1
|
Steiner OM, Johnson RA, Chen X, Simke WC, Li B. Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Biochemistry 2025; 64:192-202. [PMID: 39665630 DOI: 10.1021/acs.biochem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs.
Collapse
Affiliation(s)
- Olivia M Steiner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel A Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William C Simke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Kumari P, Abhinand CS, Kumari R, Upadhyay A, Satheeshkumar PK. Design, development and characterization of a chimeric protein with disulfide reductase and protease domain showing keratinase activity. Int J Biol Macromol 2024; 278:135025. [PMID: 39187103 DOI: 10.1016/j.ijbiomac.2024.135025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Keratin is one of the major components of solid waste, and the degradation products have extensive applications in various commercial industries. Due to the complexity of the structure of keratin, especially the disulfide bonds between keratin polypeptides, keratinolytic activity is efficient with a mixture of proteins with proteases, peptidases, and oxidoreductase activity. The present work aimed to create an engineered chimeric protein with a disulfide reductase domain and a protease domain connected with a flexible linker. The structure, stability, and substrate interaction were analyzed using the protein modeling tools and codon-optimized synthetic gene cloned, expressed, and purified using Ni2+-NTA chromatography. The keratinolytic activity of the protein was at its maximum at 70 °C. The suitable pH for the enzyme activity was pH 8. While Ni2+, Mg2+, and Na+ inhibited the keratinolytic activity, Cu2+, Ca2+, and Mn2+ enhanced it significantly. Biochemical characterization of the protease domain indicated significant keratinolytic activity at 70 °C at pH 10.0 but was less efficient than the chimeric protein. Experiments using feathers as the substrate showed a clear degradation pattern in the SEM analysis. The samples collected from the degradation experiments indicated the release of proteins (2-fold) and amino acids (8.4-fold) in a time-dependent manner. Thus, the protease with an added disulfide reductase domain showed excellent keratin degradation activity and has the potential to be utilized in the commercial industries.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ritu Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Astha Upadhyay
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
3
|
Wang C, Li X, Pan J, Ma C, Zhang S, Zang C, Yang K. Integrative transcriptomic and metabolomic analysis to elucidate the effect of gossypol on Enterobacter sp. GD5. PLoS One 2024; 19:e0306597. [PMID: 39106246 DOI: 10.1371/journal.pone.0306597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/19/2024] [Indexed: 08/09/2024] Open
Abstract
Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.
Collapse
Affiliation(s)
- CaiDie Wang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - XiaoBin Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jun Pan
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Ma
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - ShiQi Zhang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Changjiang Zang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - KaiLun Yang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Neira JL, Palomino-Schätzlein M, Rejas V, Traverso JA, Rico M, López-Gorgé J, Chueca A, Cámara-Artigas A. Three-dimensional solution structure, dynamics and binding of thioredoxin m from Pisum sativum. Int J Biol Macromol 2024; 262:129781. [PMID: 38296131 DOI: 10.1016/j.ijbiomac.2024.129781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Thioredoxins (TRXs) are ubiquitous small, globular proteins involved in cell redox processes. In this work, we report the solution structure of TRX m from Pisum sativum (pea), which has been determined on the basis of 1444 nuclear Overhauser effect- (NOE-) derived distance constraints. The average pairwise root-mean-square deviation (RMSD) for the 20 best structures for the backbone residues (Val7-Glu102) was 1.42 ± 0.15 Å, and 1.97 ± 0.15 Å when all heavy atoms were considered. The structure corresponds to the typical fold of TRXs, with a central five-stranded β-sheet flanked by four α-helices. Some residues had an important exchange dynamic contribution: those around the active site; at the C terminus of β-strand 3; and in the loop preceding α-helix 4. Smaller NOE values were observed at the N and C-terminal residues forming the elements of the secondary structure or, alternatively, in the residues belonging to the loops between those elements. A peptide derived from pea fructose-1,6-biphosphatase (FBPase), comprising the preceding region to the regulatory sequence of FBPase (residues Glu152 to Gln179), was bound to TRX m with an affinity in the low micromolar range, as measured by fluorescence and NMR titration experiments. Upon peptide addition, the intensities of the cross-peaks of all the residues of TRX m were affected, as shown by NMR. The value of the dissociation constant of the peptide from TRX m was larger than that of the intact FBPase, indicating that there are additional factors in other regions of the polypeptide chain of the latter protein affecting the binding to thioredoxin.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia. Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980 Paterna, Valencia, Spain
| | - Virginia Rejas
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - José A Traverso
- Department of Cell Biology, Faculty of Science, University of Granada, 18001 Granada, Spain
| | - Manual Rico
- Instituto de Quimica Física Blas Cabrera (CSIC), Calle Serrano 119, 28006 Madrid, Spain
| | - Julio López-Gorgé
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Prof. Albareda 1, 18008 Granada, Spain
| | - Ana Chueca
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Prof. Albareda 1, 18008 Granada, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| |
Collapse
|
5
|
Tanifuji R, Kimura Y. Enzymatic characterization of five thioredoxins and a thioredoxin reductase from Myxococcus xanthus. FEMS Microbiol Lett 2024; 371:fnae058. [PMID: 39038987 DOI: 10.1093/femsle/fnae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 07/24/2024] Open
Abstract
Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.
Collapse
Affiliation(s)
- Ryota Tanifuji
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| |
Collapse
|
6
|
Chang YJ, Sung JH, Lee CS, Lee JH, Park HH. Comparison of the structure and activity of thioredoxin 2 and thioredoxin 1 from Acinetobacter baumannii. IUCRJ 2023; 10:147-155. [PMID: 36752373 PMCID: PMC9980383 DOI: 10.1107/s2052252523000404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Thioredoxin (Trx) is essential in a redox-control system, with many bacteria containing two Trxs: Trx1 and Trx2. Due to a Trx system's critical function, Trxs are targets for novel antibiotics. Here, a 1.20 Å high-resolution structure of Trx2 from Acinetobacter baumannii (abTrx2), an antibiotic resistant pathogenic superbug, is elucidated. By comparing Trx1 and Trx2, it is revealed that the two Trxs possess similar activity, although Trx2 contains an additional N-terminal zinc-finger domain and exhibits more flexible properties in solution. Finally, it is shown that the Trx2 zinc-finger domain might be rotatable and that proper zinc coordination at the zinc-finger domain is critical to abTrx2 activity. This study enhances understanding of the Trx system and will facilitate the design of novel antibiotics.
Collapse
Affiliation(s)
- Ye Ji Chang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Hye Sung
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Ma Z, Higgs M, Alqahtani M, Bakshi CS, Malik M. ThioredoxinA1 Controls the Oxidative Stress Response of Francisella tularensis Live Vaccine Strain (LVS). J Bacteriol 2022; 204:e0008222. [PMID: 35475633 PMCID: PMC9112935 DOI: 10.1128/jb.00082-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is an intracellular, Gram-negative bacterium known for causing a disease known as tularemia in the Northern Hemisphere. F. tularensis is classified as a category A select agent by the CDC based on its possible use as a bioterror agent. F. tularensis overcomes oxidative stress encountered during its growth in the environment or host macrophages by encoding antioxidant enzymes such as superoxide dismutases, catalase, and alkylhydroperoxy reductase. These antioxidant enzymes are regulated by the oxidative stress response regulator, OxyR. In addition to these antioxidant enzymes, F. tularensis also encodes two thioredoxins, TrxA1 (FTL_0611) and TrxA2 (FTL_1224); however, their role in the oxidative stress response of F. tularensis is not known. This study investigated the role of thioredoxins of F. tularensis in the oxidative stress response and intracellular survival. Our results demonstrate that TrxA1 but not TrxA2 plays a major role in the oxidative stress response of F. tularensis. Most importantly, this study elucidates a novel mechanism through which the TrxA1 of F. tularensis controls the oxidative stress response by regulating the expression of the master regulator, oxyR. Further, TrxA1 is required for the intramacrophage survival and growth of Francisella. Overall, this study describes a novel role of thioredoxin, TrxA1, in regulating the oxidative stress response of F. tularensis. IMPORTANCE The role of thioredoxins in the oxidative stress response of F. tularensis is not known. This study demonstrates that of the two thioredoxins, TrxA1 is vital to counter the oxidative stress in F. tularensis live vaccine strain (LVS). Furthermore, this study shows differences in the well-studied thioredoxins of Escherichia coli. First, the expression of TrxA1 of F. tularensis is independent of the oxidative stress response regulator, OxyR. Second and most importantly, TrxA1 regulates the expression of oxyR and, therefore, the OxyR-dependent oxidative stress response of F. tularensis. Overall, this study reports a novel regulatory role of TrxA1 of F. tularensis in the oxidative stress response.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Matthew Higgs
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maha Alqahtani
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
8
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
9
|
Structural and Biochemical Characterization of Thioredoxin-2 from Deinococcus radiodurans. Antioxidants (Basel) 2021; 10:antiox10111843. [PMID: 34829714 PMCID: PMC8615215 DOI: 10.3390/antiox10111843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Thioredoxin (Trx), a ubiquitous protein showing disulfide reductase activity, plays critical roles in cellular redox control and oxidative stress response. Trx is a member of the Trx system, comprising Trx, Trx reductase (TrxR), and a cognate reductant (generally reduced nicotinamide adenine dinucleotide phosphate, NADPH). Bacterial Trx1 contains only the Trx-fold domain, in which the active site CXXC motif that is critical for the disulfide reduction activity is located. Bacterial Trx2 contains an N-terminal extension, which forms a zinc-finger domain, including two additional CXXC motifs. The multi-stress resistant bacterium Deinococcus radiodurans encodes both Trx1 (DrTrx1) and Trx2 (DrTrx2), which act as members of the enzymatic antioxidant systems. In this study, we constructed Δdrtrx1 and Δdrtrx2 mutants and examined their survival rates under H2O2 treated conditions. Both drtrx1 and drtrx2 genes were induced following H2O2 treatment, and the Δdrtrx1 and Δdrtrx2 mutants showed a decrease in resistance toward H2O2, compared to the wild-type. Native DrTrx1 and DrTrx2 clearly displayed insulin and DTNB reduction activity, whereas mutant DrTrx1 and DrTrx2, which harbors the substitution of conserved cysteine to serine in its active site CXXC motif, showed almost no reduction activity. Mutations in the zinc binding cysteines did not fully eliminate the reduction activities of DrTrx2. Furthermore, we solved the crystal structure of full-length DrTrx2 at 1.96 Å resolution. The N-terminal zinc-finger domain of Trx2 is thought to be involved in Trx-target interaction and, from our DrTrx2 structure, the orientation of the zinc-finger domain of DrTrx2 and its interdomain interaction, between the Trx-fold domain and the zinc-finger domain, is clearly distinguished from those of the other Trx2 structures.
Collapse
|
10
|
Cao X, He W, Pang Y, Cao Y, Qin A. Redox-dependent and independent effects of thioredoxin interacting protein. Biol Chem 2021; 401:1215-1231. [PMID: 32845855 DOI: 10.1515/hsz-2020-0181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Thioredoxin interacting protein (TXNIP) is an important physiological inhibitor of the thioredoxin (TXN) redox system in cells. Regulation of TXNIP expression and/or activity not only plays an important role in redox regulation but also exerts redox-independent physiological effects that exhibit direct pathophysiological consequences including elevated inflammatory response, aberrant glucose metabolism, cellular senescence and apoptosis, cellular immunity, and tumorigenesis. This review provides a brief overview of the current knowledge concerning the redox-dependent and independent roles of TXNIP and its relevance to various disease states. The implications for the therapeutic targeting of TXNIP will also be discussed.
Collapse
Affiliation(s)
- Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Wenxin He
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Yichuan Pang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011,People's Republic of China
| | - Yu Cao
- Department of Orthopaedics and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| |
Collapse
|
11
|
AbdelWahed MG, Badiea EA, Ouf A, Sayed AA. Molecular and functional characterization of unique thermo-halophilic thioredoxin from the metagenome of an exotic environment. Int J Biol Macromol 2020; 153:767-778. [PMID: 32142845 DOI: 10.1016/j.ijbiomac.2020.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
The lower convective layer (LCL) at Atlantis II brine pool of the Red sea represents one of the exceptional, unique ecosystems. Thioredoxin is a multi-functional antioxidant redox protein that has a crucial role in various vital cellular processes. In the current study, a functional metagenomics approach was used to isolate and characterize thioredoxin from the LCL of Atlantis II Deep brine pool (Trx-ATII). From the metagenomic DNA of the LCL, the thioredoxin gene was directly retrieved and sequenced. Sequence analysis showed that the gene belonged to thioredoxin-like superfamily with classical Trx motif (-CXXC-). Phylogenetic analysis revealed that Trx-ATII was closely related to Trx of Prochlorococcus marinus with a maximum identity of 86%. Successfully, Trx-ATII was cloned and expressed in E. coli, where the purified protein had M.wt of 16 kDa. Characterization studies revealed that Trx-ATII protein is halophilic; can tolerate up to 2.5 M NaCl and thermostable, where 90% of its activity was retained at 60 °C. Trx-ATII can reduce both DTNB and insulin disulfide- containing substrates. In conclusion, a unique thioredoxin protein was isolated from a harsh environment that can maintain its activity under extreme conditions of salinity and temperature as a promising redox protein for biotechnological applications.
Collapse
Affiliation(s)
| | - Elham A Badiea
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amged Ouf
- Biology Department, American University in Cairo, Egypt
| | - Ahmed A Sayed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt; Children Cancer Hospital, 57357 Cairo, Egypt.
| |
Collapse
|
12
|
AtTPR10 Containing Multiple ANK and TPR Domains Exhibits Chaperone Activity and Heat-Shock Dependent Structural Switching. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among the several tetratricopeptide (TPR) repeat-containing proteins encoded by the Arabidopsis thaliana genome, AtTPR10 exhibits an atypical structure with three TPR domain repeats at the C-terminus in addition to seven ankyrin (ANK) domain repeats at the N-terminus. However, the function of AtTPR10 remains elusive. Here, we investigated the biochemical function of AtTPR10. Bioinformatic analysis revealed that AtTPR10 expression is highly enhanced by heat shock compared with the other abiotic stresses, suggesting that AtTPR10 functions as a molecular chaperone to protect intracellular proteins from thermal stresses. Under the heat shock treatment, the chaperone activity of AtTPR10 increased significantly; this was accompanied by a structural switch from the low molecular weight (LMW) protein to a high molecular weight (HMW) complex. Analysis of two truncated fragments of AtTPR10 containing the TPR and ANK repeats showed that each domain exhibits a similar range of chaperone activity (approximately one-third of that of the native protein), suggesting that each domain cooperatively regulates the chaperone function of AtTPR10. Additionally, both truncated fragments of AtTPR10 underwent structural reconfiguration to form heat shock-dependent HMW complexes. Our results clearly demonstrate that AtTPR10 functions as a molecular chaperone in plants to protect intracellular targets from heat shock stress.
Collapse
|
13
|
Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides. Appl Environ Microbiol 2019; 85:AEM.01700-19. [PMID: 31444207 DOI: 10.1128/aem.01700-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The thioredoxin (Trx) and glutaredoxin (Grx) antioxidant systems are deeply involved in bacterial response to oxidative stress, but to date, we know surprisingly little about the roles of these systems in response to reactive oxygen species (ROS) other than hydrogen peroxide (H2O2). In this study, we used Shewanella oneidensis, an environmental bacterium, as a research model to investigate the roles of Trx and Grx in oxidative stress response because it has functionally intertwined ROS responsive regulators OxyR and OhrR. We found that Trx1 is the major thiol/disulfide redox system and that in its absence a Grx system becomes essential under normal conditions. Although overshadowed by Trx1 in the wild type, Trx2 can fully replace Trx1 in physiology when overproduced. Trx1 is required for OxyR to function as a repressor but, more importantly, plays a critical role in the cellular response to organic peroxide (OP) by mediating the redox status of OhrR but not OP scavenger OhrA. While none of the trx and grx genes are OxyR dependent, trxA and trxC are affected by OhrR indirectly. Additional data suggest that depletion of glutathione is likely the cue to trigger induced expression of trxA and trxC These findings underscore the particular importance of Trx in the bacterial OP stress response.IMPORTANCE The Trx and Grx systems are deeply involved in bacterial responses to H2O2-induced oxidative stress. However, little is known about their roles in response to other ROS, such as organic peroxides (OPs). In this study, we used S. oneidensis as a research model to investigate the interplay between Trx/Grx and OxyR/OhrR. We show that Trxs mediate the redox status of transcriptional OP-responding regulator OhrR. Although none of the trx or grx genes are directly controlled by OxyR or OhrR, expression of trxA and trxC is induced by tert-butyl hydroperoxide (t-BHP). We further show that the trxA and trxC genes respond to effects of glutathione (GSH) depletion rather than oxidation. These findings underscore the particular importance of Trx in the bacterial OP stress response.
Collapse
|
14
|
Maqbool I, Ponniresan VK, Govindasamy K, Prasad NR. Understanding the survival mechanisms of Deinococcus radiodurans against oxidative stress by targeting thioredoxin reductase redox system. Arch Microbiol 2019; 202:2355-2366. [PMID: 31570971 DOI: 10.1007/s00203-019-01729-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/31/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
Abstract
The principal objective of this study is to determine the resistance of Deinococcus radiodurans to hydrogen peroxide (H2O2) induced oxidative stress by inhibiting its thioredoxin reductase (TrxR) antioxidant system. Treatment of D. radiodurans with different TrxR inhibitors such as ebselen, epigallocatechin gallate and auranofin displayed this organism sensitivity to H2O2 treatment in a concentration-dependent manner. We observed that D. radiodurans showed greater resistance to H2O2 treatment. Further, it has also been noticed that TrxR redox system was suppressed by TrxR inhibitors and that this response might be associated with the oxidative stress-mediated cell death in D. radiodurans. Thus, TrxR inhibitors affect the resistance of the D. radiodurans through suppression of its thioredoxin redox pathway via the inhibition of TrxR. Results from this study proved that TrxR plays an important role as an antioxidant enzyme by scavenging intracellular ROS, and thus contributing to the resistance of D. radiodurans towards oxidative stress.
Collapse
Affiliation(s)
- Illiyas Maqbool
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Veeramani Kandan Ponniresan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Kanimozhi Govindasamy
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
- Dharumapurm Gnanambikai Government Arts College, Dharumapuram Road, Nagapattinam, Mayiladuthurai, Tamil Nadu, 609001, India
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India.
| |
Collapse
|
15
|
May HC, Yu JJ, Zhang H, Wang Y, Cap AP, Chambers JP, Guentzel MN, Arulanandam BP. Thioredoxin-A is a virulence factor and mediator of the type IV pilus system in Acinetobacter baumannii. PLoS One 2019; 14:e0218505. [PMID: 31265467 PMCID: PMC6605650 DOI: 10.1371/journal.pone.0218505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
The Gram-negative pathogen, Acinetobacter baumannii has emerged as a global nosocomial health threat affecting the majority of hospitals in the U.S. and abroad. The redox protein thioredoxin has been shown to play several roles in modulation of cellular functions affecting various virulence factors in Gram-negative pathogens. This study aims to explore the role of thioredoxin-A protein (TrxA) in A. baumannii virulence. We determined that deletion of the TrxA gene did not significantly affect resistance to environmental stressors such as temperature, salt, and pH. However, TrxA was critical for survival in the presence of elevated levels of hydrogen peroxide. Lack of TrxA was associated with decreased expression of type IV pili related genes and an inability to undergo normal twitching motility. Interestingly, the TrxA-null mutant was able to form biofilms better than the wildtype (WT) and was observed to be significantly less virulent than the WT in a pulmonary infection model. These results are supportive of thioredoxin playing a key role in A. baumannii virulence.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Hao Zhang
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Yufeng Wang
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Andrew P. Cap
- Coagulation and Blood Research Program, US Army Institute for Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zhang M, Zhang X, Tong L, Ou D, Wang Y, Zhang J, Wu Q, Ye Y. Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne Cronobacter malonaticus. Front Microbiol 2019; 10:877. [PMID: 31118922 PMCID: PMC6504702 DOI: 10.3389/fmicb.2019.00877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cronobacter species are linked with life-treating diseases in neonates and show strong tolerances to environmental stress. However, the information about factors involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis. Eight mutants were successfully screened based on a comparison of the growth of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase, serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and sequencing alignment. Furthermore, the comparison about quantity and structure of biofilms formation among eight mutants and WT was determined using crystal violet staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Results showed that the biofilms of eight mutants significantly decreased within 48 h compared to that of WT, suggesting that mutating genes play important roles in biofilm formation under oxidative stress. The findings provide valuable information for deeply understanding molecular mechanism about oxidative tolerance of C. malonaticus.
Collapse
Affiliation(s)
- Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yaping Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
17
|
Liyanage DS, Omeka WKM, Yang H, Godahewa GI, Kwon H, Nam BH, Lee J. Identification of thioredoxin domain-containing protein 17 from big-belly seahorse Hippocampus abdominalis: Molecular insights, immune responses, and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2019; 86:301-310. [PMID: 30453048 DOI: 10.1016/j.fsi.2018.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Thioredoxin domain-containing protein 17 (TXNDC17) is a small protein (∼14 kDa) involved in maintaining cellular redox homeostasis via a thiol-disulfide reductase activity. In this study, TXNDC17 was identified and characterized from Hippocampus abdominalis. The open reading frame (ORF) consisted of 369 bp and 123 amino acids. Similar to the other thioredoxins, TXNDC17 contained a conserved WCXXC functional motif. The highest spatial mRNA expressions of HaTXNDC17 were observed in the muscle, brain, and intestine. Interestingly, the mRNA expression of HaTXNDC17 in blood showed significant upregulation at 48 h against all the pathogen associated molecular patterns (PAMPs) and bacteria. Further, HaTXNDC17 transcripts in the trunk kidney were significantly upregulated at 24-48 h by bacterial endotoxin lipopolysaccharides (LPS), viral mimic polyinosinic: polycytidylic acid (poly I:C), and gram-negative bacteria (Edwardsiella tarda). The DPPH assay showed that the radical scavenging activity varies in a concentration-dependent manner. The insulin reduction assay demonstrated a significant logarithmic relationship with the concentration of rHaTXNDC17. Moreover, FHM cells treated with recombinant HaTXNDC17 significantly enhanced cellular viability under oxidative stress. Together, these results show that HaTXNDC17 function is important for maintaining cellular redox homeostasis and that it is also involved in the immune mechanism in seahorses.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
18
|
Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Antimicrob Agents Chemother 2019; 63:AAC.02281-18. [PMID: 30642940 DOI: 10.1128/aac.02281-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/29/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals. We show that ebselen [2-phenyl-1,2-benzoselenazol-3(2H)-one] is an inhibitor of A. fumigatus TrxR (Ki = 0.22 μM) and inhibits growth of Aspergillus spp., with in vitro MIC values of 16 to 64 µg/ml. Mass spectrometry analysis demonstrates that ebselen interacts covalently with a catalytic cysteine of TrxR, Cys148. We also present the X-ray crystal structure of A. fumigatus TrxR and use in silico modeling of the enzyme-inhibitor complex to outline key molecular interactions. This provides a scaffold for future design of potent and selective antifungal drugs that target TrxR, improving the potency of ebselen toward inhbition of A. fumigatus growth.
Collapse
|
19
|
Xiao Z, La Fontaine S, Bush AI, Wedd AG. Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol-Disulfide Exchange between Protein Thiols and Glutathione. J Mol Biol 2018; 431:158-177. [PMID: 30552876 DOI: 10.1016/j.jmb.2018.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol-disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol-disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.
Collapse
Affiliation(s)
- Zhiguang Xiao
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sharon La Fontaine
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anthony G Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Sousa SF, Neves RP, Waheed SO, Fernandes PA, Ramos MJ. Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins. Biol Chem 2018; 400:575-587. [DOI: 10.1515/hsz-2018-0319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Disulfide bonds play a critical role in a variety of structural and mechanistic processes associated with proteins inside the cells and in the extracellular environment. The thioredoxin family of proteins like thioredoxin (Trx), glutaredoxin (Grx) and protein disulfide isomerase, are involved in the formation, transfer or isomerization of disulfide bonds through a characteristic thiol-disulfide exchange reaction. Here, we review the structural and mechanistic determinants behind the thiol-disulfide exchange reactions for the different enzyme types within this family, rationalizing the known experimental data in light of the results from computational studies. The analysis sheds new atomic-level insight into the structural and mechanistic variations that characterize the different enzymes in the family, helping to explain the associated functional diversity. Furthermore, we review here a pattern of stabilization/destabilization of the conserved active-site cysteine residues presented beforehand, which is fully consistent with the observed roles played by the thioredoxin family of enzymes.
Collapse
Affiliation(s)
- Sérgio F. Sousa
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Rui P.P. Neves
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Sodiq O. Waheed
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| |
Collapse
|
21
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
22
|
Hudson DA, Caplan JL, Thorpe C. Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging. Biochemistry 2018; 57:1178-1189. [PMID: 29341594 DOI: 10.1021/acs.biochem.7b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of genetically encoded fluorescent probes for analyte-specific imaging has revolutionized our understanding of intracellular processes. Current classes of intracellular probes depend on the selection of binding domains that either undergo conformational changes on analyte binding or can be linked to thiol redox chemistry. Here we have designed novel probes by fusing a flavoenzyme, whose fluorescence is quenched on reduction by the analyte of interest, with a GFP domain to allow for rapid and specific ratiometric sensing. Two flavoproteins, Escherichia coli thioredoxin reductase and Saccharomyces cerevisiae lipoamide dehydrogenase, were successfully developed into thioredoxin and NAD+/NADH specific probes, respectively, and their performance was evaluated in vitro and in vivo. A flow cell format, which allowed dynamic measurements, was utilized in both bacterial and mammalian systems. In E. coli the first reported intracellular steady-state of the cytoplasmic thioredoxin pool was measured. In HEK293T mammalian cells, the steady-state cytosolic ratio of NAD+/NADH induced by glucose was determined. These genetically encoded fluorescent constructs represent a modular approach to intracellular probe design that should extend the range of metabolites that can be quantitated in live cells.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jeffrey L Caplan
- Bioimaging Center, Delaware Biotechnology Institute , Newark, Delaware 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Kumar A, Mittal R. Mapping Txnip: Key connexions in progression of diabetic nephropathy. Pharmacol Rep 2017; 70:614-622. [PMID: 29684849 DOI: 10.1016/j.pharep.2017.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Studies demonstrates the major involvement of inflammatory and apoptotic pathway in the pathophysiology of diabetic nephropathy. The cross talk between inflammatory and apoptotic pathway suggests Txnip as a molecular connexion in progression of disease state. Txnip modulates inflammatory pathway (via ROS production and NLRP3 inflammasome activity) and apoptotic pathway (via mTOR pathway). The key contribution of Txnip in both the pathways, reflects, its crucial role in diabetic nephropathy. In the present review, we have first provided an overview of diabetic nephropathy and Txnip system, followed by the mechanistic insight of Txnip in the progression of diabetic nephropathy. This new mechanistic approach suggests to explore Txnip modulators as a promising therapeutic drug target in diabetic nephropathy.
Collapse
Affiliation(s)
- Anil Kumar
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Ruchika Mittal
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
24
|
Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance. Cell Rep 2017; 19:1247-1256. [DOI: 10.1016/j.celrep.2017.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022] Open
|
25
|
Shakir S, Vinh J, Chiappetta G. Quantitative analysis of the cysteine redoxome by iodoacetyl tandem mass tags. Anal Bioanal Chem 2017; 409:3821-3830. [PMID: 28389918 PMCID: PMC5427158 DOI: 10.1007/s00216-017-0326-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022]
Abstract
The redox conditions that reign inside a cell have a determining effect on a number of biological processes. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are key redox players and have been linked to a number of pathologies. They have also been shown to play an important regulating role in cell signaling events. On the proteome level, thiol groups of cysteinyl side chains constitute the major targets of ROS and RNS. A number of analytical techniques based on mass spectrometry have been developed to characterize the cysteine redoxome, often facing a number of technical challenges, mostly related to the lability, heterogeneity, and low abundance of the oxidized forms. Furthermore, any posttranslational modification (PTM) quantification method needs to take the parent protein’s expression level into account. While taking all these limitations into consideration, we have developed a quantitative analytical strategy named OxiTMT, based on chemical labeling with iodoacetyl isobaric tandem mass tags (iodoTMT). OxiTMT allowed the generation of quantitative redox data that could be normalized by the protein’s expression profile in up to three different conditions. The method was tested on Escherichia coli with or without an oxidative treatment. Results showed the method to be adequate for the analysis of cysteine PTMs with a good coverage of the cysteine redoxome, especially for the low abundant oxidized species. Some of the challenges that face reporter ion quantification of PTMs by mass spectrometry were also assessed. This study serves as a proof of concept of the established protocol and consequent data treatment step. The use of tandem mass tags opens the ways towards the application of the method to the study of tissues and sera. OxiTMT workflow ![]()
Collapse
Affiliation(s)
- Shakir Shakir
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, 75231, Paris cedex 05, France
| | - Joelle Vinh
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, 75231, Paris cedex 05, France
| | - Giovanni Chiappetta
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, 75231, Paris cedex 05, France.
| |
Collapse
|
26
|
Berndt C, Schwenn JD, Lillig CH. The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chem Sci 2015; 6:7049-7058. [PMID: 29861944 PMCID: PMC5947528 DOI: 10.1039/c5sc01501d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Thiol-disulfide oxidoreductases from the thioredoxin (Trx) family of proteins have a broad range of well documented functions and possess distinct substrate specificities. The mechanisms and characteristics that control these specificities are key to the understanding of both the reduction of catalytic disulfides as well as allosteric disulfides (thiol switches). Here, we have used the catalytic disulfide of E. coli 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase (PR) that forms between the single active site thiols of two monomers during the reaction cycle as a model system to investigate the mechanisms of Trx and Grx protein specificity. Enzyme kinetics, ΔE'0 determination, and structural analysis of various Trx and Grx family members suggested that the redox potential does not determine specificity nor efficiency of the redoxins as reductant for PR. Instead, the efficiency of PR with various redoxins correlated strongly to the extent of a negative electric field of the redoxins reaching into the solvent outside the active site, and electrostatic and geometric complementary contact surfaces. These data suggest that, in contrast to common assumption, the composition of the active site motif is less important for substrate specificity than other amino acids in or even outside the immediate contact area.
Collapse
Affiliation(s)
- Carsten Berndt
- From the Department of Neurology , Medical Faculty , Heinrich-Heine Universität , Merowingerplatz 1a , 40225 Düsseldorf , Germany
| | - Jens-Dirk Schwenn
- Biochemistry of Plants , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology , Universitätsmedizin Greifswald , Ernst-Moritz-Arndt Universität , Ferdinand Sauerbruch Straße , DE-17475 Greifswald , Germany . ; ; Tel: +49 3834 86 5407
| |
Collapse
|
27
|
Liang W, Fernandes AP, Holmgren A, Li X, Zhong L. Bacterial thioredoxin and thioredoxin reductase as mediators for epigallocatechin 3-gallate-induced antimicrobial action. FEBS J 2015; 283:446-58. [PMID: 26546231 DOI: 10.1111/febs.13587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/03/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
Abstract
Epigallocatechin 3-gallate (EGCG) is the most abundant catechin in green tea and may combat bacteria with few side-effects. Its selectivity for different bacterial infections remains unclear, and hence the identification of the underlying mechanism is of practical importance. Both the thioredoxin (Trx) system and the glutathione/glutaredoxin (Grx) system support bacterial growth. Some pathogenic bacteria are naturally deficient in the Grx system. We analyzed the effect of green tea extract (GTE) and EGCG on wild-type and null mutants of Escherichia coli with either Trx or Grx system deficiency and found that GTE and EGCG selected the Trx system as a target and killed the mutant that is exclusively dependent on Trx/Trx reductase (TrxR). EGCG inhibited the activity of both Trx1 and TrxR of E. coli in a dose-dependent and time-dependent manner. The IC50 values of EGCG for the reduced forms of E. coli Trx1/TrxR were ~ 3-4-fold lower than those for their non-reduced forms. The IC50 value of EGCG for the E. coli Trx1 system was 56-fold lower than that for the mammalian Trx1 system. The inhibition by EGCG of both Trx1 and TrxR of E. coli was irreversible. EGCG-induced inactivation of E. coli Trx1 was a second-order process, and that of E. coli TrxR was an affinity-labeling process. The covalent binding sites for EGCG in E. coli Trx1 were Trp(28) , Trp(31) and Cys(32) , and in E. coli TrxR were Cys(135) and Cys(138) . Moreover, the sensitivity of Staphylococcus aureus to EGCG was similar to that of an E. coli mutant with Grx system deficiency. EGCG-induced inactivation of Trx/TrxR in S. aureus coincided with suppressed growth of this virulent pathogen. Our findings suggest a role for EGCG-dependent Trx/TrxR inactivation in potentiating antibacterial activity of EGCG.
Collapse
Affiliation(s)
- Wei Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Xiaoming Li
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liangwei Zhong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Ortiz-Espín A, Locato V, Camejo D, Schiermeyer A, De Gara L, Sevilla F, Jiménez A. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. ANNALS OF BOTANY 2015; 116:571-82. [PMID: 26041732 PMCID: PMC4577997 DOI: 10.1093/aob/mcv076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. METHODS Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. KEY RESULTS Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. CONCLUSIONS A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, D-52074, Aachen, Germany
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain,
| |
Collapse
|
29
|
Comparative Roles of the Two Helicobacter pylori Thioredoxins in Preventing Macromolecule Damage. Infect Immun 2015; 83:2935-43. [PMID: 25964471 DOI: 10.1128/iai.00232-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Thioredoxins are highly conserved throughout a wide range of organisms, and they are essential for the isurvival of oxygen-sensitive cells. The gastric pathogen Helicobacter pylori uses the thioredoxin system to maintain its thiol/disulfide balance. There are two thioredoxins present in H. pylori, Trx1 and Trx2 (herein referred to as TrxA and TrxC). TrxA has been shown to be important as an electron donor for some antioxidant enzymes, but the function of TrxC remains unknown (L. M. Baker, A. Raudonikiene, P. S. Hoffman, and L. B. Poole, J Bacteriol 183:1961-1973, 2001; P. Alamuri and R. J. Maier, J Bacteriol 188:5839-5850, 2006). We demonstrate that both TrxA and TrxC are important in protecting H. pylori from oxidative stress. Individual ΔtrxA and ΔtrxC deletion mutant strains each show a greater abundance of lipid peroxides and suffer more DNA damage and more protein carbonylation than the parent. Both deletion mutants were much more sensitive to O2-mediated viability loss than the parent. Unexpectedly, the oxidative DNA damage and protein carbonylation was more severe in the ΔtrxC mutant than in the ΔtrxA mutant; it had 20-fold- and 4-fold-more carbonylated protein content than the wild type and the ΔtrxA strain, respectively, after 4 h of atmospheric O2 stress. trx transcript abundance was altered by the deletion of the heterologous trx gene. The ΔtrxC mutant lacked mouse colonization ability, while the ability to colonize mouse stomachs was significantly reduced in the ΔtrxA mutant.
Collapse
|
30
|
Qiao S, Dennis M, Song X, Vadysirisack DD, Salunke D, Nash Z, Yang Z, Liesa M, Yoshioka J, Matsuzawa SI, Shirihai OS, Lee RT, Reed JC, Ellisen LW. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun 2015; 6:7014. [PMID: 25916556 PMCID: PMC4421852 DOI: 10.1038/ncomms8014] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1−/− mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy. Stress-induced macroautophagy is initiated by the induction of reactive oxygen species (ROS). Here Qiao et al. show that the mTOR inhibitor REDD1 in a complex with pro-oxidant protein TXNIP induces ROS formation, leading to ATG4B suppression and autophagy activation in a largely mTOR-independent manner.
Collapse
Affiliation(s)
- Shuxi Qiao
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Dennis
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Xiufeng Song
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Douangsone D Vadysirisack
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Devika Salunke
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Zachary Nash
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Zhifen Yang
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Marc Liesa
- Department of Medicine, Evans Center, Mitochondria ARC, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Jun Yoshioka
- 1] Harvard Medical School, Boston, Massachusetts 02115, USA [2] Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Shu-Ichi Matsuzawa
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Orian S Shirihai
- 1] Department of Medicine, Evans Center, Mitochondria ARC, Boston University School of Medicine, Boston, Massachusetts 02118, USA [2] Department of Clinical Biochemistry, Faculty of Medicine, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Richard T Lee
- 1] Harvard Medical School, Boston, Massachusetts 02115, USA [2] Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - John C Reed
- 1] Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA [2] Roche Pharmaceutical Research and Early Development, Basel 4070, Switzerland
| | - Leif W Ellisen
- 1] Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Efler P, Kilstrup M, Johnsen S, Svensson B, Hägglund P. Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress. MICROBIOLOGY-SGM 2015; 161:528-38. [PMID: 25564497 DOI: 10.1099/mic.0.000029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium Lactococcus lactis contains two Trxs. TrxA is similar to the well-characterized Trx homologue from Escherichia coli and contains the common WCGPC active site motif, while TrxD is atypical and contains an aspartate residue in the active site (WCGDC). To elucidate the physiological roles of the two Trx paralogues, deletion mutants ΔtrxA, ΔtrxD and ΔtrxAΔtrxD were constructed. In general, the ΔtrxAΔtrxD strain was significantly more sensitive than either of the ΔtrxA and ΔtrxD mutants. Upon exposure to oxidative stress, growth of the ΔtrxA strain was diminished while that of the ΔtrxD mutant was similar to the wild-type. The lack of TrxA also appears to impair methionine sulphoxide reduction. Both ΔtrxA and ΔtrxD strains displayed growth inhibition after treatment with sodium arsenate and tellurite as compared with the wild-type, suggesting partially overlapping functions of TrxA and TrxD. Overall the phenotype of the ΔtrxA mutant matches established functions of WCGPC-type Trx while TrxD appears to play a more restricted role in stress resistance of Lac. lactis.
Collapse
Affiliation(s)
- Petr Efler
- Enzyme and Protein Chemistry, Søltofts Plads Building 224, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Mogens Kilstrup
- Center for Systems Microbiology, Matematiktorvet Building 301, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stig Johnsen
- Enzyme and Protein Chemistry, Søltofts Plads Building 224, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Søltofts Plads Building 224, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Per Hägglund
- Enzyme and Protein Chemistry, Søltofts Plads Building 224, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Kang T, Wan H, Zhang Y, Shakeel M, Lu Y, You H, Lee KS, Jin BR, Li J. Comparative study of two thioredoxins from common cutworm (Spodoptera litura): cloning, expression, and functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2014; 182:47-54. [PMID: 25542738 DOI: 10.1016/j.cbpb.2014.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023]
Abstract
Thioredoxins (Trxs) are a ubiquitous family of antioxidant enzymes that are involved in protecting organisms against various oxidative stresses. Here, we cloned and characterized two thioredoxins, named SlTrx1 and SlTrx2, from the common cutworm Spodoptera litura. SlTrx1 and SlTrx2, respectively, consist of 988 and 606 bp full-length cDNA with 318 and 447 bp open reading frames encoding 106 and 149 amino acid residues. Furthermore, the N-terminal region of SlTrx2 contains a predicted mitochondrial localization signal (33 amino acids). A phylogenetic relationship analysis revealed that SlTrx1 is in the cytosolic thioredoxin Trx1 cluster, whereas SlTrx2 is in the mitochondrial thioredoxin Trx2 cluster. Recombinant SlTrx1 (14 kDa) and SlTrx2 (16 kDa), expressed in baculovirus-infected insect Sf9 cells, demonstrated insulin disulfide reductase activity at the same optimum temperature and pH value of 35 °C and 7.0, respectively, in vitro. During S. litura development, we found that SlTrx1 and SlTrx2 had similar transcript expression patterns and were constitutively expressed in the epidermis, fat body, and midgut, with the highest expression occurring in the sixth-instar larval stage in the epidermis and midgut. In addition, both SlTrx1 and SlTrx2 mRNA were up-regulated in S. litura after injection with H2O2, cumene hydroperoxide, indoxacarb, and metaflumizone. These results suggest that SlTrx1 and SlTrx2 function as potent antioxidant enzymes, and provide a molecular basis for the roles SlTrx1 and SlTrx2 during development and the oxidative stress response of S. litura.
Collapse
Affiliation(s)
- Tinghao Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yashu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Shakeel
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanhui Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong You
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Byung Rae Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea.
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
33
|
Martínez-González JJ, Guevara-Flores A, Rendón JL, Sosa-Peinado A, Del Arenal Mena IP. Purification and characterization of Taenia crassiceps cysticerci thioredoxin: insight into thioredoxin-glutathione-reductase (TGR) substrate recognition. Parasitol Int 2014; 64:194-201. [PMID: 25523293 DOI: 10.1016/j.parint.2014.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022]
Abstract
Thioredoxin (Trx) is an oxidoreductase central to redox homeostasis in cells and is involved in the regulation of protein activity through thiol/disulfide exchanges. Based on these facts, our goal was to purify and characterize cytosolic thioredoxin from Taenia crassiceps cysticerci, as well as to study its behavior as a substrate of thioredoxin-glutathione reductase (TGR). The enzyme was purified >133-fold with a total yield of 9.7%. A molecular mass of 11.7kDa and a pI of 4.84 were measured. Native electrophoresis was used to identify the oxidized and reduced forms of the monomer as well as the presence of a homodimer. In addition to the catalytic site cysteines, cysticerci thioredoxin contains Cys28 and Cys65 residues conserved in previously sequenced cestode thioredoxins. The following kinetic parameters were obtained for the substrate of TGR: a Km of 3.1μM, a kcat of 10s(-1) and a catalytic efficiency of 3.2×10(6)M(-1)s(-1). The negative patch around the α3-helix of Trx is involved in the interaction with TGR and suggests variable specificity and catalytic efficiency of the reductase toward thioredoxins of different origins.
Collapse
Affiliation(s)
- J J Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 México, D.F., México
| | - A Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 México, D.F., México
| | - J L Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 México, D.F., México
| | - A Sosa-Peinado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 México, D.F., México
| | - I P Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 México, D.F., México
| |
Collapse
|
34
|
Silvério-Machado R, Couto BRGM, dos Santos MA. Retrieval of Enterobacteriaceae drug targets using singular value decomposition. Bioinformatics 2014; 31:1267-73. [DOI: 10.1093/bioinformatics/btu792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023] Open
|
35
|
Björnberg O, Efler P, Ebong ED, Svensson B, Hägglund P. Lactococcus lactis TrxD represents a subgroup of thioredoxins prevalent in Gram-positive bacteria containing WCXDC active site motifs. Arch Biochem Biophys 2014; 564:164-72. [PMID: 25255970 DOI: 10.1016/j.abb.2014.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Three protein disulfide reductases of the thioredoxin superfamily from the industrially important Gram-positive Lactococcus lactis (LlTrxA, LlTrxD and LlNrdH) are compared to the "classical" thioredoxin from Escherichia coli (EcTrx1). LlTrxA resembles EcTrx1 with a WCGPC active site motif and other key residues conserved. By contrast, LlTrxD is more distantly related and contains a WCGDC motif. Bioinformatics analysis suggests that LlTrxD represents a subgroup of thioredoxins from Gram-positive bacteria. LlNrdH is a glutaredoxin-like electron donor for ribonucleotide reductase class Ib. Based on protein-protein equilibria LlTrxA (E°'=-259mV) and LlNrdH (E°'=-238mV) show approximately 10mV higher standard state redox potentials than the corresponding E. coli homologues, while E°' of LlTrxD is -243mV, more similar to glutaredoxin than "classical" thioredoxin. EcTrx1 and LlTrxA have high capacity to reduce insulin disulfides and their exposed active site thiol is alkylated at a similar rate at pH 7.0. LlTrxD on the other hand, is alkylated by iodoacetamide at almost 100 fold higher rate and shows no activity towards insulin disulfides. LlTrxA, LlTrxD and LlNrdH are all efficiently reduced by NADPH dependent thioredoxin reductase (TrxR) from L. lactis and good cross-reactivity towards E. coli TrxR was observed with LlTrxD as the notable exception.
Collapse
Affiliation(s)
- Olof Björnberg
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Petr Efler
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Epie Denis Ebong
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Per Hägglund
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
36
|
Wang Q, Hou Y, Qu J, Hong Y, Lin Y, Han X. Molecular cloning, expression, purification and characterization of thioredoxin from Antarctic sea-ice bacteria Pseudoalteromonas sp. AN178. Mol Biol Rep 2013; 40:6587-91. [PMID: 24065544 DOI: 10.1007/s11033-013-2771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 09/14/2013] [Indexed: 01/08/2023]
Abstract
Thioredoxin (Trx) is a highly conserved and multi-functional protein that plays a pivotal role in maintaining the redox state of the cell and in protecting the cell against oxidative stress. Trx gene from Antarctic sea-ice bacteria Pseudoalteromonas sp. AN178 was cloned and expressed as soluble protein in Escherichia coli (designated as PsTrx). Trx gene consisted of an open reading frame of 324-bp nucleotides encoding a protein of 108 amino acids with a calculated molecular mass of 11.88 kDa. The deduced protein included the conserved Cys-Gly-Pro-Cys active-site sequence. After purification by a single step Ni-NTA affinity chromatography, recombinant PsTrx with a high specific activity of 96.67 U/mg was obtained. The purified PsTrx had an optimal temperature and pH of 25 °C and 7.0, respectively, and showed about 55 % of the residual catalytic activity even at 0-10 °C. It had high tolerance to a wide range of NaCl concentrations (0-2 M NaCl) and was stable in the presence of H2O2. This research suggested that PsTrx displayed unique catalytic properties.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Marco S, Rullo R, Albino A, Masullo M, De Vendittis E, Amato M. The thioredoxin system in the dental caries pathogen Streptococcus mutans and the food-industry bacterium Streptococcus thermophilus. Biochimie 2013; 95:2145-56. [PMID: 23954859 DOI: 10.1016/j.biochi.2013.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/04/2013] [Indexed: 11/18/2022]
Abstract
The Streptococcus genus includes the pathogenic species Streptococcus mutans, the main responsible of dental caries, and the safe microorganism Streptococcus thermophilus, used for the manufacture of dairy products. These facultative anaerobes control the levels of reactive oxygen species (ROS) and indeed, both S. mutans and S. thermophilus possess a cambialistic superoxide dismutase, the key enzyme for a preventive action against ROS. To evaluate the properties of a crucial mechanism for repairing ROS damages, the molecular and functional characterization of the thioredoxin system in these streptococci was investigated. The putative genes encoding its protein components in S. mutans and S. thermophilus were analysed and the corresponding recombinant proteins were purified. A single thioredoxin reductase was obtained from either S. mutans (SmTrxB) or S. thermophilus (StTrxB1), whereas two thioredoxins were prepared from either S. mutans (SmTrxA and SmTrxH1) or S. thermophilus (StTrxA1 and StTrxA2). Both SmTrxB and StTrxB1 reduced the synthetic substrate DTNB in the presence of NADPH, whereas only SmTrxA and StTrxA1 accelerated the insulin reduction in the presence of DTT. To reconstitute an in vitro streptococcal thioredoxin system, the combined activity of the thioredoxin components was tested through the insulin precipitation in the absence of DTT. The assay functions with a combination of SmTrxB or StTrxB1 with either SmTrxA or StTrxA1. These results suggest that the streptococcal members of the thioredoxin system display a direct functional interaction between them and that these protein components are interchangeable within the Streptococcus genus. In conclusion, our data prove the existence of a functioning thioredoxin system even in these microaerophiles.
Collapse
Affiliation(s)
- Salvatore Marco
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Roman EA, Faraj SE, Cousido-Siah A, Mitschler A, Podjarny A, Santos J. Frataxin from Psychromonas ingrahamii as a model to study stability modulation within the CyaY protein family. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1168-80. [PMID: 23429177 DOI: 10.1016/j.bbapap.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/26/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Adaptation of life to low temperatures influences both protein stability and flexibility. Thus, proteins from psychrophilic organisms are excellent models to study relations between these properties. Here we focused on frataxin from Psychromonas ingrahamii (pFXN), an extreme psychrophilic sea ice bacterium that can grow at temperatures as low as -12°C. This α/β protein is highly conserved and plays a key role in iron homeostasis as an iron chaperone. In contrast to other frataxin homologs, chemical and temperature unfolding experiments showed that the thermodynamic stability of pFXN is strongly modulated by pHs: ranging from 5.5±0.9 (pH6.0) to 0.9±0.3kcalmol(-1) (pH8.0). This protein was crystallized and its X-ray structure solved at 1.45Å. Comparison of B-factor profiles between Escherichia coli and P. ingrahamii frataxin variants (51% of identity) suggests that, although both proteins share the same structural features, their flexibility distribution is different. Molecular dynamics simulations showed that protonation of His44 or His67 in pFXN lowers the mobility of regions encompassing residues 20-30 and the C-terminal end, probably through favorable electrostatic interactions with residues Asp27, Glu42 and Glu99. Since the C-terminal end of the protein is critical for the stabilization of the frataxin fold, the predictions presented may be reporting on the microscopic origin of the decrease in global stability produced near neutral pH in the psychrophilic variant. We propose that suboptimal electrostatic interactions may have been an evolutionary strategy for the adaptation of frataxin flexibility and function to cold environments.
Collapse
Affiliation(s)
- Ernesto A Roman
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Shah A, Xia L, Goldberg H, Lee KW, Quaggin SE, Fantus IG. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J Biol Chem 2013; 288:6835-48. [PMID: 23329835 DOI: 10.1074/jbc.m112.419101] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN.
Collapse
Affiliation(s)
- Anu Shah
- Department of Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Falasca P, Evangelista G, Cotugno R, Marco S, Masullo M, De Vendittis E, Raimo G. Properties of the endogenous components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125. Extremophiles 2012; 16:539-52. [PMID: 22527046 DOI: 10.1007/s00792-012-0453-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 04/02/2012] [Indexed: 11/30/2022]
Abstract
The endogenous components of the thioredoxin system in the Antarctic eubacterium Pseudoalteromonas haloplanktis have been purified and characterised. The temperature dependence of the activities sustained by thioredoxin (PhTrx) and thioredoxin reductase (PhTrxR) pointed to their adaptation in the cold growth environment. PhTrxR was purified as a flavoenzyme and its activity was significantly enhanced in the presence of molar concentration of monovalent cations. The energetics of the partial reactions leading to the whole electron transfer from NADPH to the target protein substrate in the reconstituted thioredoxin system was also investigated. While the initial electron transfer from NADPH to PhTrxR was energetically favoured, the final passage to the heterologous protein substrate enhanced the energetic barrier of the whole process. The energy of activation of the heat inactivation process essentially reflected the psychrophilic origin of PhTrxR. Vice versa, PhTrx possessed an exceptional heat resistance (half-life, 4.4 h at 95 °C), ranking this protein among the most thermostable enzymes reported so far in psychrophiles. PhTrxR was covalently modified by glutathione, mainly by its oxidised or nitrosylated forms. A mutagenic analysis realised on three non catalytic cysteines of the flavoenzyme allowed the identification of C(303) as the target for the S-glutathionylation reaction.
Collapse
Affiliation(s)
- Patrizia Falasca
- Dipartimento di Scienze e Tecnologie dell'Ambiente e del Territorio, Università del Molise, Contrada Fonte Lappone, 86090, Pesche, IS, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Umasuthan N, Revathy KS, Lee Y, Whang I, Lee J. Mitochondrial thioredoxin-2 from Manila clam (Ruditapes philippinarum) is a potent antioxidant enzyme involved in antibacterial response. FISH & SHELLFISH IMMUNOLOGY 2012; 32:513-523. [PMID: 22248533 DOI: 10.1016/j.fsi.2011.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/24/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
Thioredoxin (TRx) is a ubiquitous protein involved in the regulation of multiple biological processes. The TRx-2 isoform is exclusively expressed in mitochondria, where it contributes to mitochondrial redox state maintenance. In the present study, a novel thioredoxin-2 gene was identified in the Manila clam, Ruditapes philippinarum. The full-length sequence of RpTRx-2 (1561 bp) consists of a 498 bp coding region encoding a 166 amino acid protein. The N-terminal region of RpTRx-2 harbors a mitochondrial localization signal (56 amino acids), while the C-terminal portion contains the characteristic (89)WCGPC(93) catalytic active site. Phylogenetic analysis revealed that RpTRx-2 is closest to its ortholog from abalone. The broad distribution pattern of RpTRx-2 mRNA in healthy animal tissues implicates a generally significant function in normal clam physiology. The transcription level of RpTRx-2, however, is highest in hemocytes. Lipopolysaccharide and Vibrio tapetis bacterium caused up-regulation of the RpTrx-2 transcript levels in gill and hemocytes. Interestingly, clam manganese superoxide dismutase (MnSOD) mRNA levels in hemocytes elicited a corresponding response to these immune challenges. RpTRx-2 was recombinantly expressed in Escherichia coli BL21 (DE3) and used in insulin disulfide reduction assay as well as metal-catalyzed oxidation assay to elucidate its antioxidant property by reducing substrate and protecting super-coiled DNA from oxidative damage through free radical scavenging, respectively. Collectively, our data indicated that RpTRx-2, a mitochondrial TRx-2 family member, is an antioxidant enzyme that may be involved in antibacterial defense of clams.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 2012; 82:240-51. [DOI: 10.1016/j.pep.2011.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
43
|
Revathy KS, Umasuthan N, Lee Y, Whang I, Kim HC, Lee J. Cytosolic thioredoxin from Ruditapes philippinarum: molecular cloning, characterization, expression and DNA protection activity of the recombinant protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:85-92. [PMID: 21740925 DOI: 10.1016/j.dci.2011.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
Thioredoxin (TRx) is a small redox protein that plays significant roles in protection against oxidative stress and in cell homeostasis by maintaining oxidized proteins in a reduced state. Here, we describe the isolation and characterization of a full-length TRx cDNA sequence from manila clam, Ruditapes philippinarum and named it as RpTRx. The full length sequence consists of 1416 bp with an open reading frame of 318 bp encoding for 106 amino acids. RpTRx protein harbors evolutionarily-conserved TRx active site (32)WCGPC(36). Phylogenetic analysis revealed a close proximity of RpTRx with the orthologue in Japanese scallop, Chlamys farreri. RpTRx was found to be constitutively expressed in hemocyte, gill, mantle, foot and siphon indicating a general role in physiological processes in various tissues. With regard to a potential role in immune responses, the RpTRx mRNA was found to be up-regulated in hemocytes after bacterial (Vibrio tapetis) and lipopolysaccharide (LPS) challenge at 3h post-infection (p.i.); a wavering increase was observed up to 96 h p.i. for LPS challenge and 48 h p.i. for bacterial challenge. Thus, RpTRx may function as an intracellular antioxidant to protect the cells against ROS induced by LPS and bacterial challenges. Indeed, when recombinant RpTRx protein (rRpTRx) was over-expressed in Escherichiacoli Rosetta gami(TM) (DE3) cells, it was able to scavenge free radicals and protect super-coiled DNA from oxidative damage induced by a metal-ion catalyzed oxidation reaction. In summary, RpTRx plays an essential role in cellular defense and maintenance of homeostasis in the manila clam.
Collapse
Affiliation(s)
- Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Yoshioka J, Chutkow WA, Lee S, Kim JB, Yan J, Tian R, Lindsey ML, Feener EP, Seidman CE, Seidman JG, Lee RT. Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. J Clin Invest 2011; 122:267-79. [PMID: 22201682 DOI: 10.1172/jci44927] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/12/2011] [Indexed: 12/11/2022] Open
Abstract
Classic therapeutics for ischemic heart disease are less effective in individuals with the metabolic syndrome. As the prevalence of the metabolic syndrome is increasing, better understanding of cardiac metabolism is needed to identify potential new targets for therapeutic intervention. Thioredoxin-interacting protein (Txnip) is a regulator of metabolism and an inhibitor of the antioxidant thioredoxins, but little is known about its roles in the myocardium. We examined hearts from Txnip-KO mice by polony multiplex analysis of gene expression and an independent proteomic approach; both methods indicated suppression of genes and proteins participating in mitochondrial metabolism. Consistently, Txnip-KO mitochondria were functionally and structurally altered, showing reduced oxygen consumption and ultrastructural derangements. Given the central role that mitochondria play during hypoxia, we hypothesized that Txnip deletion would enhance ischemia-reperfusion damage. Surprisingly, Txnip-KO hearts had greater recovery of cardiac function after an ischemia-reperfusion insult. Similarly, cardiomyocyte-specific Txnip deletion reduced infarct size after reversible coronary ligation. Coordinated with reduced mitochondrial function, deletion of Txnip enhanced anaerobic glycolysis. Whereas mitochondrial ATP synthesis was minimally decreased by Txnip deletion, cellular ATP content and lactate formation were higher in Txnip-KO hearts after ischemia-reperfusion injury. Pharmacologic inhibition of glycolytic metabolism completely abolished the protection afforded the heart by Txnip deficiency under hypoxic conditions. Thus, although Txnip deletion suppresses mitochondrial function, protection from myocardial ischemia is enhanced as a result of a coordinated shift to enhanced anaerobic metabolism, which provides an energy source outside of mitochondria.
Collapse
Affiliation(s)
- Jun Yoshioka
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jacob C, Kriznik A, Boschi-Muller S, Branlant G. Thioredoxin 2 from Escherichia coli is not involved in vivo in the recycling process of methionine sulfoxide reductase activities. FEBS Lett 2011; 585:1905-9. [PMID: 21570393 DOI: 10.1016/j.febslet.2011.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/17/2022]
Abstract
Thioredoxins (Trx) 1 and 2, and three methionine sulfoxide reductases (Msr) whose activities are Trx-dependent, are expressed in Escherichia coli. A metB(1)trxA mutant was shown to be unable to grow on methionine sulfoxide (Met-O) suggesting that Trx2 is not essential in the Msr-recycling process. In the present study, we have determined the kinetic parameters of the recycling process of the three Msrs by Trx2 and the in vivo expression of Trx2 in a metB(1)trxA mutant. The data demonstrate that the lack of growth of the metB(1)trxA mutant on Met-O is due to low in vivo expression of Trx2 and not to the lower catalytic efficiency of Msrs for Trx2.
Collapse
Affiliation(s)
- Christophe Jacob
- Nancy-Université-Université Henri Poincaré, UMR CNRS-UHP 7214, ARN-RNP, Enzymologie Moléculaire et Structurale, Nancy Université, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
46
|
Le HT, Gautier V, Kthiri F, Kohiyama M, Katayama T, Richarme G. DNA replication defects in a mutant deficient in the thioredoxin homolog YbbN. Biochem Biophys Res Commun 2010; 405:52-7. [PMID: 21195694 DOI: 10.1016/j.bbrc.2010.12.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/16/2022]
Abstract
Escherichia coli contains two thioredoxins, Trx1 and Trx2, and a thioredoxin-like protein, YbbN, that displays both redox and chaperone properties. Since three out of the six proteins of the YbbN interactome (Butland et al., 2005) are components of DNA polymerase 3 holoenzyme (i.e. the β-clamp DnaN, the θ subunit HolE and the δ' subunit HolB), we investigated whether the ybbN mutant presents DNA replication defects. We found that this mutant incorporates (3)H-thymidine at higher rates than the parental strain and displays overinitiation, hypermutator and filamentation phenotypes with the occurrence of anucleated cells. Moreover, YbbN functions as a bona fide chaperone in the refolding of the urea-unfolded β-clamp. These results suggest that the DNA replication and cell division defects of the ybbN mutant might best be explained by chaperone functions of YbbN in the biogenesis of DNA polymerase 3 holoenzyme.
Collapse
Affiliation(s)
- Hai-Tuong Le
- Institut Jacques Monod, Université Paris 7, Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Thioredoxins are ubiquitous antioxidant enzymes that play important roles in many health-related cellular processes. As such, the fundamental knowledge of how these enzymes work is of prime importance for understanding cellular redox mechanisms and for laying the ground for the development of future therapeutic approaches. Over the past 40 years, a really impressive amount of data has been published on thioredoxins. Here, we review the most significant results that have contributed to our knowledge regarding the structure, the function, and the mechanism of these crucial enzymes.
Collapse
|
48
|
Abstract
This paper describes the cloning, purification, and characterization of thioredoxin (Trx) and thioredoxin reductase (TrxR) and the structure determination of TrxR from the ionizing radiation-tolerant bacterium Deinococcus radiodurans strain R1. The genes from D. radiodurans encoding Trx and TrxR were amplified by PCR, inserted into a pET expression vector, and overexpressed in Escherichia coli. The overexpressed proteins were purified by metal affinity chromatography, and their activity was demonstrated using well-established assays of insulin precipitation (for Trx), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) reduction, and insulin reduction (for TrxR). In addition, the crystal structure of oxidized TrxR was determined at 1.9-A resolution. The overall structure was found to be very similar to that of E. coli TrxR and homodimeric with both NADPH- and flavin adenine dinucleotide (FAD)-binding domains containing variants of the canonical nucleotide binding fold, the Rossmann fold. The K(m) (5.7 muM) of D. radiodurans TrxR for D. radiodurans Trx was determined and is about twofold higher than that of the E. coli thioredoxin system. However, D. radiodurans TrxR has a much lower affinity for E. coli Trx (K(m), 44.4 muM). Subtle differences in the surface charge and shape of the Trx binding site on TrxR may account for the differences in recognition. Because it has been suggested that TrxR from D. radiodurans may have dual cofactor specificity (can utilize both NADH and NADPH), D. radiodurans TrxR was tested for its ability to utilize NADH as well. Our results show that D. radiodurans TrxR can utilize only NADPH for activity.
Collapse
|
49
|
Salmonella enterica serovar typhimurium trxA mutants are protective against virulent challenge and induce less inflammation than the live-attenuated vaccine strain SL3261. Infect Immun 2009; 78:326-36. [PMID: 19884329 DOI: 10.1128/iai.00768-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In Salmonella enterica serovar Typhimurium, trxA encodes thioredoxin 1, a small, soluble protein with disulfide reductase activity, which catalyzes thiol disulfide redox reactions in a variety of substrate proteins. Thioredoxins are involved as antioxidants in defense against oxidative stresses, such as exposure to hydrogen peroxide and hydroxyl radicals. We have made a defined, complete deletion of trxA in the mouse-virulent S. Typhimurium strain SL1344 (SL1344 trxA), replacing the gene with a kanamycin resistance gene cassette. SL1344 trxA was attenuated for virulence in BALB/c mice by the oral and intravenous routes and when used in immunization experiments provided protection against challenge with the virulent parent strain. SL1344 trxA induced less inflammation in murine spleens and livers than SL3261, the aroA mutant, live attenuated vaccine strain. The reduced splenomegaly observed following infection with SL1344 trxA was partially attributed to a reduction in the number of both CD4(+) and CD8(+) T cells and B lymphocytes in the spleen and reduced infiltration by CD11b(+) cells into the spleen compared with spleens from mice infected with SL3261. This less severe pathological response indicates that a trxA mutation might be used to reduce reactogenicity of live attenuated vaccine strains. We tested this by deleting trxA in SL3261. SL3261 trxA was also less inflammatory than SL3261 but was slightly less effective as a vaccine strain than either the SL3261 parent strain or SL1344 trxA.
Collapse
|
50
|
Perez-Jimenez R, Li J, Kosuri P, Sanchez-Romero I, Wiita AP, Rodriguez-Larrea D, Chueca A, Holmgren A, Miranda-Vizuete A, Becker K, Cho SH, Beckwith J, Gelhaye E, Jacquot JP, Gaucher E, Sanchez-Ruiz JM, Berne BJ, Fernandez JM. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nat Struct Mol Biol 2009; 16:890-6. [PMID: 19597482 PMCID: PMC2745927 DOI: 10.1038/nsmb.1627] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/27/2009] [Indexed: 11/09/2022]
Abstract
Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.
Collapse
Affiliation(s)
- Raul Perez-Jimenez
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jingyuan Li
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Pallav Kosuri
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | | - Arun P. Wiita
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David Rodriguez-Larrea
- Facultad de Ciencias, Departamento de Quimica-Fisica, Universidad de Granada, 18071, Granada, Spain
| | - Ana Chueca
- Estación Experimental del Zaidin, CSIC, 18008, Granada, Spain
| | - Arne Holmgren
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Antonio Miranda-Vizuete
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Dpto. de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Katja Becker
- Interdisciplinary Research Center, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Seung-Hyun Cho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Eric Gelhaye
- Nancy University, IFR110 GEEF, UMR 1136 Interactions Arbres Microorganismes, Faculte des Sciences, 54506 Vandoeuvre Cedex, France
| | - Jean P. Jacquot
- Nancy University, IFR110 GEEF, UMR 1136 Interactions Arbres Microorganismes, Faculte des Sciences, 54506 Vandoeuvre Cedex, France
| | - Eric Gaucher
- Georgia Institute of Technology, School of Biology, Atlanta, GA 30332
| | - Jose M. Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Quimica-Fisica, Universidad de Granada, 18071, Granada, Spain
| | - Bruce J. Berne
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Julio M. Fernandez
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|