, G. D. (2001) Bioorg. Med. Chem. 9, 2243-2252). Here we present experiments designed to identify the residues on 11F8 that mediate sequence-specific, noncognate, and nonspecific recognition of ssDNA and their contribution to the overall binding thermodynamics. Site-directed mutagenesis of an 11F8 single-chain construct reveals that six residues within the complementarity determining regions of 11F8 account for ca. 80% of the binding free energy and that there is little cooperativity between these residues. Germline-encoded aromatic and hydrophobic side chains provides the basis for nonspecific recognition of single-stranded thymine nucleobases. Sequence-specific recognition is controlled by a tyrosine in the heavy chain along with a somatically mutated arginine residue. Our data show that the manner in which 11F8 achieves sequence-specific recognition more closely resembles RNA-binding proteins such as U1A than other types of nucleic acid binding proteins. In addition, comparing the primary sequence of 11F8 with clonally related antibodies that differ by less than five amino acids suggests that somatic mutations which confer sequence specificity may be a feature that distinguishes glomerulotrophic pathogenic anti-DNA from those that are benign.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
16
|
Tanner JJ, Komissarov AA, Deutscher SL. Crystal structure of an antigen-binding fragment bound to single-stranded DNA. J Mol Biol 2001; 314:807-22. [PMID: 11733999 DOI: 10.1006/jmbi.2001.5178] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibodies to DNA are characteristic of the autoimmune disease systemic lupus erythematosus (SLE) and they also serve as models for the study of protein-DNA recognition. Anti-DNA antibodies often play an important role in disease pathogenesis by mediating kidney damage via antibody-DNA immune complex formation. The structural underpinnings of anti-DNA antibody pathogenicity and antibody-DNA recognition, however, are not well understood, due in part to the lack of direct, experimental three-dimensional structural information on antibody-DNA complexes. To address these issues for anti-single-stranded DNA antibodies, we have determined the 2.1 A crystal structure of a recombinant Fab (DNA-1) in complex with dT5. DNA-1 was previously isolated from a bacteriophage Fab display library from the immunoglobulin repertoire of an SLE-prone mouse. The structure shows that DNA-1 binds oligo(dT) primarily by sandwiching thymine bases between Tyr side-chains, which allows the bases to make sequence-specific hydrogen bonds. The critical stacking Tyr residues are L32, L49, H100, and H100A, while His L91 and Asn L50 contribute hydrogen bonds. Comparison of the DNA-1 structure to other anti-nucleic acid Fab structures reveals a common ssDNA recognition module consisting of Tyr L32, a hydrogen bonding residue at position L91, and an aromatic side-chain from the tip of complementarity determining region H3. The structure also provides a framework for interpreting previously determined thermodynamics data, and this analysis suggests that hydrophobic desolvation might underlie the observed negative enthalpy of binding. Finally, Arg side-chains from complementarity determining region H3 appear to play a novel role in DNA-1. Rather than forming ion pairs with dT5, Arg contributes to oligo(dT) recognition by helping to maintain the structural integrity of the combining site. This result is significant because antibody pathogenicity is thought to be correlated to the Arg content of anti-DNA antibody hypervariable loops.
Collapse
Affiliation(s)
- J J Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
17
|
O'Connor KC, Nguyen K, Stollar BD. Recognition of DNA by VH and Fv domains of an IgG anti-poly(dC) antibody with a singly mutated VH domain. J Mol Recognit 2001; 14:18-28. [PMID: 11180559 DOI: 10.1002/1099-1352(200101/02)14:1<18::aid-jmr515>3.0.co;2-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Secondary antigen stimulation usually produces IgG antibodies with hypermutated V segments. Studying a strong secondary response to the polynucleotide antigen poly(dC), however, we found a highly selective IgG antibody (mAb dC7) with only one mutation (a conservative Leu to Ileu substitution) throughout the whole VH domain. To investigate the roles of VH and VL domains in selective binding by this mAb, we prepared its VH, VL and single-chain Fv (scFv) fragments. A bacterial expression system produced soluble monomeric V region proteins. CD spectra confirmed that they had the beta-secondary structure expected for Ig domains. Both the scFv and VH fragments bound to single-stranded non-protonated poly(dC) and to ssDNA but not to protonated, more structured poly(dC) or dsDNA. The VL domain alone did not bind to nucleic acids, but VL association modified the VH binding, giving the scFv a 10-fold higher affinity than the VH for poly(dC) and greatly increasing the cytosine-dependent selectivity. Non-ionic interactions were prominent in the Fv reaction with a (dC)( n) sequence. Ionic interactions were revealed in Fv cross-reactions with ssDNA, and were more prominent in binding of either poly(dC) or ssDNA by VH alone, consistent with the lesser base selectivity of the VH. Thus, the Fv and VH alone bind to a single antigen, poly(dC), but mechanistic differences result from additional subsites in the Fv. Generation of a selective IgG with very few CDR mutations in either VH or VL, which was accompanied by IgM antibodies with unmutated V regions, also suggests that nucleic acid binding activity is a property of the B cell repertoire even before immunization.
Collapse
Affiliation(s)
- K C O'Connor
- Department of Biochemistry, Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | | | | |
Collapse
|
18
|
Seal SN, Monestier M, Radic MZ. Diverse roles for the third complementarity determining region of the heavy chain (H3) in the binding of immunoglobulin Fv fragments to DNA, nucleosomes and cardiolipin. Eur J Immunol 2000; 30:3432-40. [PMID: 11093161 DOI: 10.1002/1521-4141(2000012)30:12<3432::aid-immu3432>3.0.co;2-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autoantibodies to DNA and chromatin employ junctional diversity and somatic mutations to generate or enhance antigen recognition. To define the role of diversity generating mechanisms in the etiology of autoantibodies to nuclear antigens, the heavy (H) chain of a murine autoantibody, 3H9, was used in its somatically mutated or germ-line form in conjunction with its own or with heterologous CDR3 (H3) domains. The resulting H chains were expressed together with the 3H9 light (L) chain as single-chain Fv (scFv) in Escherichia coli and assayed for binding to DNA, nucleosomes, or cardiolipin by enzyme-linked immunosorbent assay. All recombinant scFv exhibited nearly identical binding to cardiolipin. In contrast, the binding to nuclear antigens was drastically reduced by the reversion of mutations in 3H9 or the exchange of H3, such that only 3H9 itself bound strongly to single-stranded DNA, double-stranded DNA and nucleosomes. The results illustrate diverse interactions between a single combining site and different autoantigens. The analysis of these interactions suggests that the 3H9 VH domain, as encoded by the germ line, directs binding to cardiolipin, whereas structural determinants of H3, in concert with the remainder of the combining site, guide the maturation of antibody binding toward nuclear autoantigens.
Collapse
Affiliation(s)
- S N Seal
- Department of Microbiology and Immunology, MCP-Hahnemann University, Philadelphia, USA
| | | | | |
Collapse
|
19
|
Komissarov AA, Deutscher SL. Thermodynamics of Fab-ssDNA interactions: contribution of heavy chain complementarity determining region 3. Biochemistry 1999; 38:14631-7. [PMID: 10545187 DOI: 10.1021/bi991347l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.
Collapse
Affiliation(s)
- A A Komissarov
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | |
Collapse
|
20
|
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects most of the organs and tissues of the body, causing glomerulonephritis, arthritis, and cerebritis. SLE can be fatal with nephritis, in particular, predicting a poor outcome for patients. In this review, we highlight what has been learned about SLE from the study of mouse models, and pay particular attention to anti-DNA autoantibodies, both as pathological agents of lupus nephritis and as DNA-binding proteins. We summarize the current approaches used to treat SLE and discuss the targeting of anti-DNA autoantibodies as a new treatment for lupus nephritis.
Collapse
Affiliation(s)
- N B Blatt
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | |
Collapse
|
21
|
Agris PF, Marchbank MT, Newman W, Guenther R, Ingram P, Swallow J, Mucha P, Szyk A, Rekowski P, Peletskaya E, Deutscher SL. Experimental models of protein-RNA interaction: isolation and analyses of tRNA(Phe) and U1 snRNA-binding peptides from bacteriophage display libraries. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:425-35. [PMID: 10449040 DOI: 10.1023/a:1020688609121] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptides that bind either U1 small nuclear RNA (U1 snRNA) or the anticodon stem and loop of yeast tRNA(Phe) (tRNA(ACPhe)) were selected from a random-sequence, 15-amino acid bacteriophage display library. An experimental system, including an affinity selection method, was designed to identify primary RNA-binding peptide sequences without bias to known amino acid sequences and without incorporating nonspecific binding of the anionic RNA backbone. Nitrocellulose binding assays were used to evaluate the binding of RNA by peptide-displaying bacteriophage. Amino acid sequences of RNA-binding bacteriophage were determined from the foreign insert DNA sequences, and peptides corresponding to the RNA-binding bacteriophage inserts were chemically synthesized. Peptide affinities for the RNAs (Kd approximately 0.1-5.0 microM) were analyzed successfully using fluorescence and circular dichroism spectroscopies. These methodologies demonstrate the feasibility of rapidly identifying, isolating, and initiating the analyses of small peptides that bind to RNAs in an effort to define better the chemistry, structure, and function of protein-RNA complexes.
Collapse
Affiliation(s)
- P F Agris
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jang YJ, Sanford D, Chung HY, Baek SY, Stollar BD. The structural basis for DNA binding by an anti-DNA autoantibody. Mol Immunol 1998; 35:1207-17. [PMID: 10199394 DOI: 10.1016/s0161-5890(98)00095-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used single and multiple site-directed mutagenesis, and molecular modeling, to identify critical residues in the DNA binding site of MAb 2C10, an IgG anti-dsDNA autoantibody from an MRL/lpr lupus mouse. Simultaneous replacement of four Arg residues in the CDR3H abolished binding activity. With one exception, replacement of any one of these Arg residues reduced the activity to 20-50% of the unmutated scFv activity. Arg to Asp replacements had a slightly greater effect than Arg to Ala replacements. In the one exceptional case, replacement of Arg99 with Ala actually increased DNA binding five-fold and replacement by Asp had little effect. Mutation of Phe32 and Asn35 to A1a in CDRIH decreased DNA binding, whereas replacement of Arg31 with A1a had negligible effect. Ala substitution of any one of a cluster of Asp residues in CDR1L increased DNA binding three to six-fold, confirming previous findings that the L-chain of MAb 2C10 is not favorable for DNA binding. The L-chain does participate in shaping the selectivity of antigen binding, and mutation of CDR3L residue Asp92 or Asn93 caused a decrease in DNA binding activity. Directed mutagenesis, consistent with a molecular model, indicates that: several CDR amino acids contribute to DNA binding, without one residue dominating; both VH and VL CDR3 domains contribute to specificity of binding whereas the CDR1L hinders DNA binding. The results suggest a significant role for electrostatics in the interaction of DNA with MAb 2C10.
Collapse
Affiliation(s)
- Y J Jang
- Laboratory of Immunology, Institute for Medical Sciences, Ajou University Schools of Medicine, Suwon, Korea.
| | | | | | | | | |
Collapse
|
23
|
Komissarov AA, Marchbank MT, Calcutt MJ, Quinn TP, Deutscher SL. Site-specific mutagenesis of a recombinant anti-single-stranded DNA Fab. Role of heavy chain complementarity-determining region 3 residues in antigen interaction. J Biol Chem 1997; 272:26864-70. [PMID: 9341118 DOI: 10.1074/jbc.272.43.26864] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The heavy chain complementarity-determining region 3 (HCDR3) of the anti-oligo(dT) recombinant antibody fragment, DNA-1, contributes significantly to antigen binding (Komissarov, A. A., Calcutt, M. J., Marchbank, M. T., Peletskaya, E. N., and Deutscher, S. L. (1996) J. Biol. Chem. 271, 12241-12246). In the present study, the role of separate HCDR3 residues of DNA-1 in interaction with oligo(dT) was elucidated. Based on a molecular model of the combining site, residues at the base (Arg98 and Asp108) and in the middle (Tyr101-Arg-Pro-Tyr-Tyr105) of HCDR3 were predicted to support the loop conformation and directly contact the ligand, respectively. Twenty-five site-specific mutants were produced as hexahistidine-tagged proteins, purified, and examined for binding to (dT)15 using two independent methods. All mutations in the middle of HCDR3 led to either abolished or diminished affinity. Tyr101 likely participates in hydrogen bonding, while Tyr104 and Tyr105 may be involved in aromatic-aromatic interactions with the ligand. The residues Arg102 and Pro103 were not as critical as the tyrosines. It is speculated that HCDR3 interacts with the thymines, rather than the phosphates, of the ligand. A 3-fold increase in affinity was observed by mutation of Asp108 to alanine. The highly conserved Arg98 and Asp108 do not appear to form a salt bridge.
Collapse
Affiliation(s)
- A A Komissarov
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | |
Collapse
|
24
|
Komissarov AA, Marchbank MT, Deutscher SL. The use of Ni-nitrilotriacetic acid agarose for estimation of affinities of hexahistidine-tagged Fab to single-stranded DNA. Anal Biochem 1997; 247:123-9. [PMID: 9126381 DOI: 10.1006/abio.1997.2051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complex formed between 32P-labeled (dT)15 and a hexahistidine (6-His)-tagged anti-single-stranded DNA (ssDNA) Fab, DNA-1, was trapped by addition of nickel-chelating nitrilotriacetic acid (Ni-NTA) agarose that led to efficient separation of bound ligand from free. High stability of the immobilized complex (half-life of 4 h) and low nonspecific binding of (32P](dT)15 allowed for a rapid estimation of the dissociation constant (Kd) and was found to be approximately 130 nM. Oligonucleotide bound DNA-1 preimmobilized on Ni-NTA agarose with the same Kd as the Fab/(dT)15 complex formed in solution, indicating that the interaction of the 6-His tag with the resin did not interfere with binding. Addition of unlabeled (dT)15 led to a fast exchange with bound [32P](dT)15. Mutant versions of DNA-1 were also examined and results obtained were in agreement with data from equilibrium gel filtration and fluorescence titration [A. A. Komissarov, M. J. Calcutt, M. T. Marchbank, E. N. Peletskaya, and S. L. Deutscher (1996) J. Biol. Chem. 271, 12241-12246]. These results demonstrate that the Ni-NTA assay is an efficient and accurate method to examine 6-His-tagged protein-nucleic acid complexes. Furthermore, a competition modification of this assay may be used for detection of anti-ssDNA antibodies in serum.
Collapse
Affiliation(s)
- A A Komissarov
- Department of Biochemistry, University of Missouri School of Medicine, Columbia 65212, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- R M Bill
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|