1
|
Habu T, Kim J. Dynein intermediate chain 2c (DNCI2c) complex is essential for exiting Mad2-dependent spindle assembly checkpoint. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119120. [PMID: 34400173 DOI: 10.1016/j.bbamcr.2021.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The Mad2 protein plays a key role in the spindle assembly checkpoint (SAC) function. The SAC pathway delays mitotic progression into anaphase until all kinetochores attach to the spindle during mitosis. The formation of the Mad2-p31comet complex correlates with the completion of spindle attachment and the entry into anaphase during mitosis. Herein, we showed that dynein intermediate chain 2c (DNCI2c)-a subunit of dynein motor protein-forms an immunocomplex with p31comet during mitosis. DNCI2c-knockdown resulted in prolonged mitotic arrest in a Mad2-dependent manner. Furthermore, DNCI2c-knockdown-induced mitotic arrest was not rescued by p31comet overexpression. However, the combination of p31comet overexpression with the mitotic drug treatment reversed the mitotic arrest in DNCI2c-knockdown. Together, these results indicate that the DNCI2c-p31comet complex plays an important role in exiting Mad2-dependent SAC.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan.
| | - Jiyeong Kim
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
2
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Kumari A, Kumar C, Wasnik N, Mylavarapu SVS. Dynein light intermediate chains as pivotal determinants of dynein multifunctionality. J Cell Sci 2021; 134:268315. [PMID: 34014309 DOI: 10.1242/jcs.254870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Jin LQ, John BH, Hu J, Selzer ME. Activated Erk Is an Early Retrograde Signal After Spinal Cord Injury in the Lamprey. Front Neurosci 2020; 14:580692. [PMID: 33250705 PMCID: PMC7674770 DOI: 10.3389/fnins.2020.580692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported that spinal cord transection (TX) in the lamprey causes mRNA to accumulate in the injured tips of large reticulospinal (RS) axons. We sought to determine whether this mRNA accumulation results from phosphorylation and transport of retrograde signals, similar to what has been reported in mammalian peripheral nerve. Extracellular signal-regulated protein kinase (Erk), mediates the neurite outgrowth-promoting effects of many neurotrophic factors. To assess the role of Erk in retrograde signaling of RS axon injury, we used immunoblot and immunohistochemistry to determine the changes in phosphorylated Erk (p-Erk) in the spinal cord after spinal cord TX. Immunostaining for p-Erk increased within axons and local cell bodies, most heavily within the 1-2 mm closest to the TX site, at between 3 and 6 h post-TX. In axons, p-Erk was concentrated in 3-5 μm granules that became less numerous with distance from the TX. The retrograde molecular motor dynein colocalized with p-Erk, but vimentin, which in peripheral nerve was reported to participate with p-Erk as part of a retrograde signal complex, did not colocalize with p-Erk, even though vimentin levels were elevated post-TX. The results suggest that p-Erk, but not vimentin, may function as a retrograde axotomy signal in lamprey central nervous system neurons, and that this signal may induce transcription of mRNA, which is then transported down the axon to its injured tip.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brittany H. John
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Naito Y, Asada N, Nguyen MD, Sanada K. AMP-activated protein kinase regulates cytoplasmic dynein behavior and contributes to neuronal migration in the developing neocortex. Development 2020; 147:dev187310. [PMID: 32554528 DOI: 10.1242/dev.187310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
The microtubule motor cytoplasmic dynein contributes to radial migration of newborn pyramidal neurons in the developing neocortex. Here, we show that AMP-activated protein kinase (AMPK) mediates the nucleus-centrosome coupling, a key process for radial neuronal migration that relies on dynein. Depletion of the catalytic subunit of AMPK in migrating neurons impairs this coupling as well as neuronal migration. AMPK shows overlapping subcellular distribution with cytoplasmic dynein and the two proteins interact with each other. Pharmacological inhibition or activation of AMPK modifies the phosphorylation states of dynein intermediate chain (DIC) and dynein functions. Furthermore, AMPK phosphorylates DIC at Ser81. Expression of a phospho-resistant mutant of DIC retards neuronal migration in a similar way to AMPK depletion. Conversely, expression of the phospho-mimetic mutant of DIC alleviates impaired neuronal migration caused by AMPK depletion. Thus, AMPK-regulated dynein function via Ser81 DIC phosphorylation is crucial for radial neuronal migration.
Collapse
Affiliation(s)
- Yasuki Naito
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoyuki Asada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry & Molecular Biology, Calgary, Alberta, Canada T2N4N1
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Merino-Gracia J, Zamora-Carreras H, Bruix M, Rodríguez-Crespo I. Molecular Basis for the Protein Recognition Specificity of the Dynein Light Chain DYNLT1/Tctex1: CHARACTERIZATION OF THE INTERACTION WITH ACTIVIN RECEPTOR IIB. J Biol Chem 2016; 291:20962-20975. [PMID: 27502274 DOI: 10.1074/jbc.m116.736884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 01/19/2023] Open
Abstract
It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown. We describe herein the sequence recognition properties of the hydrophobic groove of DYNLT1 known to accommodate dynein intermediate chain. Using a pepscan approach, we have substituted each amino acid within the interacting peptide for all 20 natural amino acids and identified novel binding sequences. Our data led us to propose activin receptor IIB as a novel DYNLT1 ligand and suggest that DYNLT1 functions as a molecular dimerization engine bringing together two receptor monomers in the cytoplasmic side of the membrane. In addition, we provide evidence regarding a dual binding mode adopted by certain interacting partners such as Lfc or the parathyroid hormone receptor. Finally, we have used NMR spectroscopy to obtain the solution structure of human DYNLT1 forming a complex with dynein intermediate chain of ∼74 kDa; it is the first mammalian structure available.
Collapse
Affiliation(s)
- Javier Merino-Gracia
- From the Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and
| | - Héctor Zamora-Carreras
- Departamento Química Física Biológica, Instituto Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Marta Bruix
- Departamento Química Física Biológica, Instituto Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Ignacio Rodríguez-Crespo
- From the Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and
| |
Collapse
|
7
|
Ross MW, Mitchell DJ, Cain JC, Blasier KR, Pfister KK. Live cell imaging of cytoplasmic dynein movement in transfected embryonic rat neurons. Methods Cell Biol 2015; 131:253-67. [PMID: 26794518 DOI: 10.1016/bs.mcb.2015.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Live cell imaging of the movement of various membrane-bounded organelle cargos has enhanced our understanding of their function. Eukaryotic cells utilize microtubules and two classes of microtubule-based motor proteins, cytoplasmic dynein and members of the kinesin family, to deliver a variety of membrane-bounded organelles and other cargos to their appropriate locations. In order to better understand the functions and regulation of cytoplasmic dynein, we developed a method to study its location and motility in living cells. The technique takes advantage of the long thin axons of cultured hippocampal neurons. We use calcium phosphate to transfect fluorescent-tagged dynein intermediate chain (IC) subunits (DYNC1I) into cultured neurons. When the ICs are expressed at low levels, they are effective probes for the location of the cytoplasmic dynein complex in axons when living cells are imaged with fluorescence microscopy. The fluorescent subunit probes can be used to identify specific cargos of dynein complexes with different IC isoforms as well as the kinetic properties of cytoplasmic dynein.
Collapse
Affiliation(s)
- Mitchell W Ross
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David J Mitchell
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - John C Cain
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Kiev R Blasier
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - K Kevin Pfister
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Clark SA, Jespersen N, Woodward C, Barbar E. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds. FEBS Lett 2015; 589:2543-51. [PMID: 26226419 DOI: 10.1016/j.febslet.2015.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023]
Abstract
A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly.
Collapse
Affiliation(s)
- Sarah A Clark
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Nathan Jespersen
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Clare Woodward
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, St. Paul, MN 55108, United States
| | - Elisar Barbar
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
9
|
Pfister KK. Distinct functional roles of cytoplasmic dynein defined by the intermediate chain isoforms. Exp Cell Res 2015; 334:54-60. [PMID: 25576383 DOI: 10.1016/j.yexcr.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/26/2014] [Indexed: 02/01/2023]
Abstract
The motor protein, cytoplasmic dynein is responsible for the movement of a variety of cargoes toward microtubule minus ends in cells. Little is understood about how dynein is regulated to specifically transport its various cargoes. In vertebrates, the dynein motor domain (DYNC1H) is encoded by a single gene; while there are two genes for the five smaller subunits that comprise the cargo binding domain of the dynein complex. The isoforms of the intermediate chain (DYNC1I) provide a good model system with which to study the roles the different isoforms of the cargo domain subunits have in designating specific dynein functions. The intermediate chains (DYNC1I) play a key scaffold role in the dynein complex. In neurons, dynein complexes with different intermediate chain isoforms have distinct roles, including cargo binding and transport. Some of the phospho-isoforms of the intermediate chain also specify binding to specific cargo. These data support the model that cytoplasmic dynein can be specifically regulated through the different isoforms of the subunits.
Collapse
Affiliation(s)
- K Kevin Pfister
- Cell Biology Department School of Medicine University of Virginia, PO Box 800732, Charlottesville, VA 22908, United States.
| |
Collapse
|
10
|
Blasier KR, Humsi MK, Ha J, Ross MW, Smiley WR, Inamdar NA, Mitchell DJ, Lo KWH, Pfister KK. Live cell imaging reveals differential modifications to cytoplasmic dynein properties by phospho- and dephosphomimic mutations of the intermediate chain 2C S84. J Neurosci Res 2014; 92:1143-54. [PMID: 24798412 DOI: 10.1002/jnr.23388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/28/2023]
Abstract
Cytoplasmic dynein is a multisubunit motor protein responsible for intracellular cargo transport toward microtubule minus ends. There are multiple isoforms of the dynein intermediate chain (DYNC1I, IC), which is encoded by two genes. One way to regulate cytoplasmic dynein is by IC phosphorylation. The IC-2C isoform is expressed in all cells, and the functional significance of phosphorylation on IC-2C serine 84 was investigated by using live cell imaging of fluorescent protein-tagged IC-2C wild type (WT) and phospho- and dephosphomimic mutant isoforms in axonal transport model systems. Both mutations modulated dynein functional properties. The dephosphomimic mutant IC-2C S84A had greater colocalization with mitochondria than the IC-2C WT or the phosphomimic mutant IC-2C S84D. The dephosphomimic mutant IC-2C S84A was also more likely to be motile than the phosphomimic mutant IC-2C S84D or the IC-2C WT. In contrast, the phosphomimic mutant IC-2C S84D mutant was more likely to move in the retrograde direction than was the IC-2C S84A mutant. The phosphomimic IC-2C S84D was also as likely as the IC-2C WT to colocalize with mitochondria. Both the S84D phospho- and the S84A dephosphomimic mutants were found to be capable of microtubule minus-end-directed (retrograde) movement in axons. They were also observed to be passively transported in the anterograde direction. These data suggest that the IC-2C S84 has a role in modulating dynein properties.
Collapse
Affiliation(s)
- Kiev R Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 2014; 34:1293-305. [PMID: 24453320 DOI: 10.1523/jneurosci.1870-13.2014] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential cellular pathway for degrading defective organelles and aggregated proteins. Defects in autophagy have been implicated in the neurodegenerative disorder Huntington's disease (HD), in which polyglutamine-expanded huntingtin (polyQ-htt) is predominantly cleared by autophagy. In neurons, autophagosomes form constitutively at the axon tip and undergo robust retrograde axonal transport toward the cell body, but the factors regulating autophagosome dynamics and autophagosome maturation are not well understood. Here, we show that both huntingtin (htt) and its adaptor protein huntingtin-associated protein-1 (HAP1) copurify and colocalize with autophagosomes in neurons. We use live-cell imaging and RNAi in primary neurons from GFP-LC3 transgenic mice to show that htt and HAP1 control autophagosome dynamics, regulating dynein and kinesin motors to promote processive transport. Expression of polyQ-htt in either primary neurons or striatal cells from HD knock-in mice is sufficient to disrupt the axonal transport of autophagosomes. Htt is not required for autophagosome formation or cargo loading. However, the defective autophagosome transport observed in both htt-depleted neurons and polyQ-htt-expressing neurons is correlated with inefficient degradation of engulfed mitochondrial fragments. Together, these studies identify htt and HAP1 as regulators of autophagosome transport in neurons and suggest that misregulation of autophagosome transport in HD leads to inefficient autophagosome maturation, potentially due to inhibition of autophagosome/lysosome fusion along the axon. The resulting defective clearance of both polyQ-htt aggregates and dysfunctional mitochondria by neuronal autophagosomes may contribute to neurodegeneration and cell death in HD.
Collapse
|
12
|
Siglin AE, Sun S, Moore JK, Tan S, Poenie M, Lear JD, Polenova T, Cooper JA, Williams JC. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction. PLoS One 2013; 8:e59453. [PMID: 23577064 PMCID: PMC3618186 DOI: 10.1371/journal.pone.0059453] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC) and the dynactin p150(Glued); however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10-44, is sufficient for binding p150(Glued). Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150(Glued) form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150(Glued) fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD) experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150(Glued). Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.
Collapse
Affiliation(s)
- Amanda E. Siglin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey K. Moore
- Department of Cell Biology & Physiology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Sarah Tan
- Department of Cell and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Martin Poenie
- Department of Cell and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - James D. Lear
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - John A. Cooper
- Department of Cell Biology & Physiology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - John C. Williams
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, United States of America
| |
Collapse
|
13
|
Zhang J, Twelvetrees AE, Lazarus JE, Blasier KR, Yao X, Inamdar NA, Holzbaur ELF, Pfister KK, Xiang X. Establishing a novel knock-in mouse line for studying neuronal cytoplasmic dynein under normal and pathologic conditions. Cytoskeleton (Hoboken) 2013; 70:215-27. [PMID: 23475693 PMCID: PMC3670090 DOI: 10.1002/cm.21102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022]
Abstract
Cytoplasmic dynein plays important roles in mitosis and the intracellular transport of organelles, proteins, and mRNAs. Dynein function is particularly critical for survival of neurons, as mutations in dynein are linked to neurodegenerative diseases. Dynein function is also implicated in neuronal regeneration, driving the active transport of signaling molecules following injury of peripheral neurons. To enhance our understanding of dynein function and regulation in neurons, we established a novel knock-in mouse line in which the neuron-specific cytoplasmic dynein 1 intermediate chain 1 (IC-1) is tagged with both GFP and a 3xFLAG tag at its C-terminus. The fusion gene is under the control of IC-1's endogenous promoter and is integrated at the endogenous locus of the IC-1-encoding gene Dync1i1. The IC-1-GFP-3xFLAG fusion protein is incorporated into the endogenous dynein complex, and movements of GFP-labeled dynein expressed at endogenous levels can be observed in cultured neurons for the first time. The knock-in mouse line also allows isolation and analysis of dynein-bound proteins specifically from neurons. Using this mouse line we have found proteins, including 14-3-3 zeta, which physically interact with dynein upon injury of the brain cortex. Thus, we have created a useful tool for studying dynein function in the central nervous system under normal and pathologic conditions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Alison E. Twelvetrees
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob E. Lazarus
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kiev R. Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xuanli Yao
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nirja A. Inamdar
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Erika L. F. Holzbaur
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - K. Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
14
|
Epidermal growth factor stimulates extracellular-signal regulated kinase phosphorylation of a novel site on cytoplasmic Dynein intermediate chain 2. Int J Mol Sci 2013; 14:3595-620. [PMID: 23434660 PMCID: PMC3588060 DOI: 10.3390/ijms14023595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.
Collapse
|
15
|
Hirayama M, Kobayashi D, Mizuguchi S, Morikawa T, Nagayama M, Midorikawa U, Wilson MM, Nambu AN, Yoshizawa AC, Kawano S, Araki N. Integrated proteomics identified novel activation of dynein IC2-GR-COX-1 signaling in neurofibromatosis type I (NF1) disease model cells. Mol Cell Proteomics 2013; 12:1377-94. [PMID: 23358504 DOI: 10.1074/mcp.m112.024802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.
Collapse
Affiliation(s)
- Mio Hirayama
- Department of Tumor Genetics and Biology, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 2013; 32:15495-510. [PMID: 23115187 DOI: 10.1523/jneurosci.5599-11.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retrograde transport of Trk-containing endosomes from the axon to the cell body by cytoplasmic dynein is necessary for axonal and neuronal survival. We investigated the recruitment of dynein to signaling endosomes in rat embryonic neurons and PC12 cells. We identified a novel phosphoserine on the dynein intermediate chains (ICs), and we observed a time-dependent neurotrophin-stimulated increase in intermediate chain phosphorylation on this site in both cell types. Pharmacological studies, overexpression of constitutively active MAP kinase kinase, and an in vitro assay with recombinant proteins demonstrated that the intermediate chains are phosphorylated by the MAP kinase ERK1/2, extracellular signal-regulated kinase, a major downstream effector of Trk. Live cell imaging with fluorescently tagged IC mutants demonstrated that the dephosphomimic mutants had significantly reduced colocalization with Trk and Rab7, but not a mitochondrial marker. The phosphorylated intermediate chains were enriched on immunoaffinity-purified Trk-containing organelles. Inhibition of ERK reduced the amount of phospho-IC and the total amount of dynein that copurified with the signaling endosomes. In addition, inhibition of ERK1/2 reduced the motility of Rab7- and TrkB-containing endosomes and the extent of their colocalization with dynein in axons. NGF-dependent survival of sympathetic neurons was significantly reduced by the overexpression of the dephosphomimic mutant IC-1B-S80A, but not WT IC-1B, further demonstrating the functional significance of phosphorylation on this site. These results demonstrate that neurotrophin binding to Trk initiates the recruitment of cytoplasmic dynein to signaling endosomes through ERK1/2 phosphorylation of intermediate chains for their subsequent retrograde transport in axons.
Collapse
|
17
|
Banks GT, Haas MA, Line S, Shepherd HL, Alqatari M, Stewart S, Rishal I, Philpott A, Kalmar B, Kuta A, Groves M, Parkinson N, Acevedo-Arozena A, Brandner S, Bannerman D, Greensmith L, Hafezparast M, Koltzenburg M, Deacon R, Fainzilber M, Fisher EMC. Behavioral and other phenotypes in a cytoplasmic Dynein light intermediate chain 1 mutant mouse. J Neurosci 2011; 31:5483-94. [PMID: 21471385 PMCID: PMC3096546 DOI: 10.1523/jneurosci.5244-10.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 12/21/2022] Open
Abstract
The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.
Collapse
Affiliation(s)
- Gareth T Banks
- Department of Neurodegenerative Disease, Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, London WC1N 3BG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Oterendorp C, Lorber B, Jovanovic Z, Yeo G, Lagrèze WA, Martin KR. The expression of dynein light chain DYNLL1 (LC8-1) is persistently downregulated in glaucomatous rat retinal ganglion cells. Exp Eye Res 2011; 92:138-46. [PMID: 21145319 DOI: 10.1016/j.exer.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 01/16/2023]
Abstract
High intraocular pressure induces glaucomatous degeneration of retinal ganglion cells (RGCs). The cellular mechanisms leading to activation of the apoptosis cascade are multidimensional and only partially understood. A small dynein subunit, the light chain DYNLL1 (synonym LC8-1, PIN) has recently been shown to be an important regulator of neuron proteins known to be involved in glaucomatous RGC death including NO synthases, the pro-apoptotic protein Bim and the dynein intermediate chain. Also, DYNLL1 is a regulator of mitochondria anchorage in axons, which is impaired in glaucoma. We investigated expression of DYNLL1 and 2 and its dynein binding partner dynein intermediate chain in a rat model of chronic glaucoma. Laser capture microdissection (LCM) allowed us to collect distinct cell layers and cell bodies from the retina to gain data highly specific for retinal ganglion cells. Glaucoma was induced in 23 rats by laser treatment to the aqueous outflow tract. RNA was extracted from LCM dissected ganglion cell layers (GCL) and 100 pooled RGCs per retina. Expression levels for 1, 2 and 4 week timepoints were analysed by quantitative PCR for DYNLL1 and 2, dynein intermediate chain and GFAP. DYNLL protein abundance in RGCs was quantified in immunostained retina sections. DYNLL gene 1 but not 2 was expressed in RGCs. In the glaucoma model DYNLL1 was strongly and persistently downregulated at all timepoints. DYNLL protein was significantly less abundant at the 4 week timepoint. In contrast, the motorprotein binding partner dynein intermediate chain 1 was more stably expressed. DYNLL2 was upregulated in glia cells at 2 weeks. Expression of DYNLL1, the only form of the dynein light chain expressed in RGCs, is downregulated persistently in glaucoma, while its binding partner dynein IC-1 is unchanged. The specific lack of DYNLL1 could have an impact on the function of their regulatory binding partners and contribute in several ways to neuron dysfunction and apoptosis.
Collapse
Affiliation(s)
- Christian van Oterendorp
- Centre for Brain Repair, University of Cambridge, The E.D. Adrian Bldg., Forvie Site, Robinson Way, Cambridge, CB2 2PY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Deng W, Garrett C, Dombert B, Soura V, Banks G, Fisher EMC, van der Brug MP, Hafezparast M. Neurodegenerative mutation in cytoplasmic dynein alters its organization and dynein-dynactin and dynein-kinesin interactions. J Biol Chem 2010; 285:39922-34. [PMID: 20889981 PMCID: PMC3000974 DOI: 10.1074/jbc.m110.178087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Indexed: 01/10/2023] Open
Abstract
A single amino acid change, F580Y (Legs at odd angles (Loa), Dync1h1(Loa)), in the highly conserved and overlapping homodimerization, intermediate chain, and light intermediate chain binding domain of the cytoplasmic dynein heavy chain can cause severe motor and sensory neuron loss in mice. The mechanism by which the Loa mutation impairs the neuron-specific functions of dynein is not understood. To elucidate the underlying molecular mechanisms of neurodegeneration arising from this mutation, we applied a cohort of biochemical methods combined with in vivo assays to systemically study the effects of the mutation on the assembly of dynein and its interaction with dynactin. We found that the Loa mutation in the heavy chain leads to increased affinity of this subunit of cytoplasmic dynein to light intermediate and a population of intermediate chains and a suppressed association of dynactin to dynein. These data suggest that the Loa mutation drives the assembly of cytoplasmic dynein toward a complex with lower affinity to dynactin and thus impairing transport of cargos that tether to the complex via dynactin. In addition, we detected up-regulation of kinesin light chain 1 (KLC1) and its increased association with dynein but reduced microtubule-associated KLC1 in the Loa samples. We provide a model describing how up-regulation of KLC1 and its interaction with cytoplasmic dynein in Loa could play a regulatory role in restoring the retrograde and anterograde transport in the Loa neurons.
Collapse
Affiliation(s)
- Wenhan Deng
- From School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Caroline Garrett
- From School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Benjamin Dombert
- From School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Violetta Soura
- From School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Gareth Banks
- the Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Elizabeth M. C. Fisher
- the Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | | | - Majid Hafezparast
- From School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
20
|
Kuta A, Deng W, Morsi El-Kadi A, Banks GT, Hafezparast M, Pfister KK, Fisher EMC. Mouse cytoplasmic dynein intermediate chains: identification of new isoforms, alternative splicing and tissue distribution of transcripts. PLoS One 2010; 5:e11682. [PMID: 20657784 PMCID: PMC2908135 DOI: 10.1371/journal.pone.0011682] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 06/20/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Intracellular transport of cargoes including organelles, vesicles, signalling molecules, protein complexes, and RNAs, is essential for normal function of eukaryotic cells. The cytoplasmic dynein complex is an important motor that moves cargos along microtubule tracks within the cell. In mammals this multiprotein complex includes dynein intermediate chains 1 and 2 which are encoded by two genes, Dync1i1 and Dync1i2. These proteins are involved in dynein cargo binding and dynein complexes with different intermediate chains bind to specific cargoes, although the mechanisms to achieve this are not known. The DYNC1I1 and DYNC1I2 proteins are translated from different splice isoforms, and specific forms of each protein are essential for the function of different dynein complexes in neurons. METHODOLOGY/PRINCIPAL FINDINGS Here we have undertaken a systematic survey of the dynein intermediate chain splice isoforms in mouse, basing our study on mRNA expression patterns in a range of tissues, and on bioinformatics analysis of mouse, rat and human genomic and cDNA sequences. We found a complex pattern of alternative splicing of both dynein intermediate chain genes, with maximum complexity in the embryonic and adult nervous system. We have found novel transcripts, including some with orthologues in human and rat, and a new promoter and alternative non-coding exon 1 for Dync1i2. CONCLUSIONS/SIGNIFICANCE These data, including the cloned isoforms will be essential for understanding the role of intermediate chains in the cytoplasmic dynein complex, particularly their role in cargo binding within individual tissues including different brain regions.
Collapse
Affiliation(s)
- Anna Kuta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Wenhan Deng
- Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ali Morsi El-Kadi
- Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Gareth T. Banks
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Majid Hafezparast
- Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
21
|
Mische S, He Y, Ma L, Li M, Serr M, Hays TS. Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation. Mol Biol Cell 2008; 19:4918-29. [PMID: 18799620 DOI: 10.1091/mbc.e08-05-0483] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The dynein light intermediate chain (LIC) is a subunit unique to the cytoplasmic form of dynein, but how it contributes to dynein function is not fully understood. Previous work has established that the LIC homodimer binds directly to the dynein heavy chain and may mediate the attachment of dynein to centrosomes and other cargoes. Here, we report our characterization of the LIC in Drosophila. Unlike vertebrates, in which two Lic genes encode multiple subunit isoforms, the Drosophila LIC is encoded by a single gene. We determined that the single LIC polypeptide is phosphorylated, and that different phosphoisoforms can assemble into the dynein motor complex. Our mutational analyses demonstrate that, similar to other dynein subunits, the Drosophila LIC is required for zygotic development, germline specification of the oocyte, and mitotic cell division. We show that RNA interference depletion of LIC in Drosophila S2 cells does not block the recruitment of a dynein complex to kinetochores, but it does delay inactivation of Mad2 signaling and mitotic progression. Our observations suggest the LIC contributes to a broad range of dynein functions.
Collapse
Affiliation(s)
- Sarah Mische
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ha J, Lo KWH, Myers KR, Carr TM, Humsi MK, Rasoul BA, Segal RA, Pfister KK. A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. ACTA ACUST UNITED AC 2008; 181:1027-39. [PMID: 18559670 PMCID: PMC2426944 DOI: 10.1083/jcb.200803150] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytoplasmic dynein is the multisubunit motor protein for retrograde movement of diverse cargoes to microtubule minus ends. Here, we investigate the function of dynein variants, defined by different intermediate chain (IC) isoforms, by expressing fluorescent ICs in neuronal cells. Green fluorescent protein (GFP)-IC incorporates into functional dynein complexes that copurify with membranous organelles. In living PC12 cell neurites, GFP-dynein puncta travel in both the anterograde and retrograde directions. In cultured hippocampal neurons, neurotrophin receptor tyrosine kinase B (TrkB) signaling endosomes are transported by cytoplasmic dynein containing the neuron-specific IC-1B isoform and not by dynein containing the ubiquitous IC-2C isoform. Similarly, organelles containing TrkB isolated from brain by immunoaffinity purification also contain dynein with IC-1 but not IC-2 isoforms. These data demonstrate that the IC isoforms define dynein populations that are selectively recruited to transport distinct cargoes.
Collapse
Affiliation(s)
- Junghoon Ha
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cosker KE, Courchesne SL, Segal RA. Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 2008; 18:270-5. [PMID: 18778772 PMCID: PMC2693191 DOI: 10.1016/j.conb.2008.08.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/26/2022]
Abstract
Neurons extend axonal processes over long distances, necessitating efficient transport mechanisms to convey target-derived neurotrophic survival signals from remote distal axons to cell bodies. Retrograde transport, powered by dynein motors, supplies cell bodies with survival signals in the form of 'signaling endosomes'. In this review, we will discuss new advances in our understanding of the motor proteins that bind to and move signaling components in a retrograde direction and discuss mechanisms that might specify distinct neuronal responses to spatially restricted neurotrophin signals. Disruption of retrograde transport leads to a variety of neurodegenerative diseases, highlighting the role of retrograde transport of signaling endosomes for axonal maintenance and the importance of efficient transport for neuronal survival and function.
Collapse
Affiliation(s)
- Katharina E Cosker
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Myers KR, Lo KWH, Lye RJ, Kogoy JM, Soura V, Hafezparast M, Pfister KK. Intermediate chain subunit as a probe for cytoplasmic dynein function: biochemical analyses and live cell imaging in PC12 cells. J Neurosci Res 2008; 85:2640-7. [PMID: 17279546 DOI: 10.1002/jnr.21213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytoplasmic dynein 1 is a multi-subunit motor protein responsible for microtubule minus end-directed transport in axons. The cytoplasmic dynein intermediate chain subunit has a scaffold-like role in the dynein complex; it directly binds to four of the other five subunits, the heavy chain and the three light chains. The intermediate chain also binds the p150 subunit of dynactin, a protein that is essential for many dynein functions. We reexamined the generation of rat cytoplasmic dynein intermediate chain isoforms by the alternative splicing of the two genes that encode this subunit and identified an additional splicing site in intermediate chain gene 1. We reinvestigated the expression of the intermediate chain 1 isoforms in cultured cells and tissues. The Loa mouse, which is homozygote lethal, contains a missense mutation in the region of the cytoplasmic dynein heavy chain gene that binds the intermediate chain. Protein binding studies showed that all six intermediate chains were able to bind to the mutated heavy chain. GFP-tagged intermediate chains were constructed and PC12 cell lines with stable expression of the fusion proteins were established. Live cell imaging and comparative immunocytochemical analyses show that dynein is enriched in the actin rich region of growth cones.
Collapse
Affiliation(s)
- Kenneth R Myers
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Dinkelmann MV, Zhang H, Skop AR, White JG. SPD-3 is required for spindle alignment in Caenorhabditis elegans embryos and localizes to mitochondria. Genetics 2007; 177:1609-20. [PMID: 17947426 PMCID: PMC2147968 DOI: 10.1534/genetics.107.078386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/20/2007] [Indexed: 12/17/2022] Open
Abstract
During the development of multicellular organisms, cellular diversity is often achieved through asymmetric cell divisions that produce two daughter cells having different developmental potentials. Prior to an asymmetric cell division, cellular components segregate to opposite ends of the cell defining an axis of polarity. The mitotic spindle rotationally aligns along this axis of polarity, thereby ensuring that the cleavage plane is positioned such that segregated components end up in individual daughter cells. Here we report our characterization of a novel gene required for spindle alignment in Caenorhabditis elegans. During the first mitosis in spd-3(oj35) embryos the spindle failed to align along the anterior/posterior axis, leading to abnormal cleavage configurations. spd-3(oj35) embryos had additional defects reminiscent of dynein/dynactin loss-of-function possibly caused by the mislocalization of dynactin. Surprisingly, we found that SPD-3GFP localized to mitochondria. Consistent with this localization, spd-3(oj35) worms exhibited slow growth and increased ATP concentrations, which are phenotypes similar to those described for other mitochondrial mutants in C. elegans. To our knowledge, SPD-3 is the first example of a link between mitochondria and spindle alignment in C. elegans.
Collapse
Affiliation(s)
- Maria V Dinkelmann
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
26
|
Lo KWH, Kogoy JM, Rasoul BA, King SM, Pfister KK. Interaction of the DYNLT (TCTEX1/RP3) light chains and the intermediate chains reveals novel intersubunit regulation during assembly of the dynein complex. J Biol Chem 2007; 282:36871-8. [PMID: 17965411 DOI: 10.1074/jbc.m705991200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic dynein 1 cargo binding domain is formed by five subunits including the intermediate chain and the DYNLT, DYNLL, and DYNLRB light chain families. Six isoforms of the intermediate chain and two isoforms of each of the light chain families have been identified in mammals. There is evidence that different subunit isoforms are involved in regulating dynein function, in particular linking dynein to different cargoes. However, it is unclear how the subunit isoforms are assembled or if there is any specificity to their interactions. Co-immunoprecipitation using DYNLT-specific antibodies reveals that dynein complexes with DYNLT light chains also contain the DYNLL and DYNLRB light chains. The DYNLT light chains, but not DYNLL light chains, associate exclusively with the dynein complex. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that both members of the DYNLT family are capable of forming homodimers and heterodimers. In addition, both homodimers of the DYNLT family bind all six intermediate chain isoforms. However, DYNLT heterodimers do not bind to the intermediate chain. Thus, whereas all combinations of DYNLT light chain dimers can be made, not all of the possible combinations of the isoforms are utilized during the assembly of the dynein complex.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
27
|
Lo KWH, Kan HM, Pfister KK. Identification of a Novel Region of the Cytoplasmic Dynein Intermediate Chain Important for Dimerization in the Absence of the Light Chains. J Biol Chem 2006; 281:9552-9. [PMID: 16452477 DOI: 10.1074/jbc.m511721200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy chains, which contain the motor domains, but little is known about how the two intermediate chains interact. There are six intermediate chain isoforms, and it has been hypothesized that different isoforms may regulate specific dynein functions. However, there are little data on the potential combinations of the intermediate chain isoforms in the dynein complexes. We used co-immunoprecipitation analyses to demonstrate that all combinations of homo- and heterodimers of the six intermediate chains are possible. Therefore the formation of dynein complexes with different combinations of isoforms is not limited by interaction between the various intermediate chains. We further sought to identify the domain necessary for the dimerization of the intermediate chains. Analysis of a series of truncation and deletion mutants showed that a 61-amino-acid region is necessary for dimerization of the intermediate chain. This region does not include the N-terminal coiled-coil, the C-terminal WD repeat domain, or the three different binding sites for the Tctex1, LC8, and Roadblock light chains. Analytical gel filtration and covalent cross-linking of purified recombinant polypeptides further demonstrated that the intermediate chains can dimerize in vitro in the absence of the light chains.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
28
|
Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EMC. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2006; 2:e1. [PMID: 16440056 PMCID: PMC1331979 DOI: 10.1371/journal.pgen.0020001] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.
Collapse
Affiliation(s)
- K Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nikulina K, Patel-King RS, Takebe S, Pfister KK, King SM. The Roadblock light chains are ubiquitous components of cytoplasmic dynein that form homo- and heterodimers. ACTA ACUST UNITED AC 2005; 57:233-45. [PMID: 14752807 DOI: 10.1002/cm.10172] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Roadblock/LC7 class of light chains associate with the intermediate chains at the base of the soluble dynein particle. In mammals, there are two Roadblock isoforms (Robl1 and Robl2), one of which (Robl2) is differentially expressed in a tissue-dependent manner and is especially prominent in testis. Here we define the alpha helical content of Robl and demonstrate using both the yeast two-hybrid system and in vitro biochemistry that Robl1 and Robl2 are capable of forming homo- and heterodimers. This is the first report of heterodimer formation by any cytoplasmic dynein component, and it further enlarges the number of potential cytoplasmic dynein isoforms available for binding specific cellular cargoes. In addition, we have generated an antibody that specifically recognizes Robl light chains and shows a 5-10 fold preference for Robl2 over Robl1. Using this antibody, we show that Robl is a ubiquitous cytoplasmic dynein component, being found in samples purified from brain, liver, kidney, and testis. Immunofluorescence analysis reveals that Robl is present in punctate organelles in rat neuroblastoma cells. In testis, Robl is found in Leydig cells, spermatocytes, and sperm flagella.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Specificity/immunology
- Blotting, Western
- Brain Chemistry
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Centrifugation, Density Gradient
- Circular Dichroism
- Cloning, Molecular
- DNA, Complementary/genetics
- Dyneins/chemistry
- Dyneins/genetics
- Dyneins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Genes, Reporter/genetics
- Immunohistochemistry
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kidney/chemistry
- Leydig Cells/chemistry
- Liver/chemistry
- Male
- Maltose-Binding Proteins
- Mice
- Microscopy, Fluorescence
- Microtubules/chemistry
- Molecular Sequence Data
- Molecular Weight
- Polymerase Chain Reaction
- Protein Binding
- Protein Structure, Secondary
- Rats
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Amino Acid
- Spermatozoa/chemistry
- Testis/chemistry
- Two-Hybrid System Techniques
- Vaccination
Collapse
Affiliation(s)
- Karina Nikulina
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305, USA
| | | | | | | | | |
Collapse
|
30
|
Lee WL, Kaiser MA, Cooper JA. The offloading model for dynein function: differential function of motor subunits. ACTA ACUST UNITED AC 2005; 168:201-7. [PMID: 15642746 PMCID: PMC2171595 DOI: 10.1083/jcb.200407036] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model.
Collapse
Affiliation(s)
- Wei-Lih Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
31
|
Li MG, Serr M, Newman EA, Hays TS. The Drosophila tctex-1 light chain is dispensable for essential cytoplasmic dynein functions but is required during spermatid differentiation. Mol Biol Cell 2004; 15:3005-14. [PMID: 15090621 PMCID: PMC452559 DOI: 10.1091/mbc.e04-01-0013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Variations in subunit composition and modification have been proposed to regulate the multiple functions of cytoplasmic dynein. Here, we examine the role of the Drosophila ortholog of tctex-1, the 14-kDa dynein light chain. We show that the 14-kDa light chain is a bona fide component of Drosophila cytoplasmic dynein and use P element excision to generate flies that completely lack this dynein subunit. Remarkably, the null mutant is viable and the only observed defect is complete male sterility. During spermatid differentiation, the 14-kDa light chain is required for the localization of a nuclear "cap" of cytoplasmic dynein and for proper attachment between the sperm nucleus and flagellar basal body. Our results provide evidence that the function of the 14-kDa light chain in Drosophila is distinct from other dynein subunits and is not required for any essential functions in early development or in the adult organism.
Collapse
Affiliation(s)
- Min-Gang Li
- Department of Genetics, Cell, and Developmental Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
32
|
Byers HR, Maheshwary S, Amodeo DM, Dykstra SG. Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes. J Invest Dermatol 2003; 121:813-20. [PMID: 14632200 DOI: 10.1046/j.1523-1747.2003.12481.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated motor molecule involved in the retrograde transport of membrane-bound organelles. To determine whether the supranuclear melanin cap of transferred, phagocytosed melanosomes in keratinocytes is associated with cytoplasmic dynein, we performed immunofluorescent confocal microscopy on human keratinocytes in situ. We identified the intermediate chain of cytoplasmic dynein by immunoblotting and examined its distribution by confocal microscopy in relation to microtubules and melano-phagolysosomes in vitro. We also used antisense and sense oligonucleotides of the cytoplasmic dynein heavy chain 1 (Dyh1) and time-lapse and microscopy. The intermediate chain of cytoplasmic dynein was identified in extracts of human foreskin epidermis and in isolated human keratinocytes. The intermediate chain localized with the perinuclear melano-phagolysosomal aggregates in vitro and the supranuclear melanin cap in situ. Antisense oligonucleotides directed towards Dyh1 resulted in dispersal of the keratinocyte perinuclear melano-phagolysosomal aggregates after 24 to 48 h, whereas cells treated with diluent or sense oligonucleotides maintained tight perinuclear aggregates. Taken together, these findings indicate that in human keratinocytes, the retrograde microtubule motor cytoplasmic dynein mediates the perinuclear aggregation of phagocytosed melanosomes, participates in the formation of the supranuclear melanin cap or "microparasol" and serves as a mechanism to help protect the nucleus from ultraviolet-induced DNA damage.
Collapse
Affiliation(s)
- H Randolph Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
33
|
Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M, Faber PW, MacDonald ME, McPhaul MJ, Brady ST. Neuropathogenic Forms of Huntingtin and Androgen Receptor Inhibit Fast Axonal Transport. Neuron 2003; 40:41-52. [PMID: 14527432 DOI: 10.1016/s0896-6273(03)00569-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huntington's and Kennedy's disease are autosomal dominant neurodegenerative diseases caused by pathogenic expansion of polyglutamine tracts. Expansion of glutamine repeats must in some way confer a gain of pathological function that disrupts an essential cellular process and leads to loss of affected neurons. Association of huntingtin with vesicular structures raised the possibility that axonal transport might be altered. Here we show that polypeptides containing expanded polyglutamine tracts, but not normal N-terminal huntingtin or androgen receptor, directly inhibit both fast axonal transport in isolated axoplasm and elongation of neuritic processes in intact cells. Effects were greater with truncated polypeptides and occurred without detectable morphological aggregates.
Collapse
Affiliation(s)
- Györgyi Szebenyi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Helfand BT, Loomis P, Yoon M, Goldman RD. Rapid transport of neural intermediate filament protein. J Cell Sci 2003; 116:2345-59. [PMID: 12711702 DOI: 10.1242/jcs.00526] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peripherin is a neural intermediate filament protein that is expressed in peripheral and enteric neurons, as well as in PC12 cells. A determination of the motile properties of peripherin has been undertaken in PC12 cells during different stages of neurite outgrowth. The results reveal that non-filamentous, non-membrane bound peripherin particles and short peripherin intermediate filaments, termed 'squiggles', are transported at high speed throughout PC12 cell bodies, neurites and growth cones. These movements are bi-directional, and the majority require microtubules along with their associated molecular motors, conventional kinesin and cytoplasmic dynein. Our data demonstrate that peripherin particles and squiggles can move as components of a rapid transport system capable of delivering cytoskeletal subunits to the most distal regions of neurites over relatively short time periods.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 11-145, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
35
|
Boylan KLM, Hays TS. The gene for the intermediate chain subunit of cytoplasmic dynein is essential in Drosophila. Genetics 2002; 162:1211-20. [PMID: 12454067 PMCID: PMC1462348 DOI: 10.1093/genetics/162.3.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microtubule motor cytoplasmic dynein powers a variety of intracellular transport events that are essential for cellular and developmental processes. A current hypothesis is that the accessory subunits of the dynein complex are important for the specialization of cytoplasmic dynein function. In a genetic approach to understanding the range of dynein functions and the contribution of the different subunits to dynein motor function and regulation, we have identified mutations in the gene for the cytoplasmic dynein intermediate chain, Dic19C. We used a functional Dic transgene in a genetic screen to recover X-linked lethal mutations that require this transgene for viability. Three Dic mutations were identified and characterized. All three Dic alleles result in larval lethality, demonstrating that the intermediate chain serves an essential function in Drosophila. Like a deficiency that removes Dic19C, the Dic mutations dominantly enhance the rough eye phenotype of Glued(1), a dominant mutation in the gene for the p150 subunit of the dynactin complex, a dynein activator. Additionally, we used complementation analysis to identify an existing mutation, shortwing (sw), as an allele of the dynein intermediate chain gene. Unlike the Dic alleles isolated de novo, shortwing is homozygous viable and exhibits recessive and temperature-sensitive defects in eye and wing development. These phenotypes are rescued by the wild-type Dic transgene, indicating that shortwing is a viable allele of the dynein intermediate chain gene and revealing a novel role for dynein function during wing development.
Collapse
Affiliation(s)
- Kristin L M Boylan
- University of Minnesota, Department of Genetics, Cell Biology and Development, Minneapolis 55455, USA
| | | |
Collapse
|
36
|
Susalka SJ, Nikulina K, Salata MW, Vaughan PS, King SM, Vaughan KT, Pfister KK. The roadblock light chain binds a novel region of the cytoplasmic Dynein intermediate chain. J Biol Chem 2002; 277:32939-46. [PMID: 12077152 DOI: 10.1074/jbc.m205510200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dynein is the major minus-end directed microtubule-based motor in eukaryotic cells. It is composed of a number of different subunits including three light chain families: Tctex1, LC8, and roadblock. The incorporation of the roadblock light chains into the cytoplasmic dynein complex had not been determined. There are two roadblock genes in mammals, ROBL-1 and ROBL-2. We find that both members of the roadblock family bind directly to all of the intermediate chain isoforms of mammalian cytoplasmic dynein. This was determined with three complementary approaches. A yeast two-hybrid assay demonstrated that both roadblock light chains interact with intermediate chain isoforms from the IC74-1 and IC74-2 genes in vivo. This was confirmed in vitro with both a solid phase blot overlay assay and a solution-binding assay. The roadblock-binding domain on the intermediate chain was mapped to an approximately 72 residue region. The binding domain is downstream of each of the two alternative splice sites in the intermediate chains. This location is consistent with the finding that both roadblock-1 and roadblock-2 show no binding specificity for a single IC74-1 or IC74-2 intermediate chain isoform. In addition, this roadblock-binding domain is significantly downstream from both the Tctex1- and LC8-binding sites, supporting the hypothesis that multiple light chain family members can bind to the same intermediate chain.
Collapse
Affiliation(s)
- Stephen J Susalka
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain-binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo.
Collapse
Affiliation(s)
- Stephen J King
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
38
|
Salata MW, Dillman JF, Lye RJ, Pfister KK. Growth factor regulation of cytoplasmic dynein intermediate chain subunit expression preceding neurite extension. J Neurosci Res 2001; 65:408-16. [PMID: 11536324 DOI: 10.1002/jnr.1168] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytoplasmic dynein is a motor protein responsible for intracellular movements toward the minus ends of microtubules. The intermediate chains are one of the subunits important for binding dynein to cargo. The intermediate chains are encoded by two genes and are translated into at least five different polypeptide isoforms in rat brain. In rat optic nerve, dynein with only one of the intermediate chain polypeptides is found associated with membrane bounded organelles in fast anterograde transport. Dynein containing the other intermediate chain polypeptides associates with a different set of proteins, in the slow transport component. To determine if the intermediate chain expression levels are regulated during neurite differentiation, we analyzed the protein levels by two-dimensional SDS-PAGE and intermediate chain mRNA by RT-PCR in cultured rat pheochromocytoma (PC12) cells. In the absence of nerve growth factor, the major intermediate chain isoform is the IC74-2C polypeptide. IC74-2C is ubiquitous and is utilized for constitutive dynein function and association with membrane bounded organelles. Within 24 hr of the addition of nerve growth factor to the cultures, there is an increased expression of the developmentally regulated isoforms that are associated with the actin cytoskeleton. This change in intermediate chain isoform expression preceded neurite growth. Nerve growth factor induced differentiation also results in increased light intermediate chain phosphorylation. The growth factor induced changes in the expression of dynein intermediate chains suggests that specific intermediate chain isoforms are utilized during axon growth.
Collapse
Affiliation(s)
- M W Salata
- Division of Mathematics and Natural Sciences, Gordon College, Barnesville, Georgia, USA
| | | | | | | |
Collapse
|
39
|
Wilson MJ, Salata MW, Susalka SJ, Pfister KK. Light chains of mammalian cytoplasmic dynein: identification and characterization of a family of LC8 light chains. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:229-40. [PMID: 11746667 DOI: 10.1002/cm.1036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytoplasmic dynein is a large multisubunit motor protein that moves various cargoes toward the minus ends of microtubules. In addition to the previously identified heavy, intermediate, and light intermediate chains, it has recently been recognized that cytoplasmic dynein also has several light chain subunits with apparent molecular weights between 8-20 kDa. To systematically identify the light chains of purified rat brain cytoplasmic dynein, peptide sequences were obtained from each light chain band resolved by gel electrophoresis. Both members of the tctex1 light chain family, tctex1 and rp3, were identified in a single band. Only one member of the roadblock family, roadblock-2, was found. Two members of the LC8 family were resolved as separate bands, the previously identified LC8 subunit, and a second novel cytoplasmic dynein family member, LC8b. The tissue distribution of these two dynein LC8 subunits differed, although LC8b was the major family member in brain. Database searches found that both LC8a and LC8b were also present in several mammalian species, and a third mammalian LC8 sequence, LC8c was found in the human database. The amino acid sequences of both LC8a and LC8b were completely conserved in mammals. LC8a and LC8b differ in only six of the 89 amino acids. The amino acid differences between LC8a and LC8b were located near the N-terminus of the molecules, and most were in the outward facing alpha-helices of the LC8 dimer. When the mammalian LC8a sequence was compared to the LC8 sequences found in six other animal species including Xenopus and Drosophila, there was, on average, 94% sequence identity. More variation was found in LC8 sequences obtained from plants, fungi, and parasites. LC8c differed from the other two human LC8 sequences in that it has amino acid substitutions in the intermediate chain binding domain at the C-terminal of the molecule. The position of amino acid substitutions of the three mammalian LC8 family members is consistent with the hypothesis that they bind to different proteins.
Collapse
Affiliation(s)
- M J Wilson
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
40
|
Vaughan PS, Leszyk JD, Vaughan KT. Cytoplasmic dynein intermediate chain phosphorylation regulates binding to dynactin. J Biol Chem 2001; 276:26171-9. [PMID: 11340075 DOI: 10.1074/jbc.m102649200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified dynactin as a cargo receptor or adaptor for cytoplasmic dynein, mediated by an interaction between the dynein intermediate chain and p150(Glued). To test phosphorylation as a potential regulatory mechanism for this interaction, we analyzed cytoplasmic dynein by two-dimensional gel analysis and detected two intermediate chain variants, one of which was eliminated by phosphatase treatment. Overlay assays demonstrated that p150(Glued) bound dephosphorylated but not phosphorylated intermediate chains. We then subjected the purified cytoplasmic dynein intermediate chain to mass spectrometry and identified a single phosphorylated tryptic fragment corresponding to the p150(Glued)-binding domain. Fragmentation and retention time analysis mapped the phosphorylation site to serine 84. Site-directed mutants designed to mimic the dephosphorylated or phosphorylated intermediate chain disrupted both in vitro phosphorylation and in vivo phosphorylation of transfected proteins. Mutants mimicking the dephosphorylated form bound p150(Glued) in vitro and overexpression perturbed transport of dynein-dependent membranes. Mutants mimicking the phosphorylated form displayed diminished p150(Glued) binding in vitro and did not disrupt dynein-mediated transport when expressed in vivo. These findings represent the first mapping of an intermediate chain phosphorylation site and suggest that this phosphorylation plays an important role in regulating the binding of cytoplasmic dynein to dynactin.
Collapse
Affiliation(s)
- P S Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| | | | | |
Collapse
|
41
|
Tai AW, Chuang JZ, Sung CH. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol 2001; 153:1499-509. [PMID: 11425878 PMCID: PMC2150720 DOI: 10.1083/jcb.153.7.1499] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia.
Collapse
Affiliation(s)
- Andrew W. Tai
- Department of Cell Biology and Anatomy, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Jen-Zen Chuang
- Department of Ophthalmology, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Ching-Hwa Sung
- Department of Cell Biology and Anatomy, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
- Department of Ophthalmology, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
42
|
Reilein AR, Rogers SL, Tuma MC, Gelfand VI. Regulation of molecular motor proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:179-238. [PMID: 11243595 DOI: 10.1016/s0074-7696(01)04005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Motor proteins in the kinesin, dynein, and myosin superfamilies are tightly regulated to perform multiple functions in the cell requiring force generation. Although motor proteins within families are diverse in sequence and structure, there are general mechanisms by which they are regulated. We first discuss the regulation of the subset of kinesin family members for which such information exists, and then address general mechanisms of kinesin family regulation. We review what is known about the regulation of axonemal and cytoplasmic dyneins. Recent work on cytoplasmic dynein has revealed the existence of multiple isoforms for each dynein chain, making the study of dynein regulation more complicated than previously realized. Finally, we discuss the regulation of myosins known to be involved in membrane trafficking. Myosins and kinesins may be evolutionarily related, and there are common themes of regulation between these two classes of motors.
Collapse
Affiliation(s)
- A R Reilein
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
43
|
DiBella LM, Benashski SE, Tedford HW, Harrison A, Patel-King RS, King SM. The Tctex1/Tctex2 class of dynein light chains. Dimerization, differential expression, and interaction with the LC8 protein family. J Biol Chem 2001; 276:14366-73. [PMID: 11278908 DOI: 10.1074/jbc.m011456200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tctex1/Tctex2 family of dynein light chains associates with the intermediate chains at the base of the soluble dynein particle. These components are essential for dynein assembly and participate in specific motor-cargo interactions. To further address the role of these light chains in dynein activity, the structural and biochemical properties of several members of this polypeptide class were examined. Gel filtration chromatography and native gel electrophoresis indicate that recombinant Chlamydomonas flagellar Tctex1 exists as a dimer in solution. Furthermore, yeast two-hybrid analysis suggests that this association also occurs in vivo. In contrast, both murine and Chlamydomonas Tctex2 are monomeric. To investigate protein-protein interactions involving these light chains, outer arm dynein from Chlamydomonas flagella was cross-linked using dimethylpimelimidate. Immunoblot analysis of the resulting products revealed the interaction of LC2 (Tctex2) with LC6, which is closely related to the highly conserved LC8 protein found in many enzyme systems, including dynein. Northern dot blot analysis demonstrated that Tctex1/Tctex2 family light chains are differentially expressed both in a tissue-specific and developmentally regulated manner in humans. These data provide further support for the existence of functionally distinct populations of cytoplasmic dynein with differing light chain content.
Collapse
Affiliation(s)
- L M DiBella
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kini AR, Collins CA. Modulation of cytoplasmic dynein ATPase activity by the accessory subunits. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:52-60. [PMID: 11124710 DOI: 10.1002/1097-0169(200101)48:1<52::aid-cm5>3.0.co;2-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microtubule-based motor molecule cytoplasmic dynein has been proposed to be regulated by a variety of mechanisms, including phosphorylation and specific interaction with the organelle-associated complex, dynactin. In this study, we examined whether the intermediate chain subunits of cytoplasmic dynein are involved in modulation of ATP hydrolysis, and thereby affect motility. Treatment of testis cytoplasmic dynein under hypertonic salt conditions resulted in separation of the intermediate chains from the remainder of the dynein molecule, and led to a 4-fold enhancement of ATP hydrolysis. This result suggests that the accessory subunits act as negative regulators of dynein heavy chain activity. Comparison of ATPase activities of dyneins with differing intermediate chain isoforms showed significant differences in basal ATP hydrolysis rates, with testis dynein 7-fold more active than dynein from brain. Removal of the intermediate chain subunits led to an equalization of ATPase activity between brain and testis dyneins, suggesting that the accessory subunits are responsible for the observed differences in tissue activity. Finally, our preparative procedures have allowed for the identification and purification of a 1:1 complex of dynein with dynactin. As this interaction is presumed to be mediated by the dynein intermediate chain subunits, we now have defined experimental conditions for further exploration of dynein enzymatic and motility regulation.
Collapse
Affiliation(s)
- A R Kini
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois, USA
| | | |
Collapse
|
45
|
Brill LB, Pfister KK. Biochemical and molecular analysis of the mammalian cytoplasmic dynein intermediate chain. Methods 2000; 22:307-16. [PMID: 11133237 DOI: 10.1006/meth.2000.1083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytoplasmic dynein is a multisubunit protein complex responsible for the intracellular movement of membranous organelles and other cargo along microtubules. The heavy chains contain the motor domains, while the intermediate chain and other subunits are important for binding to cargo. There are at least five different intermediate chain polypeptides, the products of alternative splicing of two genes. The cytoplasmic dynein intermediate chains are also phosphorylated. The expression of the different intermediate chain mRNAs is characterized by reverse transcription-polymerase chain reactions using oligonucleotide primers appropriate for the alternative splicing sites. The presence of the different intermediate chain polypeptide isoforms is determined by two-dimensional gel analysis of cytoplasmic dynein samples. The phosphorylation state of the polypeptides is determined by treatment of immunoprecipitated cytoplasmic dynein with protein phosphatase and analysis of changes in polypeptide spot distribution after two-dimensional gel electrophoresis.
Collapse
Affiliation(s)
- L B Brill
- Department of Cell Biology, School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
46
|
Benashski SE, King SM. Investigation of protein-protein interactions within flagellar dynein using homobifunctional and zero-length crosslinking reagents. Methods 2000; 22:365-71. [PMID: 11133242 DOI: 10.1006/meth.2000.1088] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynein molecular motor is a highly complex enzyme containing up to 15 different protein components and consists of several distinct domains identifiable by electron microscopy. One of the current challenges is to understand the supramolecular organization of this motor and to determine the location and function of the various components. Recently, we have used covalent crosslinking by amine-selective reagents and a carbodiimide, which results in zero-length crosslink, to investigate protein-protein associations within Chlamydomonas flagellar dynein. This approach also has enabled us to identify previously undescribed interactions between the dynein arms and other components of the flagellar axoneme. In this report, we detail methods we have developed to probe intradynein and intraaxonemal interactions and discuss the variety of factors that need be addressed to perform a successful crosslinking experiment.
Collapse
Affiliation(s)
- S E Benashski
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032-3305, USA
| | | |
Collapse
|
47
|
Boylan K, Serr M, Hays T. A molecular genetic analysis of the interaction between the cytoplasmic dynein intermediate chain and the glued (dynactin) complex. Mol Biol Cell 2000; 11:3791-803. [PMID: 11071907 PMCID: PMC15037 DOI: 10.1091/mbc.11.11.3791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule motor cytoplasmic dynein performs multiple cellular functions; however, the regulation and targeting of the motor to different cargoes is not well understood. A biochemical interaction between the dynein intermediate chain subunit and the p150-Glued component of the dynein regulatory complex, dynactin, has supported the hypothesis that the intermediate chain is a key modulator of dynein attachment to cellular cargoes. In this report, we identify multiple intermediate chain polypeptides that cosediment with the 19S dynein complex and two differentially expressed transcripts derived from the single cytoplasmic dynein intermediate chain (Cdic) gene that differ in the 3' untranslated region sequence. These results support previous observations of multiple Cdic gene products that may contribute to the specialization of dynein function. Most significantly, we provide genetic evidence that the interaction between the dynein intermediate chain and p150-Glued is functionally relevant. We use a genomic Cdic transgene to show that extra copies of the dynein intermediate chain gene act to suppress the rough eye phenotype of the mutant Glued(1), a mutation in the p150-Glued subunit of dynactin. Furthermore, we show that the interaction between the dynein intermediate chain and p150-Glued is dependent on the dosage of the Cdic gene. This result suggests that the dynein intermediate chain may be a limiting component in the assembly of the dynein complex and that the regulation of the interaction between the dynein intermediate chain and dynactin is critical for dynein function.
Collapse
Affiliation(s)
- K Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
48
|
Koonce MP, Knecht DA. Cytoplasmic dynein heavy chain is an essential gene product in Dictyostelium. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:63-72. [PMID: 9453714 DOI: 10.1002/(sici)1097-0169(1998)39:1<63::aid-cm6>3.0.co;2-h] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe here three different approaches to perturb cytoplasmic dynein heavy chain (DHC) gene function in Dictyostelium: integration of a marker into the heavy chain coding sequence by homologous recombination to disrupt transcription, expression of antisense RNA to inhibit translation, and expression of a 158 kDa amino-terminal coding region to perturb the native protein organization. By homologous recombination, we fail to obtain cells that lack an intact DHC gene product. Cells containing antisense orientation plasmids (but not sense) appear to die 4 to 6 days following transformation. Plasmids designed to overexpress an amino-terminal region of the DHC result in substantially reduced transformation efficiency. When expressed at low levels, the truncated amino-terminal product appears capable of dimerizing with an intact heavy chain or with itself, essentially producing a cargo-binding domain lacking mechanochemical activity. This, in turn, likely competes with the native protein's function. These three approaches taken together indicate that the dynein heavy chain is an essential gene in Dictyostelium.
Collapse
Affiliation(s)
- M P Koonce
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
49
|
Byers HR, Yaar M, Eller MS, Jalbert NL, Gilchrest BA. Role of cytoplasmic dynein in melanosome transport in human melanocytes. J Invest Dermatol 2000; 114:990-7. [PMID: 10771482 DOI: 10.1046/j.1523-1747.2000.00957.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated retrograde-directed motor molecule for transport of membrane-bound organelles. To determine whether cytoplasmic dynein is expressed in melanocytes, we performed reverse transcriptase polymerase chain reaction using melanocyte cDNA and primers complementary to human brain cytoplasmic dynein heavy chain. A polymerase chain reaction product of the expected molecular size was generated and the identity was confirmed by sequence analysis. Western blotting of total melanocyte proteins reacted with an anti-intermediate chain cytoplasmic dynein antibody identified the appropriate 74 kDa band. To determine whether cytoplasmic dynein plays a role in melanosome transport, duplicate cultures were treated with cytoplasmic dynein antisense or sense (control) oligodeoxynucleotides and the cells were observed by high-resolution time-lapse microscopy, which allows visualization of melanosomal aggregates and individual melanosomes. Antisense-treated melanocytes demonstrated a strong anterograde transport of melanosomes from the cell body into the dendrites, whereas melanosome distribution was not affected in sense-treated melanocytes. To determine whether ultraviolet irradiation modifies cytoplasmic dynein expression, melanocyte cultures were exposed to increasing doses of solar-simulated irradiation, equivalent to a mild to moderate sunburn exposure for intact skin. Within 24 h, doses of 5 and 10 mJ per cm2 induced cytoplasmic dynein protein, whereas doses of 30 mJ per cm2 or more were associated with decreased levels of cytoplasmic dynein compared with sham-irradiated controls. Our data show that cytoplasmic dynein participates in retrograde melanosomal transport in human melanocytes and suggest that the altered melanosomal distribution in skin after sun exposure is due, at least in part, to decreased cytoplasmic dynein levels resulting in augmented anterograde transport.
Collapse
Affiliation(s)
- H R Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Dyneins are large multi-component microtubule-based molecular motors involved in many fundamental cellular processes including vesicular transport, mitosis and ciliary/flagellar beating. In order to achieve useful work, these enzymes must contain motor, cargo-binding and regulatory components. The ATPase and microtubule motor domains are located within the very large dynein heavy chains that form the globular heads and stems of the complex. Cargo-binding activity involves the intermediate chains and several classes of light chain that associate in a subcomplex at the base of the soluble dynein particle. Regulatory control of dynein motor function is thought to involve the phosphorylation of various components as well as a series of light chain proteins that are directly associated with the heavy chains. These latter polypeptides have a variety of intriguing attributes, including redox-sensitive vicinal dithiols and Ca(2+)-binding, suggesting that the activity of individual dyneins may be subject to multiple regulatory inputs. Recent molecular, genetic and structural studies have revealed insight into the roles played by these various components and the mechanisms of dynein-based motility.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032-3305, USA.
| |
Collapse
|