1
|
Equol’s Anti-Aging Effects Protect against Environmental Assaults by Increasing Skin Antioxidant Defense and ECM Proteins While Decreasing Oxidative Stress and Inflammation. COSMETICS 2018. [DOI: 10.3390/cosmetics5010016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
2
|
Lephart ED. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev 2016; 31:36-54. [PMID: 27521253 DOI: 10.1016/j.arr.2016.08.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
Oxygen in biology is essential for life. It comes at a cost during normal cellular function, where reactive oxygen species (ROS) are generated by oxidative metabolism. Human skin exposed to solar ultra-violet radiation (UVR) dramatically increases ROS production/oxidative stress. It is important to understand the characteristics of human skin and how chronological (intrinsic) aging and photo-aging (extrinsic aging) occur via the impact of ROS production by cascade signaling pathways. The goal is to oppose or neutralize ROS insults to maintain good dermal health. Botanicals, as active ingredients, represent one of the largest categories used in dermatology and cosmeceuticals to combat skin aging. An emerging botanical is equol, a polyphenolic/isoflavonoid molecule found in plants and food products and via gastrointestinal metabolism from precursor compounds. Introductory sections cover oxygen, free radicals (ROS), oxidative stress, antioxidants, human skin aging, cellular/molecular ROS events in skin, steroid enzymes/receptors/hormonal actions and genetic factors in aging skin. The main focus of this review covers the characteristics of equol (phytoestrogenic, antioxidant and enhancement of extracellular matrix properties) to reduce skin aging along with its anti-aging skin influences via reducing oxidative stress cascade events by a variety of biochemical/molecular actions and mechanisms to enhance human dermal health.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Physiology and Developmental Biology and The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
3
|
Sun Z, Hwang E, Park SY, Zhang M, Gao W, Lin P, Yi TH. Angelica archangelia Prevented Collagen Degradation by Blocking Production of Matrix Metalloproteinases in UVB-exposed Dermal Fibroblasts. Photochem Photobiol 2016; 92:604-10. [PMID: 27128690 DOI: 10.1111/php.12595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
Abstract
Angelica archangelia (AA), a traditional herb, has attracted attention as an agent with potential for use in the prevention of chronic skin diseases. This study examined the photoprotective effects of AA on the inhibition of matrix metalloproteinases (MMPs) and collagen degradation in UVB-irradiated normal human dermal fibroblasts. Our results showed that AA markedly blocked collagen degradation by restraining the production of MMPs in UVB-exposed fibroblasts. We also investigated the underlying mechanism behind the effects of AA. AA attenuated UVB-triggered interleukin-6 (IL-6) and promoted the expression of transforming growth factor β1. Application of AA extract (10, 100 μg mL(-1) ) significantly diminished UVB-induced extracellular signal-regulated kinase and Jun-N-terminal kinase phosphorylation, which consequently reduced phosphorylated c-Fos and c-Jun. Our results indicated that AA inhibited the UVB-induced expression of MMPs by inhibiting mitogen-activated protein kinase signaling pathways and activator protein-1 activation. Our results suggest that AA is a promising botanical agent for use against skin photoaging.
Collapse
Affiliation(s)
- Zhengwang Sun
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | | | | | - Mengyang Zhang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Wei Gao
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Pei Lin
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
4
|
Sun Z, Park SY, Hwang E, Zhang M, Jin F, Zhang B, Yi TH. Salvianolic Acid B Protects Normal Human Dermal Fibroblasts Against Ultraviolet B Irradiation-Induced Photoaging Through Mitogen-Activated Protein Kinase and Activator Protein-1 Pathways. Photochem Photobiol 2015; 91:879-86. [PMID: 25626519 DOI: 10.1111/php.12427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengwang Sun
- Department of Oriental Medicinal Material and Processing; College of Life Science; Kyung Hee University Global Campus; Yongin-si Gyeonggi-do Korea
- College of Biotechnology; Dalian Polytechnic University; Ganjingzi-Qu Dalian China
| | - Sang-Yong Park
- Department of Oriental Medicinal Material and Processing; College of Life Science; Kyung Hee University Global Campus; Yongin-si Gyeonggi-do Korea
| | - Eunson Hwang
- Department of Oriental Medicinal Material and Processing; College of Life Science; Kyung Hee University Global Campus; Yongin-si Gyeonggi-do Korea
| | - Mengyang Zhang
- Department of Oriental Medicinal Material and Processing; College of Life Science; Kyung Hee University Global Campus; Yongin-si Gyeonggi-do Korea
| | - Fengxie Jin
- College of Biotechnology; Dalian Polytechnic University; Ganjingzi-Qu Dalian China
| | - Baochun Zhang
- College of Basic Medicine; Beijing University of Chinese Medicine; Chaoyang-Qu Beijing China
| | - Tae Hoo Yi
- Department of Oriental Medicinal Material and Processing; College of Life Science; Kyung Hee University Global Campus; Yongin-si Gyeonggi-do Korea
| |
Collapse
|
5
|
Chien ST, Shi MD, Lee YC, Te CC, Shih YW. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int 2015; 15:15. [PMID: 25698902 PMCID: PMC4332891 DOI: 10.1186/s12935-015-0168-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/20/2015] [Indexed: 12/28/2022] Open
Abstract
Background Galangin (3,5,7-trihydroxyflavone) is a flavonoid compound found in high concentration in lesser galangal. The objective of this study was to investigate the ability of galangin to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced the invasion and metastasis of HepG2 liver cancer cells. Results First, using a cell-matrix adhesion assay, immunofluorescence assay, transwell-chamber invasion/migration assay, and wound healing assay, we observed that galangin exerted an inhibitory effect on TPA-induced cell adhesion, morphology/actin cytoskeleton arrangement, invasion and migration. Furthermore, the results of gelatin zymography and reverse transcriptase polymerase chain reaction (RT-PCR) assays showed that galangin reduced the TPA-induced enzyme activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in HepG2 cells; moreover, the messenger RNA level was downregulated. We also observed through a Western blotting assay that galangin strongly inhibited the TPA-induced protein expressions of protein kinase Cα (PKCα), protein kinase Cδ (PKCδ), phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), the phospho-inhibitor of kappaBα (phospho-IκBα), c-Fos, c-Jun, and nuclear factor kappa B (NF-κB). Next, galangin dose-dependently inhibited the binding ability of NF-κB and activator protein 1 (AP-1) to MMP-2/MMP-9 promoters, respectively, resulting in the suppression of MMP-2/MMP-9 enzyme activity. Conclusions The results revealed that galangin effectively inhibited the TPA-induced invasion and migration of HepG2 cells through a protein kinase C/extracellular signal-regulated kinase (PKC/ERK) pathway. Thus, galangin may have widespread applications in clinical therapy as an anti-metastatic medicament.
Collapse
Affiliation(s)
- Shang-Tao Chien
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284 Taiwan ; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Ming-Der Shi
- Department of Medical Technology, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, 71051 Taiwan ; Department of Medical Laboratory Science and Biotechnology and Graduate Institute of Biological Technology, Chung Hwa University of Medical Technology, Tainan, 71703 Taiwan
| | - Yi-Chieh Lee
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, 71703 Taiwan ; Department of Biological Science and Technology and Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan, 71703 Taiwan
| | - Chou-Chia Te
- Department of Biological Science and Technology and Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan, 71703 Taiwan
| | - Yuan-Wei Shih
- Department of Biological Science and Technology and Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan, 71703 Taiwan ; Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, 71703 Taiwan
| |
Collapse
|
6
|
Shi MD, Shih YW, Lee YS, Cheng YF, Tsai LY. Suppression of 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 breast adenocarcinoma cells invasion/migration by α-tomatine through activating PKCα/ERK/NF-κB-dependent MMP-2/MMP-9 expressions. Cell Biochem Biophys 2013; 66:161-74. [PMID: 23114726 DOI: 10.1007/s12013-012-9465-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
α-Tomatine, isolated from Lycopersicon esculentum Linn., is a naturally occurring glycoalkaloids in immature green tomatoes. Some reports demonstrated that α-tomatine had various anti-carcinogenic properties. First, the result demonstrated α-tomatine could inhibit TPA-induced the abilities of the adhesion, morphology/actin cytoskeleton arrangement, invasion, and migration by cell-matrix adhesion assay, immunofluorescence stain assay, Boyden chamber invasion assay, and wound-healing assay. Data also showed α-tomatine could inhibit the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase C-α (PKCα) involved in the downregulation of the enzyme activities and messenger RNA levels of matrix metalloproteinase-2/9 (MMP-2/MMP-9) induced by TPA. Next, α-tomatine also strongly inhibited TPA-induced the activation of nuclear factor kappa B (NF-κB) and phospho-inhibitor of kappa Bα (phospho-IκBα). In addition, TPA-induced translocation of PKC-α from cytosol to membranes, and suppression of TPA elicited the expression of PKC-α by adding the PKC-α inhibitors, GF-109203X and Gö-6983. The treatment of specific inhibitor for ERK (U0126) to MCF-7 cells could inhibit TPA-induced MMP-2/MMP-9 and phospho-ERK along with an inhibition on cell invasion and migration. Application of α-tomatine to prevent the invasion/migration of MCF-7 cells through blocking PKCα/ERK/NF-κB activation is first demonstrated herein.
Collapse
Affiliation(s)
- Min-Der Shi
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Park M, Han J, Lee CS, Heung Soo B, Lim KM, Ha H. Carnosic acid, a phenolic diterpene from rosemary, prevents UV-induced expression of matrix metalloproteinases in human skin fibroblasts and keratinocytes. Exp Dermatol 2013; 22:336-41. [DOI: 10.1111/exd.12138] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Miyoung Park
- Medical Beauty Research Institute; Amorepacific Corporation R&D Center; Yongin Korea
- Division of Life and Pharmaceutical Sciences; College of Pharmacy; Ewha Womans University; Seoul Korea
| | - Jiwon Han
- Medical Beauty Research Institute; Amorepacific Corporation R&D Center; Yongin Korea
| | - Chang Seok Lee
- Medical Beauty Research Institute; Amorepacific Corporation R&D Center; Yongin Korea
| | - Baek Heung Soo
- Medical Beauty Research Institute; Amorepacific Corporation R&D Center; Yongin Korea
| | - Kyung-Min Lim
- Medical Beauty Research Institute; Amorepacific Corporation R&D Center; Yongin Korea
- Division of Toxicology; College of Pharmacy; Ewha Womans University; Seoul Korea
| | - Hunjoo Ha
- Division of Life and Pharmaceutical Sciences; College of Pharmacy; Ewha Womans University; Seoul Korea
| |
Collapse
|
8
|
Kumar G, Dange P, Kailaje V, Vaidya MM, Ramchandani AG, Maru GB. Polymeric black tea polyphenols modulate the localization and activity of 12-O-tetradecanoylphorbol-13-acetate-mediated kinases in mouse skin: mechanisms of their anti-tumor-promoting action. Free Radic Biol Med 2012; 53:1358-70. [PMID: 22841871 DOI: 10.1016/j.freeradbiomed.2012.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/05/2012] [Accepted: 07/17/2012] [Indexed: 02/06/2023]
Abstract
Polymeric black tea polyphenols (PBPs) have been shown to possess anti-tumor-promoting effects in two-stage skin carcinogenesis. However, their mechanisms of action are not fully elucidated. In this study, mechanisms of PBP-mediated antipromoting effects were investigated in a mouse model employing the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Compared to controls, a single topical application of TPA to mouse skin increased the translocation of protein kinase C (PKC) from cytosol to membrane. Pretreatment with PBPs 1-3 decreased TPA-induced translocation of PKC isozymes (α, β, η, γ, ε) from cytosol to membrane, whereas PBPs 4 and 5 were less effective. The levels of PKCs δ and ζ in cytosol/membrane were similar in all the treatment groups. Complementary confocal microscopic evaluation showed a decrease in TPA-induced PKCα fluorescence in PBP-3-pretreated membranes, whereas pretreatment with PBP-5 did not show a similar decrease. Based on the experiments with specific enzyme inhibitors and phosphospecific antibodies, both PBP-3 and PBP-5 were observed to decrease TPA-induced level and/or activity of phosphatidylinositol 3-kinase (PI3K) and AKT1 (pS473). An additional ability of PBP-3 to inhibit site-specific phosphorylation of PKCα at all three positions responsible for its activation [PKCα (pT497), PKC PAN (βII pS660), PKCα/βII (pT638/641)] and AKT1 at the Thr308 position, along with a decrease in TPA-induced PDK1 protein level, correlated with the inhibition of translocation of PKC, which may impart relatively stronger chemoprotective activity to PBP-3 than to PBP-5. Altogether, PBP-mediated decrease in TPA-induced PKC phosphorylation correlated well with decreased TPA-induced NF-κB phosphorylation and downstream target proteins associated with proliferation, apoptosis, and inflammation in mouse skin. Results suggest that the antipromoting effects of PBPs are due to modulation of TPA-induced PI3K-mediated signal transduction.
Collapse
Affiliation(s)
- Gaurav Kumar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | | | | | | | |
Collapse
|
9
|
Amentoflavone inhibits UVB-induced matrix metalloproteinase-1 expression through the modulation of AP-1 components in normal human fibroblasts. Appl Biochem Biotechnol 2011; 166:1137-47. [PMID: 22205321 DOI: 10.1007/s12010-011-9500-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
Abstract
Amentoflavone is a well-known biflavonoid that has diverse biological effects. Previously, we reported that amentoflavone suppressed UVB-induced matrix metalloproteinase-1 (MMP-1) expression in normal human fibroblasts (NHF). We investigated the effects of amentoflavone on UVB-induced MMP-1 expression in order to elucidate its mode of action. NHF were treated with amentoflavone for indicated times and doses with UVB irradiation. The expressions of MMP-1 gene and protein were determined by RT-PCR and ELISA, respectively. MAP kinase phosphorylation and the expression of c-Fos protein were determined by Western blot. The treatment of amentoflavone completely blocked the upregulation of MMP-1 which is induced by UVB irradiation in HaCaT-NHF co-culture in a dose-dependent manner as well as in NHF monoculture. Also, amentoflavone inhibited UVB-induced activation of extracellular signal-regulated kinase (ERK) without changing total ERK protein level, and did not affect p38 or JNK activation. Finally, AP-1 transcription factor components, phospho-c-Jun and c-Fos protein expressions were decreased by amentoflavone treatment. The major finding of this study shows that amentoflavone inhibits intracellular cell signaling ERK pathway leading to the prevention of MMP-1 expression in human skin fibroblasts. Therefore, these results strongly suggest that amentoflavone should be investigated as a potential agent for the prevention and the treatment of skin photoaging.
Collapse
|
10
|
Khanal P, Namgoong GM, Kang BS, Woo ER, Choi HS. The Prolyl Isomerase Pin1 Enhances HER-2 Expression and Cellular Transformation via Its Interaction with Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase 1. Mol Cancer Ther 2010; 9:606-16. [DOI: 10.1158/1535-7163.mct-09-0560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Akt is a direct target for myricetin to inhibit cell transformation. Mol Cell Biochem 2009; 332:33-41. [PMID: 19504174 DOI: 10.1007/s11010-009-0171-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Akt, a serine/threonine kinase, is a critical regulator in many cellular processes including cell growth, proliferation, and apoptosis. In this study, we found that myricetin, a typical flavonol existing in many fruits and vegetables, could directly target Akt to inhibit cell transformation. Binding assay revealed that myricetin bound to Akt directly by competing with ATP. In vitro and ex vivo data confirmed that myricetin inhibited the phosphorylation and kinase activity of Akt. Molecular modeling suggested that myricetin easily docks to the ATP-binding site of Akt with hydrogen bonds. Signaling analysis data further demonstrated that myricetin inhibited Akt-mediated activator protein-1 (AP-1) transactivation, cyclin D1 expression and cell transformation. Overall, our results indicate that Akt is a direct target for myricetin to inhibit cell transformation.
Collapse
|
12
|
Shim JS, Choi EJ, Lee CW, Kim HS, Hwang JK. Matrix Metalloproteinase-1 Inhibitory Activity of Kaempferia pandurata Roxb. J Med Food 2009; 12:601-7. [DOI: 10.1089/jmf.2007.1041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jae-Seok Shim
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Eun-Jung Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Chan-Woo Lee
- R & D Center, Amore-Pacific Corporation, Kyounggi-do, Republic of Korea
| | - Han-Sung Kim
- R & D Center, Amore-Pacific Corporation, Kyounggi-do, Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL, Grandis JR, Zhang L, Yu J. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 2009; 28:2348-57. [PMID: 19421143 DOI: 10.1038/onc.2009.108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is found in over 80% of head and neck squamous cell carcinomas (HNSCC) and associated with poor clinical outcomes. EFGR selective tyrosine kinase inhibitors (TKIs) or antibodies have recently emerged as promising treatments for solid tumors, including HNSCC, though the response rate to these agents is low. p53 upregulated modulator of apoptosis (PUMA), a BH3-only Bcl-2 family protein, is required for apoptosis induced by p53 and various chemotherapeutic agents. In this study, we show that PUMA induction is correlated with EGFR-TKI sensitivity, and is mediated through the p53 family protein p73beta and inhibition of the PI3K/AKT pathway. In some HNSCC cells, the gefitinib-induced degradation of oncogenic Delta Np63 seems to facilitate p73-mediated PUMA transcription. Inhibiting PUMA expression by small hairpin RNA (shRNA) impairs gefitinib-induced apoptosis. Furthermore, PUMA or BH3 mimetics sensitize HNSCC cells to gefitinib-induced apoptosis. Our results suggest that PUMA induction through p73 represents a new mechanism of EGFR inhibitor-induced apoptosis, and provide potential ways for enhancing and predicting the sensitivity to EGFR-targeted therapies in HNSCC.
Collapse
Affiliation(s)
- Q Sun
- Department of Pathology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The effect of 4-hydroxypanduratin A on the mitogen-activated protein kinase-dependent activation of matrix metalloproteinase-1 expression in human skin fibroblasts. J Dermatol Sci 2009; 53:129-34. [DOI: 10.1016/j.jdermsci.2008.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/23/2022]
|
15
|
Lee NY, Choi HK, Shim JH, Kang KW, Dong Z, Choi HS. The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation. Carcinogenesis 2009; 30:671-81. [PMID: 19168580 DOI: 10.1093/carcin/bgp027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation of proteins on serine or threonine residues that immediately precede proline (pSer/Thr-Pro) is specifically catalyzed by the peptidyl-prolyl cis-trans isomerase Pin1 and is a central signaling mechanism in cell proliferation and transformation. Although Pin1 is frequently overexpressed in hepatocellular carcinoma (HCC), the molecular mechanism of Pin1 in HCC has not been completely elucidated. Here, we show that Pin1 interacts with p70S6K in vitro and ex vivo. Overexpression of Pin1 resulted in enhanced p70S6K phosphorylation induced by insulin in SK-HEP-1 cells. In contrast, Pin1(-/-) mouse embryonic fibroblasts (MEFs) exhibited significantly decreased insulin-induced p70S6K phosphorylation compared with Pin1(+/+) MEFs. Furthermore, Pin1 enhanced the insulin-induced extracellular signal-regulated protein kinase (ERK)1/2 phosphorylation through its interaction with p70S6K, whereas the inhibition of p70S6K activity by rapamycin suppressed insulin-induced ERK1/2 phosphorylation in SK-HEP-1 cells. Hence, Pin1 affected activator protein-1 activity through p70S6K-ERK1/2 signaling in SK-HEP-1 cells. Most importantly, Pin1-overexpressing JB6 Cl41 cells enhanced neoplastic cell transformation promoted by insulin much more than green fluorescent protein-overexpressing JB6 Cl41 control cells. These results imply that Pin1 amplifies insulin signaling in hepatocarcinoma cells through its interaction with p70S6K, suggesting that Pin1 plays an important role in insulin-induced tumorigenesis and is a potential therapeutic target in hepatocarcinoma.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic
- Cells, Cultured
- Drug Synergism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation, Neoplastic
- Green Fluorescent Proteins/metabolism
- Humans
- Hypoglycemic Agents/pharmacology
- Immunoblotting
- Immunosuppressive Agents/pharmacology
- Insulin/pharmacology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- NIMA-Interacting Peptidylprolyl Isomerase
- Naphthoquinones/pharmacology
- Peptidylprolyl Isomerase/antagonists & inhibitors
- Peptidylprolyl Isomerase/metabolism
- Phosphorylation/drug effects
- RNA, Small Interfering/pharmacology
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- Transcription Factor AP-1/metabolism
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Na Yeon Lee
- College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Koizumi JI, Kojima T, Ogasawara N, Kamekura R, Kurose M, Go M, Harimaya A, Murata M, Osanai M, Chiba H, Himi T, Sawada N. Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation. Mol Pharmacol 2008; 74:432-42. [PMID: 18477669 DOI: 10.1124/mol.107.043711] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The epithelium of upper respiratory tissues such as human nasal mucosa forms a continuous barrier via tight junctions, which is thought to be regulated in part through a protein kinase C (PKC) signaling pathway. To investigate the mechanisms of the regulation of PKC-mediated tight junction barrier function of human nasal epithelium in detail, primary human nasal epithelial cells were treated with the PKC activator 12-O-tetradecanoylophorbol-13-acetate (TPA). In primary human nasal epithelial cells, treatment with TPA led not only to activation of phosphorylation of PKC, myristoylated alanine-rich C kinase substrate, and mitogen-activated protein kinase but also expression of novel PKC-delta, PKC-theta, and PKC-epsilon. Treatment with TPA increased transepithelial electrical resistance, with tight junction barrier function more than 4-fold that of the control, together with up-regulation of tight junction proteins, occludin, zona occludens (ZO)-1, ZO-2 and claudin-1 at the transcriptional level. Furthermore, it affected the subcellular localization of the tight junction proteins and the numbers of tight junction strands. The up-regulation of barrier function and tight junction proteins was prevented by a pan-PKC inhibitor, and the inhibitors of PKC-delta and PKC-theta but not PKC-epsilon. In primary human nasal epithelial cells, transcriptional factors GATA-3 and -6 were detected by reverse transcription-polymerase chain reaction. The knockdown of GATA-3 using RNA interference resulted in inhibition of up-regulation of ZO-1 and ZO-2 by treatment with TPA. These results suggest that TPA-induced PKC signaling enhances the barrier function of human nasal epithelial cells via transcriptional up-regulation of tight junction proteins, and the mechanisms may contribute to a drug delivery system.
Collapse
Affiliation(s)
- Jun-ichi Koizumi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1. W17. Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Luo J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 2008; 273:194-200. [PMID: 18606491 DOI: 10.1016/j.canlet.2008.05.045] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 02/22/2008] [Accepted: 05/30/2008] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase found in all eukaryotes, had been initially identified as a key regulator of insulin-dependent glycogen synthesis. It is now known that GSK3beta functions in diverse cellular processes including proliferation, differentiation, motility and survival. Aberrant regulation of GSK3beta has been implicated in a range of human pathologies including non-insulin-dependent diabetes mellitus, cardiovascular disease, some neurodegenerative diseases, and bipolar disorder. As a consequence, the therapeutic potential of GSK3beta inhibitors has become an important area of investigation. However, GSK3beta also participates in neoplastic transformation and tumor development. The role of GSK3beta in tumorigenesis and cancer progression remains controversial; it may function as a "tumor suppressor" for certain types of tumors, but promotes growth and development for some others. GSK3beta also mediates drug sensitivity/resistance in cancer chemotherapy. Therefore, although GSK3beta is an attractive therapeutic target for a number of human diseases, its potential impact on tumorigenesis and cancer chemotherapy needs to be carefully evaluated. This mini-review discusses the role of GSK3beta in tumorigenesis/cancer progression as well as its modulation of cancer chemotherapy.
Collapse
Affiliation(s)
- Jia Luo
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Bae JT, Sim GS, Kim JH, Pyo HB, Yun JW, Lee BC. Antioxidative activity of the hydrolytic enzyme treated Sorbus commixta Hedl. and its inhibitory effect on matrix metalloproteinase-1 in UV irradiated human dermal fibroblasts. Arch Pharm Res 2007; 30:1116-23. [PMID: 17958329 DOI: 10.1007/bf02980246] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide radical scavenging activity and DPPH radical scavenging activity were assessed in order to evaluate the antioxidant effect of the Sorbus commixta Hedl. extract (SCoE). SCoE was also treated with several carbohydrate-hydrolytic enzymes that significantly increased the total phenol and flavonoid composition of SCoE. The enzymatically treated SCoE was then assessed for antioxidative activity. The most efficient radical scavenging activity was observed when SCoE was treated with -glucanase. The radical scavenging activity of beta-glucanase-treated SCoE (beta-GSCoE) enhanced the viability of human dermal fibroblasts (HDFs) exposed to ultraviolet (UV) light. The intracellular reactive oxygen species (ROS) scavenging activity of beta-GSCoE was assessed using UVB (20 mJ/cm2)-irradiated HDFs. UVB irradiation increased dichlorofluorescein (DCF) fluorescence, which was measured by a 5-(6-)chloromethyl-2',7'- dichlorodihydrofluorescein diacetate (CM-H2DCFDA). DCF-fluorescence was significantly decreased in the beta-GSCoE-containing culture medium, suggesting that beta-GSCoE scavenges free radicals. The protective effect was further verified by assessing the expression of matrix metalloproteinase-1 (MMP-1) in UVA-irradiated HDFs. The treatment of UVA-irradiated HDFs with beta-GSCoE resulted in a dose-dependent decrease in the expression level of MMP-1 protein and mRNA. These results suggest that beta-GSCoE may mitigate the effects of photoaging in skin by reducing UV-induced adverse skin reactions.
Collapse
Affiliation(s)
- Jun-Tae Bae
- R & D Center, Hanbul Cosmetics Co., 72-7, Yongsung-Ri, Samsung-Mym, Umsung-Kun, Chungbuk 369-834, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA, Odetallah M, Ding M, Ke Z, Luo J. The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res 2007; 67:7756-64. [PMID: 17699780 DOI: 10.1158/0008-5472.can-06-4665] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glycogen synthase kinase 3beta (GSK3beta) is a multifunctional serine/threonine kinase. We showed that the expression of GSK3beta was drastically down-regulated in human cutaneous squamous cell carcinomas and basal cell carcinomas. Due to its negative regulation of many oncogenic proteins, we hypothesized that GSK3beta may function as a tumor suppressor during the neoplastic transformation of epidermal cells. We tested this hypothesis using an in vitro model system, JB6 mouse epidermal cells. In response to epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA), the promotion-sensitive JB6 P+ cells initiate neoplastic transformation, whereas the promotion-resistant JB6 P- cells do not. JB6 P- cells expressed much higher levels of GSK3beta than JB6 P+ cells; JB7 cells, the transformed derivatives of JB6, had the least amount of GSK3beta. The activity of GSK3beta is negatively regulated by its phosphorylation at Ser9. EGF and TPA induced strong Ser9 phoshorylation in JB6 P+ cells, but phosphorylation was seen at a much lesser extent in JB6 P- cells. EGF and TPA-stimulated Ser9 phosphorylation was mediated by phosphoinositide-3-kinase (PI3K)/Akt and protein kinase C (PKC) pathways. Inhibition of GSK3beta activation significantly stimulated activator protein-1 (AP-1) activity. Overexpression of wild-type (WT) and S9A mutant GSK3beta in JB6 P+ cells suppressed EGF and TPA-mediated anchorage-independent growth in soft agar and tumorigenicity in nude mice. Overexpression of a kinase-deficient (K85R) GSK3beta, in contrast, potentiated anchorage-independent growth and drastically enhanced in vivo tumorigenicity. Together, these results indicate that GSK3beta plays an important role in skin tumorigenesis.
Collapse
Affiliation(s)
- Cuiling Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ichimatsu D, Nomura M, Nakamura S, Moritani S, Yokogawa K, Kobayashi S, Nishioka T, Miyamoto KI. Structure-activity relationship of flavonoids for inhibition of epidermal growth factor-induced transformation of JB6 Cl 41 cells. Mol Carcinog 2007; 46:436-45. [PMID: 17219438 DOI: 10.1002/mc.20292] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We found that quercetin, myricetin, quercetagetin, fisetin, (-)-epigallocatechin gallate (EGCG), and theaflavins, among 24 flavonoids examined, markedly inhibited epidermal growth factor (EGF)-induced cell transformation of mouse epidermal JB6 Cl 41 cells. The six flavonoids suppressed the EGF-induced activation of activator protein 1 (AP-1). In addition, myricetin, quercetagetin, EGCG, and theaflavins directly inhibited EGF-induced phosphatidylinositol 3-kinase (PI3K) activation. The important structural features of flavonoids for cell transformation-inhibitory activity are 3'- and 4'-OH on the B-ring, 3-OH on the C-ring, C2=C3 double bond in the C-ring, and the phenylchromone (C6-C5-C6) skeleton in the flavonols, and the galloyl group in EGCG and theaflavins. Our results provide new insight into possible mechanisms of the anti-carcinogenic effects of flavonoids, and could help to provide a basis for the design of novel cancer chemopreventive agents.
Collapse
Affiliation(s)
- Daisuke Ichimatsu
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gu Q, Tan M, Sun Y. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation. Cancer Res 2007; 67:3616-25. [PMID: 17440073 DOI: 10.1158/0008-5472.can-06-4020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SAG (sensitive to apoptosis gene) was first identified as a stress-responsive protein that, when overexpressed, inhibited apoptosis both in vitro and in vivo. SAG was later found to be the second family member of ROC1 or Rbx1, a RING component of SCF and DCX E3 ubiquitin ligases. We report here that SAG/ROC2/Rbx2 is a novel transcriptional target of activator protein-1 (AP-1). AP-1 bound both in vitro and in vivo to two consensus binding sites in a 1.3-kb region of the mouse SAG promoter. The SAG promoter activity, as measured by luciferase reporter assay, was dependent on these sites. Consistently, endogenous SAG is induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) with an induction time course following the c-Jun induction in both mouse epidermal JB6-Cl.41 and human 293 cells. TPA-mediated SAG induction was significantly reduced in JB6-Cl.41 cells overexpressing a dominant-negative c-Jun, indicating a requirement of c-Jun/AP-1. On the other hand, SAG seemed to modulate the c-Jun levels. When overexpressed, SAG remarkably reduced both basal and TPA-induced c-Jun levels, whereas SAG small interfering RNA (siRNA) silencing increased substantially the levels of both basal and TPA-induced c-Jun. Consistently, SAG siRNA silencing reduced c-Jun polyubiquitination and blocked c-Jun degradation induced by Fbw7, an F-box protein of SCF E3 ubiquitin ligase. Finally, SAG overexpression inhibited, whereas SAG siRNA silencing enhanced, respectively, the TPA-induced neoplastic transformation in JB6-Cl.41 preneoplastic model. Thus, AP-1/SAG establishes an autofeedback loop, in which on induction by AP-1, SAG promotes c-Jun ubiquitination and degradation, thus inhibiting tumor-promoting activity of AP-1.
Collapse
Affiliation(s)
- Qingyang Gu
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
22
|
Chae SW, Kim JM, Yun YP, Lee WK, Kim JS, Kim YH, Lee KS, Ko YJ, Lee KH, Rha HK. Identification and analysis of the promoter region of the human PLC-δ4 gene. Mol Biol Rep 2007; 34:69-77. [PMID: 17394098 DOI: 10.1007/s11033-006-9014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
The delta4 isoform of phospholipase C (PLC-delta4) is thought to be associated with various cellular functions and disease status. However, little is known about how its function is controlled in cells, particularly in terms of the regulation of its expression. To understand the regulation mechanisms of the PLC-delta4 gene transcription, the 5'-flanking region (-2046 approximately +5) (the nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank/DDBJ data bank under accession numbers DQ302751) of the human PLC-delta4 gene was isolated from human genomic DNA. It was a TATA-less promoter with very GC-rich sequences near the transcription start site. The activity of the PLC-delta4 promoter was shown in various human and mouse cell lines by luciferase reporter assay. Serial deletion analysis identified the core promoter region as being between -402 and -67, in which an E-box and an AP-1 binding site played important roles in the promoter activity. In addition, we also showed that 12-O-tetradecanoylphorbol-1,3-acetate (TPA), a PKC activator and tumor promoter, induced the activity of the PLC-delta4 promoter via the AP-1 binding site. In summary, this study identified a core promoter region of the hPLC-delta4 gene and the factor binding sites responsible for the promoter activity. These results will provide important new information to further understand the regulatory mechanism of the PLC-delta4 function.
Collapse
Affiliation(s)
- Song Wha Chae
- Neuroscience Genome Research Center, The Catholic University of Korea, Banpo-dong, Socho-ku, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Walker VG, Ammer A, Cao Z, Clump AC, Jiang BH, Kelley LC, Weed SA, Zot H, Flynn DC. PI3K activation is required for PMA-directed activation of cSrc by AFAP-110. Am J Physiol Cell Physiol 2007; 293:C119-32. [PMID: 17360811 DOI: 10.1152/ajpcell.00525.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of PKCalpha will induce the cSrc binding partner AFAP-110 to colocalize with and activate cSrc. The ability of AFAP-110 to colocalize with cSrc is contingent on the integrity of the amino-terminal pleckstrin homology (PH1) domain, while the ability to activate cSrc is dependent on the integrity of its SH3 binding motif, which engages the cSrc SH3 domain. The outcome of AFAP-110-directed cSrc activation is a change in actin filament integrity and the formation of podosomes. Here, we address what cellular signals promote AFAP-110 to colocalize with and activate cSrc, in response to PKCalpha activation or PMA treatment. Because PH domain integrity in AFAP-110 is required for colocalization, and PH domains are known to interact with both protein and lipid binding partners, we sought to determine whether phosphatidylinositol 3-kinase (PI3K) activation played a role in PMA-induced colocalization between AFAP-110 and cSrc. We show that PMA treatment is able to direct activation of PI3K. Treatment of mouse embryo fibroblast with PI3K inhibitors blocked PMA-directed colocalization between AFAP-110 and cSrc and subsequent cSrc activation. PMA also was unable to induce colocalization or cSrc activation in cells that lacked the p85alpha and -beta regulatory subunits of PI3K. This signaling pathway was required for migration in a wound healing assay. Cells that were null for cSrc or the p85 regulatory subunits or expressed a dominant-negative AFAP-110 also displayed a reduction in migration. Thus PI3K activity is required for PMA-induced colocalization between AFAP-110 and cSrc and subsequent cSrc activation, and this signaling pathway promotes cell migration.
Collapse
Affiliation(s)
- Valerie G Walker
- The Mary Babb Randolph Cancer Center, Dept. of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sim GS, Lee BC, Cho HS, Lee JW, Kim JH, Lee DH, Kim JH, Pyo HB, Moon DC, Oh KW, Yun YP, Hong JT. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch Pharm Res 2007; 30:290-8. [PMID: 17424933 DOI: 10.1007/bf02977608] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Collagenase, a matrix metalloproteinases (MMPs), is a key regulator in the photoaging process of skin due to the reactive oxygen species generated after exposure to ultraviolet A (UVA). Flavonoid compounds have been demonstrated to possess antioxidant properties, and could be useful in the prevention of photoaging. In this study, to investigate the structure-activity relationship of flavonoid compounds on their antioxidant property and inhibitory effects against the MMP activity, the effects of several flavonoids; myricetin, quercetin, kaempferol, luteolin, apigenin and chrysin, on the reactive oxygen species scavengering activity and inhibitory effect against the MMP activity were examined in vitro and in human dermal fibroblasts induced by UVA. The relative order of antioxidative efficacy, as determined using the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) method and the xanthine/xanthine oxidase system, was as follows; flavones: luteolin > apigenin > chrysin, flavonols: myricetin > quercetin > kaempferol, and correlated with the respective number of OH group on their B-ring. In good correlation with the antioxidant properties, the flavonoids inhibited the collagenase activities, in a dose-dependent manner, and the MMP expression. These results suggested the UVA induced antioxidative activity and inhibitory effects of flavonoids on the collagenase in human dermal fibroblasts depends on the number of OH group in the flavonoid structure, and those with a higher number of OH group may be more useful in the prevention of UV stressed skin aging.
Collapse
Affiliation(s)
- Gwan-Sub Sim
- R & D Center, Hanbul Cosmetics Co., Chungbuk 369-830, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gao A, Liu B, Shi X, Jia X, Ye M, Jiao S, You B, Huang C. Phosphatidylinositol-3 kinase/Akt/p70S6K/AP-1 signaling pathway mediated benzo(a)pyrene-induced cell cycle alternation via cell cycle regulatory proteins in human embryo lung fibroblasts. Toxicol Lett 2007; 170:30-41. [PMID: 17383120 DOI: 10.1016/j.toxlet.2007.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 11/17/2022]
Abstract
Benzo(a)pyrene (B(a)P), a potent environmental procarcinogen, has been shown to cause cell cycle alternation. However, the mechanisms involved in this effect are not well understood yet. Our current results demonstrated that B(a)P exposure led to cell proliferation and a 33.5% increase in S phase cells as well as a 26.8% decrease in G1 phase cells in human embryo lung fibroblasts (HELFs). Those cell cycle alternations were accompanied with transactivation of activator protein-1 (AP-1) and phosphorylation of Akt and p70(S6K). These changes were blocked by overexpression of dominant negative mutants of phosphatidylinositol-3 kinase (Deltap85) or Akt (DN-Akt), respectively. Moreover, pretreatment of cells with rapamycin, a specific p70(S6K) inhibitor, inhibited B(a)P-induced AP-1 activation, cell cycle alteration and phosphorylation of p70(S6K), but had no effect on Akt phosphorylation. Our results, therefore, suggest that phosphatidylinositol-3 kinase (PI-3K)/Akt/p70(S6K)/AP-1 pathway participates in B(a)P-induced cell cycle alternations. Furthermore, we explored the effect of this pathway on cell cycle regulatory proteins. B(a)P markedly increases in the expression of cyclin D1 and E2F1 and phosphorylation of retinoblastoma protein (Rb). In addition, we found that inactivation of PI-3K, Akt or p70(S6K) could eliminate those effects on cell cycle regulatory proteins. Collectively, PI-3K/Akt/p70(S6K)/AP-1 pathway mediated B(a)P-induced alternation of cell cycle through regulation of cell cycle regulatory proteins such as cyclin D1, E2F1, and Rb in HELFs.
Collapse
Affiliation(s)
- Ai Gao
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nan Wei Road, Beijing 100050, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Koul D, Shen R, Shishodia S, Takada Y, Bhat KP, Reddy SAG, Aggarwal BB, Yung WKA. PTEN down regulates AP-1 and targets c-fos in human glioma cells via PI3-kinase/Akt pathway. Mol Cell Biochem 2007; 300:77-87. [PMID: 17235455 DOI: 10.1007/s11010-006-9371-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 10/26/2006] [Indexed: 01/05/2023]
Abstract
The continual activation of signaling cascades results in dramatic consequences that include loss of cellular growth control and neoplastic transformation. We show here that phosphoinositide 3-kinase and its mediator Akt was constitutively activated in glioma and that this might be due to the aberrant expression of their natural antagonist PTEN. The PTEN (phosphatase and tensin homologue deleted on chromosome ten) tumor suppressor gene modulates cell growth and survival through mechanisms that are incompletely understood. In this study, we investigated the possibility that PTEN mediates its effects through modulation of transcription factor AP-1, which is in part due to decrease in c-fos expression which was dependent on PI3kinase activity. Consistent with a reduction in the c-fos levels, an AP-1 dependent reporter gene was poorly induced in the PTEN expressing cell lines. In contrast to its effect on c-fos, PTEN did not affect the expression of c-Jun and other fos family members. We also show that the effect of PTEN on c-fos expression was due to its ability to antagonize PI3-kinase and could be mimicked by the expression of dominant negative Akt mutant. Taken together, these data indicate that the aberrant expression of PTEN contributes to the activation of the PI3kinase/Akt pathway and its transcription factor mediators in glioma. We conclude that the ectopic expression of PTEN down regulates the proliferation of glioma cells through the suppression of AP-1 and that this target might be essential for its central role in the growth and survival of glioma cancer cells.
Collapse
Affiliation(s)
- Dimpy Koul
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ouyang W, Li J, Zhang D, Jiang BH, Huang DC. PI-3K/Akt signal pathway plays a crucial role in arsenite-induced cell proliferation of human keratinocytes through induction of cyclin D1. J Cell Biochem 2007; 101:969-78. [PMID: 17370311 DOI: 10.1002/jcb.21279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | |
Collapse
|
28
|
Li J, Song L, Zhang D, Wei L, Huang C. Knockdown of NFAT3 blocked TPA-induced COX-2 and iNOS expression, and enhanced cell transformation in Cl41 cells. J Cell Biochem 2006; 99:1010-20. [PMID: 16475165 DOI: 10.1002/jcb.20834] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nuclear factor of activated-T-cells (NFAT) family is a ubiquitous transcription factor that mediates regulation on various gene expressions. Recent studies indicate that NFAT may implicate in cancer process, mainly through its direct regulation on the cyclooxygenase-2 (COX-2) gene expression. There is also evidence suggesting another aspect of NFAT in tumor suppression. However, the according mechanism remains unknown. In this study, we used a small interfering RNA (siRNA) expression construct to study the role of NFAT3 in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation with the tumor promotion-sensitive mouse epidermal Cl41 cells. Our results showed that TPA was able to induce NFAT3 activation in Cl41 cells. Stable transfection of NFAT3 siRNA specifically reduced endogenous NFAT3 expression. At the same time, TPA-induced expression of both COX-2 and inducible nitric oxide synthase (iNOS) were blocked. However, anchorage-independent transformation in response to TPA was significantly enhanced in NFAT3 siRNA stable transfectants as compared with vector transfectants. Moreover, treatment with the iNOS specific inhibitor aminoguanidine (AG) also enhanced Cl41 cells transformation induced by TPA. As COX-2 expression is proved to be required for cell transformation in Cl41 cells in our recent studies, our results demonstrate that the inducible NFAT3-mediated iNOS upregulation represents a novel potent tumor-suppressing pathway and may contribute to the tumor suppressor functions of NFAT protein.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|
29
|
Wu Y, Zu K, Warren MA, Wallace PK, Ip C. Delineating the mechanism by which selenium deactivates Akt in prostate cancer cells. Mol Cancer Ther 2006; 5:246-52. [PMID: 16505097 DOI: 10.1158/1535-7163.mct-05-0376] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The up-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is prevalent in many cancers. This phenomenon makes PI3K and Akt fruitful targets for cancer therapy and/or prevention because they are mediators of cell survival signaling. Although the suppression of phospho-Akt by selenium has been reported previously, little information is available on whether selenium modulates primarily the PI3K-phosphoinositide-dependent kinase 1 (PDK1) side of Akt phosphorylation or the phosphatase side of Akt dephosphorylation. The present study was aimed at addressing these questions in PC-3 prostate cancer cells which are phosphatase and tensin homologue-null. Our results showed that selenium decreased Akt phosphorylation at Thr308 (by PDK1) and Ser473 (by an unidentified kinase); the Thr308 site was more sensitive to selenium inhibition than the Ser473 site. The protein levels of PI3K and phospho-PDK1 were not affected by selenium. However, the activity of PI3K was reduced by 30% in selenium-treated cells, thus discouraging the recruitment of PDK1 and Akt to the membrane due to low phosphatidylinositol-3,4,5-trisphosphate formation by PI3K. Consistent with the above interpretation, the membrane localization of PDK1 and Akt was significantly diminished as shown by Western blotting. In the presence of a calcium chelator or a specific inhibitor of calcineurin (a calcium-dependent phosphatase), the suppressive effect of selenium on phospho-Akt(Ser473) was greatly reduced. The finding suggests that selenium-mediated dephosphorylation of Akt via calcineurin is likely to be an additional mechanism in regulating the status of phospho-Akt.
Collapse
Affiliation(s)
- Yue Wu
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
30
|
Kim HH, Cho S, Lee S, Kim KH, Cho KH, Eun HC, Chung JH. Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J Lipid Res 2006; 47:921-30. [PMID: 16467281 DOI: 10.1194/jlr.m500420-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skin aging can be attributed to photoaging (extrinsic) and chronological (intrinsic) aging. Photoaging and intrinsic aging are induced by damage to human skin attributable to repeated exposure to ultraviolet (UV) irradiation and to the passage of time, respectively. In our previous report, eicosapentaenoic acid (EPA) was found to inhibit UV-induced matrix metalloproteinase-1 (MMP-1) expression in human dermal fibroblasts. Therefore, we investigated the effects of EPA on UV-induced skin damage and intrinsic aging by applying EPA topically to young and aged human skin, respectively. By immunohistochemical analysis and Western blotting, we found that topical application of EPA reduced UV-induced epidermal thickening and inhibited collagen decrease induced by UV light. It was also found that EPA attenuated UV-induced MMP-1 and MMP-9 expression by inhibiting UV-induced c-Jun phosphorylation, which is closely related to UV-induced activator protein-1 activation, and by inhibiting JNK and p38 activation. EPA also inhibited UV-induced cyclooxygenase-2 (COX-2) expression without altering COX-1 expression. Moreover, it was found that EPA increased collagen and elastic fibers (tropoelastin and fibrillin-1) expression by increasing transformin growth factor-beta expression in aged human skin. Together, these results demonstrate that topical EPA has potential as an anti-skin-aging agent.
Collapse
Affiliation(s)
- Hyeon Ho Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging Research, Clinical Research Institutes, Seoul National University Hospital, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Wei P, Taniguchi S, Sakai Y, Imamura M, Inoguchi T, Nawata H, Oda S, Nakabeppu Y, Nishimura J, Ikuyama S. Expression of adipose differentiation-related protein (ADRP) is conjointly regulated by PU.1 and AP-1 in macrophages. J Biochem 2006; 138:399-412. [PMID: 16272134 DOI: 10.1093/jb/mvi136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
ADRP is associated with intracellular lipid droplets. We demonstrate the regulatory mechanism for ADRP expression in RAW264.7 macrophages. The ADRP mRNA expression was stimulated by PMA, and synergistically enhanced in association with its protein level in the presence of lipids. A proteasome inhibitor protected the protein from degradation under the lipid-free conditions. One of the possible sites of the PMA action was proved to be an Ets/AP-1 element in the promoter, since mutations of this site reduced the PMA-induced promoter activity, and ligation of this element led to a significant increase in the PMA-responsiveness of homologous or heterologous promoters. Mutations of this site diminished the synergistic effect on the promoter activity induced by PMA and oleic acid, suggesting a possible interaction between this site and the downstream PPARdelta site. EMSA revealed that PU.1 and AP-1 conjointly bound to this site. The juxtaposition of the two sequences was requisite for full activity, since spacer sequences between them decreased the PMA-induced activity. PI3 kinase inhibitor was found to reduce the PMA-induced mRNA expression and promoter activity in parallel with PU.1/AP-1 complex formation on EMSA. From these results, we concluded that the Ets/AP-1 site is an important cis-acting element that regulates the ADRP gene expression in macrophages.
Collapse
Affiliation(s)
- Ping Wei
- Division of Clinical Immunology, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ding J, Li J, Chen J, Chen H, Ouyang W, Zhang R, Xue C, Zhang D, Amin S, Desai D, Huang C. Effects of polycyclic aromatic hydrocarbons (PAHs) on vascular endothelial growth factor induction through phosphatidylinositol 3-kinase/AP-1-dependent, HIF-1alpha-independent pathway. J Biol Chem 2006; 281:9093-100. [PMID: 16461351 DOI: 10.1074/jbc.m510537200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that exposure to polycyclic aromatic hydrocarbons (PAHs) and its derivatives is associated with an increased risk of skin cancers, and the carcinogenic effect of PAHs is thought to involve both tumor initiation and promotion. Whereas PAH tumor initiation is well characterized, the mechanisms involved in the tumor promotion of PAHs remain elusive. In the present study, we investigated the effects of PAHs on vascular endothelial growth factor (VEGF) expression by comparison of its induction between the active metabolite and its parent compound (B[a]PDE versus B[a]P) or between active compound and its relatively inactive analog (5-MCDE versus CDE). We found that exposure of cells to (+/-)-anti-benzo-[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) or (+/-)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) led to marked induction of VEGF in Cl41 cells, whereas benzo[a]pyrene (B[a]P) or chrysene-1,2-diol-3,4-epoxide (CDE) did not exhibit significant inductive effects. Exposure of cells to B[a]PDE and 5-MCDE did not induce HIF-1alpha activation, whereas AP-1 was significantly activated. Moreover, overexpression of TAM67 (a dominant-negative mutant c-Jun) dramatically blocked that VEGF induction. Electrophoretic mobility shift assay showed that AP-1 was only able to specifically recognize and bind to its AP-1 potential binding site within -1136 and -1115 of the VEGF promoter region. Site-directed mutation of this AP-1 binding site eliminated the VEGF transcriptional activity induced by B[a]PDE, suggesting that the AP-1 binding site between -1136 and -1115 in the VEGF promoter region is critical for VEGF induction by B[a]PDE. In addition, overexpression of Deltap85 (a dominant-negative mutant PI-3K) impaired B[a]PDE- and 5-MCDE-induced VEGF induction. Considering our previous findings that PI-3K is an upstream mediator for c-Jun/AP-1 activation, we conclude that the VEGF induction by B[a]PDE and 5-MCDE is through PI-3K/AP-1-dependent and HIF-1alpha-independent pathways. These findings may help us to understand the mechanisms involved in PAH carcinogenic effects.
Collapse
Affiliation(s)
- Jin Ding
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ouyang W, Li J, Ma Q, Huang C. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis 2005; 27:864-73. [PMID: 16387740 DOI: 10.1093/carcin/bgi321] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skin is a major target of carcinogenic trivalent arsenic (arsenite, As3+). It has been thought that cell proliferation is one of the central events involved in the carcinogenic effect of arsenite. Cyclin D1, a nuclear protein playing a pivotal role in cell proliferation and cell cycle transition from G1 to S phases, has been reported to be induced in human fibroblast by arsenite via uncertain molecular mechanisms. In the present study, the potential roles of PI-3K/Akt/IKKbeta/NFkappaB signal pathway in cyclin D1 induction by arsenite were addressed in mouse epidermal Cl41 cells. We found that exposure of Cl41 cells to arsenite was able to induce cell proliferation, activate PI-3K-->Akt/p70(S6k) signal pathway and increase cyclin D1 expression at both transcription and protein levels. Pre-treatment of Cl41 cells with PI-3K inhibitor, wortmannin, significantly inhibited the phosphorylation of Akt and p70(S6k) and thereby dramatically impaired the cyclin D1 induction by arsenite, implicating the importance of the PI-3K signal pathway in the cyclin D1 induction by arsenite. Furthermore, inhibition of PI-3K/Akt by overexpression of Deltap85 or DN-Akt blocked arsenite-induced IKK phosphorylation, IkappaBalpha degradation and cyclin D1 expression, indicating that IKK/NFkappaB is the downstream transducer of arsenite-triggered PI-3K/Akt cascade. Moreover, inhibition of IKKbeta/NFkappaB signal pathway by overexpression of its dominant negative mutant, IKKbeta-KM, also significantly blocked arsenite-induced cyclin D1 expression. Overall, arsenite exposure triggered PI-3K/Akt/IKKbeta/NFkappaB signal cascade which in turn plays essential roles in inducing cyclin D1 expression.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | |
Collapse
|
34
|
Li L, Sampat K, Hu N, Zakari J, Yuspa SH. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J Biol Chem 2005; 281:3237-43. [PMID: 16338928 DOI: 10.1074/jbc.m512167200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.
Collapse
Affiliation(s)
- Luowei Li
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
35
|
Ouyang W, Li J, Shi X, Costa M, Huang C. Essential role of PI-3K, ERKs and calcium signal pathways in nickel-induced VEGF expression. Mol Cell Biochem 2005; 279:35-43. [PMID: 16283513 DOI: 10.1007/s11010-005-8214-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exposure to a highly nickel-polluted environment has the potential to cause a variety of adverse health effects, such as the respiratory tract cancers. Since numerous studies have demonstrated that nickel generally has weak mutagenic activity, research focus had turned to cell signalling activation leading to gene modulation and epigenetic changes as a plausible mechanism of carcinogenesis. Previous studies have revealed that nickel compounds can induce the expression of vascular endothelial growth factor (VEGF), which is a key mediator of angiogenesis both in physiological and pathologic conditions. In the present study, we investigated the potential roles of PI-3K, ERKs, p38 kinase and calcium signalling in VEGF induction by nickel in Cl 41 cells. Exposure of Cl 41 cells to nickel compounds led to VEGF induction in both time- and dose-dependent manners. Pre-treatment of Cl 41 cells with PI-3K inhibitor, wortmannin or Ly294002, resulted in a striking inhibition of VEGF induction by nickel compounds, implicating the role of PI-3K in the induction. However, mTOR, one of downstream molecules of PI-3K, may not contribute to the induction because pre-treatment of Cl 41 cells with its inhibitor, rapamycin, did not show obvious decrease in nickel-induced VEGF expression. Furthermore, pre-treatment of Cl 41 cells with MEK1/2-ERKs pathway inhibitor, PD98059, significantly inhibited VEGF induction by both NiCl2 and Ni3S2, whereas p38 kinase inhibitor, SB202190, did not impair the induction. Pre-treatment of Cl 41 cells with intracellular calcium chelator, but not calcium channel blocker, inhibited VEGF induction by nickel. Collectively these data demonstrate that PI-3K, ERKs and cytosolic calcium, but not p38 kinase, play essential roles in VEGF induction by nickel compounds.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, School of Medicine, New York University, Tuxedo, New York 10987,USA
| | | | | | | | | |
Collapse
|
36
|
Nomura M, Ichimatsu D, Moritani S, Koyama I, Dong Z, Yokogawa K, Miyamoto KI. Inhibition of epidermal growth factor-induced cell transformation and Akt activation by caffeine. Mol Carcinog 2005; 44:67-76. [PMID: 16044420 DOI: 10.1002/mc.20120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We found that caffeine significantly inhibited epidermal growth factor (EGF)- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation in the JB6 mouse epidermal cell line. The tumor promoter-induced cell transformation was also blocked by treatment with an adenosine A1 receptor antagonist, 8-phenyltheophylline (8-PTH). Caffeine slightly attenuated activation of EGF-induced activator protein 1 (AP-1) activation, which play important roles in cell transformation, but only at the highest concentration examined (1 mM). Interestingly, pretreatment with caffeine suppressed EGF-induced phosphorylation and activation of Akt and ribosomal p 70 S6 protein kinase (p 70 S 6 K), a target of Akt, without inhibiting phosphatidylinositol 3-kinase (PI 3 K) activation. The inhibition of Akt activation of caffeine was not a result of its adenosine receptor antagonism. Because Akt plays a key role in signal transduction pathways leading to cell proliferation and apoptosis, our results provide novel insight into possible mechanisms of the chemotherapeutic effect of caffeine.
Collapse
Affiliation(s)
- Masaaki Nomura
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Kim HH, Shin CM, Park CH, Kim KH, Cho KH, Eun HC, Chung JH. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J Lipid Res 2005; 46:1712-20. [PMID: 15930517 DOI: 10.1194/jlr.m500105-jlr200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.
Collapse
Affiliation(s)
- Hyeon Ho Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Krepinsky JC, Li Y, Chang Y, Liu L, Peng F, Wu D, Tang D, Scholey J, Ingram AJ. Akt mediates mechanical strain-induced collagen production by mesangial cells. J Am Soc Nephrol 2005; 16:1661-72. [PMID: 15814837 DOI: 10.1681/asn.2004100897] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increased glomerular hydrostatic pressure is an important determinant of glomerulosclerosis and can be modeled by in vitro exposure of mesangial cells to cyclic mechanical strain. Stretched mesangial cells increase extracellular matrix protein production, the hallmark of glomerulosclerosis. Recent data indicate that the serine/threonine kinase Akt may be involved in matrix modulation. Thus, Akt activation and matrix synthesis in stretched mesangial cells were studied. Exposure of mesangial cells to 1 Hz cyclic strain led to prompt Akt activation, which was biphasic to 24 h. Activation was dependent on signaling through phosphatidylinositol-3-kinase and required EGF receptor transactivation. Inhibition of signaling through the PDGF receptor, Src kinase, or cytoskeletal disruption failed to prevent strain-induced Akt activation. Collagen type 1A1 transcript expression, promoter activation, and protein secretion were increased by stretch at 24 h and were dependent on phosphatidylinositol-3 kinase. Overexpression of dominant-negative Akt inhibited strain-induced collagen 1A1 production. Conversely, overexpression of constitutively active Akt led to increased collagen 1A1 upregulation and secretion. Finally, Akt activation was observed in the glomeruli of remnant rat kidneys, a model marked by increased intraglomerular pressure. The authors conclude that mechanical strain induces Akt activation in mesangial cells through a mechanism requiring phosphatidylinositol-3-kinase and EGF receptor transactivation. Type 1 collagen production is dependent on Akt and can be induced by Akt overexpression. Akt activation is observed in remnant kidneys in vivo. Thus, the role of Akt in progression of chronic hemodynamic glomerular disease is worthy of further exploration.
Collapse
Affiliation(s)
- Joan C Krepinsky
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bode AM, Dong Z. Signal transduction pathways in cancer development and as targets for cancer prevention. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:237-97. [PMID: 16096030 DOI: 10.1016/s0079-6603(04)79005-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
40
|
Bode AM, Dong Z. Targeting signal transduction pathways by chemopreventive agents. Mutat Res 2004; 555:33-51. [PMID: 15476850 DOI: 10.1016/j.mrfmmm.2004.05.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/30/2004] [Accepted: 05/01/2004] [Indexed: 01/10/2023]
Abstract
Cancer is a dynamic process that involves many complex factors, which may explain why a "magic bullet" cure for cancer has not been found. Death rates are still rising for many types of cancers, which possibly contributes to the increased interest in chemoprevention as an alternative approach to the control of cancer. This strategy for cancer control is based on the presumption that because cancer develops through a multi-step process, each step may be a prospective target for reversing or suppressing the process. Thus, the design and development of chemopreventive agents that act on specific and/or multiple molecular and cellular targets is gaining support as a rational approach to control cancer. Nutritional or dietary factors have attracted a great deal of interest because of their perceived ability to act as highly effective chemopreventive agents. They are professed as being generally safe and may have efficacy as chemopreventive agents by preventing or reversing premalignant lesions and/or reducing second primary tumor incidence. Many of these dietary compounds appear to act on multiple target signaling pathways. Some of the most interesting and well documented are resveratrol and components of tea, including EGCG, theaflavins and caffeine. This review will focus on recent work regarding three well-accepted cellular/molecular mechanisms that may at least partially explain the effectiveness of selected food factors, including those indicated above, as chemopreventive anti-promotion agents. These food compounds may act by: (1) inducing apoptosis in cancer cells; (2) inhibiting neoplastic transformation through the inhibition of AP-1 and/or NF-kappaB activation; and/or (3) suppressing COX-2 overexpression in cancer cells.
Collapse
Affiliation(s)
- A M Bode
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | |
Collapse
|
41
|
Li J, Dokka S, Wang L, Shi X, Castranova V, Yan Y, Costa M, Huang C. Activation of aPKC is required for vanadate-induced phosphorylation of protein kinase B (Akt), but not p70S6k in mouse epidermal JB6 cells. Mol Cell Biochem 2004; 255:217-25. [PMID: 14971662 DOI: 10.1023/b:mcbi.0000007277.90298.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms by which vanadate mediates adverse effects are not well understood. The present study investigated the vanadate-induced phosphorylation of Akt and p70S6K, two kinases known to be vital for cell survival, growth, transformation, and transition of the cell cycle in mammals. Exposure of mouse epidermal JB6 cells to vanadium led to phosphorylation of Akt and p70S6K in a time- and dose-dependent manner. Vanadium exposure also caused translocation of atypical isoforms of PKC (lambda, zeta) from the cytosol to the membrane, but had no effect on PKCalpha translocation, suggesting that the atypical PKCs (aPKC) were specifically involved in vanadium-induced cellular response. Importantly, overexpression of a dominant negative mutant PKClambda blocked Akt phosphorylation at Ser473 and Thr308, whereas it did not inhibit p70S6k phosphorylation at Thr389 and Thr421/Ser424, suggesting that aPKC activation is specifically involved in vanadium-induced activation of Akt, but not in activation of p70S6k. Furthermore, vanadium-induced p70S6k phosphorylation at Thr389 and Thr421/Ser424 and Akt phosphorylation at Thr308 occurred through a PI-3K-dependent pathway because a PI-3K dominant negative mutant inhibited induction as compared with vector control cells. These results indicate that there was a differential role of aPKC in vanadate-induced phosphorylation of Akt and p70S6k, suggesting that signal transduction pathways leading to the activation of Akt and p70S6k were different.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Li J, Tang MS, Liu B, Shi X, Huang C. A critical role of PI-3K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 2004; 23:3932-44. [PMID: 15021902 DOI: 10.1038/sj.onc.1207501] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse skin tumorigenicity studies indicate that benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) contributes to carcinogenesis as both a tumor initiator and promoter. However, the mechanisms that mediate B[a]PDE tumor promotion effects remain unclear. Our results demonstrated that in mouse epidermal Cl41 cells, B[a]PDE treatment resulted in marked activation of AP-1 and its upstream MAPKs, including ERKs, JNKs and p38K. B[a]PDE exposure also led to activation of phosphotidylinositol 3-kinase (PI-3K), Akt and p70 S6 kinase (p70S6k). B[a]PDE-induced AP-1 transactivation was inhibited by pretreatment of cells with PI-3K inhibitors, wortmannin or Ly294002. In contrast, inhibition of p70S6k with rapamycin did not show any inhibitory effects. An overexpression of dominant-negative mutant of PI-3K, Deltap85, impaired B[a]PDE-induced activation of PI-3K, Akt and AP-1 transactivation. Furthermore, an overexpression of dominant-negative Akt mutant, Akt-T308A/S473A, blocked B[a]PDE-induced activation of Akt, AP-1 and JNKs, while it did not affect the activation of p70S6k, ERKs and p38 kinase. These results demonstrated that B[a]PDE was able to induce AP-1 transactivation and this AP-1 induction was specific through PI-3K/Akt/JNKs-dependent and p70S6k-independent pathways. This study also indicated that Akt-T308A/S473A blocks B[a]PDE-induced AP-1 activation specific through impairing JNK pathway. These findings will help us to understand the signal transduction pathways involved in the carcinogenic effects of B[a]PDE.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | |
Collapse
|
44
|
Li J, Chen H, Tang MS, Shi X, Amin S, Desai D, Costa M, Huang C. PI-3K and Akt are mediators of AP-1 induction by 5-MCDE in mouse epidermal Cl41 cells. ACTA ACUST UNITED AC 2004; 165:77-86. [PMID: 15067018 PMCID: PMC2172097 DOI: 10.1083/jcb.200401004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Methylchrysene has been found to be a complete carcinogen in laboratory animals. However, the tumor promotion effects of (+/-)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) remain unclear. In the present work, we found that 5-MCDE induced marked activator protein-1 (AP-1) activation in Cl41 cells. 5-MCDE also induced a marked activation of phosphatidylinositol 3-kinase (PI-3K). Inhibition of PI-3K impaired 5-MCDE-induced AP-1 transactivation, suggesting that PI-3K is an upstream kinase involved in AP-1 activation by 5-MCDE. Furthermore, we found that Akt is a PI-3K downstream mediator for 5-MCDE-induced AP-1 transactivation, whereas another PI-3K downstream kinase, p70(S6K), was not involved in AP-1 activation by 5-MCDE. Moreover, inhibition of Akt activation blocked 5-MCDE-induced activation of extracellular signal-regulated protein kinases (ERKs) and c-Jun NH(2)-terminal kinases (JNKs), whereas it did not affect p38K activation. Consistently, overexpression of a dominant-negative mutant of ERK2 or JNK1 blocked the AP-1 activation by 5-MCDE. These results demonstrate that 5-MCDE is able to induce AP-1 activation, and the AP-1 induction is specifically through a PI-3K/Akt-dependent and p70(S6K)-independent pathway.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd., Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Li J, Davidson G, Huang Y, Jiang BH, Shi X, Costa M, Huang C. Nickel Compounds Act through Phosphatidylinositol-3-kinase/Akt-Dependent, p70S6k-Independent Pathway to Induce Hypoxia Inducible Factor Transactivation and Cap43 Expression in Mouse Epidermal Cl41 Cells. Cancer Res 2004; 64:94-101. [PMID: 14729612 DOI: 10.1158/0008-5472.can-03-0737] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nickel compounds are a somewhat unique class of carcinogens. Previous studies have demonstrated that NiCl(2) exposure leads to marked induction of hypoxia inducible factor 1 (HIF-1) in human osteosarcoma and BALB/c 3T3 cells, a transcription factor that has been considered to play an important role in tumor promotion and progression. However, the signal transduction pathways leading to HIF-1 induction are not well understood. The present study indicated that exposure of mouse epidermal Cl41 cells to either Ni(3)S(2) or NiCl(2) resulted in activation of phosphatidylinositol 3-kinase (PI-3K), Akt, and p70 S6 kinase (p70(S6k)). Inhibition of PI-3K, Akt, and p70(S6k) by overexpression of a dominant-negative mutant of PI-3K (Deltap85) impaired nickel-induced HIF-1 transactivation. Furthermore, an overexpression of the dominant-negative Akt mutant (Akt-T308A/S473A) blocked nickel-induced Akt phosphorylation and HIF-1 transactivation, whereas inhibition of p70(S6k) activation by pretreatment of cells with rapamycin did not show significant inhibitory effects on HIF-1 transactivation induced by nickel compounds. Consistent with HIF-1 transactivation, inhibition of the PI-3K/Akt pathway by either overexpression of Deltap85 or Akt-T308A/S473A caused dramatic inhibition of Cap43 protein expression induced by nickel compounds, whereas pretreatment of cells with rapamycin did not exhibit inhibition of Cap43 induction. These results demonstrated that nickel compounds induce HIF-1 transactivation and Cap43 protein expression through a PI-3K/Akt-dependent and p70(S6k)-independent pathway. This study should help us understand the signal transduction pathways involved in the carcinogenic effects of nickel compounds.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Ann M Bode
- University of Minnesota, Hormel Institute, Austin, Minnesota 55912, USA
| | | |
Collapse
|
47
|
Nomura M, He Z, Koyama I, Ma WY, Miyamoto KI, Dong Z. Involvement of the Akt/mTOR pathway on EGF-induced cell transformation. Mol Carcinog 2003; 38:25-32. [PMID: 12949840 DOI: 10.1002/mc.10140] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Our previous study demonstrated that phosphatidylinositol 3-kinase (PI3K) is necessary for epidermal growth factor (EGF)-induced cell transformation in mouse epidermal JB6 cells. Akt and the mammalian target of rapamycin (mTOR) are regarded as PI3K downstream effectors. Therefore, in this study, we investigated the role of Akt and mTOR on EGF-induced cell transformation in JB6 cells using rapamycin, a specific mTOR inhibitor, and cells expressing dominant negative mutants of Akt1 (DNM-Akt1). We found that the treatment of cells with rapamycin inhibited EGF-induced cell transformation but only slightly inhibited JB6 cell proliferation at 72 h. Although LY294002, a PI3K inhibitor, attenuated EGF-induced activator protein 1 (AP-1) activation, treatment with rapamycin did not affect AP-1 activity. Treatment with rapamycin inhibited EGF-induced phosphorylation and activation of ribosomal p70 S6 protein kinase (p70 S6K), an mTOR downstream target, but had no effect on phosphorylation and activation of Akt. Rapamycin also had no effect on EGF-induced phosphorylation of extracellular signal-regulated protein kinases (ERKs). We showed that introduction of DNM-Akt1 into JB6 mouse epidermal Cl 41 (JB6 Cl 41) cells inhibits EGF-induced cell transformation without blocking cell proliferation. The expression of DNM-Akt1 also suppressed EGF-induced p70 S6K activation as well as Akt activation. These results indicated an involvement of the Akt/mTOR pathway in EGF-induced cell transformation in JB6 cells.
Collapse
Affiliation(s)
- Masaaki Nomura
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT, Chang C. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 2003; 305:462-9. [PMID: 12763015 DOI: 10.1016/s0006-291x(03)00792-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of IL-6 on prostate cancer cells are well documented yet remain controversial. Some reports suggested that IL-6 could promote prostate cancer cell growth, while others showed that IL-6 could repress prostate cancer cell growth. Here, we systemically examined various IL-6 signaling pathways in prostate cancer cells and found that IL-6 could go through at least three distinct pathways to modulate the functions of androgen receptor (AR), a key transcriptional factor to control the prostate cancer growth. Our results show that IL-6 can enhance AR transactivation via either the STAT3 or MAPK pathways. In contrast, IL-6 can suppress AR transactivation via the PI3K-Akt pathway. Co-existence of these various signaling pathways may result in either additive or conflicting effects on AR transactivation. Together, our results indicate that the balance of these various pathways may then determine the overall effect of IL-6 on AR transactivation.
Collapse
Affiliation(s)
- Lin Yang
- George Whipple Lab for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Liu G, Ma WY, Bode AM, Zhang Y, Dong Z. NS-398 and piroxicam suppress UVB-induced activator protein 1 activity by mechanisms independent of cyclooxygenase-2. J Biol Chem 2003; 278:2124-30. [PMID: 12433932 DOI: 10.1074/jbc.m202443200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cyclooxygenases (COX) are rate-limiting enzymes that catalyze the conversion of arachidonic acid to prostaglandins, which are involved in many physiological and pathophysiological responses. COX-2, one of two isoforms of COX, was recently found to play an important role in carcinogenesis in many cell and tissue types. COX-2 inhibitors, which belong to the family of nonsteroidal anti-inflammatory drugs, are believed to be effective in many biological activities such as tumor chemoprevention because of their inhibition of COX-2. However, in the present study we found that both piroxicam, a general COX inhibitor, and NS-398, a COX-2 selective inhibitor, effectively suppressed the activation of transcription factor activator protein 1 (AP-1) induced by ultraviolet B (UVB) or 12-O-tetradecanoylphorbol-13-acetate in mouse epidermal JB6 cells. These COX-2 inhibitors could also inhibit 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation. UVB significantly increased AP-1 activity in Cox-2(-/-) fibroblasts transfected with an AP-1 luciferase reporter gene, and this increase was blocked by NS-389 or piroxicam. In JB6, Cox-2(-/-), or wild-type Cox-2(+/+) cells, both NS-398 and piroxicam inhibited UVB-induced phosphorylation of c-Jun NH(2)-terminal kinases, the kinases that activate the AP-1/c-Jun complex. Based on our results, we propose that the inhibition of AP-1 activity by COX-2 inhibitors NS-398 or piroxicam may occur by a mechanism that is independent of COX-2.
Collapse
Affiliation(s)
- Guangming Liu
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | | | | | |
Collapse
|