1
|
Runtian Z, Wenqiang H, Zimeng S, Tianyu W, Jingquan Z. AEBP1 or ACLP, which is the key factor in inflammation and fibrosis? Int J Biol Macromol 2025; 310:143554. [PMID: 40294683 DOI: 10.1016/j.ijbiomac.2025.143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) and Aortic carboxypeptidase-like protein (ACLP) are two protein isoforms produced by the AEBP1 gene. AEBP1, originally discovered in preadipocytes, functions as a transcriptional repressor and is involved in promoting inflammation, proliferation, and migration through various signaling pathways. ACLP is an extracellular matrix protein linked to Ehlers-Danlos syndrome, a genetic disorder characterized by defective connective tissue development. Structurally, AEBP1 and ACLP share many similarities, and both participate in critical physiological or pathological processes, such as cancer and fibrosis, by influencing pathways like NK-κB, WNT, and TGF-β. In recent years, research on AEBP1 and ACLP has expanded to include major organs such as the brain, kidneys, and lungs, with a particular focus on the cardiovascular system, where they show potential as novel drug targets. However, most studies do not clearly distinguish between AEBP1 and ACLP. For instance, AEBP1 is implicated in myocardial fibrosis in hypertrophic cardiomyopathy models, whereas ACLP is associated with fibrosis in other organs. Additionally, literature on the relationship between AEBP1 and fibrosis is often contradictory. Clarifying the distinct roles of AEBP1 and ACLP and their different functions in various cell types would greatly benefit further research. Current research suggests that the AEBP1 gene encodes two proteins, AEBP1 and ACLP, which have been reported to exhibit distinct functions in different studies. However, many studies do not differentiate between these two proteins, potentially leading to misconceptions. Therefore, we have conducted a comprehensive review of the existing literature to elucidate the functions of the AEBP1 gene and its encoded proteins in detail.
Collapse
Affiliation(s)
- Zhang Runtian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wenqiang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shen Zimeng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wang Tianyu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhong Jingquan
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China.
| |
Collapse
|
2
|
Dube CT, Gilbert HTJ, Rabbitte N, Baird P, Patel S, Herrera JA, Baricevic-Jones I, Unwin RD, Chan D, Gnanalingham K, Hoyland JA, Richardson SM. Proteomic profiling of human plasma and intervertebral disc tissue reveals matrisomal, but not plasma, biomarkers of disc degeneration. Arthritis Res Ther 2025; 27:28. [PMID: 39930483 PMCID: PMC11809052 DOI: 10.1186/s13075-025-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a common cause of low back pain, and the most symptomatic patients with neural compression need surgical intervention to relieve symptoms. Current techniques used to diagnose IVD degeneration, such as magnetic resonance imaging (MRI), do not detect changes in the tissue extracellular matrix (ECM) as degeneration progresses. Improved techniques, such as a combination of tissue and blood biomarkers, are needed to monitor the progression of IVD degeneration for more effective treatment plans. METHODS To identify tissue and blood biomarkers associated with degeneration progression, we histologically graded 35 adult human degenerate IVD tissues and matched plasma from the individuals into two groups: mild degenerate and severe degenerate. Mass spectrometry was utilised to characterise proteomic differences in tissue and plasma between the two groups. Top differentially distributed proteins were further validated using immunohistochemistry and qRT-PCR. Additionally, correlational analyses were conducted to define similarities and differences between tissue and plasma protein changes in individuals with mild and severe IVD degeneration. RESULTS Our data revealed that the abundance of 31 proteins was significantly increased in severe degenerated IVD tissues compared to mild. Functional analyses showed that more than 40% of these proteins were matrisome-related, indicating differences in ECM protein composition between severe and mild degenerate IVD tissues. We confirmed adipocyte enhancer-binding protein 1 (AEBP1) as one of the most significantly enriched core matrisome genes and proteins as degeneration progressed. Compared to others, AEBP1 protein levels best distinguished between mild and severe degenerated IVD tissues with an area under the curve score of 0.768 (95% CI: 0.60-0.93). However, we found that protein changes from associated plasma exhibited a weak relationship with histological grading and AEBP1 tissue levels. Given that systemic plasma changes are complex, a larger sample cohort may be required to identify patterns in blood relating to IVD degeneration progression. CONCLUSIONS In this study, we have identified AEBP1 as a tissue marker for monitoring the severity of disc degeneration in humans. Further work to link alterations in tissue AEBP1 levels to changes in blood-related proteins will be beneficial for detailed monitoring of IVD degeneration thereby enabling more personalised treatment approaches.
Collapse
Affiliation(s)
- Christabel Thembela Dube
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hamish T J Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Guy Hilton Research Centre, School of Life Sciences, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Niamh Rabbitte
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Pauline Baird
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sonal Patel
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jeremy A Herrera
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danny Chan
- School of Biomedical Sciences, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kanna Gnanalingham
- Department of Neurosurgery, Manchester Academy of Health Science Centre, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Okazaki F, Yorozu A, Sekiguchi S, Niinuma T, Maruyama R, Kitajima H, Yamamoto E, Ishiguro K, Toyota M, Hatanaka Y, Nishiyama K, Ogi K, Kai M, Takano K, Ichimiya S, Miyazaki A, Suzuki H. AEBP1 is a negative regulator of skeletal muscle cell differentiation in oral squamous cell carcinoma. Sci Rep 2024; 14:27425. [PMID: 39521917 PMCID: PMC11550323 DOI: 10.1038/s41598-024-79061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment plays a pivotal role in cancer development. We recently reported that in oral squamous cell carcinoma (OSCC), adipocyte enhancer-binding protein 1 (AEBP1) is abundantly expressed in cancer-associated fibroblasts (CAFs), leading to CAF activation and inhibition of CD8 + T cell infiltration. In the present study, we investigated whether AEBP1 contributes to the destruction and atrophy of muscle tissues in OSCC. By analyzing human skeletal muscle myoblasts (HSMMs), we found that AEBP1 is downregulated during muscle cell differentiation. Transcriptome analysis revealed that AEBP1 knockdown significantly upregulates myogenesis-related genes in HSMMs, and qRT-PCR and western blot analyses confirmed the induction of muscle-related genes, including MYOG, in HSMMs after AEBP1 knockdown. Conversely, ectopic expression of AEBP1 strongly suppressed myogenesis-related genes in HSMMs. Notably, indirect co-culture of HSMMs with OSCC cells led to AEBP1 upregulation and robust suppression of muscle-related genes in HSMMs. Treatment with TGF-β1 also upregulated AEBP1 and suppressed expression of muscle-related genes in HSMMs. Our findings suggest that AEBP1 is a negative regulator of skeletal muscle cell differentiation and that OSCC cells inhibit muscle cell differentiation, at least in part, by inducing AEBP1.
Collapse
Affiliation(s)
- Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Human Immunology, Research Institute for Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
4
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
5
|
Sekiguchi S, Yorozu A, Okazaki F, Niinuma T, Takasawa A, Yamamoto E, Kitajima H, Kubo T, Hatanaka Y, Nishiyama K, Ogi K, Dehari H, Kondo A, Kurose M, Obata K, Kakiuchi A, Kai M, Hirohashi Y, Torigoe T, Kojima T, Osanai M, Takano K, Miyazaki A, Suzuki H. ACLP Activates Cancer-Associated Fibroblasts and Inhibits CD8+ T-Cell Infiltration in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4303. [PMID: 37686580 PMCID: PMC10486706 DOI: 10.3390/cancers15174303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
We previously showed that upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in vascular endothelial cells promotes tumor angiogenesis. In the present study, we aimed to clarify the role of stromal AEBP1/ACLP expression in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis showed that ACLP is abundantly expressed in cancer-associated fibroblasts (CAFs) in primary OSCC tissues and that upregulated expression of ACLP is associated with disease progression. Analysis using CAFs obtained from surgically resected OSCCs showed that the expression of AEBP1/ACLP in CAFs is upregulated by co-culture with OSCC cells or treatment with TGF-β1, suggesting cancer-cell-derived TGF-β1 induces AEBP1/ACLP in CAFs. Collagen gel contraction assays showed that ACLP contributes to the activation of CAFs. In addition, CAF-derived ACLP promotes migration, invasion, and in vivo tumor formation by OSCC cells. Notably, tumor stromal ACLP expression correlated positively with collagen expression and correlated inversely with CD8+ T cell infiltration into primary OSCC tumors. Boyden chamber assays suggested that ACLP in CAFs may attenuate CD8+ T cell migration. Our results suggest that stromal ACLP contributes to the development of OSCCs, and that ACLP is a potential therapeutic target.
Collapse
Affiliation(s)
- Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Toshiyuki Kubo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Atsushi Kondo
- Department of Head and Neck Oncology, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Makoto Kurose
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Kazufumi Obata
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akito Kakiuchi
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| |
Collapse
|
6
|
Kim H, Kim MJ, Moon SA, Cho HJ, Lee YS, Park SJ, Kim Y, Baek IJ, Kim BJ, Lee SH, Koh JM. Aortic carboxypeptidase-like protein, a putative myokine, stimulates the differentiation and survival of bone-forming osteoblasts. FASEB J 2023; 37:e23104. [PMID: 37486753 DOI: 10.1096/fj.202300140r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
A new target that stimulates bone formation is needed to overcome limitations of current anti-osteoporotic drugs. Myokines, factors secreted from muscles, may modulate it. In this study, we investigated the role of aortic carboxypeptidase-like protein (ACLP), which is highly expressed in skeletal muscles, on bone formation. MC3T3-E1 cells and/or calvaria osteoblasts were treated with recombinant N-terminal mouse ACLP containing a signal peptide [rmACLP (N)]. The expression and secretion of ACLP were higher in skeletal muscle and differentiated myotube than in other tissues and undifferentiated myoblasts, respectively. rmACLP (N) increased bone formation, ALP activity, and phosphorylated p38 mitogen-activated protein (MAP) kinase in osteoblasts; reversal was achieved by pre-treatment with a TGF-β receptor inhibitor. Under H2 O2 treatment, rmACLP (N) increased osteoblast survival, phosphorylated p38 MAP kinase, and the nuclear translocation of FoxO3a in osteoblasts. H2 O2 treatment caused rmACLP (N) to suppress its apoptotic, oxidative, and caspase-9 activities. rmACLP (N)-stimulated osteoblast survival was reversed by pre-treatment with a p38 inhibitor, a TGF-β-receptor II blocking antibody, and a FoxO3a shRNA. Conditioned media (CM) from muscle cells stimulated osteoblast survival under H2 O2 treatment, in contrast to CM from ACLP knockdown muscle cells. rmACLP (N) increased the expressions of FoxO3a target anti-oxidant genes such as Sod2, Trx2, and Prx5. In conclusion, ACLP stimulated the differentiation and survival of osteoblasts. This led to the stimulation of bone formation by the activation of p38 MAP kinase and/or FoxO3a via TGF-β receptors. These findings suggest a novel role for ACLP in bone metabolism as a putative myokine.
Collapse
Affiliation(s)
- Hanjun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Min Ji Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Yewon Kim
- AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Liu N, Liu D, Cao S, Lei J. Silencing of adipocyte enhancer-binding protein 1 (AEBP1) alleviates renal fibrosis in vivo and in vitro via inhibition of the β-catenin signaling pathway. Hum Cell 2023; 36:972-986. [PMID: 36738398 DOI: 10.1007/s13577-023-00859-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Renal fibrosis is the common final pathway in many renal diseases regardless of the underlying etiology. Adipocyte enhancer-binding protein 1 (AEBP1) was reported to play a vital role in the development of organ fibrosis, but its role in renal fibrosis has not been reported. Thus, the aim of this study was to investigate the possible function of AEBP1 in renal fibrosis and the mechanism associated with the β-catenin signaling pathway. A total of 83 genes upregulated after unilateral ureteral obstruction (UUO) were screened from two Gene Expression Omnibus (GEO) datasets and subjected to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Among them, AEBP1 was enriched in collagen binding and the regulation of collagen fibril organization and was confirmed to be upregulated in UUO kidneys and TGF-β1-induced cells. Knockdown of AEBP1 ameliorated renal fibrosis via reducing collagen accumulation, inhibiting epithelial-mesenchymal transition and fibroblast transformation, as evidenced by decreases in the expression of collagen I and III, Col1a1, Col3a1, fibronectin, Snail, α-SMA, as well as collagen-specific staining of kidney tissues, whereas the E-cadherin was increased. Besides, AEBP1 silencing inhibited the expression of β-catenin in nucleus and β-catenin downstream proteins (Axin2, Myc, and Ccnd1). Continuously active β-catenin-S33Y further restored the inhibitory effect of AEBP1 silencing on renal fibrosis. These findings indicate that knockdown of AEBP1 could potentially slow down renal fibrosis by blocking the β-catenin signaling pathway, highlighting the potential of AEBP1 as a therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China.
| | - Shiyu Cao
- Department of Clinical Medicine, Class of 2018, China Medical University, Shenyang, China
| | - Jing Lei
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| |
Collapse
|
8
|
Zhang X, Zhao P, Li S, Ma S, Du J, Liang S, Yang X, Yao L, Duan J. Genome-Wide Identification of M14 Family Metal Carboxypeptidases in Antheraea pernyi (Lepidoptera: Saturniidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1285-1293. [PMID: 35640220 DOI: 10.1093/jee/toac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/15/2023]
Abstract
The M14 family metal carboxypeptidase genes play an important role in digestion and pathogenic infections in the gut of insects. However, the roles of these genes in Antheraea pernyi (Guérin-Méneville, 1855) remain to be analyzed. In the present study, we cloned a highly expressed M14 metal carboxypeptidase gene (ApMCP1) found in the gut and discovered that it contained a 1,194 bp open reading frame encoding a 397-amino acid protein with a predicted molecular weight of 45 kDa. Furthermore, 14 members of the M14 family metal carboxypeptidases (ApMCP1-ApMCP14) were identified in the A. pernyi genome, with typical Zn_pept domains and two Zn-anchoring motifs, and were further classified into M14A, M14B, and M14D subfamilies. Expression analysis indicated that ApMCP1 and ApMCP9 were mainly expressed in the gut. Additionally, we observed that ApMCP1 and ApMCP9 displayed opposite expression patterns after starvation, highlighting their functional divergence during digestion. Following natural infection with baculovirus NPV, their expression was significantly upregulated in the gut of A. pernyi. Our results suggest that the M14 family metal carboxypeptidase genes are conservatively digestive enzymes and evolutionarily involved in exogenous pathogenic infections.
Collapse
Affiliation(s)
- Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Shanshan Li
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Xinfeng Yang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou 450008, PR China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
9
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
10
|
Wang D, Rabhi N, Yet SF, Farmer SR, Layne MD. Aortic carboxypeptidase-like protein regulates vascular adventitial progenitor and fibroblast differentiation through myocardin related transcription factor A. Sci Rep 2021; 11:3948. [PMID: 33597582 PMCID: PMC7889889 DOI: 10.1038/s41598-021-82941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The vascular adventitia contains numerous cell types including fibroblasts, adipocytes, inflammatory cells, and progenitors embedded within a complex extracellular matrix (ECM) network. In response to vascular injury, adventitial progenitors and fibroblasts become activated and exhibit increased proliferative capacity and differentiate into contractile cells that remodel the ECM. These processes can lead to vascular fibrosis and disease progression. Our previous work established that the ECM protein aortic carboxypeptidase-like protein (ACLP) promotes fibrotic remodeling in the lung and is activated by vascular injury. It is currently unknown what controls vascular adventitial cell differentiation and if ACLP has a role in this process. Using purified mouse aortic adventitia Sca1+ progenitors, ACLP repressed stem cell markers (CD34, KLF4) and upregulated smooth muscle actin (SMA) and collagen I expression. ACLP enhanced myocardin-related transcription factor A (MRTFA) activity in adventitial cells by promoting MRTFA nuclear translocation. Sca1 cells from MRTFA-null mice exhibited reduced SMA and collagen expression induced by ACLP, indicating Sca1 cell differentiation is regulated in part by the ACLP-MRTFA axis. We determined that ACLP induced vessel contraction and increased adventitial collagen in an explant model. Collectively these studies identified ACLP as a mediator of adventitial cellular differentiation, which may result in pathological vessel remodeling.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.,Department of Hematology, Boston Children's Hospital, Boston, MA, USA
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.
| |
Collapse
|
11
|
McDonald RC, Schott MJ, Idowu TA, Lyons PJ. Biochemical and genetic analysis of Ecm14, a conserved fungal pseudopeptidase. BMC Mol Cell Biol 2020; 21:86. [PMID: 33256608 PMCID: PMC7706225 DOI: 10.1186/s12860-020-00330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Background Like most major enzyme families, the M14 family of metallocarboxypeptidases (MCPs) contains a number of pseudoenzymes predicted to lack enzyme activity and with poorly characterized molecular function. The genome of the yeast Saccharomyces cerevisiae encodes one member of the M14 MCP family, a pseudoenzyme named Ecm14 proposed to function in the extracellular matrix. In order to better understand the function of such pseudoenzymes, we studied the structure and function of Ecm14 in S. cerevisiae. Results A phylogenetic analysis of Ecm14 in fungi found it to be conserved throughout the ascomycete phylum, with a group of related pseudoenzymes found in basidiomycetes. To investigate the structure and function of this conserved protein, His6-tagged Ecm14 was overexpressed in Sf9 cells and purified. The prodomain of Ecm14 was cleaved in vivo and in vitro by endopeptidases, suggesting an activation mechanism; however, no activity was detectable using standard carboxypeptidase substrates. In order to determine the function of Ecm14 using an unbiased screen, we undertook a synthetic lethal assay. Upon screening approximately 27,000 yeast colonies, twenty-two putative synthetic lethal clones were identified. Further analysis showed many to be synthetic lethal with auxotrophic marker genes and requiring multiple mutations, suggesting that there are few, if any, single S. cerevisiae genes that present synthetic lethal interactions with ecm14Δ. Conclusions We show in this study that Ecm14, although lacking detectable enzyme activity, is a conserved carboxypeptidase-like protein that is secreted from cells and is processed to a mature form by the action of an endopeptidase. Our study and datasets from other recent large-scale screens suggest a role for Ecm14 in processes such as vesicle-mediated transport and aggregate invasion, a fungal process that has been selected against in modern laboratory strains of S. cerevisiae. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00330-w.
Collapse
Affiliation(s)
| | - Matthew J Schott
- Department of Biology, Andrews University, Berrien Springs, MI, USA
| | - Temitope A Idowu
- Department of Biology, Andrews University, Berrien Springs, MI, USA
| | - Peter J Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, USA.
| |
Collapse
|
12
|
Ijpma G, Kachmar L, Panariti A, Matusovsky OS, Torgerson D, Benedetti A, Lauzon AM. Intrapulmonary airway smooth muscle is hyperreactive with a distinct proteome in asthma. Eur Respir J 2020; 56:13993003.02178-2019. [PMID: 32299863 DOI: 10.1183/13993003.02178-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/05/2020] [Indexed: 11/05/2022]
Abstract
Constriction of airways during asthmatic exacerbation is the result of airway smooth muscle (ASM) contraction. Although it is generally accepted that ASM is hypercontractile in asthma, this has not been unambiguously demonstrated. Whether airway hyperresponsiveness (AHR) is the result of increased ASM mass alone or also increased contractile force generation per unit of muscle directly determines the potential avenues for treatment.To assess whether ASM is hypercontractile we performed a series of mechanics measurements on isolated ASM from intrapulmonary airways and trachealis from human lungs. We analysed the ASM and whole airway proteomes to verify if proteomic shifts contribute to changes in ASM properties.We report an increase in isolated ASM contractile stress and stiffness specific to asthmatic human intrapulmonary bronchi, the site of increased airway resistance in asthma. Other contractile parameters were not altered. Principal component analysis (PCA) of unbiased mass spectrometry data showed clear clustering of asthmatic subjects with respect to ASM specific proteins. The whole airway proteome showed upregulation of structural proteins. We did not find any evidence for a difference in the regulation of myosin activity in the asthmatic ASM.In conclusion, we showed that ASM is indeed hyperreactive at the level of intrapulmonary airways in asthma. We identified several proteins that are upregulated in asthma that could contribute to hyperreactivity. Our data also suggest enhanced force transmission associated with enrichment of structural proteins in the whole airway. These findings may lead to novel directions for treatment development in asthma.
Collapse
Affiliation(s)
- Gijs Ijpma
- Dept of Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Linda Kachmar
- Dept of Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alice Panariti
- Dept of Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Oleg S Matusovsky
- Dept of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Dara Torgerson
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Andrea Benedetti
- Dept of Medicine, McGill University, Montreal, QC, Canada.,Dept of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Dept of Medicine, McGill University, Montreal, QC, Canada .,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
13
|
Vishwanath N, Monis WJ, Hoffmann GA, Ramachandran B, DiGiacomo V, Wong JY, Smith ML, Layne MD. Mechanisms of aortic carboxypeptidase-like protein secretion and identification of an intracellularly retained variant associated with Ehlers-Danlos syndrome. J Biol Chem 2020; 295:9725-9735. [PMID: 32482891 DOI: 10.1074/jbc.ra120.013902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
Aortic carboxypeptidase-like protein (ACLP) is a collagen-binding extracellular matrix protein that has important roles in wound healing and fibrosis. ACLP contains thrombospondin repeats, a collagen-binding discoidin domain, and a catalytically inactive metallocarboxypeptidase domain. Recently, mutations in the ACLP-encoding gene, AE-binding protein 1 (AEBP1), have been discovered, leading to the identification of a new variant of Ehlers-Danlos syndrome causing connective tissue disruptions in multiple organs. Currently, little is known about the mechanisms of ACLP secretion or the role of post-translational modifications in these processes. We show here that the secreted form of ACLP contains N-linked glycosylation and that inhibition of glycosylation results in its intracellular retention. Using site-directed mutagenesis, we determined that glycosylation of Asn-471 and Asn-1030 is necessary for ACLP secretion and identified a specific N-terminal proteolytic ACLP fragment. To determine the contribution of secreted ACLP to extracellular matrix mechanical properties, we generated and mechanically tested wet-spun collagen ACLP composite fibers, finding that ACLP enhances the modulus (or stiffness), toughness, and tensile strength of the fibers. Some AEBP1 mutations were null alleles, whereas others resulted in expressed proteins. We tested the hypothesis that a recently discovered 40-amino acid mutation and insertion in the ACLP discoidin domain regulates collagen binding and assembly. Interestingly, we found that this protein variant is retained intracellularly and induces endoplasmic reticulum stress identified with an XBP1-based endoplasmic reticulum stress reporter. Our findings highlight the importance of N-linked glycosylation of ACLP for its secretion and contribute to our understanding of ACLP-dependent disease pathologies.
Collapse
Affiliation(s)
- Neya Vishwanath
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William J Monis
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gwendolyn A Hoffmann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Bhavana Ramachandran
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Yorozu A, Yamamoto E, Niinuma T, Tsuyada A, Maruyama R, Kitajima H, Numata Y, Kai M, Sudo G, Kubo T, Nishidate T, Okita K, Takemasa I, Nakase H, Sugai T, Takano K, Suzuki H. Upregulation of adipocyte enhancer-binding protein 1 in endothelial cells promotes tumor angiogenesis in colorectal cancer. Cancer Sci 2020; 111:1631-1644. [PMID: 32086986 PMCID: PMC7226196 DOI: 10.1111/cas.14360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer‐binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT‐PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Tsuyada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuto Numata
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Sinha S, Renganathan A, Nagendra PB, Bhat V, Mathew BS, Rao MRS. AEBP1 down regulation induced cell death pathway depends on PTEN status of glioma cells. Sci Rep 2019; 9:14577. [PMID: 31601918 PMCID: PMC6787275 DOI: 10.1038/s41598-019-51068-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive form of brain cancer with overall dismal prognosis (10–12 months) despite all current multimodal treatments. Previously we identified adipocyte enhancer binding protein 1 (AEBP1) as a differentially regulated gene in GBM. On probing the role of AEBP1 over expression in glioblastoma, we found that both cellular proliferation and survival were affected upon AEBP1 silencing in glioma cells, resulting in cell death. In the present study we report that the classical caspase pathway components are not activated in cell death induced by AEBP1 down regulation in PTEN-deficient (U87MG and U138MG) cells. PARP-1 was not cleaved but over-activated under AEBP1 down regulation which leads to the synthesis of PAR in the nucleus triggering the release of AIF from the mitochondria. Subsequently, AIF translocates to the nucleus along with MIF causing chromatinolysis. AEBP1 positively regulates PI3KinaseCβ by the binding to AE-1 binding element in the PI3KinaseCβ promoter. Loss of PI3KinaseCβ expression under AEBP1 depleted condition leads to excessive DNA damage and activation of PARP-1. Furthermore, over expression of PIK3CB (in trans) in U138MG cells prevents DNA damage in these AEBP1 depleted cells. On the contrary, AEBP1 down regulation induces caspase-dependent cell death in PTEN-proficient (LN18 and LN229) cells. Ectopic expression of wild-type PTEN in PTEN-deficient U138MG cells results in the activation of canonical caspase and Akt dependent cell death. Collectively, our findings define AEBP1 as a potential oncogenic driver in glioma, with potential implications for therapeutic intervention.
Collapse
Affiliation(s)
- Swati Sinha
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India
| | - Arun Renganathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Prathima B Nagendra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Vasudeva Bhat
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Steve Mathew
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India
| | | |
Collapse
|
16
|
Gerhard GS, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. AEBP1 expression increases with severity of fibrosis in NASH and is regulated by glucose, palmitate, and miR-372-3p. PLoS One 2019; 14:e0219764. [PMID: 31299062 PMCID: PMC6625715 DOI: 10.1371/journal.pone.0219764] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Factors governing the development of liver fibrosis in nonalcoholic steatohepatitis (NASH) are only partially understood. We recently identified adipocyte enhancer binding protein 1 (AEBP1) as a member of a core set of dysregulated fibrosis-specific genes in human NASH. Here we sought to investigate the relationship between AEBP1 and hepatic fibrosis. We confirmed that hepatic AEBP1 expression is elevated in fibrosis compared to lobular inflammation, steatosis, and normal liver, and increases with worsening fibrosis in NASH patients. AEBP1 expression was upregulated 5.8-fold in activated hepatic stellate cells and downregulated during chemical and contact induction of biological quiescence. In LX-2 and HepG2 cells treated with high glucose (25 mM), AEBP1 expression increased over 7-fold compared to normal glucose conditions. In response to treatment with either fructose or palmitate, AEBP1 expression in primary human hepatocytes increased 2.4-fold or 9.6-fold, but was upregulated 55.8-fold in the presence of fructose and palmitate together. AEBP1 knockdown resulted in decreased expression of nine genes previously identified to be part of a predicted AEBP1-associated NASH co-regulatory network and confirmed to be upregulated in fibrotic tissue. We identified binding sites for two miRNAs known to be downregulated in NASH fibrosis, miR-372-3p and miR-373-3p in the AEBP1 3' untranslated region. Both miRNAs functionally interacted with AEBP1 to regulate its expression. These findings indicate a novel AEBP1-mediated pathway in the pathogenesis of hepatic fibrosis in NASH.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, United States of America
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, United States of America
| |
Collapse
|
17
|
Xing Y, Zhang Z, Chi F, Zhou Y, Ren S, Zhao Z, Zhu Y, Piao D. AEBP1, a prognostic indicator, promotes colon adenocarcinoma cell growth and metastasis through the NF-κB pathway. Mol Carcinog 2019; 58:1795-1808. [PMID: 31219650 DOI: 10.1002/mc.23066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023]
Abstract
The abnormal expression of adipocyte enhancer binding protein 1 (AEBP1) has been implicated in the carcinogenesis and progression of various types of human tumors. However, the role of AEBP1 in colon adenocarcinoma (COAD) remains largely unelucidated. In this study, we explored the clinical significance and biological function of AEBP1 in COAD. We observed that AEBP1 was overexpressed in COAD tissues and cells and that the expression of AEBP1 was correlated with tumor size, the level of histologic differentiation, lymph node metastasis, and cancer stage in COAD patients. In addition, univariate and multivariate Cox regression analyses revealed that high AEBP1 expression suggested poor prognosis in COAD. Moreover, AEBP1 silencing suppressed COAD cell proliferation, migration, and invasion, whereas the upregulation of AEBP1 promoted these behaviors. Additionally, mechanistic studies further demonstrated that AEBP1 promoted COAD cell proliferation, migration, and invasion by upregulating the expression of matrix metalloproteinase-2, vimentin, and TWIST whereas downregulating that of E-cadherin through the nuclear factor-κB pathway. Collectively, these data indicated that AEBP1 may be a new prognostic factor and a potential gene therapy target in COAD.
Collapse
Affiliation(s)
- Yanwei Xing
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fengxu Chi
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yang Zhou
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuo Ren
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiwei Zhao
- Department of General Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yuekun Zhu
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Daxun Piao
- Department of Colorectal Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
18
|
Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS One 2019; 14:e0215913. [PMID: 31022261 PMCID: PMC6483353 DOI: 10.1371/journal.pone.0215913] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/10/2019] [Indexed: 12/04/2022] Open
Abstract
The study of selection signatures helps to find genomic regions that have been under selective pressure and might host genes or variants that modulate important phenotypes. Such knowledge improves our understanding of how breeding programmes have shaped the genomes of livestock. In this study, 942 stallions were included from four, exemplarily chosen, German warmblood breeds with divergent historical and recent selection focus and different crossbreeding policies: Trakehner (N = 44), Holsteiner (N = 358), Hanoverian (N = 319) and Oldenburger (N = 221). Those breeds are nowadays bred for athletic performance and aptitude for show-jumping, dressage or eventing, with a particular focus of Holsteiner on the first discipline. Blood samples were collected during the health exams of the stallion preselections before licensing and were genotyped with the Illumina EquineSNP50 BeadChip. Autosomal markers were used for a multi-method search for signals of positive selection. Analyses within and across breeds were conducted by using the integrated Haplotype Score (iHS), cross-population Extended Haplotype Homozygosity (xpEHH) and Runs of Homozygosity (ROH). Oldenburger and Hanoverian showed very similar iHS signatures, but breed specificities were detected on multiple chromosomes with the xpEHH. The Trakehner clustered as a distinct group in a principal component analysis and also showed the highest number of ROHs, which reflects their historical bottleneck. Beside breed specific differences, we found shared selection signals in an across breed iHS analysis on chromosomes 1, 4 and 7. After investigation of these iHS signals and shared ROH for potential functional candidate genes and affected pathways including enrichment analyses, we suggest that genes affecting muscle functionality (TPM1, TMOD2-3, MYO5A, MYO5C), energy metabolism and growth (AEBP1, RALGAPA2, IGFBP1, IGFBP3-4), embryonic development (HOXB-complex) and fertility (THEGL, ZPBP1-2, TEX14, ZP1, SUN3 and CFAP61) have been targeted by selection in all breeds. Our findings also indicate selection pressure on KITLG, which is well-documented for influencing pigmentation.
Collapse
|
19
|
Ritelli M, Cinquina V, Venturini M, Pezzaioli L, Formenti AM, Chiarelli N, Colombi M. Expanding the Clinical and Mutational Spectrum of Recessive AEBP1-Related Classical-Like Ehlers-Danlos Syndrome. Genes (Basel) 2019; 10:E135. [PMID: 30759870 PMCID: PMC6410021 DOI: 10.3390/genes10020135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 12/26/2022] Open
Abstract
Ehlers-Danlos syndrome (EDS) comprises clinically heterogeneous connective tissue disorders with diverse molecular etiologies. The 2017 International Classification for EDS recognized 13 distinct subtypes caused by pathogenic variants in 19 genes mainly encoding fibrillar collagens and collagen-modifying or processing proteins. Recently, a new EDS subtype, i.e., classical-like EDS type 2, was defined after the identification, in six patients with clinical findings reminiscent of EDS, of recessive alterations in AEBP1, which encodes the aortic carboxypeptidase⁻like protein associating with collagens in the extracellular matrix. Herein, we report on a 53-year-old patient, born from healthy second-cousins, who fitted the diagnostic criteria for classical EDS (cEDS) for the presence of hyperextensible skin with multiple atrophic scars, generalized joint hypermobility, and other minor criteria. Molecular analyses of cEDS genes did not identify any causal variant. Therefore, AEBP1 sequencing was performed that revealed homozygosity for the rare c.1925T>C p.(Leu642Pro) variant classified as likely pathogenetic (class 4) according to the American College of Medical Genetics and Genomics (ACMG) guidelines. The comparison of the patient's features with those of the other patients reported up to now and the identification of the first missense variant likely associated with the condition offer future perspectives for EDS nosology and research in this field.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marina Venturini
- Division of Dermatology, Department of Clinical and Experimental Sciences, Spedali Civili University Hospital, 25123 Brescia, Italy.
| | - Letizia Pezzaioli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- Spedali Civili of Brescia, 25123 Brescia, Italy.
| | | | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
20
|
Hebebrand M, Vasileiou G, Krumbiegel M, Kraus C, Uebe S, Ekici AB, Thiel CT, Reis A, Popp B. A biallelic truncating AEBP1 variant causes connective tissue disorder in two siblings. Am J Med Genet A 2018; 179:50-56. [PMID: 30548383 DOI: 10.1002/ajmg.a.60679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/05/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Biallelic variants in the AEBP1 gene cause a novel autosomal-recessive connective tissue disorder (CTD) reminiscent of Ehlers-Danlos Syndrome (EDS). The four previously reported individuals show considerable clinical variability. Unbiased high-throughput sequencing enables the rapid identification of additional cases for such rare entities. We identified the homozygous nonsense variant c.917dup, p.Tyr306* in AEBP1 using clinical exome sequencing in a female individual with previously unsolved CTD. Segregation testing confirmed homozygosity in the clinically affected brother and heterozygous carrier status in the healthy mother. Chromosomal microarray showed that the variant lies in a run of homozygosity, suggesting a common origin of this genomic segment. RT-PCR analysis in the mother revealed a monoallelic expression of the normal transcript supporting a nonsense-mediated mRNA decay and functional nullizygosity as disease mechanism. We describe two individuals from a fourth family with AEBP1-associated CTD. Our results further verify that autosomal-recessive inherited LOF variants in the AEBP1 gene cause clinical features of different EDS subtypes, but also of the marfanoid spectrum. As identification of further individuals is necessary to inform the clinical characterization, we stress the added value of exome sequencing for such rare diseases.
Collapse
Affiliation(s)
- Moritz Hebebrand
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
21
|
Jager M, Lee MJ, Li C, Farmer SR, Fried SK, Layne MD. Aortic carboxypeptidase-like protein enhances adipose tissue stromal progenitor differentiation into myofibroblasts and is upregulated in fibrotic white adipose tissue. PLoS One 2018; 13:e0197777. [PMID: 29799877 PMCID: PMC5969754 DOI: 10.1371/journal.pone.0197777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
White adipose tissue expands through both adipocyte hypertrophy and hyperplasia and it is hypothesized that fibrosis or excess accumulation of extracellular matrix within adipose tissue may limit tissue expansion contributing to metabolic dysfunction. The pathways that control adipose tissue remodeling are only partially understood, however it is likely that adipose tissue stromal and perivascular progenitors participate in fibrotic remodeling and also serve as adipocyte progenitors. The goal of this study was to investigate the role of the secreted extracellular matrix protein aortic carboxypeptidase-like protein (ACLP) on adipose progenitor differentiation in the context of adipose tissue fibrosis. Treatment of 10T1/2 mouse cells with recombinant ACLP suppressed adipogenesis and enhanced myofibroblast differentiation, which was dependent on transforming growth factor-β receptor kinase activity. Mice fed a chronic high fat diet exhibited white adipose tissue fibrosis with elevated ACLP expression and cellular fractionation of these depots revealed that ACLP was co-expressed with collagens primarily in the inflammatory cell depleted stromal-vascular fraction (SVF). SVF cells isolated from mice fed a high fat diet secreted increased amounts of ACLP compared to low fat diet control SVF. These cells also exhibited reduced adipogenic differentiation capacity in vitro. Importantly, differentiation studies in primary human adipose stromal cells revealed that mature adipocytes do not express ACLP and exogenous ACLP administration blunted their differentiation potential while upregulating myofibroblastic markers. Collectively, these studies identify ACLP as a stromal derived mediator of adipose progenitor differentiation that may limit adipocyte expansion during white adipose tissue fibrosis.
Collapse
Affiliation(s)
- Mike Jager
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mi-Jeong Lee
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Chendi Li
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen R. Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Susan K. Fried
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Blackburn PR, Xu Z, Tumelty KE, Zhao RW, Monis WJ, Harris KG, Gass JM, Cousin MA, Boczek NJ, Mitkov MV, Cappel MA, Francomano CA, Parisi JE, Klee EW, Faqeih E, Alkuraya FS, Layne MD, McDonnell NB, Atwal PS. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome. Am J Hum Genet 2018; 102:696-705. [PMID: 29606302 PMCID: PMC5985336 DOI: 10.1016/j.ajhg.2018.02.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1-/- mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581∗]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs∗3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that bi-allelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhi Xu
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kathleen E Tumelty
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rose W Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - William J Monis
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kimberly G Harris
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jennifer M Gass
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Margot A Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mario V Mitkov
- Department of Dermatology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mark A Cappel
- Department of Dermatology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Clair A Francomano
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Greater Baltimore Medical Center, Towson, MD 21204, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric W Klee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Eissa Faqeih
- Department of Pediatric Specialties, Children's Hospital, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Fowzan S Alkuraya
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh 12371, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nazli B McDonnell
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Veteran's Administration, Eastern Colorado Health System, Denver, CO 80220, USA.
| | - Paldeep S Atwal
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
23
|
Garcia-Pardo J, Tanco S, Díaz L, Dasgupta S, Fernandez-Recio J, Lorenzo J, Aviles FX, Fricker LD. Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains. PLoS One 2017; 12:e0187778. [PMID: 29131831 PMCID: PMC5683605 DOI: 10.1371/journal.pone.0187778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5–7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lucía Díaz
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francesc X. Aviles
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (LDF); (FXA)
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LDF); (FXA)
| |
Collapse
|
24
|
Shijo M, Honda H, Suzuki SO, Hamasaki H, Hokama M, Abolhassani N, Nakabeppu Y, Ninomiya T, Kitazono T, Iwaki T. Association of adipocyte enhancer-binding protein 1 with Alzheimer's disease pathology in human hippocampi. Brain Pathol 2017; 28:58-71. [PMID: 27997051 DOI: 10.1111/bpa.12475] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Adipocyte enhancer binding protein 1 (AEBP1) activates inflammatory responses via the NF-κB pathway in macrophages and regulates adipogenesis in preadipocytes. Up-regulation of AEBP1 in the hippocampi of patients with Alzheimer's disease (AD) has been revealed by microarray analyses of autopsied brains from the Japanese general population (the Hisayama study). In this study, we compared the expression patterns of AEBP1 in normal and AD brains, including in the hippocampus, using immunohistochemistry. The subjects were 24 AD cases and 52 non-AD cases. Brain specimens were immunostained with antibodies against AEBP1, tau protein, amyloid β protein, NF-κB, GFAP and Iba-1. In normal brains, AEBP1 immunoreactivity mainly localized to the perikarya of hippocampal pyramidal neurons, and its expression was elevated in the pyramidal neurons and some astrocytes in AD hippocampi. Although AEBP1 immunoreactivity was almost absent in neurons containing neurofibrillary tangles, AEBP1 was highly expressed in neurons with pretangles and in the tau-immunopositive, dystrophic neurites of senile plaques. Nuclear localization of NF-κB was also observed in certain AEBP1-positive neurons in AD cases. Comparison of AD and non-AD cases suggested a positive correlation between the expression level of AEBP1 and the degree of amyloid β pathology. These findings imply that AEBP1 protein has a role in the progression of AD pathology.
Collapse
Affiliation(s)
- Masahiro Shijo
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaaki Hokama
- Department of Neurosurgery, Japan Community Healthcare Organization, Kyushu Hospital, Fukuoka, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Kim YH, Barclay JL, He J, Luo X, O'Neill HM, Keshvari S, Webster JA, Ng C, Hutley LJ, Prins JB, Whitehead JP. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis. FASEB J 2016; 30:2528-40. [PMID: 27006448 DOI: 10.1096/fj.201500107r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/10/2016] [Indexed: 01/13/2023]
Abstract
Adipose tissue expansion occurs through a combination of hypertrophy of existing adipocytes and generation of new adipocytes via the process of hyperplasia, which involves the proliferation and subsequent differentiation of preadipocytes. Deficiencies in hyperplasia contribute to adipose tissue dysfunction and the association of obesity with chronic cardiometabolic diseases. Thus, increased understanding of hyperplastic pathways may be expected to afford novel therapeutic strategies. We have reported that fibroblast growth factor (FGF)-1 promotes proliferation and differentiation of human preadipocytes and recently demonstrated that bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is a central, proximal effector. Herein, we describe the identification and characterization of carboxypeptidase X (CPX)-1, a secreted collagen-binding glycoprotein, as a novel downstream effector in human primary and Simpson-Golabi-Behmel syndrome preadipocytes. CPX-1 expression increased after treatment of preadipocytes with FGF-1, BAMBI knockdown, or induction of differentiation. CPX-1 knockdown compromised preadipocyte differentiation coincident with reduced collagen expression. Furthermore, preadipocytes differentiated on matrix derived from CPX-1 knockdown cells exhibited reduced Glut4 expression and insulin-stimulated glucose uptake. Finally, CPX-1 expression was increased in adipose tissue from obese mice and humans. Collectively, these findings establish CPX-1 as a positive regulator of adipogenesis situated downstream of FGF-1/BAMBI that may contribute to hyperplastic adipose tissue expansion via affecting extracellular matrix remodeling.-Kim, Y.-H., Barclay, J. L., He, J., Luo, X., O'Neill, H. M., Keshvari, S., Webster, J. A., Ng, C., Hutley, L. J., Prins, J. B., Whitehead, J. P. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jingjing He
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Xiao Luo
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hayley M O'Neill
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Julie A Webster
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Choaping Ng
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Louise J Hutley
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Johannes B Prins
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jonathan P Whitehead
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Hellewell AL, Adams JC. Insider trading: Extracellular matrix proteins and their non-canonical intracellular roles. Bioessays 2015; 38:77-88. [PMID: 26735930 DOI: 10.1002/bies.201500103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non-canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments with diverse redox, pH and ionic conditions. We review evidence for intracellular locations and functions of ECM proteins, and current knowledge of the mechanisms by which they may enter intracellular compartments. We evaluate the experimental methods that are appropriate to obtain rigorous evidence for intracellular localisation and function. Better insight into this under-researched topic is needed to decipher the complete spectrum of physiological and pathological roles of ECM proteins.
Collapse
|
27
|
Raghunathan VK, Morgan JT, Chang YR, Weber D, Phinney B, Murphy CJ, Russell P. Transforming Growth Factor Beta 3 Modifies Mechanics and Composition of Extracellular Matrix Deposited by Human Trabecular Meshwork Cells. ACS Biomater Sci Eng 2015; 1:110-118. [PMID: 30882039 DOI: 10.1021/ab500060r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pseudoexfoliation syndrome is a systemic disorder of the extracellular matrix (ECM) with ocular manifestations in the form of chronic open angle glaucoma. Elevated levels of TGFβ3 in the aqueous humor of individuals with pseudoexfoliation glaucoma (PEX) have been reported. The influence of TGFβ3 on the biochemical composition and biomechanics of ECM of human trabecular meshwork (HTM) cells was investigated. HTM cells from eye bank donor eyes were isolated, plated on aminosilane functionalized glass substrates and cultured in the presence or absence of 1 ng/mL TGFβ3 for 4 weeks. After incubation, samples were decellularized and decellularization was verified by immunostaining. The mechanics of the remaining ECM that was deposited by the treated or the control cells were measured by atomic force microscopy (AFM). Imaged by AFM, the surface features of the ECM from both sets of samples had a similar roughness/topography (as determined by RMS values) suggesting surface features of the ECM were similar in both cases; however, the ECM from the HTM cells treated with TGFβ3 was between 3- and 5-fold stiffer than that produced by the control HTM cells. Proteins present in the ECM were solubilized and analyzed using liquid chromatography tandem mass spectroscopy (LC-MS/MS). Data indicate that multiple proteins previously reported to be altered in glaucoma were changed in the ECM as a result of the presence of TGFβ3, including inhibitors of the BMP and Wnt signaling pathways. Gremlin1and 4, SERPINE1 and 2, periostin, secreted frizzled related protein (SFRP) 1 and 4, and ANGPTL4 were among those proteins that were overexpressed in the ECM after TGFβ3 treatment.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Darren Weber
- UC Davis Genome Center Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Brett Phinney
- UC Davis Genome Center Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States.,Department of Ophthalmology and Vision Sciences, School of Medicine, University of California, Davis, California 95616, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
28
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
29
|
Tumelty KE, Smith BD, Nugent MA, Layne MD. Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor β receptor-dependent and -independent pathways. J Biol Chem 2013; 289:2526-36. [PMID: 24344132 DOI: 10.1074/jbc.m113.502617] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway.
Collapse
Affiliation(s)
- Kathleen E Tumelty
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | |
Collapse
|
30
|
Ponticos M, Smith BD. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res 2013; 28:25-39. [PMID: 24474961 PMCID: PMC3904172 DOI: 10.7555/jbr.27.20130064] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/28/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022] Open
Abstract
Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavailability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dysregulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellular and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.
Collapse
Affiliation(s)
- Markella Ponticos
- Centre for Rheumatology & Connective Tissue Diseases, Division of Medicine-Inflammation, Royal Free & University College Medical School, University College London, London NW3 2PF, UK
| | - Barbara D Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
31
|
Lactation defect with impaired secretory activation in AEBP1-null mice. PLoS One 2011; 6:e27795. [PMID: 22114697 PMCID: PMC3218051 DOI: 10.1371/journal.pone.0027795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/25/2011] [Indexed: 01/14/2023] Open
Abstract
Adipocyte enhancer binding protein 1 (AEBP1) is a multifunctional protein that negatively regulates the tumor suppressor PTEN and IκBα, the inhibitor of NF-κB, through protein-protein interaction, thereby promoting cell survival and inflammation. Mice homozygous for a disrupted AEBP1 gene developed to term but showed defects in growth after birth. AEBP1−/− females display lactation defect, which results in the death of 100% of the litters nursed by AEBP1−/− dams. Mammary gland development during pregnancy appears normal in AEBP1−/− dams; however these mice exhibit expansion of the luminal space and the appearance of large cytoplasmic lipid droplets (CLDs) in the mammary epithelial cells at late pregnancy and parturition, which is a clear sign of failed secretory activation, and accumulation of milk proteins in the mammary gland, presumably reflecting milk stasis following failed secretory activation. Eventually, AEBP1−/− mammary gland rapidly undergoes involution at postpartum. Stromal restoration of AEBP1 expression by transplanting wild-type bone marrow (BM) cells is sufficient to rescue the mammary gland defect. Our studies suggest that AEBP1 is critical in the maintenance of normal tissue architecture and function of the mammary gland tissue and controls stromal-epithelial crosstalk in mammary gland development.
Collapse
|
32
|
Yin H, Jiang Y, Li H, Li J, Gui Y, Zheng XL. Proteasomal degradation of myocardin is required for its transcriptional activity in vascular smooth muscle cells. J Cell Physiol 2011; 226:1897-906. [PMID: 21506120 DOI: 10.1002/jcp.22519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myocardin is a transcriptional co-activator of serum response factor (SRF) and can be degraded through ubiquitin-proteasome system. Our preliminary studies unexpectedly revealed that accumulation of myocardin in response to proteasome inhibition by MG132 or lactacystin resulted in decrease of transcriptional activity of myocardin as indicated by reduced expression of SMC contractile marker genes (SM α-actin, SM22, and calponin) and muscle-enriched microRNAs (miR-143/145 and miR-1/133a), and reduced contractility of human vascular smooth muscle cells (SMCs) embedded in collagen gel lattices, suggesting that myocardin degradation is required for its transcriptional activity. Further studies using chromatin immunoprecipitation assay revealed that proteasome inhibition, although increased the occupancy of myocardin and SRF on the promoter of SM α-actin gene, abolished myocardin-dependent recruitment of RNA polymerase II. We further examined the degradation of myocardin in epithelioid and spindle-shaped SMCs and revealed that myocardin in more differentiated spindle-shaped SMCs was more quickly degraded and had shorter half-life than in epithelioid SMCs. In neointimal lesions, we found that stabilization of myocardin protein was companied by downregulation of transcripts of ubiquitin and proteasome subunits, further illustrating the mechanism underlying reduction of myocardin transcriptional activity. In summary, our results have suggested that proteasomal degradation of myocardin is required for its transcriptional activity.
Collapse
Affiliation(s)
- Hao Yin
- Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Gusinjac A, Gagnon A, Sorisky A. Effect of collagen I and aortic carboxypeptidase-like protein on 3T3-L1 adipocyte differentiation. Metabolism 2011; 60:782-8. [PMID: 20817214 DOI: 10.1016/j.metabol.2010.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/10/2010] [Accepted: 07/19/2010] [Indexed: 02/04/2023]
Abstract
Aortic carboxypeptidase-like protein (ACLP) is a secreted protein expressed in preadipocytes and down-regulated during adipogenesis. Results from previous studies on the influence of ACLP overexpression on adipogenesis vary from no effect to complete inhibition. We hypothesized that ACLP may modulate adipogenesis in the presence of collagen I, a protein to which it binds. We compared control (pLXSN) 3T3-L1 preadipocytes with 3T3-L1 preadipocytes stably overexpressing ACLP (pLXSN-ACLP) that were grown in standard vs collagen I-coated dishes. Aortic carboxypeptidase-like protein overexpression, via retroviral transduction, resulted in a 3.2-fold increase in ACLP cellular levels and a 2.1-fold increase in ACLP levels released into medium. Aortic carboxypeptidase-like protein overexpression did not inhibit differentiation in standard dishes. In collagen I-coated dishes compared with standard dishes, control preadipocytes, when induced to differentiate, exhibited the same increase in triacylglycerol accumulation, but showed a significantly higher induction of fatty acid synthase (1.6-fold more), peroxisome proliferator-activated receptor γ (1.4-fold more), and CCAAT/enhancer-binding protein α (1.4-fold more). Aortic carboxypeptidase-like protein overexpression significantly reduced this enhanced induction of fatty acid synthase, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer-binding protein α by 65%, 59%, and 66%, respectively, but had no effect on the accumulation of triacylglycerol during differentiation. Finally, studies on proadipogenic insulin signaling in ACLP-overexpressing preadipocytes demonstrated that insulin-stimulated Akt phosphorylation was significantly decreased by 27% in cells cultured in collagen I-coated dishes vs standard dishes. Our data suggest that ACLP inhibits certain aspects of 3T3-L1 adipogenesis in a collagen I-rich environment.
Collapse
Affiliation(s)
- Arjeta Gusinjac
- Department of Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
34
|
Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, Jahangiri M, Mayr M. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics 2011; 10:M111.008128. [PMID: 21593211 PMCID: PMC3149094 DOI: 10.1074/mcp.m111.008128] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are characterized by pathological remodeling of the aortic extracellular matrix (ECM). However, besides the well-characterized elastolysis and collagenolysis little is known about changes in other ECM proteins. Previous proteomics studies on AAA focused on cellular changes without emphasis on the ECM. In the present study, ECM proteins and their degradation products were selectively extracted from aneurysmal and control aortas using a solubility-based subfractionation methodology and analyzed by gel-liquid chromatography-tandem MS and label-free quantitation. The proteomics analysis revealed novel changes in the ECM of AAA, including increased expression as well as degradation of collagen XII, thrombospondin 2, aortic carboxypeptidase-like protein, periostin, fibronectin and tenascin. Proteomics also confirmed the accumulation of macrophage metalloelastase (MMP-12). Incubation of control aortic tissue with recombinant MMP-12 resulted in the extensive fragmentation of these glycoproteins, most of which are novel substrates of MMP-12. In conclusion, our proteomics methodology allowed the first detailed analysis of the ECM in AAA and identified markers of pathological ECM remodeling related to MMP-12 activity.
Collapse
|
35
|
Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:467-91. [PMID: 20334504 DOI: 10.1089/ten.teb.2009.0630] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
36
|
Hatano D, Ogasawara J, Endoh S, Sakurai T, Nomura S, Kizaki T, Ohno H, Komabayashi T, Izawa T. Effect of exercise training on the density of endothelial cells in the white adipose tissue of rats. Scand J Med Sci Sports 2010; 21:e115-21. [PMID: 20807385 DOI: 10.1111/j.1600-0838.2010.01176.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the effects of a 9-week exercise training (TR) in Wistar male rats, beginning at 4 weeks of age, on the density of endothelial cells (ECs) in epididymal white adipose tissue (WAT) and the mRNA expression of angiogenic factors in adipose tissue stromal vascular fraction (SVF) cells. The number of ECs and mRNA expressions were assessed by lectin staining and real-time reverse transcriptase-polymerase chain reaction, respectively. Compared with control (CR) rats, TR rats gained weight more slowly and had significantly lower final weight of WAT due to the reduction in the size and the number of adipocytes. TR significantly increased the number of ECs per square millimeter and per adipocyte (1.37- and 1.23-fold, respectively) in WAT. This is probably because the number of adipocytes is fewer while the number of ECs is constant in the WAT of TR rats, because the regression line of TR rats for adipocyte number-dependent EC number was shifted toward the left without significant differences in the slopes between groups. TR also induced the upregulation of mRNA expression of vascular endothelial growth factor (Vegf)-A and Vegf-receptor-2 in SVF cells, thereby retaining a constant number of ECs in the WAT.
Collapse
Affiliation(s)
- D Hatano
- Health Promotion Science Group, Department of Human Health Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
38
|
Zhang L, Reidy SP, Nicholson TE, Lee HJ, Majdalawieh A, Webber C, Stewart BR, Dolphin P, Ro HS. The role of AEBP1 in sex-specific diet-induced obesity. Mol Med 2009; 11:39-47. [PMID: 16307171 PMCID: PMC1449517 DOI: 10.2119/2005-00021.ro] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 10/24/2005] [Indexed: 12/22/2022] Open
Abstract
Obesity is an important risk factor for heart disease, diabetes, and certain cancers, but the molecular basis for obesity is poorly understood. The transcriptional repressor AEBP1, which functions as a negative regulator of PTEN through a protein-protein interaction, is highly expressed in the stromal compartment of adipose tissues, including proliferative preadipocytes, and its expression is abolished in terminally differentiated, nonproliferative adipocytes. Here we show that transgenic overexpression of AEBP1 during adipogenesis coupled with a high-fat diet (HFD) resulted in massive obesity in female transgenic (AEBP1(TG)) mice via adipocyte hyperplasia. AEBP1 levels dynamically changed with aging, and HFD induced AEBP1 expression in females. Thus, HFD-fed AEBP1(TG) females display hyperinduction of AEBP1 and a marked reduction of PTEN level with concomitant hyperactivation of the survival signal in white adipose tissue. Our results suggest that AEBP1 plays a key functional role in in vivo modulation of adiposity via fat-cell proliferation and is involved in a sex-specific susceptibility to diet-induced obesity by the estrogen signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hyo-Sung Ro
- Address correspondence and reprint requests to Hyo-Sung Ro, Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Tupper Medical Building, 1850 College Street, Halifax, NS, B3H 1X5 Canada. Phone: 902-494-2367; fax 902-494-1355; e-mail:
| |
Collapse
|
39
|
Schissel SL, Dunsmore SE, Liu X, Shine RW, Perrella MA, Layne MD. Aortic carboxypeptidase-like protein is expressed in fibrotic human lung and its absence protects against bleomycin-induced lung fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:818-28. [PMID: 19179605 DOI: 10.2353/ajpath.2009.080856] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathological hallmarks of idiopathic pulmonary fibrosis include proliferating fibroblasts and myofibroblasts, as well as excessive collagen matrix deposition. In addition, both myofibroblast contraction and remodeling of the collagen-rich matrix contribute to the abnormal structure and function of the fibrotic lung. Little is known, however, about collagen-associated proteins that promote fibroblast and myofibroblast retention, as well as the proliferation of these cells on the extracellular matrix. In this study, we demonstrate that aortic carboxypeptidase-like protein (ACLP), a collagen-associated protein with a discoidin-like domain, is expressed at high levels in human fibrotic lung tissue and human fibroblasts, and that its expression increases markedly in the lungs of bleomycin-injured mice. Importantly, ACLP-deficient mice accumulated significantly fewer myofibroblasts and less collagen in the lung after bleomycin injury, as compared with wild-type controls, despite equivalent levels of bleomycin-induced inflammation. ACLP that is secreted by lung fibroblasts was retained on fibrillar collagen, and ACLP-deficient lung fibroblasts that were cultured on collagen exhibited changes in cell spreading, proliferation, and contraction of the collagen matrix. Finally, the addition of recombinant discoidin-like domain of ACLP to cultured ACLP-deficient lung fibroblasts restored cell spreading and increased the contraction of collagen gels. Therefore, both ACLP and its discoidin-like domain may be novel targets for anti-myofibroblast-based therapies for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Scott L Schissel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Baker SC, Southgate J. Towards control of smooth muscle cell differentiation in synthetic 3D scaffolds. Biomaterials 2008; 29:3357-66. [PMID: 18485473 DOI: 10.1016/j.biomaterials.2008.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/22/2008] [Indexed: 10/24/2022]
Abstract
A central tenant of tissue engineering is that cells should be able to recapitulate full functional tissue capability when placed within an appropriate architecture or scaffold. The aim of this study was to examine the effect of three-dimensional (3D) architecture on the differentiated phenotype of human smooth muscle cells derived from the stroma of the lower urinary tract. Stromal cell cultures were established from surgical specimens and the differentiated smooth muscle cell phenotype was monitored by gene expression, immunofluorescence and immunoblotting. Expression of contractile proteins, including smooth muscle myosin and smoothelin, was lost by cultures grown on two-dimensional (2D) tissue culture polystyrene, but was regained to some extent by the removal of serum and by the addition of TGFbeta1. Stromal cells were seeded onto plasma-coated electrospun polystyrene scaffolds to examine the influence of 3D architecture on smooth muscle cell phenotype, but differentiation was inhibited by serum proteins that adsorbed non-specifically onto the large surface area of the scaffold. Stromal cells failed to adhere to the scaffold in serum-free conditions, but laminin pre-coating of the scaffold prevented serum adsorption and promoted cell attachment and differentiation. The study highlights how non-specific factors, such as serum adsorption, may confound the development of materials for tissue engineering.
Collapse
Affiliation(s)
- Simon C Baker
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, Heslington, York, UK
| | | |
Collapse
|
41
|
Kiedzierska A, Smietana K, Czepczynska H, Otlewski J. Structural similarities and functional diversity of eukaryotic discoidin-like domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1069-78. [PMID: 17702679 DOI: 10.1016/j.bbapap.2007.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/02/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022]
Abstract
The discoidin domain is a approximately 150 amino acid motif common in both eukaryotic and prokaryotic proteins. It is found in a variety of extracellular, intracellular and transmembrane multidomain proteins characterized by a considerable functional diversity, mostly involved in developmental processes. The biological role of the domain depends on its interactions with different molecules, including growth factors, phospholipids and lipids, galactose or its derivatives, and collagen. The conservation of the motif, as well as the serious physiological consequences of discoidin domain disorders underscore the importance of the fold, while the ability to accommodate such an extraordinarily broad range of ligand molecules makes it a fascinating research target. In present review we characterize the distinctive features of discoidin domains and briefly outline the biological role of this module in various eukaryotic proteins.
Collapse
Affiliation(s)
- A Kiedzierska
- Faculty of Biotechnology, University of Wroclaw, Str. Tamka2, 50-137 Wroclaw, Poland
| | | | | | | |
Collapse
|
42
|
Majdalawieh A, Zhang L, Ro HS. Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell 2007; 18:930-42. [PMID: 17202411 PMCID: PMC1805081 DOI: 10.1091/mbc.e06-03-0217] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 12/18/2006] [Accepted: 12/22/2006] [Indexed: 11/11/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) subunits comprise a family of eukaryotic transcription factors that are critically involved in cell proliferation, inflammation, and apoptosis. Under basal conditions, NF-kappaB subunits are kept under inhibitory regulation by physical interaction with NF-kappaB inhibitors (IkappaB subunits) in the cytosol. Upon stimulation, IkappaB subunits become phosphorylated, ubiquitinated, and subsequently degraded, allowing NF-kappaB subunits to translocate to the nucleus and bind as dimers to kappaB responsive elements of target genes. Previously, we have shown that AEBP1 enhances macrophage inflammatory responsiveness by inducing the expression of various proinflammatory mediators. Herein, we provide evidence suggesting that AEBP1 manifests its proinflammatory function by up-regulating NF-kappaB activity via hampering IkappaBalpha, but not IkappaBbeta, inhibitory function through protein-protein interaction mediated by the discoidin-like domain (DLD) of AEBP1. Such interaction renders IkappaBalpha susceptible to enhanced phosphorylation and degradation, subsequently leading to augmented NF-kappaB activity. Collectively, we propose a novel molecular mechanism whereby NF-kappaB activity is modulated by means of protein-protein interaction involving AEBP1 and IkappaBalpha. Moreover, our study provides a plausible mechanism explaining the differential regulatory functions exhibited by IkappaBalpha and IkappaBbeta in various cell types. We speculate that AEBP1 may serve as a potential therapeutic target for the treatment of various chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Amin Majdalawieh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Lei Zhang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Hyo-Sung Ro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| |
Collapse
|
43
|
Ro HS, Zhang L, Majdalawieh A, Kim SW, Wu X, Lyons PJ, Webber C, Ma H, Reidy SP, Boudreau A, Miller JR, Mitchell P, McLeod RS. Adipocyte enhancer-binding protein 1 modulates adiposity and energy homeostasis. Obesity (Silver Spring) 2007; 15:288-302. [PMID: 17299101 DOI: 10.1038/oby.2007.569] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine whether adipocyte enhancer binding protein (AEBP) 1, a transcriptional repressor that is down-regulated during adipogenesis, functions as a critical regulator of adipose tissue homeostasis through modulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) tumor suppressor activity and mitogen-activated protein kinase (MAPK) activation. RESEARCH METHODS AND PROCEDURES We examined whether AEBP1 physically interacts with PTEN in 3T3-L1 cells by coimmunoprecipitation analysis. We generated AEBP1-null mice and examined the physiological role of AEBP1 as a key modulator of in vivo adiposity. Using adipose tissue from wild-type and AEBP1-null animals, we examined whether AEBP1 affects PTEN protein level. RESULTS AEBP1 interacts with PTEN, and deficiency of AEBP1 increases adipose tissue PTEN mass. AEBP1-null mice have reduced adipose tissue mass and enhanced apoptosis with suppressed survival signal. Primary pre-adipocytes from AEBP1-null adipose tissues exhibit lower basal MAPK activity with defective proliferative potential. AEBP1-null mice are also resistant to diet-induced obesity, suggesting a regulatory role for AEBP1 in energy homeostasis. DISCUSSION Our results suggest that AEBP1 negatively regulates adipose tissue PTEN levels, in conjunction with its role in proliferation and differentiation of pre-adipocytes, as a key functional role in modulation of in vivo adiposity.
Collapse
Affiliation(s)
- Hyo-Sung Ro
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD. A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 2007; 21:836-50. [PMID: 17244818 DOI: 10.1096/fj.06-7329com] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nna1 is a recently described gene product that has sequence similarity with metallocarboxypeptidases. In the present study, five additional Nna1-like genes were identified in the mouse genome and named cytosolic carboxypeptidase (CCP) 2 through 6. Modeling suggests that the carboxypeptidase domain folds into a structure that resembles metallocarboxypeptidases of the M14 family, with all necessary residues for catalytic activity and broad substrate specificity. All CCPs are abundant in testis and also expressed in brain, pituitary, eye, and other mouse tissues. In brain, Nna1/CCP1, CCP5, and CCP6 are broadly distributed, whereas CCP2 and 3 exhibit restricted patterns of expression. Nna1/CCP1, CCP2, CCP5, and CCP6 were found to exhibit a cytosolic distribution, with a slight accumulation of CCP5 in the nucleus. Based on the above results, we hypothesized that Nna1/CCP1 and CCP2-6 function in the processing of cytosolic proteins such as alpha-tubulin, which is known to be modified by the removal of a C-terminal tyrosine. Analysis of the forms of alpha tubulin in the olfactory bulb of mice lacking Nna1/CCP1 showed the absence of the detyrosinylated form in the mitral cells. Taken together, these results are consistent with a role for Nna1/CCP1 and the related CCPs in the processing of tubulin.
Collapse
Affiliation(s)
- Elena Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pacenti M, Barzon L, Favaretto F, Fincati K, Romano S, Milan G, Vettor R, Palù G. Microarray analysis during adipogenesis identifies new genes altered by antiretroviral drugs. AIDS 2006; 20:1691-705. [PMID: 16931933 DOI: 10.1097/01.aids.0000242815.80462.5a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To elucidate the pathogenesis of HAART-associated lipodystrophy, by investigating the effects of antiretroviral drugs on adipocyte differentiation and gene expression profile. DESIGN AND METHODS Analysis of gene expression profile by DNA microarrays and quantitative RT-PCR of 3T3-L1 preadipocytes treated with the nucleoside reverse transcriptase inhibitors (NRTI) lamivudine, zidovudine, stavudine, and zalcitabine, and with the protease inhibitors (PI) indinavir, saquinavir, and lopinavir during maturation into adipocytes. RESULTS Under standard adipogenic differentiation protocols, PI significantly inhibited adipocyte differentiation, as demonstrated by cell viability assay and Oil Red O staining and quantification, whereas NRTI had mild effects on adipogenesis. Gene expression profile analysis showed that treatment with NRTI modulated the expression of transcription factors, such as Aebp1, Pou5f1 and Phf6, which could play a key role in the determination of the adipocyte phenotype. PI also modulated gene expression toward inhibition of adipocyte differentiation, with up-regulation of the Wnt signaling gene Wnt10a and down-regulation of the expression of genes encoding master adipogenic transcription factors (e.g., C/EBPalpha and PPARgamma), oestrogen receptor beta, and adipocyte-specific markers (e.g., Adiponectin, Leptin, Mrap, Cd36, S100A8). CONCLUSIONS This study identifies new genes modulated by PI and NRTI in differentiating adipocytes. Abnormal expression of these genes, which include master adipogenic transcription factors and genes involved in lipid metabolism and cell cycle control, could contribute to the understanding of the pathogenesis of HAART-associated lipodystrophy.
Collapse
Affiliation(s)
- Monia Pacenti
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Via A. Gabelli 63, I-35121 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee THD, Streb JW, Georger MA, Miano JM. Tissue expression of the novel serine carboxypeptidase Scpep1. J Histochem Cytochem 2006; 54:701-11. [PMID: 16461364 DOI: 10.1369/jhc.5a6894.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously identified a novel gene designated retinoid-inducible serine carboxypeptidase (RISC or Scpep1). Here we characterize a polyclonal antibody raised to Scpep1 and assess its localization in mouse cells and tissues. Western blot analysis revealed an immunospecific approximately 35-kDa protein corresponding to endogenous Scpep1. This protein is smaller than the predicted approximately 51-kDa, suggesting that Scpep1 is proteolytically cleaved to a mature enzyme. Immunohistochemical studies demonstrate Scpep1 expression in embryonic heart and vasculature as well as in adult aortic smooth muscle cells and endothelial cells. Scpep1 displays a broad expression pattern in adult tissues with detectable levels in epithelia of digestive tract and urinary bladder, islet of Langerhans, type II alveolar cells and macrophages of lung, macrophage-like cells of lymph nodes and spleen, Leydig cells of testis, and nerve fibers in brain and ganglia. Consistent with previous mRNA studies in kidney, Scpep1 protein is restricted to proximal convoluted tubular epithelium (PCT). Immunoelectron microscopy shows enriched Scpep1 within lysosomes of the PCT, and immunofluorescence microscopy colocalizes Scpep1 with lysosomal-associated membrane protein-2. These results suggest that Scpep1 is a widely distributed lysosomal protease requiring proteolytic cleavage for activity. The highly specific Scpep1 antibody characterized herein provides a necessary reagent for elucidating Scpep1 function.
Collapse
Affiliation(s)
- Ting-Hein D Lee
- Cardiovascular Research Institute, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 679, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The primary function of the vascular smooth muscle cell (SMC) is contraction for which SMCs express a selective repertoire of genes (eg, SM alpha-actin, SM myosin heavy chain [SMMHC], myocardin) that ultimately define the SMC from other muscle cell types. Moreover, the SMC exhibits extensive phenotypic diversity and plasticity, which play an important role during normal development, repair of vascular injury, and in vascular disease states. Diverse signals modulate ion channel activity in the sarcolemma of SMCs, resulting in altered intracellular calcium (Ca) signaling, activation of multiple intracellular signaling cascades, and SMC contraction or relaxation, a process known as "excitation-contraction coupling" (EC-coupling). Over the past 5 years, exciting new studies have shown that the same signals that regulate EC-coupling in SMCs are also capable of regulating SMC-selective gene expression programs, a new paradigm coined "excitation-transcription coupling" (ET-coupling). This article reviews recent progress in our understanding of the mechanisms by which ET-coupling selectively coordinates the expression of distinct gene subsets in SMCs by disparate transcription factors, including CREB, NFAT, and myocardin, via selective kinases. For example, L-type voltage-gated Ca2+ channels modulate SMC differentiation marker gene expression, eg, SM alpha-actin and SMMHC, via Rho kinase and myocardin and also regulate c-fos gene expression independently via CaMK. In addition, we discuss the potential role of IK channels and TRPC in ET-coupling as potential mediators of SMC phenotypic modulation, ie, negatively regulate SMC differentiation marker genes, in vascular disease.
Collapse
Affiliation(s)
- Brian R Wamhoff
- Biomedical Sciences, Veterinary School of Medicine, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
48
|
Lyons PJ, Mattatall NR, Ro HS. Modeling and functional analysis of AEBP1, a transcriptional repressor. Proteins 2006; 63:1069-83. [PMID: 16538615 DOI: 10.1002/prot.20946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adipocyte enhancer binding protein 1 (AEBP1) is a transcriptional repressor of the aP2 gene, which encodes the adipocyte lipid binding protein and is involved in the differentiation of preadipocytes into mature adipocytes. It is an isoform of aortic carboxypeptidase-like protein (ACLP), which is a part of the extracellular matrix. AEBP1 and ACLP contain a conserved carboxypeptidase domain which is critical for the function of AEBP1 as a transcriptional repressor. Homology modeling and multiple alignment of AEBP1 homologues were performed to identify putative domains and critical residues that were then deleted or mutated in mouse AEBP1. Expression of wild-type and mutant AEBP1 proteins in CHO cells was performed, and their function in transcriptional repression was assayed by luciferase assay. All deletion forms of AEBP1 were able to repress transcription driven by the aP2 promoter. The DNA binding domain of AEBP1 was mapped by electrophoretic mobility shift assays to a region of the C-terminus rich in basic residues. However, wild-type AEBP1 was not able to interact strongly with DNA, suggesting that AEBP1 might function predominantly as a corepressor, independent of DNA binding. AEBP1 was also found to interact with Ca2+/calmodulin through this basic region, suggesting another mechanism of functional regulation.
Collapse
Affiliation(s)
- Peter J Lyons
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
49
|
Kalinina E, Fontenele-Neto JD, Fricker LD. Drosophila S2 cells produce multiple forms of carboxypeptidase D with different intracellular distributions. J Cell Biochem 2006; 99:770-83. [PMID: 16676361 DOI: 10.1002/jcb.20972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carboxypeptidase D (CPD) functions in the processing of proteins that transit the secretory pathway, and is present in all vertebrates examined as well as Drosophila. Several forms of CPD mRNA were previously found in Drosophila that resulted from differential splicing of the gene. In the present study, Northern blot, reverse transcriptase PCR, and Western blot analysis showed that each splice variant occurs in a single cell type, the Drosophila-derived Schneider 2 (S2) cell line. The short forms containing a single carboxypeptidase domain were secreted from the S2 cells while the long forms containing three carboxypeptidase domains, a transmembrane domain, and one of two different cytosolic tails were retained in the cell. To investigate the role of the two different C-terminal tail sequences (tail-1 and tail-2) that result from the differential splicing within exon 8, constructs containing a reporter protein (albumin) attached to the transmembrane domain and tail-1 or tail-2 of CPD were expressed in S2 cells and a mouse pituitary cell line (AtT20 cells). Immunofluorescence analysis revealed different intracellular distributions of the two constructs, with the tail-2 construct showing considerable overlap with a Golgi marker. The two C-terminal tail sequences also resulted in different internalization efficiencies from the cell surface in both cell lines. Interestingly, the distribution and routing of the tail-2 form of Drosophila CPD in the AtT20 cells are similar to the previously characterized endogenous mouse CPD protein, indicating that the elements for this trafficking have been conserved between Drosophila and mammals.
Collapse
Affiliation(s)
- Elena Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
50
|
Gagnon A, Landry A, Proulx J, Layne MD, Sorisky A. Aortic carboxypeptidase-like protein is regulated by transforming growth factor β in 3T3-L1 preadipocytes. Exp Cell Res 2005; 308:265-72. [PMID: 15927179 DOI: 10.1016/j.yexcr.2005.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/29/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
Adipogenesis is characterized by early remodeling of the extracellular matrix, allowing preadipocytes to adopt a more spherical shape and optimize lipid accumulation as they mature. Aortic carboxypeptidase-like protein (ACLP), found in collagen-rich tissues including adipose tissue, is expressed in 3T3-L1 and 3T3-F442A preadipocytes, and is downregulated during adipogenesis. We now report that ACLP is found in medium conditioned by 3T3-L1 preadipocytes. Transforming growth factor (TGF) beta, a known modulator of fibrillar matrix protein production, increased ACLP expression by 2.4+/-0.4-fold (mean+/-SE; n=3) in 3T3-L1 preadipocytes, through a mechanism that requires p42/44 MAPK activity. Addition of TGFbeta to differentiation medium, which inhibits adipogenesis, raised ACLP levels in 3T3-L1 cells. However, sustained expression of ACLP in stable clones of 3T3-L1 or 3T3-F442A preadipocytes did not interfere with adipogenesis.
Collapse
Affiliation(s)
- AnneMarie Gagnon
- Department of Medicine and Biochemistry, Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | |
Collapse
|