1
|
Kirikovich SS, Levites EV, Proskurina AS, Ritter GS, Peltek SE, Vasilieva AR, Ruzanova VS, Dolgova EV, Oshihmina SG, Sysoev AV, Koleno DI, Danilenko ED, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. The Molecular Aspects of Functional Activity of Macrophage-Activating Factor GcMAF. Int J Mol Sci 2023; 24:17396. [PMID: 38139225 PMCID: PMC10743851 DOI: 10.3390/ijms242417396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1β) and 63 kDa-anti-inflammatory (TGF-β, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.
Collapse
Affiliation(s)
- Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey E. Peltek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sofya G. Oshihmina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Alexandr V. Sysoev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Danil I. Koleno
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| |
Collapse
|
2
|
Lunghi B, Morfini M, Martinelli N, Balestra D, Linari S, Frusconi S, Branchini A, Cervellera CF, Marchetti G, Castaman G, Bernardi F. The Asialoglycoprotein Receptor Minor Subunit Gene Contributes to Pharmacokinetics of Factor VIII Concentrates in Hemophilia A. Thromb Haemost 2021; 122:715-725. [PMID: 34407556 DOI: 10.1055/a-1591-7869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The asialoglycoprotein receptor (ASGPR) binds with high affinity factor VIII (FVIII) through its N-linked oligosaccharides. However, its contribution to the wide inter-individual variation of infused FVIII pharmacokinetics (PK) in hemophilia A (HA) is unknown. OBJECTIVE To investigate the variability in FVIII PK outcomes in relation to genetic variation in the ASGR2, encoding the ASGPR2 subunit. METHODS Thirty-two HA patients with FVIII:C ≤2 IU/dL underwent 66 single-dose FVIII PK studies. PK parameters were evaluated in relation to ASGR2 5' untranslated region (5'UTR) polymorphisms, which were investigated by recombinant and white blood cell reverse transcription-polymerase chain reaction approaches. RESULTS The 5'UTR polymorphisms determine a frequent and conserved haplotype (HT1) in a regulatory region. The HT1 homozygotes may differ in the amounts of alternatively spliced mRNA transcripts and thus ASGPR2 isoforms. Compared with the other ASGR2 genotypes, the c.-95TT homozygotes (n = 9), showed threefold longer Alpha HL (3.60 hours, 95% confidence interval: 1.44-5.76, p = 0.006), and the c.-95TC heterozygotes (n = 17) showed 25% shorter mean residence time (MRT; 18.5 hours, 15.0-22.0, p = 0.038) and 32% shorter Beta HL (13.5 hours, 10.9-16.0, p = 0.016). These differences were confirmed in patients (n = 27) undergoing PK studies (n = 54) with full-length FVIII only. In different linear regression models, the contribution of the ASGR2 genotypes remained significant after adjustment by ABO genotypes and von Willebrand factor (VWF) antigen levels, and explained 14% (MRT), 15 to 18% (Beta HL), and 22% (Alpha HL) of parameter variability. CONCLUSIONS Infused FVIII distribution was modulated by frequent ASGR2 genotypes, independently from and together with ABO and VWF antigen levels, which has potential implications for genetically tailored substitutive treatment in HA.
Collapse
Affiliation(s)
- Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Morfini
- Italian Association Hemophilia Centers (AICE), Naples, Italy
| | | | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Linari
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
ASGR1 and Its Enigmatic Relative, CLEC10A. Int J Mol Sci 2020; 21:ijms21144818. [PMID: 32650396 PMCID: PMC7404283 DOI: 10.3390/ijms21144818] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The large family of C-type lectin (CLEC) receptors comprises carbohydrate-binding proteins that require Ca2+ to bind a ligand. The prototypic receptor is the asialoglycoprotein receptor-1 (ASGR1, CLEC4H1) that is expressed primarily by hepatocytes. The early work on ASGR1, which is highly specific for N-acetylgalactosamine (GalNAc), established the foundation for understanding the overall function of CLEC receptors. Cells of the immune system generally express more than one CLEC receptor that serve diverse functions such as pathogen-recognition, initiation of cellular signaling, cellular adhesion, glycoprotein turnover, inflammation and immune responses. The receptor CLEC10A (C-type lectin domain family 10 member A, CD301; also called the macrophage galactose-type lectin, MGL) contains a carbohydrate-recognition domain (CRD) that is homologous to the CRD of ASGR1, and thus, is also specific for GalNAc. CLEC10A is most highly expressed on immature DCs, monocyte-derived DCs, and alternatively activated macrophages (subtype M2a) as well as oocytes and progenitor cells at several stages of embryonic development. This receptor is involved in initiation of TH1, TH2, and TH17 immune responses and induction of tolerance in naïve T cells. Ligand-mediated endocytosis of CLEC receptors initiates a Ca2+ signal that interestingly has different outcomes depending on ligand properties, concentration, and frequency of administration. This review summarizes studies that have been carried out on these receptors.
Collapse
|
4
|
|
5
|
Huang KW, Lai YT, Chern GJ, Huang SF, Tsai CL, Sung YC, Chiang CC, Hwang PB, Ho TL, Huang RL, Shiue TY, Chen Y, Wang SK. Galactose Derivative-Modified Nanoparticles for Efficient siRNA Delivery to Hepatocellular Carcinoma. Biomacromolecules 2018; 19:2330-2339. [PMID: 29808997 DOI: 10.1021/acs.biomac.8b00358] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful siRNA therapy requires suitable delivery systems with targeting moieties such as small molecules, peptides, antibodies, or aptamers. Galactose (Gal) residues recognized by the asialoglycoprotein receptor (ASGPR) can serve as potent targeting moieties for hepatocellular carcinoma (HCC) cells. However, efficient targeting to HCC via galactose moieties rather than normal liver tissues in HCC patients remains a challenge. To achieve more efficient siRNA delivery in HCC, we synthesized various galactoside derivatives and investigated the siRNA delivery capability of nanoparticles modified with those galactoside derivatives. In this study, we assembled lipid/calcium/phosphate nanoparticles (LCP NPs) conjugated with eight types of galactoside derivatives and demonstrated that phenyl β-d-galactoside-decorated LCP NPs (L4-LCP NPs) exhibited a superior siRNA delivery into HCC cells compared to normal hepatocytes. VEGF siRNAs delivered by L4-LCP NPs downregulated VEGF expression in HCC in vitro and in vivo and led to a potent antiangiogenic effect in the tumor microenvironment of a murine orthotopic HCC model. The efficient delivery of VEGF siRNA by L4-LCP NPs that resulted in significant tumor regression indicates that phenyl galactoside could be a promising HCC-targeting ligand for therapeutic siRNA delivery to treat liver cancer.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yu-Tsung Lai
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Guann-Jen Chern
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Shao-Feng Huang
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Chia-Lung Tsai
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yun-Chieh Sung
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Pi-Bei Hwang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Ting-Lun Ho
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Rui-Lin Huang
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Ting-Yun Shiue
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry , National Tsing Hua University , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| |
Collapse
|
6
|
Huang X, Leroux JC, Castagner B. Well-Defined Multivalent Ligands for Hepatocytes Targeting via Asialoglycoprotein Receptor. Bioconjug Chem 2016; 28:283-295. [DOI: 10.1021/acs.bioconjchem.6b00651] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiangang Huang
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bastien Castagner
- Department
of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
7
|
Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J. Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging. Proc Natl Acad Sci U S A 2012; 109:E2989-97. [PMID: 23043115 PMCID: PMC3497821 DOI: 10.1073/pnas.1211753109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.
Collapse
Affiliation(s)
- Malte Renz
- Section on Organelle Biology and
- Unit on Cellular Polarity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, National Institutes of Health, Bethesda, MD 20892; and
| | | | - György Vámosi
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary
| | - Irwin M. Arias
- Unit on Cellular Polarity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, National Institutes of Health, Bethesda, MD 20892; and
| | | |
Collapse
|
8
|
Sørensen ALT, Clausen H, Wandall HH. Carbohydrate clearance receptors in transfusion medicine. Biochim Biophys Acta Gen Subj 2012; 1820:1797-808. [PMID: 22846227 DOI: 10.1016/j.bbagen.2012.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are especially important to enhance size and reduce glomerular filtration loss. Carbohydrates are, however, also ligands for a large number of carbohydrate-binding lectins exposed to the circulatory system that serve as scavenger receptors for the innate immune system, or have more specific roles in targeting of glycoproteins and cells. SCOPE OF REVIEW Here we provide an overview of the common lectin receptors that play roles for circulating glycoproteins and cells, and present a discussion of ways to engineer glycosylation of recombinant biologics and cells to improve therapeutic effects. MAJOR CONCLUSIONS While the pharmaceutical industry has learned how to exploit carbohydrates to improve pharmacokinetic properties of recombinant therapeutics, our understanding of how to improve cell-based therapies by manipulation of complex carbohydrates is still at its infancy. Progress with the latter has recently been achieved with cold-stored platelets, where exposure of uncapped glycans lead to rapid clearance from circulation by several lectin-mediated pathways. GENERAL SIGNIFICANCE Understanding lectin-mediated clearance pathways is essential for progress in development of biological pharmaceuticals.
Collapse
|
9
|
Massarelli I, Chiellini F, Chiellini E, Bianucci AM. Three-dimensional models of the oligomeric human asialoglycoprotein receptor (ASGP-R). Int J Mol Sci 2010; 11:3867-84. [PMID: 21152305 PMCID: PMC2996795 DOI: 10.3390/ijms11103867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/16/2022] Open
Abstract
The work presented here is aimed at suggesting plausible hypotheses for functional oligomeric forms of the human asialoglycoprotein receptor (ASGP-R), by applying a combination of different computational techniques. The functional ASGP-R is a hetero-oligomer, that comprises of several subunits of two different kinds (H1 and H2), which are highly homologous. Its stoichiometry is still unknown. An articulated step-wise modeling protocol was used in order to build the receptor model in a minimal oligomeric form, necessary for it to bind multi-antennary carbohydrate ligands. The ultimate target of the study is to contribute to increasing the knowledge of interactions between the human ASGP-R and carbohydrate ligands, at the molecular level, pertinent to applications in the field of hepatic tissue engineering.
Collapse
Affiliation(s)
- Ilaria Massarelli
- UdR INSTM, Department of Pharmaceutical Sciences, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; E-Mail:
| | - Federica Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab)-UdR INSTM, Department of Chemistry & Industrial Chemistry, University of Pisa, Via Vecchia Livornese 1291, 56010 S. Piero a Grado, Pisa, Italy; E-Mails: (F.C.); (E.C.)
| | - Emo Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab)-UdR INSTM, Department of Chemistry & Industrial Chemistry, University of Pisa, Via Vecchia Livornese 1291, 56010 S. Piero a Grado, Pisa, Italy; E-Mails: (F.C.); (E.C.)
| | - Anna Maria Bianucci
- Department of Pharmaceutical Sciences, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
10
|
Liu J, Hu B, Yang Y, Ma Z, Yu Y, Liu S, Wang B, Zhao X, Lu M, Yang D. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes. PLoS One 2010; 5:e12934. [PMID: 20886072 PMCID: PMC2944864 DOI: 10.1371/journal.pone.0012934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/29/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human asialoglycoprotein receptor (ASGPR) is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR) composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.
Collapse
Affiliation(s)
- Jia Liu
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Hu
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Yang
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiyong Ma
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuan Yu
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shenpei Liu
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Baoju Wang
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiping Zhao
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengji Lu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute of Virology, Medical School, Duisburg-Essen University, Essen, Germany
- * E-mail: (ML); (DY)
| | - Dongliang Yang
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail: (ML); (DY)
| |
Collapse
|
11
|
Ramadugu SK, Chung YH, Fuentes EJ, Rice KG, Margulis CJ. In Silico Prediction of the 3D Structure of Trimeric Asialoglycoprotein Receptor Bound to Triantennary Oligosaccharide. J Am Chem Soc 2010; 132:9087-95. [DOI: 10.1021/ja1021766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sai Kumar Ramadugu
- Department of Chemistry, Department of Biochemistry, and Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa 52241
| | - Ying-Hua Chung
- Department of Chemistry, Department of Biochemistry, and Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa 52241
| | - Ernesto J. Fuentes
- Department of Chemistry, Department of Biochemistry, and Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa 52241
| | - Kevin G. Rice
- Department of Chemistry, Department of Biochemistry, and Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa 52241
| | - Claudio J. Margulis
- Department of Chemistry, Department of Biochemistry, and Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa 52241
| |
Collapse
|
12
|
Lu J, Zhu D, Zhang ZR, Hai L, Wu Y, Sun X. Novel synthetic LPDs consisting of different cholesterol derivatives for gene transfer into hepatocytes. J Drug Target 2010; 18:520-35. [DOI: 10.3109/10611860903548370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Abstract
The Ashwell-Morell receptor (AMR) of hepatocytes, originally termed the hepatic asialoglycoprotein receptor, was the first cellular receptor to be identified and isolated and the first lectin to be detected in mammals. It is one of the multiple lectins of the C-type lectin family involved in recognition, binding, and clearance of asialoglycoproteins. We recently identified endogenous ligands of the AMR as desialylated prothrombotic components, including platelets and von Willebrand Factor [Ellies L. G., Ditto D., Levy G. G., Wahrenbrock M., Ginsburg D., Varki A., Le D. T., and Marth J. D. (2002). Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc. Natl. Acad. Sci. USA 99: pp. 10042-10047; Grewal, P. K. Uchiyama, S., Ditto, D., Varki, N., Le, D. T., Nizet, V., Marth, J. D. (2008). The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Medicine 14, pp. 648-655]. Among these components, clearance by the liver's AMR is enhanced by exposure of terminal galactose on the glycan chains. A physiological role for engaging the AMR in rapid clearance was identified as mitigating disseminating intravascular coagulopathy in sepsis to promote survival. This chapter overviews the endogenous ligands of the AMR as components of the coagulatory system, describes clearance mechanisms of the liver, and details hematology and coagulation assays used in mouse coagulation studies.
Collapse
|
14
|
Trahtenherts A, Benhar I. An internalizing antibody specific for the human asialoglycoprotein receptor. Hybridoma (Larchmt) 2009; 28:225-33. [PMID: 19663694 DOI: 10.1089/hyb.2009.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The liver possesses a variety of characteristics that make this organ a very attractive target for gene and drug delivery. The asialoglycoprotein receptor (ASGPR) is a heterodimeric liver-specific C-type lectin that mediates endocytosis and degradation of desialylated glycoproteins and is considered a preferable target for liver-specific drug delivery. Asialoglycoprotein-coupled, galactosylated, or anti-ASGPR antibody-targeted molecules may be used to deliver pharmaceutical agents to the liver. Here we present a new anti-ASGPR single-chain antibody (scFv) that was isolated from the synthetic human "Ronit-1" antibody phage display library. This scFv (B11) was shown to bind the recombinant and native forms of the ASGPR and could also facilitate ASGPR specific internalization of a B11-PE38KDEL immunotoxin and cause cell death. Thus, this newly isolated antibody can serve as a targeting moiety for ASGPR-directed drug delivery.
Collapse
Affiliation(s)
- Alla Trahtenherts
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
15
|
Kobialka S, Beuret N, Ben-Tekaya H, Spiess M. Glycosaminoglycan Chains Affect Exocytic and Endocytic Protein Traffic. Traffic 2009; 10:1845-55. [DOI: 10.1111/j.1600-0854.2009.00987.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Stokmaier D, Khorev O, Cutting B, Born R, Ricklin D, Ernst TO, Böni F, Schwingruber K, Gentner M, Wittwer M, Spreafico M, Vedani A, Rabbani S, Schwardt O, Ernst B. Design, synthesis and evaluation of monovalent ligands for the asialoglycoprotein receptor (ASGP-R). Bioorg Med Chem 2009; 17:7254-64. [DOI: 10.1016/j.bmc.2009.08.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/25/2022]
|
17
|
Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008; 14:648-55. [PMID: 18488037 PMCID: PMC2853759 DOI: 10.1038/nm1760] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/26/2008] [Indexed: 12/12/2022]
Abstract
The Ashwell receptor, the major lectin of hepatocytes, rapidly clears from blood circulation glycoproteins bearing glycan ligands that include galactose and N-acetylgalactosamine. This asialoglycoprotein receptor activity remains a key factor in the development and administration of glycoprotein pharmaceuticals, yet a biological purpose of the Ashwell receptor has remained elusive. We have identified endogenous ligands of the Ashwell receptor as glycoproteins and regulatory components in blood coagulation and thrombosis that include von Willebrand factor (vWF) and platelets. The Ashwell receptor normally modulates vWF homeostasis and is responsible for thrombocytopenia during systemic Streptococcus pneumoniae infection by eliminating platelets desialylated by the bacterium's neuraminidase. Hemostatic adaptation by the Ashwell receptor moderates the onset and severity of disseminated intravascular coagulation during sepsis and improves the probability of host survival.
Collapse
Affiliation(s)
- Prabhjit K Grewal
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Khorev O, Stokmaier D, Schwardt O, Cutting B, Ernst B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg Med Chem 2008; 16:5216-31. [PMID: 18358727 DOI: 10.1016/j.bmc.2008.03.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 02/26/2008] [Accepted: 03/04/2008] [Indexed: 11/28/2022]
Abstract
A series of novel, fluorescent ligands designed to bind with high affinity and specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized and tested on human liver cells. The compounds bear three non-reducing, beta-linked Gal or GalNAc moieties linked to flexible spacers for an optimal spatial interaction with the binding site of the ASGP-R. The final constructs were selectively endocytosed by HepG2 cells derived from parenchymal liver cells-the major human liver cell type-in a process that was visualized with the aid of fluorescence microscopy. Furthermore, the internalization was analyzed with flow cytometry, which showed the process to be receptor-mediated and selective. The compounds described in this work could serve as valuable tools for studying hepatic endocytosis, and are suited as carriers for site-specific drug delivery to the liver.
Collapse
Affiliation(s)
- Oleg Khorev
- Institute of Molecular Pharmacy, Pharmacenter-University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Nattermann J, Ahlenstiel G, Berg T, Feldmann G, Nischalke HD, Müller T, Rockstroh J, Woitas R, Sauerbruch T, Spengler U. The tandem-repeat polymorphism of the DC-SIGNR gene in HCV infection. J Viral Hepat 2006; 13:42-6. [PMID: 16364081 DOI: 10.1111/j.1365-2893.2005.00652.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The C-type lectin DC-SIGNR has been shown to bind hepatitis C virus (HCV). Here, we analysed the tandem-repeat polymorphism of the DC-SIGNR gene with respect to intraindividual HCV replication. In a cross-sectional comparison HCV-infected patients (n = 430) and healthy subjects (n = 100) were genotyped for the DC-SIGNR polymorphism using PCR. The distribution of DC-SIGNR alleles did not differ significantly between the two groups. However, HCV-infected patients with 5-, 6-, and 7-repeat alleles had higher HCV-RNA levels when compared with carriers of 4- and 9-repeat alleles (P < 0.05). Thus, the DC-SIGNR polymorphism might affect HCV loads supporting the concept that DC-SIGNR contributes to HCV replication efficacy.
Collapse
Affiliation(s)
- J Nattermann
- Department of Internal Medicine I, Rheinische Friedrich Wilhelms Universität Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJM, Mertens K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost 2005; 3:1257-65. [PMID: 15946216 DOI: 10.1111/j.1538-7836.2005.01389.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Coagulation factor VIII (FVIII) is a heavily glycosylated heterodimeric plasma protein that consists of a heavy (domains A1-A2-B) and light chain (domains A3-C1-C2). It has been well established that the clearance of FVIII from the circulation involves mechanisms that are sensitive to the low-density lipoprotein receptor (LDLR) family antagonist receptor-associated protein (RAP), including LDLR-related protein. Because FVIII clearance in the presence of a bolus injection of RAP still occurs fairly efficient, also RAP-independent mechanisms are likely to be involved. OBJECTIVES In the present study, we investigated the interaction of FVIII with the endocytic lectin asialoglycoprotein receptor (ASGPR) and the physiological relevance thereof. METHODS AND RESULTS Surface plasmon resonance studies demonstrated that FVIII dose-dependently bound to ASGPR with high affinity (Kd approximately 2 nM). FVIII subunits were different in that only the heavy chain displayed high-affinity binding to ASGPR. Studies employing a FVIII variant that lacks the B domain revealed that FVIII-ASGPR complex assembly is driven by structure elements within the B domain of the heavy chain. The FVIII heavy chain-ASGPR interaction required calcium ions and was inhibited by soluble D-galactose. Furthermore, deglycosylation of the FVIII heavy chain by endoglycosidase F completely abrogated the interaction with ASGPR. In clearance experiments in mice, the FVIII mean residence time was prolonged by the ASGPR-antagonist asialo-orosomucoid (ASOR). CONCLUSIONS We conclude that asparagine-linked oligosaccharide structures of the FVIII B domain recognize the carbohydrate recognition domains of ASGPR and that an ASOR-sensitive mechanism, most likely ASGPR, contributes to the catabolism of coagulation FVIII in vivo.
Collapse
Affiliation(s)
- N Bovenschen
- Department of Plasma Proteins, Sanquin Research at CLB, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr Opin Chem Biol 2005; 8:617-25. [PMID: 15556405 DOI: 10.1016/j.cbpa.2004.10.004] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glycan-binding proteins mediate diverse aspects of cell biology including pathogen recognition of host cells, cell trafficking, endocytosis and modulation of cell signaling. This is accomplished despite the intrinsic low affinity for their ligands through multivalent interactions that increase effective affinity and adhesive force. Recent successes in the rational design of high-affinity ligands for glycan-binding proteins offer the promise to create well-defined tools for exploring the structure and functions of this class of receptors.
Collapse
Affiliation(s)
- Brian E Collins
- Departments of Molecular Biology and Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, MEM L-71, La Jolla, CA 92037, USA.
| | | |
Collapse
|
22
|
Riedl E, Tada Y, Udey MC. Identification and Characterization of an Alternatively Spliced Isoform of Mouse Langerin/CD207. J Invest Dermatol 2004; 123:78-86. [PMID: 15191546 DOI: 10.1111/j.0022-202x.2004.22718.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mouse homologue of human Langerin (CD207), a novel Langerhans cells (LC)-restricted C-type lectin that likely participates in antigen recognition and uptake, has been recently identified. In this study, we isolated the mouse Langerin cDNA from murine fetal skin-derived dendritic cells (FSDDC) by subtractive cloning and rapid amplification of cDNA ends (RACE). An alternatively spliced variant of mouse Langerin that lacked the extracellular neck domain (DeltaE3Langerin) was detected in RNA derived from FSDDC and epidermal LC by RT-PCR. In vitro-generated FSDDC and epidermal LC expressed both full-length and DeltaE3Langerin mRNA, but tissue expression was not restricted to skin. Mouse Langerin protein isoforms were readily detected in fibroblasts transfected with cDNAs encoding epitope-tagged Langerin and DeltaE3Langerin. Recombinant DeltaE3Langerin protein localized with transferrin-containing compartments in transfected fibroblasts. Full-length mouse Langerin-bound mannan, whereas DeltaE3Langerin and soluble bacterial recombinant Langerin protein lacking the neck domain did not. Fibroblasts transfected with mouse Langerin cDNA contained typical Birbeck granules (BG) and cored tubules, whereas DeltaE3Langerin cDNA did not induce BG or cored tubule formation in transfected fibroblasts. Developmentally regulated expression of Langerin isoforms provides a mechanism by which Langerin involvement in antigen uptake and processing could be regulated.
Collapse
Affiliation(s)
- Elisabeth Riedl
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
23
|
Yik JHN, Saxena A, Weigel PH. The minor subunit splice variants, H2b and H2c, of the human asialoglycoprotein receptor are present with the major subunit H1 in different hetero-oligomeric receptor complexes. J Biol Chem 2002; 277:23076-83. [PMID: 11943787 DOI: 10.1074/jbc.m202748200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hepatic asialoglycoprotein receptor (ASGP-R) is an endocytic receptor that mediates the internalization of desialylated glycoproteins and their delivery to lysosomes. The human ASGP-R is a hetero-oligomeric complex composed of H1 and H2 subunits. There are three naturally occurring H2 splice variants, designated H2a, H2b, and H2c, although the expression of the H2c protein had not been reported. Following deglycosylation of purified ASGP-R, we detected the H2b and H2c proteins in HepG2 and HuH-7 hepatoma cells, using an antibody directed against a COOH-terminal peptide common to all H2 isoforms (anti-H2-COOH) and another antibody against a 19-amino acid cytoplasmic insert found only in H2b (anti-H2-Cyto19). H1 and both H2b and H2c were co-purified by affinity chromatography, using asialo-orosomucoid (ASOR)-, anti-H1-, or anti-H2-COOH-Sepharose, whereas only H1 and H2b were immunoprecipitated with anti-H2-Cyto19. These results indicate that H2b and H2c are not present in the same ASGP-R complexes with H1. Similar to the H2b isoform, H2c was also palmitoylated, indicating that the 19-residue cytoplasmic insert does not regulate palmitoylation. Stably transfected SK-Hep-1 cell lines expressing ASGP-R complexes containing H1 and either H2b or H2c had similar binding affinities for ASOR and endocytosed and degraded ASOR at similar rates. The pH dissociation profiles of ASOR.ASGP-R complexes were also identical for complexes containing either H2b or H2c. We conclude that the H2b and H2c isoforms are both functional but are not present with H1 in the same hetero-oligomeric ASGP-R complexes. This structural difference between two functional subpopulations of ASGP-Rs may provide a molecular basis for the existence of two different pathways, designated State 1 and State 2, by which several types of recycling receptors mediate endocytosis.
Collapse
Affiliation(s)
- Jasper H N Yik
- Department of Biochemistry & Molecular Biology, and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | |
Collapse
|
24
|
Higashi N, Fujioka K, Denda-Nagai K, Hashimoto SI, Nagai S, Sato T, Fujita Y, Morikawa A, Tsuiji M, Miyata-Takeuchi M, Sano Y, Suzuki N, Yamamoto K, Matsushima K, Irimura T. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J Biol Chem 2002; 277:20686-93. [PMID: 11919201 DOI: 10.1074/jbc.m202104200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lectins on antigen presenting cells are potentially involved in the antigen uptake and the cellular recognition and trafficking. Serial analysis of gene expression in monocyte-derived dendritic cells (DCs), monocytes, and macrophages revealed that 7 of the 19 C-type lectin mRNA were present in immature DCs. Two of these, the macrophage mannose receptor and the macrophage lectin specific for galactose/N-acetylgalactosamine (MGL), were found only in immature DCs, as confirmed by reverse transcriptase-PCR and flow cytometric analysis. By subcloning and sequencing the amplified mRNA, we obtained nucleotide sequences encoding seven different human MGL (hMGL) subtypes, which were apparently derived from alternatively spliced mRNA. In addition, the hMGL gene locus on human chromosome 17p13 contains one gene. A single nucleotide polymorphism was identified at a position in exon 3 that corresponds to the cytoplasmic region proximal to the transmembrane domain. Of all the splicing variants, the hMGL variant 6C was expressed at the highest levels on immature DCs from all donors tested. Immature DCs could incorporate alpha-GalNAc-modified soluble acrylamide polymers, and this was significantly inhibited by pretreatment of the cells with an anti-hMGL monoclonal antibody that blocks the lectin-carbohydrate interaction. We propose that hMGL is a marker of imDCs and that it functions as an endocytic receptor for glycosylated antigens.
Collapse
Affiliation(s)
- Nobuaki Higashi
- Graduate School of Pharmaceutical Sciences and the Department of Molecular Preventive Medicine, School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takahara K, Omatsu Y, Yashima Y, Maeda Y, Tanaka S, Iyoda T, Clausen BE, Matsubara K, Letterio J, Steinman RM, Matsuda Y, Inaba K, Clusen B. Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 2002; 14:433-44. [PMID: 11978773 DOI: 10.1093/intimm/14.5.433] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have cloned the mouse homologue of human Langerin (h-Langerin), a type II transmembrane protein with a single external C-type lectin domain. Mouse Langerin (m-Langerin) displays 65 and 74% homologies in total amino acid and lectin domains with those of h-Langerin. The cognate mouse and rat genes were assigned to chromosome 6D1-D2 and chromosome 4q33 distal-q34.1 proximal respectively, syntenic to the h-Langerin gene on chromosome 2p13. With RT-PCR, m-Langerin transcripts were as expected detected in MHC class II+, but not MHC class II-, cells from epidermis and the expression level was reduced by culture. However, m-Langerin transcripts were also expressed in spleen, lymph nodes (LN), thymus, liver, lung and even heart, but not gut-associated lymphoid tissues. In single-cell lymphoid suspensions, m-Langerin transcripts were mainly detected in the CD11c+ dendritic cells (DC), especially the CD11blow/CD8high fraction of spleen and LN. DC generated from bone marrow precursors by granulocyte macrophage colony stimulating factor (GM-CSF) expressed m-Langerin, but this was shut down during maturation with CD40 ligand or lipopolysaccharide. DC derived from blood monocytes by GM-CSF + IL-4 lacked m-Langerin unless the cultures were supplemented with transforming growth factor (TGF)-beta1. Unexpectedly, significant amounts of m-Langerin transcripts were detected in skin and LN of TGF-beta1-deficient mice, although in much lower amounts than littermate controls. Recombinant m-Langerin could form multimers and bind to mannan-agarose. These findings indicate that Langerin expression is regulated at several levels: by TGF-beta1, DC subsets, DC maturation and the tissue environment.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigens, CD
- Antigens, Surface/biosynthesis
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Bone Marrow Cells/metabolism
- Cells, Cultured
- Chromosome Mapping
- Dendritic Cells/metabolism
- Down-Regulation
- Female
- Humans
- Lectins, C-Type
- Male
- Mannans/metabolism
- Mannose-Binding Lectins
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Models, Genetic
- Molecular Sequence Data
- Protein Structure, Tertiary
- Sequence Alignment
- Transcription, Genetic
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Kazuhiko Takahara
- Laboratory of Immunobiology, Department of Animal Development and Physiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C, Pin JJ, Kissenpfennig A, Mattéi MG, Ait-Yahia S, Bates EEM, Malissen B, Koch F, Fossiez F, Romani N, Lebecque S, Saeland S. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:782-92. [PMID: 11777972 DOI: 10.4049/jimmunol.168.2.782] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Animals
- Antibodies, Monoclonal/chemistry
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/isolation & purification
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/isolation & purification
- Base Sequence
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Line
- Cells, Cultured
- Culture Media/pharmacology
- Cytoplasmic Granules/genetics
- Cytoplasmic Granules/metabolism
- DNA, Complementary/isolation & purification
- Dendritic Cells/chemistry
- Dendritic Cells/immunology
- Humans
- Langerhans Cells/chemistry
- Langerhans Cells/immunology
- Lectins/biosynthesis
- Lectins/genetics
- Lectins/immunology
- Lectins/isolation & purification
- Lectins, C-Type
- Leucine/genetics
- Lymphoid Tissue/chemistry
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Mannose-Binding Lectins
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microtubules/genetics
- Microtubules/metabolism
- Molecular Sequence Data
- Organ Specificity/genetics
- Organ Specificity/immunology
- Phenylalanine/genetics
- RNA, Messenger/metabolism
- Transfection
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Jenny Valladeau
- Schering-Plough Laboratory for Immunological Research, Dardilly, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rensen PC, Sliedregt LA, Ferns M, Kieviet E, van Rossenberg SM, van Leeuwen SH, van Berkel TJ, Biessen EA. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem 2001; 276:37577-84. [PMID: 11479285 DOI: 10.1074/jbc.m101786200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The asialoglycoprotein receptor (ASGPr) on hepatocytes plays a role in the clearance of desialylated proteins from the serum. Although its sugar preference (N-acetylgalactosamine (GalNAc) >> galactose) and the effects of ligand valency (tetraantennary > triantennary >> diantennary >> monoantennary) and sugar spacing (20 A 10 A 4 A) are well documented, the effect of particle size on recognition and uptake of ligands by the receptor is poorly defined. In the present study, we assessed the maximum ligand size that still allows effective processing by the ASGPr of mouse hepatocytes in vivo and in vitro. Here too, we synthesized a novel glycolipid, which possesses a highly hydrophobic steroid moiety for stable incorporation into liposomes, and a triantennary GalNAc(3)-terminated cluster glycoside with a high nanomolar affinity (2 nm) for the ASGPr. Incorporation of the glycolipid into small (30 nm) [(3)H]cholesteryl oleate-labeled long circulating liposomes (1-50%, w/w) caused a concentration-dependent increase in particle clearance that was liver-specific (reaching 85 +/- 7% of the injected dose at 30 min after injection) and mediated by the ASGPr on hepatocytes, as shown by competition studies with asialoorosomucoid in vivo. By using glycolipid-laden liposomes of various sizes between 30 and 90 nm, it was demonstrated that particles with a diameter of >70 nm could no longer be recognized and processed by the ASGPr in vivo. This threshold size for effective uptake was not related to the physical barrier raised by the fenestrated sinusoidal endothelium, which shields hepatocytes from the circulation, because similar results were obtained by studying the uptake of liposomes on isolated mouse hepatocytes in vitro. From these data we conclude that in addition to the species, valency, and orientation of sugar residues, size is also an important determinant for effective recognition and processing of substrates by the ASGPr. Therefore, these data have important implications for the design of ASGPr-specific carriers that are aimed at hepatocyte-directed delivery of drugs and genes.
Collapse
Affiliation(s)
- P C Rensen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Sylvius Laboratory, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Roche AC, Monsigny M. MR60/ERGIC-53, a mannose-specific shuttling intracellular membrane lectin. Results Probl Cell Differ 2001; 33:19-38. [PMID: 11190675 DOI: 10.1007/978-3-540-46410-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A C Roche
- Centre de Biophysique Moléculaire, CNRS and University of Orléans, Rue Charles Sadron 45071 Orléans, France
| | | |
Collapse
|
29
|
Bianucci AM, Chiellini F. A 3D model for the human hepatic asialoglycoprotein receptor (ASGP-R). J Biomol Struct Dyn 2000; 18:435-51. [PMID: 11149519 DOI: 10.1080/07391102.2000.10506679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The human hepatic Asialoglycoprotein Receptor (ASGP-R) consists of two different types of liver specific membrane glycoproteins that bind to terminal galactose and N-acetylgalactosamine residues of serum glycoproteins. The two different polypeptide chains are referred to as two receptor subunits, HH1 and HH2, which are both involved in the activity of the functional receptor. This receptor has served as a model for understanding receptor-mediated endocytosis and carbohydrate mediated recognition phenomena. Here models for the C-terminal extracellular region of both HH1 and HH2 subunit are presented. The standard homology building procedure was modified in order to make it suitable for the modeling problem at hand. The models for the extracellular regions of HH1 and HH2 were initially constructed by exploiting several fragments, belonging to proteins of known 3D structure, and showing high local sequence similarity with respect to the glycoproteins of interest. Putative binding sites were first hypothesized on the basis of the comparison with other complexes of lectins, the crystal structure of which was available in the Protein Data Bank. A model for the complex involving the HH2 subunit and the typical high affinity ligand N-acetylgalactosamine (NacGal) was refined as the first by a suitable combination of MD simulations and Energy Minimization calculations, since it seemed to quickly converge to a plausible structure. An intermediate model for HH1 was then rebuilt on the basis of the refined model for HH2. It was then submitted to a sequence of molecular dynamics simulations with templates which took into account the secondary structure prediction for a final refinement. The structures of small regions of the models, located around the binding sites, were compared with more recent crystallographic data regarding a complex involving the mutant of Mannose Binding Protein QPDWGH (1BCH entry in the Protein Data Bank) and NacGal. This mutant shows high local sequence similarity with HH1 and HH2 at the binding sites. On the basis of the above comparison, different locations of the binding sites were also considered. In addition to other expected interactions, two hydrophobic interactions were observed in the models with Trp residues (positions 243 in HH1 and 181 or 267 in HH2 respectively) and His residues (positions 256 in HHI and 184 in HH2.respectively). The quality of the models was evaluated by the Procheck program and they seemed plausible. This observation together with analogies found between binding sites of the models and IBCH supported the validity of the models. A further validation element arose by comparison between experimental binding data available in the literature about the homologous rat receptor subunits and theoretical interaction energies evaluated, by means of the DOCK 3.5 program, in models for the rat subunits obtained from the corresponding human ones. The new modeling procedure used here appears to be a well-suited method for structural analysis of small regions, located around the ligands, in proteins of unknown 3D structure.
Collapse
Affiliation(s)
- A M Bianucci
- Dipartimento di Scienze Farmaceutiche, Universita' di Pisa, Italy.
| | | |
Collapse
|
30
|
Soilleux EJ, Barten R, Trowsdale J. DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2937-42. [PMID: 10975799 DOI: 10.4049/jimmunol.165.6.2937] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DC-SIGN is a C-type lectin, expressed on a dendritic cell subset. It is able to bind ICAM3 and HIV gp120 in a calcium-dependent manner. Here we report the genomic organization of DC-SIGN and map it to chromosome 19p13 adjacent to the C-type lectin CD23 (FcepsilonRII). We also report a novel, closely linked gene, DC-SIGNR, which shows 73% identity to DC-SIGN at the nucleic acid level and a similar genomic organization. Proteins encoded by both genes have tracts of repeats of 23 aa, predicted to form a coiled coil neck region. They also possess motifs that are known to bind mannose in a calcium-dependent fashion. We show concomitant expression of the two genes in endometrium, placenta, and stimulated KG1 cells (phenotypically similar to monocyte-derived dendritic cells). The existence of a DC-SIGN-related gene calls for reinterpretation of the HIV data to consider possible DC-SIGN/DC-SIGNR hetero-oligomerization.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Adhesion Molecules
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 19/immunology
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Exons
- Gene Expression/immunology
- Genetic Linkage
- Humans
- Introns
- Lectins/biosynthesis
- Lectins/chemistry
- Lectins/genetics
- Lectins, C-Type
- Molecular Sequence Data
- Multigene Family/immunology
- Organ Specificity/genetics
- Organ Specificity/immunology
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, IgE/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- E J Soilleux
- Immunology, Department of Pathology, Cambridge University, United Kingdom.
| | | | | |
Collapse
|
31
|
Meier M, Bider MD, Malashkevich VN, Spiess M, Burkhard P. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. J Mol Biol 2000; 300:857-65. [PMID: 10891274 DOI: 10.1006/jmbi.2000.3853] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human asialoglycoprotein receptor (ASGPR), also called hepatic lectin, is an integral membrane protein and is responsible for the clearance of desialylated, galactose-terminal glycoproteins from the circulation by receptor-mediated endocytosis. It can be subdivided into four functional domains: the cytosolic domain, the transmembrane domain, the stalk and the carbohydrate recognition domain (CRD). The galactose-binding domains belong to the superfamily of C-type (calcium-dependent) lectins, in particular to the long-form subfamily with three conserved intramolecular disulphide bonds. It is able to bind terminal non-reducing galactose residues and N-acetyl-galactosamine residues of desialated tri or tetra-antennary N-linked glycans. The ASGPR is a potential liver-specific receptor for hepatitis B virus and Marburg virus and has been used to target exogenous molecules specifically to hepatocytes for diagnostic and therapeutic purposes.Here, we present the X-ray crystal structure of the carbohydrate recognition domain of the major subunit H1 at 2.3 A resolution. While the overall fold of this and other known C-type lectin structures are well conserved, the positions of the bound calcium ions are not, indicating that the fold is stabilised by alternative mechanisms in different branches of the C-type lectin family. It is the first CRD structure where three calcium ions form an intergral part of the structure. In addition, the structure provides direct confirmation for the conversion of the ligand-binding site of the mannose-binding protein to an asialoglycoprotein receptor-like specificity suggested by Drickamer and colleagues. In agreement with the prediction that the coiled-coil domain of the ASGPR is separated from the CRD and its N-terminal disulphide bridge by several residues, these residues are indeed not alpha-helical, while in tetranectin they form an alpha-helical coiled-coil.
Collapse
Affiliation(s)
- M Meier
- M.E. Müller Institute for Structural Biology, University of Basel, Klingelbergstrasse 70 CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Renold A, Cescato R, Beuret N, Vogel LK, Wahlberg JM, Brown JL, Fiedler K, Spiess M. Basolateral sorting signals differ in their ability to redirect apical proteins to the basolateral cell surface. J Biol Chem 2000; 275:9290-5. [PMID: 10734069 DOI: 10.1074/jbc.275.13.9290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized sorting of membrane proteins in epithelial cells is mediated by cytoplasmic basolateral signals or by apical signals in the transmembrane or exoplasmic domains. Basolateral signals were generally found to be dominant over apical determinants. We have generated chimeric proteins with the cytoplasmic domain of either the asialoglycoprotein receptor H1 or the transferrin receptor, two basolateral proteins, fused to the transmembrane and exoplasmic segments of aminopeptidase N, an apical protein, and analyzed them in Madin-Darby canine kidney cells. Whereas both cytoplasmic sequences induced endocytosis of the chimeras, only that of the transferrin receptor mediated basolateral expression in steady state. The H1 fusion protein, although still largely sorted to the basolateral side in biosynthetic surface transport, was subsequently resorted to the apical cell surface. We tested whether the difference in sorting between trimeric wild-type H1 and the dimeric aminopeptidase chimera was caused by the number of sorting signals presented in the oligomers. Consistent with this hypothesis, the H1 signal was fully functional in a tetrameric fusion protein with the transmembrane and exoplasmic domains of influenza neuraminidase. The results suggest that basolateral signals per se need not be dominant over apical determinants for steady-state polarity and emphasize an important contribution of the valence of signals in polarized sorting.
Collapse
Affiliation(s)
- A Renold
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Shenkman M, Ehrlich M, Lederkremer GZ. Masking of an endoplasmic reticulum retention signal by its presence in the two subunits of the asialoglycoprotein receptor. J Biol Chem 2000; 275:2845-51. [PMID: 10644751 DOI: 10.1074/jbc.275.4.2845] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human asialoglycoprotein receptor H1 and H2b subunits assemble into a hetero-oligomer that travels to the cell surface. The H2a variant on the other hand is a precursor of a cleaved soluble form that is secreted. Uncleaved H2a precursor molecules cannot exit the endoplasmic reticulum (ER), a lumenal juxtamembrane pentapeptide being responsible for their retention. Insertion of this pentapeptide into H1 (H1i5) causes its complete ER retention but not fast degradation as happens to H2a. Cotransfection of H2a elicited, by heterodimerization, the Golgi processing of H1i5 and its surface expression. This occurred to a much lesser extent by cotransfection of H2b. Likewise, coexpression of H1i5 and not H1 stabilized H2a and caused its export to the cell surface. Homodimerization of molecules containing the pentapeptide did not cancel the retention. Thus, only when the pentapeptide is present in both subunits is the ER retention efficiently abrogated. The results show the unexpected finding that identical ER retention signals present in two associated chains can mask and cancel each other's effect. This could have important implications as similar abrogation of ER retention of other proteins could eventually be obtained by engineering and coexpressing an associated protein containing the same retention signal.
Collapse
Affiliation(s)
- M Shenkman
- Department of Cell Research, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
34
|
Carrière V, Piller V, Legrand A, Monsigny M, Roche AC. The sugar binding activity of MR60, a mannose-specific shuttling lectin, requires a dimeric state. Glycobiology 1999; 9:995-1002. [PMID: 10521535 DOI: 10.1093/glycob/9.10.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MR60 is an intracellular membrane protein which has been shown to act as a mannoside specific lectin and to be identical to ERGIC-53, a protein characteristic of the endoplasmic reticulum-Golgi apparatus-intermediate compartment, acting as a shuttle. According to its primary sequence, this MR60/ERGIC-53 protein contains a luminal domain including the carbohydrate recognition domain, a stem, a transmembrane segment and a cytosolic domain. The endogenous MR60/ERGIC-53 protein is spontaneously oligomeric, (dimers and hexamers). In this paper, we study the relationship between the oligomerization state and the sugar binding capacity by using recombinant proteins. The expression of the recombinant proteins was evidenced by immunocytochemistry and by immunoprecipitation followed by SDS-PAGE analysis. The full size recombinant protein binds mannosides and is oligomeric, up to the hexameric form. Two truncated proteins lacking the transmembrane and the cytosolic domains were prepared and characterized. A long one, containing the cysteine 466 close to the C-terminal end of the recombinant protein but lacking the cysteine 475, close to the C-terminal end of the native protein, does bind mannosides and forms dimers but no higher oligomeric forms. A shorter one, lacking both the cysteines 466 and 475, does not bind mannosides and does not form dimers or higher polymers. The two cysteines in the carbohydrate recognition domain (C190 and C230) are not involved in the stabilization of oligomers. In conclusion, this study shows that the luminal moiety of MR60/ERGIC-53 contains a device allowing both its oligomeric pattern and its sugar binding capability.
Collapse
Affiliation(s)
- V Carrière
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | | | | | |
Collapse
|
35
|
Bider MD, Spiess M. Ligand-induced endocytosis of the asialoglycoprotein receptor: evidence for heterogeneity in subunit oligomerization. FEBS Lett 1998; 434:37-41. [PMID: 9738447 DOI: 10.1016/s0014-5793(98)00947-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hepatic asialoglycoprotein receptor, a noncovalent hetero-oligomer of two subunits, is a constitutively cycling endocytic receptor. However, the ligand asialoorosomucoid caused downregulation of up to 40% of surface binding sites and a twofold increase in internalization rate. This was not the result of receptor crosslinking, since monovalent ligands had the same effect. Ligand binding thus appears to transmit a signal to the cytosolic portion of the receptor not unlike in signaling receptors. The two subunits were endocytosed at different average rates lower than that of ligand, indicating heterogeneity in oligomer formation and potentially in ligand specificity.
Collapse
Affiliation(s)
- M D Bider
- Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
36
|
Zeng FY, Oka JA, Weigel PH. A specific antibody to the carbohydrate recognition domain of the asialoglycoprotein receptor RHL1 subunit does not react with RHL2/3 but blocks ligand binding. Biochem Biophys Res Commun 1998; 249:236-40. [PMID: 9705864 DOI: 10.1006/bbrc.1998.9120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat asialoglycoprotein receptor (ASGPR) is believed to be a hetero-oligomer composed of three subunits, designated rat hepatic lectin 1, 2, and 3 (RHL1, 2, and 3). The carbohydrate recognition domains (CRDs) of RHL1 and RHL2/3 are 56% identical. We developed a polyclonal antibody that specifically recognizes the CRD of RHL1 but not RHL2/3. When purified ASGPRs were bound to ligand-Sepharose, the CRD of RHL1, but not RHL2 or RHL3, was resistant to digestion with subtilisin. Antibody against purified RHL1 CRD recognized only RHL1 in Western blot analysis of crude cell extracts or purified receptors without detectable cross-reaction to RHL2/3. Although it does not recognize the CRD of RHL2 or RHL3, this antibody specifically inhibited 80-90% of the cell surface or total cellular 125I-ASOR binding to isolated rat hepatocytes and > 90% of ligand binding to purified rat ASGPRs. The antibody also immunoprecipitates active ASGPRs containing all three RHL subunits. The results indicate that homo-oligomeric RHL2/3 complexes, able to bind ASOR, do not form on hepatocytes by subunit rearrangement.
Collapse
Affiliation(s)
- F Y Zeng
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | |
Collapse
|
37
|
Huang GC, Ouyang X, Epstein RJ. Proxy activation of protein ErbB2 by heterologous ligands implies a heterotetrameric mode of receptor tyrosine kinase interaction. Biochem J 1998; 331 ( Pt 1):113-9. [PMID: 9512468 PMCID: PMC1219327 DOI: 10.1042/bj3310113] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The oncoprotein ErbB2 is frequently overexpressed in human tumours, but no activating ErbB2-specific ligand has yet been identified. Here we analyse the catalytic and oligomeric behaviour of ErbB2 using phosphorylation-state-specific antibodies which distinguish kinase-active and -inactive ErbB2 receptor subsets. Heregulin-alpha (HRG) activates ErbB2 in G8/DHFR 3T3 cells by selectively inducing hetero-oligomerization with kinase-defective ErbB3, indicating that heterologous transphosphorylation is an unlikely prerequisite for ErbB2 activation. HRG also triggers association of epidermal-growth-factor receptors (EGFR) with a kinase-inactive ErbB2 subset while reducing EGFR association with active ErbB2. Similarly, EGF treatment of A431 cells induces concomitant hetero-oligomerization of active ErbB2 with inactive EGFR, of active EGFR with inactive ErbB2, and of inactive ErbB2 with kinase-defective ErbB3. These combinatorial patterns of ligand-dependent oligomerization suggest a multivalent model of receptor tyrosine kinase interaction in which liganded homodimers provide stable oligomerization interfaces for unliganded ErbB2 or other bystander receptors. We submit that ErbB2 may be physiologically activated via a 'proxy' ligand-inducible heterotetrameric mechanism similar to that already established for transforming-growth-factor-beta type I receptors.
Collapse
Affiliation(s)
- G C Huang
- Department of Oncology, Imperial College School of Medicine, London W6 8RF, U.K
| | | | | |
Collapse
|
38
|
Kammerer RA. Alpha-helical coiled-coil oligomerization domains in extracellular proteins. Matrix Biol 1997; 15:555-65; discussion 567-8. [PMID: 9138288 DOI: 10.1016/s0945-053x(97)90031-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Subunit oligomerization of many proteins is mediated by alpha-helical coiled-coil domains. 3,4-Hydrophobic heptad repeat sequences, the characteristic feature of the coiled-coil protein folding motif, have been found in a wide variety of gene products including cytoskeletal, nuclear, muscle, cell surface, extracellular, plasma, bacterial, and viral proteins. Whereas the majority of coiled-coil structures is represented by intracellular alpha-helical bundles that contain two polypeptide chains, examples of extracellular coiled-coil proteins are fewer in number. Most proteins located in the extracellular space form three-stranded alpha-helical assemblies. Recently, five-stranded coiled coils have been identified in thrombospondins 3 and 4 and in cartilage oligomeric matrix protein, and the formation of a heterotetramer has been observed in in vitro studies with the recombinant asialoglycoprotein receptor oligomerization domain. Coiled-coil domains in laminins and probably also in tenascins and thrombospondins are responsible for the formation of tissue-specific isoforms by selective oligomerization of different polypeptide chains.
Collapse
Affiliation(s)
- R A Kammerer
- Department of Biophysical Chemistry, Biozentrum, University of Basel, Switzerland
| |
Collapse
|