1
|
Yang Y, Song A, Nie M, Jiang Y, Li M, Xia W, Xing X, Wang O, Hu Y. A novel long-range deletion spanning CDC73 and upper-stream genes discovered in a kindred of familial primary hyperparathyroidism. Endocrine 2022; 75:907-915. [PMID: 34729685 DOI: 10.1007/s12020-021-02917-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/16/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To confirm the exact break-point of a novel long-range deletion discovered in one female parathyroid carcinoma (PC) patient who has a strong family history suggesting familial hyperparathyroidism, and to investigate the expression of parafibromin in the patient's affected lesion. METHODS Clinical information of one female patient as well as five of her relatives was collected. Their genomic DNA extracted from peripheral blood went through Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). After completing whole genome sequencing (WGS), clone sequencing was also performed, whose result was aligned with standard human genome database after Sanger sequencing. RESULTS The medical history of recurrent hypercalcemia after parathyroidectomy and histopathological investigation confirmed that the female patient was diagnosed with PC. WGS displayed a novel 130 kb long-range deletion spanning UCHL5 to CDC73 that was later confirmed by clone sequencing. MLPA showed similar results in four of her five relatives, suggesting these people to be carriers of the same long-range deletion, and three among them had a history of primary hyperparathyroidism (PHPT) ahead of the proband's first visit. CONCLUSIONS We discovered a novel 130 kb long-range deletion spanning CDC73 in a family of 5 persons, and the existence of the deletion was related to PHPT and PC. Our discovery validated the role of CDC73 mutation in the occurrence of PHPT and PC, which provided new information to the genetic studies of PC.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - An Song
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - Min Nie
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - Yan Jiang
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - Mei Li
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - Weibo Xia
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China
| | - Ou Wang
- Key Laboratory of Endocrinology of the Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100032, China.
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China.
| |
Collapse
|
2
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|
4
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
5
|
Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2018; 36:669-682. [PMID: 29080080 DOI: 10.1007/s10555-017-9702-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
6
|
de Poot SAH, Tian G, Finley D. Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J Mol Biol 2017; 429:3525-3545. [PMID: 28988953 DOI: 10.1016/j.jmb.2017.09.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/06/2023]
Abstract
Three deubiquitinating enzymes-Rpn11, Usp14, and Uch37-are associated with the proteasome regulatory particle. These enzymes allow proteasomes to remove ubiquitin from substrates before they are translocated into the core particle to be degraded. Although the translocation channel is too narrow for folded proteins, the force of translocation unfolds them mechanically. As translocation proceeds, ubiquitin chains bound to substrate are drawn to the channel's entry port, where they can impede further translocation. Rpn11, situated over the port, can remove these chains without compromising degradation because substrates must be irreversibly committed to degradation before Rpn11 acts. This coupling between deubiquitination and substrate degradation is ensured by the Ins-1 loop of Rpn11, which controls ubiquitin access to its catalytic site. In contrast to Rpn11, Usp14 and Uch37 can rescue substrates from degradation by promoting substrate dissociation from the proteasome prior to the commitment step. Uch37 is unique in being a component of both the proteasome and a second multisubunit assembly, the INO80 complex. However, only recruitment into the proteasome activates Uch37. Recruitment to the proteasome likewise activates Usp14. However, the influence of Usp14 on the proteasome depends on the substrate, due to its marked preference for proteins that carry multiple ubiquitin chains. Usp14 exerts complex control over the proteasome, suppressing proteasome activity even when inactive in deubiquitination. A major challenge for the field will be to elucidate the specificities of Rpn11, Usp14, and Uch37 in greater depth, employing not only model in vitro substrates but also their endogenous targets.
Collapse
Affiliation(s)
- Stefanie A H de Poot
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt. Acta Pharmacol Sin 2017; 38:182-191. [PMID: 27941804 DOI: 10.1038/aps.2016.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt-/- mice were fed a normal diet containing RSV (400 mg·kg-1·d-1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5-20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5-20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt-/- mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production.
Collapse
|
8
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
9
|
Xu BC, Long HB, Luo KQ. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway. Sci Rep 2016; 6:29589. [PMID: 27435826 PMCID: PMC4951646 DOI: 10.1038/srep29589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice.
Collapse
Affiliation(s)
- Bing-Can Xu
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Bao Long
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Qin Luo
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Pereira RV, Vieira HGS, de Oliveira VF, Gomes MDS, Passos LKJ, Borges WDC, Guerra-Sá R. Conservation and developmental expression of ubiquitin isopeptidases in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2014; 109:1-8. [PMID: 24271000 PMCID: PMC4005531 DOI: 10.1590/0074-0276130107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite's genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite.
Collapse
Affiliation(s)
- Roberta Verciano Pereira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Helaine Graziele Santos Vieira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Victor Fernandes de Oliveira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Matheus de Souza Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia,
Patos de Minas, MG, Brasil, Instituto de Genética e Bioquímica, Universidade Federal de
Uberlândia, Campus Avançado Patos de Minas, MG, Brasil
| | | | - William de Castro Borges
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Renata Guerra-Sá
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| |
Collapse
|
11
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Matilainen O, Arpalahti L, Rantanen V, Hautaniemi S, Holmberg CI. Insulin/IGF-1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep 2013; 3:1980-95. [PMID: 23770237 DOI: 10.1016/j.celrep.2013.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 04/15/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
The proteasome plays an important role in proteostasis by carrying out controlled protein degradation in the cell. Impairments in proteasome function are associated with severe and often age-related diseases. Here, we have characterized a molecular mechanism linking insulin/IGF-1 signaling (IIS) to proteasome activity. We show that decreased IIS, which promotes proteostasis and longevity, increases proteasome activity through the FOXO transcription factor DAF-16 in C. elegans. Furthermore, we reveal that DAF-16 represses expression of the proteasome-associated deubiquitinating enzyme ubh-4, which we suggest functions as a tissue-specific proteasome inhibitor. Finally, we demonstrate that proteasome activation through downregulation of the ubh-4 human ortholog uchl5 increases degradation of proteotoxic proteins in mammalian cells. In conclusion, we have established a mechanism by which the evolutionarily conserved IIS contributes to the regulation of proteasome activity in a multicellular organism.
Collapse
Affiliation(s)
- Olli Matilainen
- Research Programs Unit, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00290 Helsinki, Finland
| | | | | | | | | |
Collapse
|
13
|
Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry 2013; 52:3564-78. [PMID: 23617878 PMCID: PMC3898853 DOI: 10.1021/bi4003106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ubiquitination is countered by a group of enzymes collectively called deubiquitinases (DUBs); ∼100 of them can be found in the human genome. One of the most interesting aspects of these enzymes is the ability of some members to selectively recognize specific linkage types between ubiquitin in polyubiquitin chains and their endo and exo specificity. The structural basis of exo-specific deubiquitination catalyzed by a DUB is poorly understood. UCH37, a cysteine DUB conserved from fungi to humans, is a proteasome-associated factor that regulates the proteasome by sequentially cleaving polyubiquitin chains from their distal ends, i.e., by exo-specific deubiquitination. In addition to the catalytic domain, the DUB features a functionally uncharacterized UCH37-like domain (ULD), presumed to keep the enzyme in an inhibited state in its proteasome-free form. Herein we report the crystal structure of two constructs of UCH37 from Trichinella spiralis in complex with a ubiquitin-based suicide inhibitor, ubiquitin vinyl methyl ester (UbVME). These structures show that the ULD makes direct contact with ubiquitin stabilizing a highly unusual intramolecular salt bridge between Lys48 and Glu51 of ubiquitin, an interaction that would be favored only with the distal ubiquitin but not with the internal ones in a Lys48-linked polyubiquitin chain. An inspection of 39 DUB-ubiquitin structures in the Protein Data Bank reveals the uniqueness of the salt bridge in ubiquitin bound to UCH37, an interaction that disappears when the ULD is deleted, as revealed in the structure of the catalytic domain alone bound to UbVME. The structural data are consistent with previously reported mutational data on the mammalian enzyme, which, together with the fact that the ULD residues that bind to ubiquitin are conserved, points to a similar mechanism behind the exo specificity of the human enzyme. To the best of our knowledge, these data provide the only structural example so far of how the exo specificity of a DUB can be determined by its noncatalytic domain. Thus, our data show that, contrary to its proposed inhibitory role, the ULD actually contributes to substrate recognition and could be a major determinant of the proteasome-associated function of UCH37. Moreover, our structures show that the unproductively oriented catalytic cysteine in the free enzyme is aligned correctly when ubiquitin binds, suggesting a mechanism for ubiquitin selectivity.
Collapse
Affiliation(s)
- Marie E. Morrow
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Myung-Il Kim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Judith A. Ronau
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Michael J. Sheedlo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Rhiannon R. White
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Bldg, Imperial College Road, London, SW7 2AZ, UK
| | - Joseph Chaney
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Lake N. Paul
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Katerina Artavanis-Tsakonas
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Bldg, Imperial College Road, London, SW7 2AZ, UK
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA,To whom correspondence should be addressed: Chittaranjan Das, Brown Laboratory of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, (765)-494-5478, Fax: (765)-494-0239,
| |
Collapse
|
14
|
Zhou B, Zuo Y, Li B, Wang H, Liu H, Wang X, Qiu X, Hu Y, Wen S, Du J, Bu X. Deubiquitinase inhibition of 19S regulatory particles by 4-arylidene curcumin analog AC17 causes NF-κB inhibition and p53 reactivation in human lung cancer cells. Mol Cancer Ther 2013; 12:1381-92. [PMID: 23696216 DOI: 10.1158/1535-7163.mct-12-1057] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome inhibitors have been suggested as potential anticancer agents in many clinical trials. Recent evidence indicates that proteasomal deubiquitinase (DUB) inhibitors, bearing a different mechanism from that of traditional proteasome inhibitors, would be appropriate candidates for new anticancer drug development. In the present study, we describe the deubiquitinase inhibition of 19S regulatory particles (19S RP) by AC17, a 4-arylidene curcumin analog synthesized in our laboratory. Although 4-arylidene curcumin analogs were reported to act as inhibitory κB (IκB) kinase (IKK) inhibitors, AC17 instead induced a rapid and marked accumulation of ubiquitinated proteins without inhibiting proteasome proteolytic activities. In contrast to its parent compound, curcumin, which is a proteasome proteolytic inhibitor, AC17 serves as an irreversible deubiquitinase inhibitor of 19S RP, resulting in inhibition of NF-κB pathway and reactivation of proapoptotic protein p53. In addition, in a murine xenograft model of human lung cancer A549, treatment with AC17 suppresses tumor growth in a manner associated with proteasome inhibition, NF-κB blockage, and p53 reactivation. These results suggest that 4-arylidene curcumin analogs are novel 19S deubiquitinase inhibitors with great potential for anticancer drug development.
Collapse
Affiliation(s)
- Binhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen YJ, Ma YS, Fang Y, Wang Y, Fu D, Shen XZ. Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy. Asian Pac J Cancer Prev 2013; 14:2173-9. [DOI: 10.7314/apjcp.2013.14.4.2173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Abstract
The proteasome refers to a collection of complexes centered on the 20S proteasome core particle (20S CP), a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important recent advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by the incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform us about mechanisms of assembly and the role of conformational changes in the functional cycle.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | |
Collapse
|
17
|
Yang F, Jia SN, Yu YQ, Ye X, Liu J, Qian YQ, Yang WJ. Deubiquitinating enzyme BAP1 is involved in the formation and maintenance of the diapause embryos of Artemia. Cell Stress Chaperones 2012; 17:577-87. [PMID: 22374320 PMCID: PMC3535162 DOI: 10.1007/s12192-012-0333-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 11/26/2022] Open
Abstract
The modification of proteins by ubiquitination and deubiquitination plays an important role in various cellular processes. BRCA1-associated protein-1 (BAP1) is a deubiquitinating enzyme whose function in the control of the cell cycle requires both its deubiquitinating activity and nuclear localization. In the present study, a ubiquitin carboxyl-terminal hydrolase belonging to the BAP1 family was identified and characterized from Artemia parthenogenetica, a member of a family of brine shrimp that, under certain conditions, produce and release diapause embryos in which cell division and turnover of macromolecules are arrested. Western blot analysis and in vitro enzyme activity assay revealed ArBAP1 to be a cytoplasmic protein with typical ubiquitin hydrolase activity. Northern blot analysis revealed that ArBAP1 was abundant in the abdomen of Artemia producing diapause-destined embryos. Furthermore, by in situ hybridization, ArBAP1 was located exclusively in the embryos. In vivo knockdown of ArBAP1 by RNA interference resulted in the formation of embryos with split shells and abortive nauplii. The present findings suggest that ArBAP1, the first reported cytoplasmic BAP1, participates in the formation of diapause embryos and plays an important role in the control of cell cycle arrest in these encysted embryos.
Collapse
Affiliation(s)
- Fan Yang
- />Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Sheng-Nan Jia
- />Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Yan-Qin Yu
- />Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Xiang Ye
- />Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Jun Liu
- />College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Xiasha, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Ye-Qing Qian
- />Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Wei-Jun Yang
- />Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058 Zhejiang People’s Republic of China
| |
Collapse
|
18
|
Zhang M, Deng Y, Luo Y, Zhang S, Zou H, Cai F, Wada K, Song W. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem 2012; 120:1129-38. [PMID: 22212137 DOI: 10.1111/j.1471-4159.2011.07644.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Deposition of amyloid β protein (Aβ) in the brain is the hallmark of Alzheimer's disease (AD) pathogenesis. Beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the β-secretase in vivo essential for generation of Aβ. Previously we demonstrated that BACE1 is ubiquitinated and the degradation of BACE1 is mediated by the ubiquitin-proteasome pathway (UPP). However the mechanism underlying regulation of BACE1 degradation by UPP remains elusive. Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme highly specific to neuron, catalyzing the hydrolysis of ubiquitin conjugates from ubiquitinated substrates. UCHL1 regulates ubiquitin-dependent protein degradation. However, whether UCHL1 is particularly involved in the proteasomal degradation of BACE1 and what is the role of UCHL1 in AD pathogenesis remain elusive. To investigate the effect of UCHL1 on BACE1 degradation, HUCH cells, a UCHL1 stably over-expressed HEK293 cell line, was established. We found that inhibition of UCHL1 significantly increased BACE1 protein level in a time-dependent manner. Half life of BACE1 was reduced in HUCH cells compared with HEK. Over-expression of UCHL1 decreased APP C-terminal fragment C99 and Aβ levels in HUCH cells. Moreover, disruption of Uchl1 gene significantly elevated levels of endogenous BACE1, C99 and Aβ in the Uchl1-null gad mice. These results demonstrated that UCHL1 accelerates BACE1 degradation and affects APP processing and Aβ production. This study suggests that potentiation of UCHL1 might be able to reduce the level of BACE1 and Aβ in brain, which makes it a novel target for AD drug development.
Collapse
Affiliation(s)
- Mingming Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Nat Cell Biol 2012; 14:168-76. [PMID: 22286100 PMCID: PMC3278798 DOI: 10.1038/ncb2425] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) initiates mitotic exit by ubiquitinating cell-cycle regulators such as cyclin B1 and securin. Lys48-linked ubiquitin chains represent the canonical signal targeting proteins for degradation by the proteasome, but they are not required for the degradation of cyclin B1. Lys11-linked ubiquitin chains have been implicated in degradation of APC/C substrates, but the Lys11-chain forming E2 UBE2S is not essential for mitotic exit, raising questions about the nature of the ubiquitin signal that targets APC/C substrates for degradation. Here we demonstrate that multiple monoubiquitination of cyclin B1, catalyzed by UBCH10 or UBC4/5, is sufficient to target cyclin B1 for destruction by the proteasome. When the number of ubiquitinatable lysines in cyclin B1 is restricted, Lys11-linked ubiquitin polymers elaborated by UBE2S become increasingly important. We therefore explain how a substrate that contains multiple ubiquitin acceptor sites confers flexibility in the requirement for particular E2 enzymes in modulating the rate of ubiquitin-dependent proteolysis.
Collapse
|
20
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
21
|
Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochem J 2011; 441:143-9. [DOI: 10.1042/bj20110699] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UCHs [Ub (ubiquitin) C-terminal hydrolases] are a family of deubiquitinating enzymes that are often thought to only remove small C-terminal peptide tails from Ub adducts. Among the four UCHs identified to date, neither UCH-L3 nor UCH-L1 can catalyse the hydrolysis of isopeptide Ub chains, but UCH-L5 can when it is present in the PA700 complex of the proteasome. In the present paper, we report that the UCH domain of UCH-L5, different from UCH-L1 and UCH-L3, by itself can process the K48-diUb (Lys48-linked di-ubiquitin) substrate by cleaving the isopeptide bond between two Ub units. The catalytic specificity of the four UCHs is dependent on the length of the active-site crossover loop. The UCH domain with a long crossover loop (usually >14 residues), such as that of UCH-L5 or BAP1 [BRCA1 (breast cancer early-onset 1)-associated protein 1], is able to cleave both small and large Ub derivatives, whereas the one with a short loop can only process small Ub derivatives. We also found that elongation of the crossover loop enables UCH-L1 to have isopeptidase activity for K48-diUb in a length-dependent manner. Thus the loop length of UCHs defines their substrate specificity for diUb chains, suggesting that the chain flexibility of the crossover loop plays an important role in determining its catalytic activity and substrate specificity for cleaving isopeptide Ub chains.
Collapse
|
22
|
D'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson R, Linder S. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 2011; 17:1636-40. [PMID: 22057347 DOI: 10.1038/nm.2536] [Citation(s) in RCA: 394] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 09/27/2011] [Indexed: 11/09/2022]
Abstract
Ubiquitin-tagged substrates are degraded by the 26S proteasome, which is a multisubunit complex comprising a proteolytic 20S core particle capped by 19S regulatory particles. The approval of bortezomib for the treatment of multiple myeloma validated the 20S core particle as an anticancer drug target. Here we describe the small molecule b-AP15 as a previously unidentified class of proteasome inhibitor that abrogates the deubiquitinating activity of the 19S regulatory particle. b-AP15 inhibited the activity of two 19S regulatory-particle-associated deubiquitinases, ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14), resulting in accumulation of polyubiquitin. b-AP15 induced tumor cell apoptosis that was insensitive to TP53 status and overexpression of the apoptosis inhibitor BCL2. We show that treatment with b-AP15 inhibited tumor progression in four different in vivo solid tumor models and inhibited organ infiltration in an acute myeloid leukemia model. Our results show that the deubiquitinating activity of the 19S regulatory particle is a new anticancer drug target.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Castañeda CA, Liu J, Kashyap TR, Singh RK, Fushman D, Cropp TA. Controlled enzymatic synthesis of natural-linkage, defined-length polyubiquitin chains using lysines with removable protecting groups. Chem Commun (Camb) 2011; 47:2026-8. [PMID: 21212884 PMCID: PMC3190230 DOI: 10.1039/c0cc04868b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
E2 enzymes catalyze the ATP-dependent polymerization of polyubiquitin chains which function as molecular signals in the regulation of numerous cellular processes. Here we present a method that uses genetically encoded unnatural amino acids to halt and re-start ubiquitin polymerization providing access to natural-linkage, precision-length ubiquitin chains that can be used for biochemical, structural, and dynamics studies.
Collapse
Affiliation(s)
- Carlos A. Castañeda
- Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Jia Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Tanuja R. Kashyap
- Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Rajesh K. Singh
- Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - David Fushman
- Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - T. Ashton Cropp
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
24
|
Kim HM, Yu Y, Cheng Y. Structure characterization of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:67-79. [PMID: 20800708 PMCID: PMC3010250 DOI: 10.1016/j.bbagrm.2010.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/27/2023]
Abstract
In all eukaryotic cells, 26S proteasome plays an essential role in the process of ATP-dependent protein degradation. In this review, we focus on structure characterization of the 26S proteasome. Although the progress towards a high-resolution structure of the 26S proteasome has been slow, the recently solved structures of various proteasomal subcomplexes have greatly enhanced our understanding of this large machinery. In addition to having an ATP-dependent proteolytic function, the 26S proteasome is also involved in many non-proteolytic cellular activities, which are often mediated by subunits in its 19S regulatory complex. Thus, we include a detailed discussion of the structures of 19S subunits, including proteasomal ATPases, ubiquitin receptors, deubiquitinating enzymes and subunits that contain PCI domain. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Ho Min Kim
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Yadong Yu
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Yifan Cheng
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| |
Collapse
|
25
|
Abstract
Proteasomes degrade a multitude of protein substrates in the cytosol and nucleus, and thereby are essential for many aspects of cellular function. Because the proteolytic sites are sequestered in a closed barrel-shaped structure, activators are required to facilitate substrate access. Structural and biochemical studies of two activator families, 11S and Blm10, have provided insights to proteasome activation mechanisms, although the biological functions of these factors remain obscure. Recent advances have improved our understanding of the third activator family, including the 19S activator, which targets polyubiquitylated proteins for degradation. Here we present a structural perspective on how proteasomes are activated and how substrates are delivered to the proteolytic sites.
Collapse
Affiliation(s)
- Beth M. Stadtmueller
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650
| |
Collapse
|
26
|
Chen X, Lee BH, Finley D, Walters KJ. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell 2010; 38:404-15. [PMID: 20471946 PMCID: PMC2887722 DOI: 10.1016/j.molcel.2010.04.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/22/2010] [Accepted: 03/30/2010] [Indexed: 01/12/2023]
Abstract
Rpn13 is a subunit of the proteasome that serves as a receptor for both ubiquitin and Uch37, one of the proteasome's three deubiquitinating enzymes. We have determined the structure of full-length human Rpn13 (hRpn13). Unexpectedly, Rpn13's ubiquitin- and Uch37-binding domains pack against each other when it is not incorporated into the proteasome. This intramolecular interaction reduces hRpn13's affinity for ubiquitin. We find that hRpn13 binding to the proteasome scaffolding protein hRpn2/S1 abrogates its interdomain interactions, thus activating hRpn13 for ubiquitin binding. hRpn13's Uch37-binding domain, a previously unknown fold, contains nine alpha helices. We have mapped its Uch37-binding surface to a region rich in charged amino acids. Altogether, our results provide mechanistic insights into hRpn13's functional activities with Uch37 and ubiquitin and suggest that its role as a ubiquitin receptor is finely tuned for proteasome targeting.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kylie J. Walters
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, Viollet B, Yan D, Zou MH. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res 2010; 106:1117-28. [PMID: 20167927 PMCID: PMC2920052 DOI: 10.1161/circresaha.109.212530] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE AMP-activated protein kinase (AMPK) is an energy sensor and ubiquitously expressed in vascular cells. Recent studies suggest that AMPK activation improves endothelial function by counteracting oxidative stress in endothelial cells. How AMPK suppresses oxidative stress remains to be established. OBJECTIVE The aim of this study is to examine the effects of AMPK in regulating NAD(P)H oxidase, oxidative stress, and endothelial function. METHODS AND RESULTS The markers of oxidative stress, NAD(P)H oxidase subunit expression (gp91(phox), p47(phox), p67(phox), NOX1 to -4), NAD(P)H oxidase-mediated superoxide production, 26S proteasome activity, IkappaBalpha degradation, and nuclear translocation of nuclear factor (NF)-kappaB (p50 and p65) were examined in cultured human umbilical vein endothelial cells and mouse aortas isolated from AMPKalpha2 deficient mice. Compared to the wild type, acetylcholine-induced endothelium-dependent relaxation was significantly impaired in parallel with increased production of oxidants in AMPKalpha2(-/-) mice. Further, pretreatment of aorta with either superoxide dismutase (SOD) or tempol or apocynin significantly improved acetylcholine-induced endothelium-dependent relaxation in AMPKalpha2(-/-) mice. Analysis of aortic endothelial cells from AMPKalpha2(-/-) mice and human umbilical vein endothelial cells expressing dominant negative AMPK or AMPKalpha2-specific siRNA revealed that loss of AMPK activity increased NAD(P)H oxidase subunit expression (gp91(phox), p47(phox), p67(phox), NOX1 and -4), NAD(P)H oxidase-mediated superoxide production, 26S proteasome activity, IkappaBalpha degradation, and nuclear translocation of NF-kappaB (p50 and p65), whereas AMPK activation by AICAR or overexpression of constitutively active AMPK had the opposite effect. Consistently, we found that genetic deletion of AMPKalpha2 in low-density lipoprotein receptor knockout (LDLr(-/-)) strain markedly increased 26S proteasome activity, IkappaB degradation, NF-kappaB transactivation, NAD(P)H oxidase subunit overexpression, oxidative stress, and endothelial dysfunction, all of which were largely suppressed by chronic administration of MG132, a potent cell permeable proteasome inhibitor. CONCLUSIONS We conclude that AMPKalpha2 functions as a physiological suppressor of NAD(P)H oxidase and ROS production in endothelial cells. In this way, AMPK maintains the nonatherogenic and noninflammatory phenotype of endothelial cells.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/deficiency
- AMP-Activated Protein Kinases/genetics
- Acetophenones/pharmacology
- Acetylcholine/pharmacology
- Aminoimidazole Carboxamide/analogs & derivatives
- Aminoimidazole Carboxamide/pharmacology
- Animals
- Antioxidants/pharmacology
- Cells, Cultured
- Cyclic N-Oxides/pharmacology
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Gene Deletion
- Gene Expression Regulation, Enzymologic
- Humans
- I-kappa B Proteins/metabolism
- Inflammation Mediators/blood
- Interferon-gamma/blood
- Interleukin-2/blood
- Isoenzymes
- Leupeptins/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Nitroprusside/pharmacology
- Oxidative Stress/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RNA Interference
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Ribonucleotides/pharmacology
- Spin Labels
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
- Transfection
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Shuangxi Wang
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Miao Zhang
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bin Liang
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jian Xu
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhonglin Xie
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Liu
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Benoit Viollet
- Institut Cochin, CNRS (UMR 8104), University Paris Descartes, Paris, France
- Inserm, U1016, Paris, France
- College of Life Science, Jinan University, Guangzhou 510632, China
| | - Daoguang Yan
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ming-Hui Zou
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
28
|
Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun 2009; 390:855-60. [DOI: 10.1016/j.bbrc.2009.10.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 11/17/2022]
|
29
|
Allende-Vega N, Saville MK. Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Semin Cancer Biol 2009; 20:29-39. [PMID: 19897040 DOI: 10.1016/j.semcancer.2009.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 10/29/2009] [Indexed: 11/17/2022]
Abstract
Ubiquitination plays a key role in regulating the tumour suppressor p53. It targets p53 for degradation by the 26S proteasome. The ubiquitin pathway also regulates the activity and localisation of p53. Ubiquitination requires ubiquitin-activating and -conjugating enzymes and ubiquitin ligases. In addition, ubiquitination can be reversed by the action of deubiquitinating enzymes. Here we give an overview of the role of components of the ubiquitin-proteasome system in the regulation of p53 and review progress in targeting these proteins to activate wild-type p53 for the treatment of cancer.
Collapse
Affiliation(s)
- Nerea Allende-Vega
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
30
|
Characterization and tissue expression of channel catfish (Ictalurus punctatus Rafinesque, 1818) ubiquitin carboxyl-terminal hydrolase L5 (UCHL5) cDNA. Mol Biol Rep 2009; 37:1229-34. [PMID: 19266312 DOI: 10.1007/s11033-009-9493-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
The ubiquitin-proteasome cycle is a complex, non-lysosomal biochemical process for intracellular protein degradation. This process involves many enzymes. One enzyme involved in this process is ubiquitin carboxyl-terminal hydrolase L5 (UCHL5), which deubiquitylates the polyubiquitin chain into ubiquitin. In this report, we isolated, sequenced, and characterized the channel catfish UCHL5 cDNA. The complete nucleic acid sequence of the channel catfish UCHL5 cDNA is comprised of 1,357 nucleotides, including an open reading frame, which appears to encode a putative peptide of 329 amino acid residues. The estimated molecular mass and pI of this peptide are 37.6 kDa and 4.84 at pH 7.0, respectively. The degree of conservation of the channel catfish UCHL5 amino acid sequence in comparison to other species ranged from 85% (vs. mouse) to 92% (vs. zebrafish and spotted green pufferfish). The channel catfish UCHL5 transcript was detected by RT-PCR in spleen, head kidney, liver, intestine, skin and gill, suggesting the UCHL5 transcript is constitutively expressed. This research provides important information for further elucidating UCHL5 in the channel catfish ubiquitin-proteasome pathway.
Collapse
|
31
|
Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen RE, Wolberger C. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J Mol Biol 2009; 386:1011-23. [PMID: 19211026 PMCID: PMC2682458 DOI: 10.1016/j.jmb.2008.12.085] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/19/2008] [Accepted: 12/29/2008] [Indexed: 12/13/2022]
Abstract
Otubain 1 belongs to the ovarian tumor (OTU) domain class of cysteine protease deubiquitinating enzymes. We show here that human otubain 1 (hOtu1) is highly linkage-specific, cleaving Lys48 (K48)-linked polyubiquitin but not K63-, K29-, K6-, or K11-linked polyubiquitin, or linear alpha-linked polyubiquitin. Cleavage is not limited to either end of a polyubiquitin chain, and both free and substrate-linked polyubiquitin are disassembled. Intriguingly, cleavage of K48-diubiquitin by hOtu1 can be inhibited by diubiquitins of various linkage types, as well as by monoubiquitin. NMR studies and activity assays suggest that both the proximal and distal units of K48-diubiquitin bind to hOtu1. Reaction of Cys23 with ubiquitin-vinylsulfone identified a ubiquitin binding site that is distinct from the active site, which includes Cys91. Occupancy of the active site is needed to enable tight binding to the second site. We propose that distinct binding sites for the ubiquitins on either side of the scissile bond allow hOtu1 to discriminate among different isopeptide linkages in polyubiquitin substrates. Bidentate binding may be a general strategy used to achieve linkage-specific deubiquitination.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Luming Yin
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Eric M. Cooper
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ming-Yih Lai
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742
| | - Seth Dickey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Cecile M. Pickart
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742
| | | | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
32
|
Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, Finley D, Dikic I, Walters K, Groll M. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008; 453:548-52. [PMID: 18497827 PMCID: PMC2825158 DOI: 10.1038/nature06924] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 03/18/2008] [Indexed: 01/14/2023]
Abstract
Targeted protein degradation is largely performed by the ubiquitin-proteasome pathway, in which substrate proteins are marked by covalently attached ubiquitin chains that mediate recognition by the proteasome. It is currently unclear how the proteasome recognizes its substrates, as the only established ubiquitin receptor intrinsic to the proteasome is Rpn10/S5a (ref. 1), which is not essential for ubiquitin-mediated protein degradation in budding yeast. In the accompanying manuscript we report that Rpn13 (refs 3-7), a component of the nine-subunit proteasome base, functions as a ubiquitin receptor, complementing its known role in docking de-ubiquitinating enzyme Uch37/UCHL5 (refs 4-6) to the proteasome. Here we merge crystallography and NMR data to describe the ubiquitin-binding mechanism of Rpn13. We determine the structure of Rpn13 alone and complexed with ubiquitin. The co-complex reveals a novel ubiquitin-binding mode in which loops rather than secondary structural elements are used to capture ubiquitin. Further support for the role of Rpn13 as a proteasomal ubiquitin receptor is demonstrated by its ability to bind ubiquitin and proteasome subunit Rpn2/S1 simultaneously. Finally, we provide a model structure of Rpn13 complexed to diubiquitin, which provides insights into how Rpn13 as a ubiquitin receptor is coupled to substrate deubiquitination by Uch37.
Collapse
Affiliation(s)
- Patrick Schreiner
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Xiang Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, US
| | - Koraljka Husnjak
- Institute for Biochemistry II and and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
- Tumor Biology Program, Mediterranean Institute for Life Sciences, Mestrovicevo setaliste, 21 000 Split, Croatia
| | - Leah Randles
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, US
| | - Naixia Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, US
| | - Suzanne Elsasser
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ivan Dikic
- Institute for Biochemistry II and and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
- Tumor Biology Program, Mediterranean Institute for Life Sciences, Mestrovicevo setaliste, 21 000 Split, Croatia
- Department of Immunology, Medical School University of Split, Soltanska 2, 21 000 Split, Croatia
| | - Kylie Walters
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, US
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
- Institute of Biochemistry, Charité-Universitatsmedizin Berlin CCM, Monbijoustraβe 2, D-10117 Berlin, Germany
| |
Collapse
|
33
|
Koulich E, Li X, DeMartino GN. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell 2007; 19:1072-82. [PMID: 18162577 DOI: 10.1091/mbc.e07-10-1040] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We determined composition and relative roles of deubiquitylating proteins associated with the 26S proteasome in mammalian cells. Three deubiquitylating activities were associated with the 26S proteasome: two from constituent subunits, Rpn11/S13 and Uch37, and one from a reversibly associated protein, Usp14. RNA interference (RNAi) of Rpn11/S13 inhibited cell growth, decreased cellular proteasome activity via disrupted 26S proteasome assembly, and inhibited cellular protein degradation. In contrast, RNAi of Uch37 or Usp14 had no detectable effect on cell growth, proteasome structure or proteolytic capacity, but accelerated cellular protein degradation. RNAi of both Uch37 and Usp14 also had no effect on proteasome structure or proteolytic capacity, but inhibited cellular protein degradation. Thus, proper proteasomal processing of ubiquitylated substrates requires Rpn11 plus either Uch37 or Usp14. Although the latter proteins feature redundant deubiquitylation functions, they also appear to exert noncatalyic effects on proteasome activity that are similar to but independent of one another. These results reveal unexpected functional relationships among multiple deubiquitylating proteins and suggest a model for mammalian 26S proteasome function whereby their concerted action governs proteasome function by linking deubiquitylation to substrate hydrolysis.
Collapse
Affiliation(s)
- Elena Koulich
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
34
|
Borissenko L, Groll M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 2007; 107:687-717. [PMID: 17316053 DOI: 10.1021/cr0502504] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ljudmila Borissenko
- Charité (CCM), Institut für Biochemie, AG Strukturforschung, Monbijoustrasse 2, 10117 Berlin, Germany
| | | |
Collapse
|
35
|
Dickinson BC, Varadan R, Fushman D. Effects of cyclization on conformational dynamics and binding properties of Lys48-linked di-ubiquitin. Protein Sci 2007; 16:369-78. [PMID: 17242378 PMCID: PMC2203315 DOI: 10.1110/ps.062508007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In solution, Lys48-linked di-ubiquitin exists in dynamic equilibrium between closed and open conformations. To understand the effect of interdomain motion in polyubiquitin chains on their ability to bind ligands, we cyclized di-ubiquitin by cross-linking the free C terminus of the proximal ubiquitin with the side chain of residue 48 in the distal ubiquitin, using a chemical cross-linker, 1,6-Hexane-bis-vinylsulfone. Our NMR studies confirm that the cyclization affects conformational dynamics in di-ubiquitin by restricting opening of the interface and shifting the conformational equilibrium toward closed conformations. The cyclization, however, did not rigidly lock di-ubiquitin in a single closed conformation: The chain undergoes slow exchange between at least two closed conformations, characterized by interdomain contacts involving the same hydrophobic patch residues (Leu8-Ile44-Val70) as in the uncyclized di-ubiquitin. Lowering the pH changes the relative populations of these conformations, but in contrast with the uncyclized di-ubiquitin, does not lead to opening of the interface. This restriction of domain motions inhibits direct access of protein molecules to the hydrophobic patch residues located at the very center of the interdomain interface in di-ubiquitin, although the residual motions are sufficient to allow access of small molecules to the interface. This renders di-ubiquitin unable to bind protein molecules (e.g., UBA2 domain) in the normal manner, and thus could interfere with Ub(2) recognition by various downstream effectors. These results emphasize the importance of the opening/closing domain motions for the recognition and function of di-ubiquitin and possibly longer polyubiquitin chains.
Collapse
Affiliation(s)
- Bryan C Dickinson
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
36
|
Staszczak M. An in vitro method for selective detection of free monomeric ubiquitin by using a C-terminally biotinylated form of ubiquitin. Int J Biochem Cell Biol 2007; 39:319-26. [PMID: 17030000 DOI: 10.1016/j.biocel.2006.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
In an effort to design a selective assay allowing detection of free monomeric ubiquitin, an approach based on a C-terminally biotinylated form of ubiquitin is proposed. In the form of a polyubiquitin chain, ubiquitin marks proteins for degradation by the 26S proteasome. This covalently attached signal is assembled from multiple ubiquitins linked to each other via the C-terminus of one ubiquitin and the epsilon-amine of Lys48 of another ubiquitin. In the present study, a form of ubiquitin having the C-terminus modified with the addition of a biotinylation peptide tag was prepared. After expression, this modified ubiquitin was biotinylated in vitro using recombinant biotin ligase. Biotinylated ubiquitin was further purified using affinity chromatography on immobilized monovalent avidin. This tagged form of ubiquitin is blocked at the C-terminus and therefore can only act as an acceptor (Lys-48 donor) in polyubiquitin chain synthesis. In vitro enzymatic assembly of multiubiquitin chains from biotinylated monoubiquitin and natural monoubiquitin is demonstrated by Western blot analysis using horseradish peroxidase-conjugated streptavidin. Data obtained with this assay indicate potential uses of the C-terminally biotinylated form of ubiquitin for selective detection of monoubiquitin contamination in a cell extract experimentally depleted of ubiquitin, i.e. lysate Fraction II. Cell-free systems established for in vitro examination of ubiquitin involvement in proteolytic processes usually employ Fraction II, which should be essentially ubiquitin-free. It is suggested that the assay using biotinylated monoubiquitin can be useful to exclude the possibility that ubiquitin contamination of laboratory prepared lysate Fraction II accounts for protein degradation in this fraction.
Collapse
Affiliation(s)
- Magdalena Staszczak
- Department of Biochemistry, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
37
|
Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006; 8:994-1002. [PMID: 16906146 DOI: 10.1038/ncb1460] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 07/12/2006] [Indexed: 11/09/2022]
Abstract
Uch37 is one of the three principal deubiquitinating enzymes (DUBs), and the only ubiquitin carboxy-terminal hydrolase (UCH)-family protease, that is associated with mammalian proteasomes. We show that Uch37 is responsible for the ubiquitin isopeptidase activity in the PA700 (19S) proteasome regulatory complex. PA700 isopeptidase disassembles Lys 48-linked polyubiquitin specifically from the distal end of the chain, a property that may be used to clear poorly ubiquitinated or unproductively bound substrates from the proteasome. To better understand Uch37 function and the mechanism responsible for its specificity, we investigated how Uch37 is recruited to proteasomes. Uch37 binds through Adrm1, a previously unrecognized orthologue of Saccharomyces cerevisiae Rpn13p, which in turn is bound to the S1 (also known as Rpn2) subunit of the 19S complex. Adrm1 (human Rpn13, hRpn13) binds the carboxy-terminal tail of Uch37, a region that is distinct from the UCH catalytic domain, which we show inhibits Uch37 activity. Following binding, Adrm1 relieves Uch37 autoinhibition, accelerating the hydrolysis of ubiquitin-7-amido-4-methylcoumarin (ubiquitin-AMC). However, neither Uch37 alone nor the Uch37-Adrm1 or Uch37-Adrm1-S1 complexes can hydrolyse di-ubiquitin efficiently; rather, incorporation into the 19S complex is required to enable processing of polyubiquitin chains.
Collapse
Affiliation(s)
- Tingting Yao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Flierman D, Coleman CS, Pickart CM, Rapoport TA, Chau V. E2-25K mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system. Proc Natl Acad Sci U S A 2006; 103:11589-94. [PMID: 16868077 PMCID: PMC1520313 DOI: 10.1073/pnas.0605215103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells expressing human cytomegalovirus US11 protein, newly synthesized MHC class I heavy chains (HCs) are rapidly dislocated from the endoplasmic reticulum (ER) and degraded in the cytosol, a process that is similar to ER-associated degradation (ERAD), the pathway used for degradation of misfolded ER proteins. US11-triggered movement of HCs into the cytosol requires polyubiquitination, but it is unknown which ubiquitin-conjugating and ubiquitin-ligase enzymes are involved. To identify the ubiquitin-conjugating enzyme (E2) required for dislocation, we used a permeabilized cell system, in which endogenous cytosol can be replaced by cow liver cytosol. By fractionating the cytosol, we show that E2-25K can serve as the sole E2 required for dislocation of HCs in vitro. Purified recombinant E2-25K, together with components that convert this E2 to the active E2-ubiquitin thiolester form, can substitute for crude cytosol. E2-25K cannot be replaced by the conjugating enzymes HsUbc7/Ube2G2 or Ube2G1, even though HsUbc7/Ube2G2 and its yeast homolog Ubc7p are known to participate in ERAD. The activity of E2-25K, as measured by ubiquitin dimer formation, is strikingly enhanced when added to permeabilized cells, likely by membrane-bound ubiquitin protein ligases. To identify these ligases, we tested RING domains of various ligases for their activation of E2-25K in vitro. We found that RING domains of gp78/AMFR, a ligase previously implicated in ERAD, and MARCHVII/axotrophin, a ligase of unknown function, greatly enhanced the activity of E2-25K. We conclude that in permeabilized, US11-expressing cells polyubiquitination of the HC substrate can be catalyzed by E2-25K, perhaps in cooperation with the ligase MARCHVII/axotrophin.
Collapse
Affiliation(s)
- Dennis Flierman
- *Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Catherine S. Coleman
- *Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Cecile M. Pickart
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, MD 21205; and
| | - Tom A. Rapoport
- The Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or E-mail:
| | - Vincent Chau
- *Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- To whom correspondence may be addressed. E-mail:
or E-mail:
| |
Collapse
|
39
|
Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2006; 79:15189-98. [PMID: 16306590 PMCID: PMC1316023 DOI: 10.1128/jvi.79.24.15189-15198.2005] [Citation(s) in RCA: 447] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication of the genomic RNA of severe acute respiratory syndrome coronavirus (SARS-CoV) is mediated by replicase polyproteins that are processed by two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro). Previously, we showed that SARS-CoV PLpro processes the replicase polyprotein at three conserved cleavage sites. Here, we report the identification and characterization of a 316-amino-acid catalytic core domain of PLpro that can efficiently cleave replicase substrates in trans-cleavage assays and peptide substrates in fluorescent resonance energy transfer-based protease assays. We performed bioinformatics analysis on 16 papain-like protease domains from nine different coronaviruses and identified a putative catalytic triad (Cys1651-His1812-Asp1826) and zinc-binding site. Mutagenesis studies revealed that Asp1826 and the four cysteine residues involved in zinc binding are essential for SARS-CoV PLpro activity. Molecular modeling of SARS-CoV PLpro suggested that this catalytic core may also have deubiquitinating activity. We tested this hypothesis by measuring the deubiquitinating activity of PLpro by two independent assays. SARS CoV-PLpro hydrolyzed both diubiquitin and ubiquitin-7-amino-4-methylcoumarin (AMC) substrates, and hydrolysis of ubiquitin-AMC is approximately 180-fold more efficient than hydrolysis of a peptide substrate that mimics the PLpro replicase recognition sequence. To investigate the critical determinants recognized by PLpro, we performed site-directed mutagenesis on the P6 to P2' residues at each of the three PLpro cleavage sites. We found that PLpro recognizes the consensus cleavage sequence LXGG, which is also the consensus sequence recognized by cellular deubiquitinating enzymes. This similarity in the substrate recognition sites should be considered during the development of SARS-CoV PLpro inhibitors.
Collapse
Affiliation(s)
- Naina Barretto
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Bldg. 105, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
40
|
The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2005. [PMID: 16306590 DOI: 10.1128/jvi.79.24.15189‐15198.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication of the genomic RNA of severe acute respiratory syndrome coronavirus (SARS-CoV) is mediated by replicase polyproteins that are processed by two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro). Previously, we showed that SARS-CoV PLpro processes the replicase polyprotein at three conserved cleavage sites. Here, we report the identification and characterization of a 316-amino-acid catalytic core domain of PLpro that can efficiently cleave replicase substrates in trans-cleavage assays and peptide substrates in fluorescent resonance energy transfer-based protease assays. We performed bioinformatics analysis on 16 papain-like protease domains from nine different coronaviruses and identified a putative catalytic triad (Cys1651-His1812-Asp1826) and zinc-binding site. Mutagenesis studies revealed that Asp1826 and the four cysteine residues involved in zinc binding are essential for SARS-CoV PLpro activity. Molecular modeling of SARS-CoV PLpro suggested that this catalytic core may also have deubiquitinating activity. We tested this hypothesis by measuring the deubiquitinating activity of PLpro by two independent assays. SARS CoV-PLpro hydrolyzed both diubiquitin and ubiquitin-7-amino-4-methylcoumarin (AMC) substrates, and hydrolysis of ubiquitin-AMC is approximately 180-fold more efficient than hydrolysis of a peptide substrate that mimics the PLpro replicase recognition sequence. To investigate the critical determinants recognized by PLpro, we performed site-directed mutagenesis on the P6 to P2' residues at each of the three PLpro cleavage sites. We found that PLpro recognizes the consensus cleavage sequence LXGG, which is also the consensus sequence recognized by cellular deubiquitinating enzymes. This similarity in the substrate recognition sites should be considered during the development of SARS-CoV PLpro inhibitors.
Collapse
|
41
|
Correia MA, Sadeghi S, Mundo-Paredes E. CYTOCHROME P450 UBIQUITINATION: Branding for the Proteolytic Slaughter? Annu Rev Pharmacol Toxicol 2005; 45:439-64. [PMID: 15822184 DOI: 10.1146/annurev.pharmtox.45.120403.100127] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hepatic cytochromes P450 (P450s) are monotopic endoplasmic reticulum (ER)-anchored hemoproteins engaged in the enzymatic oxidation of a wide variety of endo- and xenobiotics. In the course of these reactions, the enzymes generate reactive O2species and/or reactive metabolic products that can attack the P450 heme and/or protein moiety and structurally and functionally damage the enzyme. The in vivo conformational unraveling of such a structurally damaged P450 signals its rapid removal via the cellular sanitation system responsible for the proteolytic disposal of structurally aberrant, abnormal, and/or otherwise malformed proteins. A key player in this process is the ubiquitin (Ub)-dependent 26S proteasome system. Accordingly, the structurally deformed P450 protein is first branded for recognition and proteolytic removal by the 26S proteasome with an enzymatically incorporated polyUb tag. P450s of the 3A subfamily such as the major human liver enzyme CYP3A4 are notorious targets for this process, and they represent excellent prototypes for the understanding of integral ER protein ubiquitination. Not all the participants in hepatic CYP3A ubiquitination and subsequent proteolytic degradation have been identified. The following discussion thus addresses the various known and plausible events and/or cellular participants involved in this multienzymatic P450 ubiquitination cascade, on the basis of our current knowledge of other eukaryotic models. In addition, because the detection of ubiquitinated P450s is technically challenging, the critical importance of appropriate methodology is also discussed.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA.
| | | | | |
Collapse
|
42
|
Wicks SJ, Haros K, Maillard M, Song L, Cohen RE, Dijke PT, Chantry A. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signalling. Oncogene 2005; 24:8080-4. [PMID: 16027725 DOI: 10.1038/sj.onc.1208944] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disruption of components in the transforming growth factor-beta (TGF-beta) signalling cascade is a common occurrence in human cancers. TGF-beta pathway activation is accomplished via serine/threonine kinase receptors and intracellular Smad transcription factors. A key regulatory step involves specific ubiquitination by Smurfs that mediate the proteasomal degradation of Smads and/or receptors. Here, we report a novel interaction between Smads and ubiquitin C-terminal hydrolase UCH37, a deubiquitinating enzyme that could potentially reverse Smurf-mediated ubiquitination. In GST pull down experiments, UCH37 bound weakly to Smad2 and Smad3, and bound very strongly to Smad7 in a region that is distinct from the -PY- motif in Smad7 that interacts with Smurf ubiquitin ligases. Endogenous Smad7 and UCH37 formed a stable complex in U4A/JAK1 cells, and FLAG-Smad7 co-immunoprecipitated with HA-UCH37 in transfected HEK-293 cells. In addition, we show that UCH37 can deubiquitinate and stabilize the type I TGF-beta receptor. Furthermore, overexpression of UCH37 upregulates TGF-beta-dependent transcription, and this effect is reversed in cells subject to RNAi-mediated knockdown of endogenous UCH37. These findings support a new role for deubiquitinating enzymes in the control of the TGF-beta signalling pathway, and provide a novel molecular target for the design of inhibitors with therapeutic potential in cancer.
Collapse
Affiliation(s)
- Stephen J Wicks
- School of Biological Sciences, University of East Anglia, Earlham Road, Norwich Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Farràs R, Bossis G, Andermarcher E, Jariel-Encontre I, Piechaczyk M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol 2005; 54:31-51. [PMID: 15780906 DOI: 10.1016/j.critrevonc.2004.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2004] [Indexed: 02/04/2023] Open
Abstract
The proteasome is the main proteolytic machinery of the cell. It is responsible for the basal turnover of many intracellular polypeptides, the elimination of abnormal proteins and the generation of the vast majority of peptides presented by class I major histocompatibility complex molecules. Proteasomal proteolysis is also involved in the control of virtually all cellular functions and major decisions through the spatially and timely regulated destruction of essential cell regulators. Therefore, the elucidation of its molecular mechanisms is crucial for the full understanding of the physiology of cells and whole organisms. Conversely, it is increasingly clear that proteasomal degradation is either altered in numerous pathological situations, including many cancers and diseases resulting from aberrant cell differentiation, or instrumental for the development of these pathologies. This, consequently, makes it an attractive target for therapeutical intervention. There is ample evidence that most cell proteins must be polyubiquitylated prior to proteasomal degradation. If the structure and the mode of functioning of the proteasome, as well as the enzymology of ubiquitylation, are relatively well understood, how substrates are delivered to and recognized by the proteolytic machine has remained mysterious till recently. The recent literature indicates that the mechanisms involved are multiple, complex and exquisitely regulated and provides new potential targets for anti-cancer pharmacological intervention.
Collapse
Affiliation(s)
- Rosa Farràs
- Institute of Molecular Genetics of Montpellier (IGMM), UMR 5535-IFR122, CNRS, Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
44
|
Shang F, Deng G, Liu Q, Guo W, Haas AL, Crosas B, Finley D, Taylor A. Lys6-modified ubiquitin inhibits ubiquitin-dependent protein degradation. J Biol Chem 2005; 280:20365-74. [PMID: 15790562 PMCID: PMC1382285 DOI: 10.1074/jbc.m414356200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin plays essential roles in various cellular processes; therefore, it is of keen interest to study the structure-function relationship of ubiquitin itself. We investigated the modification of Lys(6) of ubiquitin and its physiological consequences. Mass spectrometry-based peptide mapping and N-terminal sequencing demonstrated that, of the 7 Lys residues in ubiquitin, Lys(6) was the most readily labeled with sulfosuccinimidobiotin. Lys(6)-biotinylated ubiquitin was incorporated into high molecular mass ubiquitin conjugates as efficiently as unmodified ubiquitin. However, Lys(6)-biotinylated ubiquitin inhibited ubiquitin-dependent proteolysis, as conjugates formed with Lys(6)-biotinylated ubiquitin were resistant to proteasomal degradation. Ubiquitins with a mutation of Lys(6) had similar phenotypes as Lys(6)-biotinylated ubiquitin. Lys(6) mutant ubiquitins (K6A, K6R, and K6W) also inhibited ATP-dependent proteolysis and caused accumulation of ubiquitin conjugates. Conjugates formed with K6W mutant ubiquitin were also resistant to proteasomal degradation. The dominant-negative effect of Lys(6)-modified ubiquitin was further demonstrated in intact cells. Overexpression of K6W mutant ubiquitin resulted in accumulation of intracellular ubiquitin conjugates, stabilization of typical substrates for ubiquitin-dependent proteolysis, and enhanced susceptibility to oxidative stress. Taken together, these results show that Lys(6)-modified ubiquitin is a potent and specific inhibitor of ubiquitin-mediated protein degradation.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:189-207. [PMID: 15571815 DOI: 10.1016/j.bbamcr.2004.10.003] [Citation(s) in RCA: 735] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.
Collapse
Affiliation(s)
- Alexander Y Amerik
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
46
|
Hartmann-Petersen R, Gordon C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 2004; 15:247-59. [PMID: 15209385 DOI: 10.1016/j.semcdb.2003.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to accommodate various cellular substrates.
Collapse
|
47
|
Passmore LA, Barford D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 2004; 379:513-25. [PMID: 14998368 PMCID: PMC1224133 DOI: 10.1042/bj20040198] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 02/25/2004] [Indexed: 12/25/2022]
Abstract
The role of protein ubiquitylation in the control of diverse cellular pathways has recently gained widespread attention. Ubiquitylation not only directs the targeted destruction of tagged proteins by the 26 S proteasome, but it also modulates protein activities, protein-protein interactions and subcellular localization. An understanding of the components involved in protein ubiquitylation (E1s, E2s and E3s) is essential to understand how specificity and regulation are conferred upon these pathways. Much of what we know about the catalytic mechanisms of protein ubiquitylation comes from structural studies of the proteins involved in this process. Indeed, structures of ubiquitin-activating enzymes (E1s) and ubiquitin-conjugating enzymes (E2s) have provided insight into their mechanistic details. E3s (ubiquitin ligases) contain most of the substrate specificity and regulatory elements required for protein ubiquitylation. Although several E3 structures are available, the specific mechanistic role of E3s is still unclear. This review will discuss the different types of ubiquitin signals and how they are generated. Recent advances in the field of protein ubiquitylation will be examined, including the mechanisms of E1, E2 and E3. In particular, we discuss the complexity of molecular recognition required to impose selectivity on substrate selection and topology of poly-ubiquitin chains.
Collapse
Affiliation(s)
- Lori A Passmore
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|
48
|
Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol 2004; 73:311-57. [PMID: 15312912 DOI: 10.1016/j.pneurobio.2004.05.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
A proteolytic pathway in which attachment of a small protein, ubiquitin, marks the substrates for degradation by a multi-subunit complex called the proteasome has been shown to function in synaptic plasticity and in several other physiological processes of the nervous system. Attachment of ubiquitin to protein substrates occurs through a series of highly specific and regulated steps. Degradation by the proteasome is subject to multiple levels of regulation as well. How does the ubiquitin-proteasome pathway contribute to synaptic plasticity? Long-lasting, protein synthesis-dependent, changes in the synaptic strength occur through activation of molecular cascades in the nucleus in coordination with signaling events in specific synapses. Available evidence indicates that ubiquitin-proteasome-mediated degradation has a role in the molecular mechanisms underlying synaptic plasticity that operate in the nucleus as well as at the synapse. Since the ubiquitin-proteasome pathway has been shown to be versatile in having roles in addition to proteolysis in several other cellular processes relevant to synaptic plasticity, such as endocytosis and transcription, this pathway is highly suited for a localized role in the neuron. Because of its numerous roles, malfunctioning of this pathway leads to several diseases and disorders of the nervous system. In this review, I examine the ubiquitin-proteasome pathway in detail and describe the role of regulated proteolysis in long-term synaptic plasticity. Also, using synaptic tagging theory of synapse-specific plasticity, I provide a model on the possible roles and regulation of local protein degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
49
|
Morris JR, Solomon E. BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 2004; 13:807-17. [PMID: 14976165 DOI: 10.1093/hmg/ddh095] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The N-terminus of the BRCA1 protein bears a RING finger domain that functions as an E3 ubiquitin ligase in vitro where it is able to catalyse the synthesis of monoubiquitin and polyubiquitin targeted proteins. This activity is greatly increased when BRCA1 is in a complex with its N-terminal binding partner BARD1. In this report we use an immunohistochemical approach to demonstrate the association of cellular BRCA1 with the end product of the ubiquitin conjugation and ligation pathway, conjugated ubiquitin. Association is apparent at DNA replication structures in S-phase and following treatment with hydroxyurea and also at sites of double strand break repair after exposure to ionizing radiation. Down-regulation of endogenous, cellular BRCA1 : BARD1 using siRNA results in abrogation of ubiquitin conjugation in these structures, suggesting that heterodimer activity is required for their formation. Conversely, ectopically expressed full-length BRCA1, but not BRCA1 bearing specific N-terminal amino acid substitutions, is able to cooperate with BARD1 to increase ubiquitin conjugation in cells. Conjugation of ubiquitin in foci is inhibited by the expression of ubiquitin bearing a lysine 6 mutation suggesting that the ubiquitin polymers formed at these sites are dependent on lysine-6 for linkage. Together these data demonstrate that BRCA1 directed ligation of ubiquitin occurs during S-phase and in response to replication stress and DNA damage and is therefore likely to be a significant aspect of BRCA1 cellular activity.
Collapse
Affiliation(s)
- Joanna R Morris
- Department of Medical and Molecular Genetics, Division of Genetics and Development, Guy's Kings and St Thomas' School of Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
50
|
Nishikawa H, Ooka S, Sato K, Arima K, Okamoto J, Klevit RE, Fukuda M, Ohta T. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2003; 279:3916-24. [PMID: 14638690 DOI: 10.1074/jbc.m308540200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The breast and ovarian cancer suppressor BRCA1 acquires significant ubiquitin ligase activity when bound to BARD1 as a RING heterodimer. Although the activity may well be important for the role of BRCA1 as a tumor suppressor, the biochemical consequence of the activity is not yet known. Here we report that BRCA1-BARD1 catalyzes Lys-6-linked polyubiquitin chain formation. K6R mutation of ubiquitin dramatically reduces the polyubiquitin products mediated by BRCA1-BARD1 in vitro. BRCA1-BARD1 preferentially utilizes ubiquitin with a single Lys residue at Lys-6 or Lys-29 to mediate autoubiquitination of BRCA1 in vivo. Furthermore, mass spectrometry analysis identified the Lys-6-linked branched ubiquitin fragment from the polyubiquitin chain produced by BRCA1-BARD1 using wild type ubiquitin. The BRCA1-BARD1-mediated Lys-6-linked polyubiquitin chains are deubiquitinated by 26 S proteasome in vitro, whereas autoubiquitinated CUL1 through Lys-48-linked polyubiquitin chains is degraded. Proteasome inhibitors do not alter the steady state level of the autoubiquitinated BRCA1 in vivo. Hence, the results indicate that BRCA1-BARD1 mediates novel polyubiquitin chains that may be distinctly edited by 26 S proteasome from conventional Lys-48-linked polyubiquitin chains.
Collapse
Affiliation(s)
- Hiroyuki Nishikawa
- Division of Breast and Endocrine Surgery, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|