1
|
Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells 2021; 10:2070. [PMID: 34440838 PMCID: PMC8393536 DOI: 10.3390/cells10082070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Daniela Picciotto
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Leda Cipriani
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| |
Collapse
|
2
|
Ries A, Schelch K, Falch D, Pany L, Hoda MA, Grusch M. Activin A: an emerging target for improving cancer treatment? Expert Opin Ther Targets 2020; 24:985-996. [PMID: 32700590 DOI: 10.1080/14728222.2020.1799350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Activin A is involved in the regulation of a surprisingly broad number of processes that are relevant for cancer development and treatment; it is implicated in cell autonomous functions and multiple regulatory functions in the tumor microenvironment. AREAS COVERED This article summarizes the current knowledge about activin A in cell growth and death, migration and metastasis, angiogenesis, stemness and drug resistance, regulation of antitumor immunity, and cancer cachexia. We explore the role of activin A as a biomarker and discuss strategies for using it as target for cancer therapy. Literature retrieved from Medline until 25 June 2020 was considered. EXPERT OPINION While many functions of activin A were investigated in preclinical models, there is currently limited experience from clinical trials. Activin A has growth- and migration-promoting effects, contributes to immune evasion and cachexia and is associated with shorter survival in several cancer types. Targeting activin A could offer the chance to simultaneously limit tumor growth and spreading, improve drug response, boost antitumor immune responses and improve cancer-associated or treatment-associated cachexia, bone loss, and anemia. Nevertheless, defining which patients have the highest likelihood of benefiting from these effects is challenging and will require further work.
Collapse
Affiliation(s)
- Alexander Ries
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - David Falch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Laura Pany
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna , Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
3
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
4
|
Effect of eccentric action velocity on expression of genes related to myostatin signaling pathway in human skeletal muscle. Biol Sport 2017; 35:111-119. [PMID: 30455539 PMCID: PMC6234307 DOI: 10.5114/biolsport.2018.71600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/12/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the effects of an acute bout of eccentric actions, performed at fast velocity (210º.s-1) and at slow velocity (20º.s-1), on the gene expression of regulatory components of the myostatin (MSTN) signalling pathway. Participants performed an acute bout of eccentric actions at either a slow or a fast velocity. Muscle biopsy samples were taken before, immediately after, and 2 h after the exercise bout. The gene expression of the components of the MSTN pathway was assessed by real-time PCR. No change was observed in MSTN, ACTRIIB, GASP-1 or FOXO-3a gene expression after either slow or fast eccentric actions (p > 0.05). However, the MSTN inhibitors follistatin (FST), FST-like-3 (FSTL3) and SMAD-7 were significantly increased 2 h after both eccentric actions (p < 0.05). No significant difference between bouts was found before, immediately after, or 2 h after the eccentric actions (slow and fast velocities, p > 0.05). The current findings indicate that a bout of eccentric actions activates the expression of MSTN inhibitors. However, no difference was observed in MSTN inhibitors’ gene expression when comparing slow and fast eccentric actions. It is possible that the greater time under tension induced by slow eccentric (SE) actions might compensate the effect of the greater velocity of fast eccentric (FE) actions. Additional studies are required to address the effect of eccentric action (EA) velocities on the pathways related to muscle hypertrophy.
Collapse
|
5
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
6
|
Katakawa Y, Funaba M, Murakami M. Smad8/9 Is Regulated Through the BMP Pathway. J Cell Biochem 2016; 117:1788-96. [DOI: 10.1002/jcb.25478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Yuko Katakawa
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara 252-5201 Japan
| | - Masayuki Funaba
- Division of Applied Biosciences; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology; Azabu University School of Veterinary Medicine; Sagamihara 252-5201 Japan
| |
Collapse
|
7
|
Expression and role of the TGF-β family in glial cells infected with Borna disease virus. Microbes Infect 2016; 18:128-36. [DOI: 10.1016/j.micinf.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
|
8
|
Garcés MF, Vallejo SA, Sanchez E, Palomino-Palomino MA, Leal LG, Ángel-Muller E, Díaz-Cruz LA, Ruíz-Parra AI, González-Clavijo AM, Castaño JP, Abba M, Lacunza E, Diéguez C, Nogueiras R, Caminos JE. Longitudinal analysis of maternal serum Follistatin concentration in normal pregnancy and preeclampsia. Clin Endocrinol (Oxf) 2015; 83:229-35. [PMID: 25565002 DOI: 10.1111/cen.12715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/30/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Follistatin (FST) is a regulator of the biological activity of activin A (Act A), binding and blocking it, which could contribute to the modulation of its pro-inflammatory activity during pregnancy. We sought to investigate, in this nested case-control study, FST serum levels during normal pregnancy and correlate it with the FST profile in preeclamptic pregnant women, normal pregnant women followed 3 months postpartum and eumenorrheic nonpregnant women throughout the menstrual cycle. SUBJECTS AND METHODS Follistatin serum levels determined by ELISA, biochemical and anthropometric variables were measured in normal pregnant (n = 28) and preeclamptic (n = 20) women during three periods of gestation. In addition, FST serum levels were measured in a subset of normal pregnant women (n = 13) followed 3 months postpartum and in eumenorrheic nonpregnant women (n = 20) during the follicular and luteal phases of the menstrual cycle. RESULTS Follistatin serum levels in the eumenorrheic nonpregnant and postpartum group were significantly lower when compared to levels throughout gestation (P < 0·01). Serum FST levels increased in each period of pregnancy analysed, being significantly higher towards the end of gestation (P < 0·01). FST levels were lower in late pregnancy in preeclamptic women compared to normal pregnant women (P < 0·05). Finally, FST levels were higher in the luteal phase when compared with the follicular phase of the menstrual cycle (P < 0·05). CONCLUSIONS These analyses would permit the consideration that changes in FST levels during pregnancy contribute to the control of the Act A system.
Collapse
Affiliation(s)
- María F Garcés
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sergio A Vallejo
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elizabeth Sanchez
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Luis G Leal
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Edith Ángel-Muller
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz A Díaz-Cruz
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ariel Iván Ruíz-Parra
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Martin Abba
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ezequiel Lacunza
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos Diéguez
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Rubén Nogueiras
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Jorge E Caminos
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Li B, Su YJ, Zheng XF, Yang YH, Jiang SD, Jiang LS. Evidence for an Important Role of Smad-7 in Intervertebral Disc Degeneration. J Interferon Cytokine Res 2015; 35:569-79. [PMID: 25811233 DOI: 10.1089/jir.2014.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Smad-7 inhibited the transforming growth factor beta (TGF-β)-induced proteoglycan synthesis in chondrocytes and completely antagonized the effect of TGF-β on the proliferation of the cells. The aim of this study was to evaluate the contribution of Smad-7 to the pathophysiology of disc degeneration by determining the expression of Smad-7 in the degenerative intervertebral discs and its effect on the extracellular matrix metabolism of disc cells. Instability of the lumbar spine produced by imbalanced dynamic and static forces was used to induce intervertebral disc degeneration in rats. The expression of Smad-7 was assessed by the immunohistochemical method. Disc cell apoptosis was detected by in situ TUNEL staining. The effect of Smad-7 overexpression on the matrix metabolism of disc cells was analyzed in vitro by real-time polymerase chain reaction (PCR) and Western blotting. Finally, intradiscal injection of the Smad-7 overexpression lentivirus was performed to evaluate the in vivo effect of Smad-7 on disc degeneration. Radiographic and histomorphological examinations showed that lumbar disc degeneration became more and more severe in the rats with induced instability. Immunohistochemical observation demonstrated increasing protein expression of Smad-7 in the degenerative discs. A significantly positive correlation was found between Smad-7 expression and the degree of disc degeneration and between Smad-7 expression and disc cell apoptosis. Overexpression of Smad-7 in disc cells inhibited the expression of TGF-β1, collagen type-I, collagen type-II, and aggrecan and promoted the expression of MMP-13, but did not change the expression of ADAMTS-5. The in vivo findings illustrated that intradiscal injection of lentivirus vector with Smad-7 overexpression accelerated the progress of disc degeneration. In conclusion, Smad-7 was highly expressed in the degenerative discs. Overexpression of Smad-7 weakened the protective role of TGF-β and accelerated the progress of disc degeneration. Interference on Smad-7 might be a potential therapeutic method for the prevention and treatment of degenerative disc diseases.
Collapse
Affiliation(s)
- Bo Li
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yi-Jun Su
- 2 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , Washington, District of Columbia
| | - Xin-Feng Zheng
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yue-Hua Yang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Sheng-Dan Jiang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Lei-Sheng Jiang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
10
|
Montemayor-Garcia C, Hardin H, Guo Z, Larrain C, Buehler D, Asioli S, Chen H, Lloyd RV. The role of epithelial mesenchymal transition markers in thyroid carcinoma progression. Endocr Pathol 2013; 24:206-12. [PMID: 24126800 PMCID: PMC3875396 DOI: 10.1007/s12022-013-9272-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Understanding the molecular mechanisms involved in thyroid cancer progression may provide targets for more effective treatment of aggressive thyroid cancers. Epithelial mesenchymal transition (EMT) is a major pathologic mechanism in tumor progression and is linked to the acquisition of stem-like properties of cancer cells. We examined expression of ZEB1 which activates EMT by binding to the E-box elements in the E-cadherin promoter, and expression of E-cadherin in normal and neoplastic thyroid tissues in a tissue microarray which included 127 neoplasms and 10 normal thyroid specimens. Thyroid follicular adenomas (n = 32), follicular thyroid carcinomas (n = 28), and papillary thyroid carcinomas (n = 57) all expressed E-cadherin and were mostly negative for ZEB1 while most anaplastic thyroid carcinomas (ATC, n = 10) were negative for E-cadherin, but positive for ZEB1. A validation set of 10 whole sections of ATCs showed 90 % of cases positive for ZEB1 and all cases were negative for E-cadherin. Analysis of three cell lines (normal thyroid, NTHY-OR13-1; PTC, TPC-1, and ATC, THJ-21T) showed that the ATC cell line expressed the highest levels of ZEB1 while the normal thyroid cell line expressed the highest levels of E-Cadherin. Quantitative RT-PCR analyses showed that Smad7 mRNA was significantly higher in ATC than in any other group (p < 0.05). These results indicate that ATCs show evidence of EMT including decreased expression of E-cadherin and increased expression of ZEB1 compared to well-differentiated thyroid carcinomas and that increased expression of Smad7 may be associated with thyroid tumor progression.
Collapse
Affiliation(s)
- Celina Montemayor-Garcia
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, K4/436 Clinical Science Center, Box 8550, 600 Highland Avenue, Madison, WI, 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Marino FE, Risbridger G, Gold E. The therapeutic potential of blocking the activin signalling pathway. Cytokine Growth Factor Rev 2013; 24:477-84. [DOI: 10.1016/j.cytogfr.2013.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
|
12
|
Woeckel V, van der Eerden B, Schreuders-Koedam M, Eijken M, Van Leeuwen J. 1α,25-dihydroxyvitamin D3stimulates activin A production to fine-tune osteoblast-induced mineralization. J Cell Physiol 2013; 228:2167-74. [DOI: 10.1002/jcp.24388] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Affiliation(s)
- V.J. Woeckel
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | | | - M. Schreuders-Koedam
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | - M. Eijken
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| | - J.P.T.M. Van Leeuwen
- Departments of Internal Medicine; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
13
|
Islam SS, Mokhtari RB, Kumar S, Maalouf J, Arab S, Yeger H, Farhat WA. Spatio-temporal distribution of Smads and role of Smads/TGF-β/BMP-4 in the regulation of mouse bladder organogenesis. PLoS One 2013; 8:e61340. [PMID: 23620745 PMCID: PMC3631207 DOI: 10.1371/journal.pone.0061340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022] Open
Abstract
Although Shh, TGF-β and BMP-4 regulate radial patterning of the bladder mesenchyme and smooth muscle differentiation, it is not known what transcription factors, local environmental cues or signaling cascades mediate bladder smooth muscle differentiation. We investigated the expression patterns of signaling mediated by Smad2 and Smad3 in the mouse embryonic bladder from E12.5 to E16.5 by using qRT-PCR, in situ hybridization and antibodies specifically recognizing individual Smad proteins. The role of Smad2 and Smad3 during smooth muscle formation was examined by disrupting the Smad2/3 signaling pathway using TβR1 inhibitor SB-431542 in organ culture system. qRT-PCR results showed that R-Smads, Co-Smad and I-Smads were all expressed during bladder development. RNA ISH for BMP-4 and immunostaining of TGF-β1 showed that BMP-4 and TGF-β1 were expressed in the transitional epithelium, lamina propia and muscularis mucosa. Smad1, Smad5 and Smad8 were first expressed in the bladder epithelium and continued to be expressed in the transitional epithelium, muscularis mesenchyme and lamina propia as the bladder developed. Smad2, Smad3 and Smad4 were first detected in the bladder epithelium and subsequently were expressed in the muscularis mesenchyme and lamina propia. Smad6 and Smad7 showed overlapping expression with R-Smads, which are critical for bladder development. In bladder explants (E12.5 to E16.5) culture, Smad2 and Smad3 were found localized within the nuclei, suggesting critical transcriptional regulatory effects during bladder development. E12.5 to E16.5 bladders were cultured with and without TβR1 inhibitor SB-431542 and assessed by qRT-PCR and immunofluorescence. After three days in culture in SB-431542, α-SMA, Smad2 and Smad3 expressions were significantly decreased compared with controls, however, with no significant changes in the expression of smooth muscle myosin heavy chain (SM-Myh. Based on the Smad expression patterns, we suggest that individual or combinations of Smads may be necessary during mouse bladder organogenesis and may be critical mediators for bladder smooth muscle differentiation.
Collapse
Affiliation(s)
- Syed S. Islam
- Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Reza Bayat Mokhtari
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Sushil Kumar
- Physiology and Experimental Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | - Sara Arab
- University of Toronto, Toronto, ON, Canada
| | - Herman Yeger
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Walid A. Farhat
- Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Layliev J, Sagebin F, Weinstein A, Marchac A, Szpalski C, Saadeh PB, Warren SM. Percutaneous gene therapy heals cranial defects. Gene Ther 2013; 20:922-9. [PMID: 23594990 DOI: 10.1038/gt.2013.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/03/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022]
Abstract
Nonhealing bone defects are difficult to treat. As the bone morphogenic protein and transforming growth factor beta pathways have been implicated in bone healing, we hypothesized that percutaneous Smad7 silencing would enhance signaling through both pathways and improve bone formation. Critical sized parietal trephine defects were created and animals received percutaneous injection of: agarose alone or agarose containing nonsense or Smad7 small interfering RNA (siRNA). At 12 weeks, SMADs1, 2, 3, 5, 7 and 8 levels were assessed. Smad1/5/8 osteogenic target, Dlx5, and SMAD2/3 angiogenic target, plasminogen activator inhibitor-1 (Pai1), transcription levels were measured. Noncanonical signaling through TGFβ activated kinase-1 (Tak1) and target, runt-related transcription factor 2 (Runx2) and collagen1α1 (Col1α1), transcription were also measured. Micro-computed tomography and Gomori trichome staining were used to assess healing. Percutaneous injection of Smad7 siRNA significantly knocked down Smad7 mRNA (86.3 ± 2.5%) and protein levels (46.3 ± 3.1%). The SMAD7 knockdown resulted in a significant increase in receptor-regulated SMADs (R-SMAD) (Smad 1/5/8 and Smad2/3) nuclear translocation. R-SMAD nuclear translocation increased Dlx5 and Pai1 transcription. Additionally, noncanonical signaling through Tak1 increased Runx2 and Col1α1 target transcription. Compared with animals treated with agarose alone (33.9 ± 2.8% healing) and nonsense siRNA (31.5 ± 11.8% healing), animals treated Smad7 siRNA had significantly great (91.2 ± 3.8%) healing. Percutaneous Smad7 silencing increases signal transduction through canonical and noncanonical pathways resulting in significant bone formation. Minimally invasive gene therapies may prove effective in the treatment of nonhealing bone defects.
Collapse
Affiliation(s)
- J Layliev
- The Department of Plastic Surgery, Institute of Reconstructive Plastic Surgery Laboratories, New York University Medical Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Nicholls PK, Stanton PG, Chen JL, Olcorn JS, Haverfield JT, Qian H, Walton KL, Gregorevic P, Harrison CA. Activin signaling regulates Sertoli cell differentiation and function. Endocrinology 2012; 153:6065-77. [PMID: 23117933 DOI: 10.1210/en.2012-1821] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Throughout development, activin A signaling stimulates proliferation and inhibits differentiation of testicular Sertoli cells. A decline in activin levels at puberty corresponds with the differentiation of Sertoli cells that is required to sustain spermatogenesis. In this study, we consider whether terminally differentiated Sertoli cells can revert to a functionally immature phenotype in response to activin A. To increase systemic activin levels, the right tibialis anterior muscle of 7-wk-old C57BL/6J mice was transduced with an adeno-associated virus (rAAV6) expressing activin A. We show that chronic activin signaling reduces testis mass by 23.5% compared with control animals and induces a hypospermatogenic phenotype, consistent with a failure of Sertoli cells to support spermatogenesis. We use permeability tracers and transepithelial electrical resistance measurements to demonstrate that activin potently disrupts blood-testis-barrier function in adult mice and ablates tight junction formation in differentiated primary Sertoli cells, respectively. Furthermore, increased activin signaling reinitiates a program of cellular proliferation in primary Sertoli cells as determined by 5-ethynyl-2'-deoxyuridine incorporation. Proliferative cells reexpress juvenile markers, including cytokeratin-18, and suppress mature markers, including claudin-11. Thus, activin A is the first identified factor capable of reprogramming Sertoli cells to an immature, dedifferentiated phenotype. This study indicates that activin signaling must be strictly controlled in the adult in order to maintain Sertoli cell function in spermatogenesis.
Collapse
Affiliation(s)
- Peter K Nicholls
- Prince Henry's Institute of Medical Research, Clayton 3168, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ottley E, Gold E. Insensitivity to the growth inhibitory effects of activin A: An acquired capability in prostate cancer progression. Cytokine Growth Factor Rev 2012; 23:119-25. [DOI: 10.1016/j.cytogfr.2012.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
17
|
Burke JP, Cunningham MF, Watson RWG, Docherty NG, Coffey JC, O'Connell PR. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts. Br J Surg 2010; 97:1126-34. [PMID: 20632282 DOI: 10.1002/bjs.7045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.
Collapse
Affiliation(s)
- J P Burke
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Matsuo SE, Fiore APZP, Siguematu SM, Ebina KN, Friguglietti CUM, Ferro MC, Kulcsar MAV, Kimura ET. Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues. ACTA ACUST UNITED AC 2010; 54:406-12. [DOI: 10.1590/s0004-27302010000400010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/24/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Collapse
|
19
|
Yu C, Azuma A, Li Y, Wang C, Abe S, Usuki J, Matsuda K, Kudoh S, Sunazuka T, Omura S. EM703, a new derivative of erythromycin, inhibits transforming growth factor-beta signaling in human lung fibroblasts. Exp Lung Res 2008; 34:343-54. [PMID: 18600500 DOI: 10.1080/01902140802093238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Long-term, low-dose macrolide therapy has been proven to improve survival in patients with diffuse panbronchiolitis and cystic fibrosis, although the mechanisms by which it does so remain unknown. To elucidate the molecular mechanisms of the anti-inflammatory effects of macrolides, the authors examined the effects of erythromycin (EM-A) and new derivative EM703 on transforming growth factor (TGF)-beta /Smad signaling fibroblasts. EM-A and EM703 each inhibited fibroblast proliferation and the collagen production in human lung fibroblasts induced by TGF-beta. EM-A and EM703 inhibited the augmentation of Smad3 mRNA induced by TGF-beta. Smad7 mRNA was inhibited by TGF-beta, but augmented by coincubation with EM-A or EM703. EM-A and EM703 each inhibited p-Smad2/3 proteins induced by TGF-beta. Smad7 protein inhibited by TGF-beta restored beyond basal level by EM-A and EM703. These findings suggest that EM-A and EM703 inhibit TGF-beta signaling in human lung fibroblasts via inhibition of p-Smad2/3 through recovery of Smad7 level.
Collapse
Affiliation(s)
- ChangHe Yu
- Department of Internal Medicine-Pulmonary Medicine, Infection, and Oncology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Broderick P, Sellick G, Fielding S, Catovsky D, Houlston R. Lack of a relationship between the common 18q24 variant rs12953717 and risk of chronic lymphocytic leukemia. Leuk Lymphoma 2008; 49:271-2. [PMID: 18231913 DOI: 10.1080/10428190701817290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Linkage has implicated variation in 18q24 in genetic susceptibility to chronic lymphocytic leukemia (CLL). 18q24 harbors mothers against decapentaplegic homolog 7 (SMAD7), an intracellular antagonist of TGF-beta signaling which participates in a negative feedback loop controlling growth arrest and apoptosis of B-cells. Recently we have demonstrated variation in SMAD7, defined by the single nucleotide polymorphism rs12953717, to be strongly associated with risk of colorectal cancer. Given that many polymorphic variants have pleiotropic effects we explore the relationship between polymorphic variation at rs12953717 and CLL we compared the frequency of genotypes in 984 cases and 4831 healthy controls. There was therefore no evidence for an association between rs12953717 genotype and CLL; P = 0.40 (allelic test) with ORs of 0.99 (95% CI: 0.85 - 1.16) and 0.91 (95% CI: 0.74 - 1.11) for heterozygotes and TT homozygotes, respectively. These data suggests variation at SMAD7 does not significantly contribute to an inherited susceptibility to CLL.
Collapse
Affiliation(s)
- Peter Broderick
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | |
Collapse
|
21
|
Parameswaran R, Morad V, Laronne A, Rousso-Noori L, Shani N, Naffar-Abu-Amara S, Zipori D. Targeting the Bone Marrow with Activin A-Overexpressing Embryonic Multipotent Stromal Cells Specifically Modifies B Lymphopoiesis. Stem Cells Dev 2008; 17:93-106. [DOI: 10.1089/scd.2007.0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Reshmi Parameswaran
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vered Morad
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayelet Laronne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Rousso-Noori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Suha Naffar-Abu-Amara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Abstract
Transforming growth factor-beta (TGF-beta) regulates a wide variety of cellular processes including cell growth, apoptosis, differentiation, migration, and extracellular matrix production among others. The canonical signaling pathway induced by the TGF-beta receptor complex involves the phosphorylation of Smad proteins which upon activation accumulate in the nucleus and regulate transcription. Interestingly, the cellular response to TGF-beta can be extremely variable depending on the cell type and stimulation context. TGF-beta causes epithelial cells to undergo growth arrest and apoptosis, responses which are critical to suppressing carcinogenesis, whereas it can also induce epithelial-mesenchymal transition and mediate fibroblast activation, responses implicated in promoting carcinogenesis and fibrotic diseases. However, TGF-beta induces all these responses via the same receptor complex and Smad proteins. To address this apparent paradox, during the last few years a number of additional signaling pathways have been identified which potentially regulate the different cellular responses to TGF-beta. The identification of these signaling pathways has shed light onto the mechanisms whereby Smad and non-Smad pathways collaborate to induce a particular cellular phenotype. In this article, we review TGF-beta signaling in epithelial cells and fibroblasts with a focus on understanding the mechanisms of TGF-beta versatility.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
23
|
Gohla G, Krieglstein K, Spittau B. Tieg3/Klf11 induces apoptosis in OLI-neu cells and enhances the TGF-β signaling pathway by transcriptional repression of Smad7. J Cell Biochem 2008; 104:850-61. [DOI: 10.1002/jcb.21669] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Sellick GS, Goldin LR, Wild RW, Slager SL, Ressenti L, Strom SS, Dyer MJS, Mauro FR, Marti GE, Fuller S, Lyttelton M, Kipps TJ, Keating MJ, Call TG, Catovsky D, Caporaso N, Houlston RS. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood 2007; 110:3326-33. [PMID: 17687107 PMCID: PMC2200912 DOI: 10.1182/blood-2007-05-091561] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 08/04/2007] [Indexed: 01/17/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders display familial aggregation. To identify a susceptibility gene for CLL, we assembled families from the major European (ICLLC) and American (GEC) consortia to conduct a genome-wide linkage analysis of 101 new CLL pedigrees using a high-density single nucleotide polymorphism (SNP) array and combined the results with data from our previously reported analysis of 105 families. Here, we report on the combined analysis of the 206 families. Multipoint linkage analyses were undertaken using both nonparametric (model-free) and parametric (model-based) methods. After the removal of high linkage disequilibrium SNPs, we obtained a maximum nonparametric linkage (NPL) score of 3.02 (P = .001) on chromosome 2q21.2. The same genomic position also yielded the highest multipoint heterogeneity LOD (HLOD) score under a common recessive model of disease susceptibility (HLOD = 3.11; P = 7.7 x 10(-5)), which was significant at the genome-wide level. In addition, 2 other chromosomal positions, 6p22.1 (corresponding to the major histocompatibility locus) and 18q21.1, displayed HLOD scores higher than 2.1 (P < .002). None of the regions coincided with areas of common chromosomal abnormalities frequently observed in CLL. These findings provide direct evidence for Mendelian predisposition to CLL and evidence for the location of disease loci.
Collapse
Affiliation(s)
- Gabrielle S Sellick
- Section of Cancer Genetics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007; 101:9-33. [PMID: 17340614 DOI: 10.1002/jcb.21255] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Kimberly A Brown
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
26
|
Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki SI, Isshiki K, Isono M, Uzu T, Guarente L, Kashiwagi A, Koya D. SIRT1 Inhibits Transforming Growth Factor β-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation. J Biol Chem 2007; 282:151-8. [PMID: 17098745 DOI: 10.1074/jbc.m605904200] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIRT1, a class III histone deacetylase, is considered a key regulator of cell survival and apoptosis through its interaction with nuclear proteins. In this study, we have examined the likelihood and role of the interaction between SIRT1 and Smad7, which mediates transforming growth factor beta (TGFbeta)-induced apoptosis in renal glomerular mesangial cells. Immunoprecipitation analysis revealed that SIRT1 directly interacts with the N terminus of Smad7. Furthermore, SIRT1 reversed acetyl-transferase (p300)-mediated acetylation of two lysine residues (Lys-64 and -70) on Smad7. In mesangial cells, the Smad7 expression level was reduced by SIRT1 overexpression and increased by SIRT1 knockdown. SIRT1-mediated deacetylation of Smad7 enhanced Smad ubiquitination regulatory factor 1 (Smurf1)-mediated ubiquitin proteasome degradation, which contributed to the low expression of Smad7 in SIRT1-overexpressing mesangial cells. Stimulation by TGFbeta or overexpression of Smad7 induced mesangial cell apoptosis, as assessed by morphological apoptotic changes (nuclear condensation) and biological apoptotic markers (cleavages of caspase3 and poly(ADP-ribose) polymerase). However, TGFbeta failed to induce apoptosis in Smad7 knockdown mesangial cells, indicating that Smad7 mainly mediates TGFbeta-induced apoptosis of mesangial cells. Finally, SIRT1 overexpression attenuated both Smad7- and TGFbeta-induced mesangial cell apoptosis, whereas SIRT1 knockdown enhanced this apoptosis. We have concluded that Smad7 is a new target molecule for SIRT1 and SIRT1 attenuates TGFbeta-induced mesangial cell apoptosis through acceleration of Smad7 degradation. Our results suggest that up-regulation of SIRT1 deacetylase activity is a potentially useful therapeutic strategy for prevention of TGFbeta-related kidney disease through its effect on cell survival.
Collapse
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Blank U, Karlsson G, Moody JL, Utsugisawa T, Magnusson M, Singbrant S, Larsson J, Karlsson S. Smad7 promotes self-renewal of hematopoietic stem cells. Blood 2006; 108:4246-54. [PMID: 16917010 DOI: 10.1182/blood-2006-02-005611] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Smad-signaling pathway downstream of the transforming growth factor-beta superfamily of ligands is an evolutionarily conserved signaling circuitry with critical functions in a wide variety of biologic processes. To investigate the role of this pathway in the regulation of hematopoietic stem cells (HSCs), we have blocked Smad signaling by retroviral gene transfer of the inhibitory Smad7 to murine HSCs. We report here that the self-renewal capacity of HSCs is promoted in vivo upon blocking of the entire Smad pathway, as shown by both primary and secondary bone marrow (BM) transplantations. Importantly, HSCs overexpressing Smad7 have an unperturbed differentiation capacity as evidenced by normal contribution to both lymphoid and myeloid cell lineages, suggesting that the Smad pathway regulates self-renewal independently of differentiation. Moreover, phosphorylation of Smads was inhibited in response to ligand stimulation in BM cells, thus verifying impairment of the Smad-signaling cascade in Smad7-overexpressing cells. Taken together, these data reveal an important and previously unappreciated role for the Smad-signaling pathway in the regulation of self-renewal of HSCs in vivo.
Collapse
Affiliation(s)
- Ulrika Blank
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li R, Rosendahl A, Brodin G, Cheng AM, Ahgren A, Sundquist C, Kulkarni S, Pawson T, Heldin CH, Heuchel RL. Deletion of exon I of SMAD7 in mice results in altered B cell responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:6777-84. [PMID: 16709837 DOI: 10.4049/jimmunol.176.11.6777] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The members of the TGF-beta superfamily, i.e., TGF-beta isoforms, activins, and bone morphogenetic proteins, regulate growth, differentiation, and apoptosis, both during embryonic development and during postnatal life. Smad7 is induced by the TGF-beta superfamily members and negatively modulates their signaling, thus acting in a negative, autocrine feedback manner. In addition, Smad7 is induced by other stimuli. Thus, it can fine-tune and integrate TGF-beta signaling with other signaling pathways. To investigate the functional role(s) of Smad7 in vivo, we generated mice deficient in exon I of Smad7, leading to a partial loss of Smad7 function. Mutant animals are viable, but significantly smaller on the outbred CD-1 mouse strain background. Mutant B cells showed an overactive TGF-beta signaling measured as increase of phosphorylated Smad2-positive B cells compared with B cells from wild-type mice. In agreement with this expected increase in TGF-beta signaling, several changes in B cell responses were observed. Mutant B cells exhibited increased Ig class switch recombination to IgA, significantly enhanced spontaneous apoptosis in B cells, and a markedly reduced proliferative response to LPS stimulation. Interestingly, LPS treatment reverted the apoptotic phenotype in the mutant cells. Taken together, the observed phenotype highlights a prominent role for Smad7 in development and in regulating the immune system's response to TGF-beta.
Collapse
Affiliation(s)
- Ronggui Li
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
AIM: To investigate whether activin regulates the cell proliferation of human gastric cancer cell line SNU-16 through the mRNA changes in activin receptors, Smads and p21CIP1/WAF1.
METHODS: The human gastric cancer cell lines were cultured, RNAs were purified, and RT-PCRs were carried out with specifically designed primer for each gene. Among them, the two cell lines SNU-5 and SNU-16 were cultured with activin A for 24, 48 and 72 h. The cell proliferation was measured by MTT assay. For SNU-16, changes in ActRIA, ActRIB, ActRIIA, ActRIIB, Smad2, Smad4, Smad7, and p21CIP1/WAF1 mRNAs were detected with RT-PCR after the cells were cultured with activin A for 24, 48 and 72 h.
RESULTS: The proliferation of SNU-16 cells was down regulated by activin A whereas other cells showed no change. Basal level of inhibin/activin subunits, activin receptors, Smads, and p21CIP1/WAF1 except for activin βB mRNAs was observed to have differential expression patterns in the human gastric cancer cell lines, AGS, KATO III, SNU-1, SNU-5, SNU-16, SNU-484, SNU-601, SNU-638, SNU-668, and SNU-719. Interestingly, significantly higher expressions of ActR IIA and IIB mRNAs were observed in SNU-16 cells when compared to other cells. After activin treatment, ActR IA, IB, and IIA mRNA levels were decreased whereas ActR IIB mRNA level increased in SNU-16 cells. Smad4 mRNA increased for up to 48 h whereas Smad7 mRNA increased sharply at 24 h and returned to the initial level at 48 h in SNU-16 cells. In addition, expression of the p21CIP1/WAF1, the mitotic inhibitor, peaked at 72 h after activin treatment in SNU-16 cells.
CONCLUSION: Our results suggest that inhibition of cell growth by activin is regulated by the negative feedback effect of Smad7 on the activin signaling pathway, and is mediated through p21CIP1/WAF1 activation in SNU-16 cells.
Collapse
Affiliation(s)
- Young-Il Kim
- East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
30
|
Valdimarsdottir G, Goumans MJ, Itoh F, Itoh S, Heldin CH, Dijke PT. Smad7 and protein phosphatase 1alpha are critical determinants in the duration of TGF-beta/ALK1 signaling in endothelial cells. BMC Cell Biol 2006; 7:16. [PMID: 16571110 PMCID: PMC1479810 DOI: 10.1186/1471-2121-7-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/29/2006] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In endothelial cells (EC), transforming growth factor-beta (TGF-beta) can bind to and transduce signals through ALK1 and ALK5. The TGF-beta/ALK5 and TGF-beta/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-beta signaling is an important specificity determinant for signaling responses. TGF-beta/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently. RESULTS The temporal activation of TGF-beta-induced Smad1/5 phosphorylation in ECs was found to be affected by de novo protein synthesis, and ALK1 and Smad5 expression levels determined signal strength of TGF-beta/ALK1 signaling pathway. Smad7 and protein phosphatase 1alpha (PP1alpha) mRNA expression levels were found to be specifically upregulated by TGF-beta/ALK1. Ectopic expression of Smad7 or PP1alpha potently inhibited TGF-beta/ALK1-induced Smad1/5 phosphorylation in ECs. Conversely, siRNA-mediated knockdown of Smad7 or PP1alpha enhanced TGF-beta/ALK1-induced signaling responses. PP1alpha interacted with ALK1 and this association was further potentiated by Smad7. Dephosphorylation of the ALK1, immunoprecipitated from cell lysates, was attenuated by a specific PP1 inhibitor. CONCLUSION Our results suggest that upon its induction by the TGF-beta/ALK1 pathway, Smad7 may recruit PP1alpha to ALK1, and thereby control TGF-beta/ALK1-induced Smad1/5 phosphorylation.
Collapse
MESH Headings
- Activin Receptors/analysis
- Activin Receptors/physiology
- Activin Receptors, Type II/analysis
- Activin Receptors, Type II/physiology
- Adenoviridae/genetics
- Animals
- Blotting, Western
- Cell Line
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Endothelium, Vascular/virology
- Gene Expression Regulation/physiology
- Immunoprecipitation
- Mice
- Phosphoprotein Phosphatases/analysis
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/physiology
- Phosphorylation
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/physiology
- Smad1 Protein/metabolism
- Smad7 Protein/analysis
- Smad7 Protein/genetics
- Smad7 Protein/physiology
- Transcription, Genetic/physiology
- Transfection
- Transforming Growth Factor beta/analysis
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Gudrun Valdimarsdottir
- Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Marie-José Goumans
- Heart Lung Center, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Fumiko Itoh
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Susumu Itoh
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Carl-Henrik Heldin
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Peter ten Dijke
- Ludwig Institute for Cancer Research, Uppsala University, Biomedical Center, S-751 24, Uppsala, Sweden
- Molecular Cell Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
31
|
Abstract
Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
32
|
Zhu X, Topouzis S, Liang LF, Stotish RL. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 2005; 26:262-72. [PMID: 15183844 DOI: 10.1016/j.cyto.2004.03.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/16/2004] [Accepted: 03/15/2004] [Indexed: 01/03/2023]
Abstract
As a member of the TGF-beta superfamily, myostatin is a specific negative regulator of skeletal muscle mass. To identify the downstream components in the myostatin signal transduction pathway, we used a luciferase reporter assay to elucidate myostatin-induced activity. The myostatin-induced transcription requires the participation of regulatory Smads (Smad2/3) and Co-Smads (Smad4). Conversely, inhibitory Smad7, but not Smad6, dramatically reduces the myostatin-induced transcription. This Smad7 inhibition is enhanced by co-expression of Smurf1. We have also shown that Smad7 expression is stimulated by myostatin via the interaction between Smad2, Smad3, Smad4 and the SBE (Smad binding element) in the Smad7 promoter. These results suggest that the myostatin signal transduction pathway is regulated by Smad7 through a negative feedback mechanism.
Collapse
Affiliation(s)
- Xiangyang Zhu
- MetaMorphix Inc., 8510A Corridor Road, Savage, MD 20763, USA.
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Kwang Youl Lee
- Department of Biochemistry, School of Medicine, and Medical Research Institute, Chungbuk National University, Chungju 361-763, South Korea
| | | |
Collapse
|
34
|
Azmi P, Seth A. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer 2005; 41:2549-60. [PMID: 16226459 DOI: 10.1016/j.ejca.2005.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta pathway and EGFR pathway.
Collapse
Affiliation(s)
- Peter Azmi
- Department of Anatomic Pathology and Division of Molecular and Cellular Biology, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | | |
Collapse
|
35
|
McMillan SJ, Xanthou G, Lloyd CM. Therapeutic administration of Budesonide ameliorates allergen-induced airway remodelling. Clin Exp Allergy 2005; 35:388-96. [PMID: 15784120 PMCID: PMC4558957 DOI: 10.1111/j.1365-2222.02193.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Airway inflammation and remodelling are important pathophysiologic features of chronic asthma. Although current steroid use demonstrates anti-inflammatory activity, there are limited effects on the structural changes in the lung tissue. OBJECTIVE We have used a mouse model of prolonged allergen challenge that exhibits many of the salient features of airway remodelling in order to investigate the anti-remodelling effects of Budesonide. METHODS Treatment was administered therapeutically, with dosing starting after the onset of established eosinophilic airway inflammation and hyper-reactivity. RESULTS Budesonide administration reduced airway hyper-reactivity and leukocyte infiltration in association with a decrease in production of the Th2 mediators, IL-4, IL-13 and eotaxin-1. A reduction in peribronchiolar collagen deposition and mucus production was observed. Moreover, our data show for the first time that, Budesonide treatment regulated active transforming growth factor (TGF)-beta signalling with a reduction in the expression of pSmad 2 and the concomitant up-regulation of Smad 7 in lung tissue sections. CONCLUSIONS Therefore, we have determined that administration of Budesonide modulates the progression of airway remodelling following prolonged allergen challenge via regulation of inflammation and active TGF-beta signalling.
Collapse
Affiliation(s)
- S J McMillan
- Leukocyte Biology Section, Division of Biomedical Sciences, Faculty of Medicine Imperial College, London SW7 2AZ, UK
| | | | | |
Collapse
|
36
|
McMillan SJ, Xanthou G, Lloyd CM. Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-beta antibody: effect on the Smad signaling pathway. THE JOURNAL OF IMMUNOLOGY 2005; 174:5774-80. [PMID: 15843580 DOI: 10.4049/jimmunol.174.9.5774] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Airway inflammation and remodeling are important pathophysiologic features of chronic asthma. Previously, we have developed a mouse model of prolonged allergen challenge which exhibits many characteristics of chronic asthma such as goblet cell hyperplasia and subepithelial collagen deposition, in association with an increase in lung expression of the profibrotic mediator, TGF-beta. The aim of this study was to determine the effects of blockade of TGF-beta on the development of airway inflammation and remodeling using our murine model of prolonged allergen challenge. Importantly anti-TGF-beta Ab was administered therapeutically, with dosing starting after the onset of established eosinophilic airway inflammation. Therapeutic treatment of mice with anti-TGF-beta Ab significantly reduced peribronchiolar extracellular matrix deposition, airway smooth muscle cell proliferation, and mucus production in the lung without affecting established airway inflammation and Th2 cytokine production. Thus, our data suggest that it might be possible to uncouple airway inflammation and remodeling during prolonged allergen challenge. In addition, anti-TGF-beta Ab treatment was shown to regulate active TGF-beta signaling in situ with a reduction in the expression of phospho-Smad 2 and the concomitant up-regulation of Smad 7 in lung sections. Therefore, this is the first report to suggest that anti-TGF-beta Ab treatment prevents the progression of airway remodeling following allergen challenge even when given in a therapeutic mode. Moreover, the molecular mechanism behind this effect may involve regulation of active TGF-beta signaling.
Collapse
Affiliation(s)
- Sarah J McMillan
- Leukocyte Biology Section, Division of Biomedical Sciences, Faculty of Medicine Imperial College, London, United Kingdom
| | | | | |
Collapse
|
37
|
Boyer Arnold N, Korc M. Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. J Biol Chem 2005; 280:21858-66. [PMID: 15811853 DOI: 10.1074/jbc.m500583200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smad7 is overexpressed in 50% of human pancreatic cancers. COLO-357 pancreatic cancer cells engineered to overexpress Smad7 are resistant to the actions of transforming growth factor-beta1 (TGF-beta1) with respect to growth inhibition and cisplatin-induced apoptosis but not with respect to modulation of gene expression. To delineate the mechanisms underlying these divergent consequences of Smad7 overexpression, we studied the effects of Smad7 on TGF-beta1-dependent signaling pathways and cell cycle regulating proteins. TGF-beta1 induced the phosphorylation of MAPK, p38 MAPK, and AKT2 irrespective of the levels of Smad7, and inhibitors of these pathways did not alter TGF-beta1 actions on cell growth. By contrast, Smad7 overexpression interfered with TGF-beta1-mediated attenuation of cyclin A and B levels, inhibition of cdc2 dephosphorylation and CDK2 inactivation, up-regulation of p27, and the maintenance of the retinoblastoma protein (RB) in a hypophosphorylated state. Smad7 also suppressed TGF-beta1-mediated inhibition of E2F activity but did not alter TGF-beta1-mediated phosphorylation of Smad2, the nuclear translocation of Smad2/3/4, or DNA binding of the Smad2/3/4 complex. Although Smad7 did not associate with the type I TGF-beta receptor (TbetaRI), SB-431542, an inhibitor of the kinase activity of this receptor, blocked TGF-beta1-mediated effects on Smad-2 phosphorylation. These findings point toward a novel paradigm whereby Smad7 acts to functionally inactivate RB and de-repress E2F without blocking the activation of TbetaRI and the nuclear translocation of Smad2/3, thereby allowing for TGF-beta1 to exert effects in a cancer cell that is resistant to TGF-beta1-mediated growth inhibition.
Collapse
Affiliation(s)
- Nichole Boyer Arnold
- Department of Medicine, Dartmouth-Hitchcock Medical Center and Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
38
|
Chadwick K, Shojaei F, Gallacher L, Bhatia M. Smad7 alters cell fate decisions of human hematopoietic repopulating cells. Blood 2005; 105:1905-15. [PMID: 15498852 DOI: 10.1182/blood-2004-03-0881] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractIntracellular Smad proteins mediate signal transduction of the transforming growth factor-β (TGF-β) superfamily that play pleiotropic roles in hematopoietic development, suggesting that intracellular Smad proteins may play key roles in hematopoietic regulation. Although inhibitory Smad7, which negatively regulates TGF-β signaling, has been implicated in the development of mature hematopoietic cells, a role for Smad7 in regulating more primitive hematopoietic cells has yet to be examined. Here, Smad7 was overexpressed in primary human severe combined immunodeficient (SCID) repopulating cells (SRCs), representing a common myeloid/lymphoid precursor cell with the functional capacity to repopulate the bone marrow of nonobese diabetic (NOD)/SCID recipient mice. Retroviral transduction of Smad7 into human umbilical cord blood (CB)-SRCs caused a shift from lymphoid dominant engraftment toward increased myeloid contribution, and increased the myeloid-committed clonogenic progenitor frequency in reconstituted mice. Neither myeloid nor B-lymphoid lineage developmental stages were compromised by Smad7 overexpression, suggesting Smad7 regulates cell fate commitment decisions of myeloid/lymphoid precursors by augmenting myeloid differentiation at the expense of lymphoid commitment. In addition, global gene expression analysis using microarray was used to identify potential target genes regulated by Smad7 in primitive hematopoietic cells that may control this process. Our study demonstrates a novel and unexpected role for Smad7 in modulating the cell fate decisions of primary multipotent human repopulating cells and establishes a role for Smad7 in the development of primitive human hematopoietic cells.
Collapse
Affiliation(s)
- Kristin Chadwick
- Krembil Centre for Stem Cell Biology, Robarts Research Institute, 100 Perth Dr, London, ON N6A 5K8, Canada
| | | | | | | |
Collapse
|
39
|
Lau MT, Ge W. Cloning of Smad2, Smad3, Smad4, and Smad7 from the goldfish pituitary and evidence for their involvement in activin regulation of goldfish FSHbeta promoter activity. Gen Comp Endocrinol 2005; 141:22-38. [PMID: 15707600 DOI: 10.1016/j.ygcen.2004.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/19/2004] [Accepted: 10/29/2004] [Indexed: 11/16/2022]
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein consisting of an alpha subunit and a unique beta subunit, is essential for gonadal development and function in vertebrates including teleosts. FSH is regulated by a variety of neuroendocrine and endocrine factors, and its biosynthesis is primarily determined by the expression of the beta subunit. Although the regulation of FSH biosynthesis has been well documented in mammals, the molecular mechanisms underlying the regulation are poorly understood. Our previous studies demonstrated that activin stimulated goldfish FSHbeta expression in the primary pituitary cell culture and enhanced its promoter activity in the mouse gonadotrope cell line LbetaT-2 cells. However, little is known about the signal transduction pathway involved in the transcriptional activation of this gene by activin. To assess the involvement of intracellular signaling protein Smads in regulating goldfish FSHbeta promoter, we first cloned full-length cDNAs for goldfish Smad2, Smad3, Smad4, and Smad7 from the pituitary. All Smads cloned show high sequence conservation with their mammalian counterparts. The spatial expression of these Smads overlapped with that of activin subunits and its receptors in various tissues examined. In addition, we demonstrated that activin induced Smad3 and Smad7 expression, but not Smad2 and Smad4. Co-transfection of Smad2 or Smad3 cDNA into the LbetaT-2 cells with the reporter construct of goldfish FSHbeta promoter significantly enhanced basal and activin-stimulated reporter (SEAP, secreted alkaline phosphatase) expression, while Smad7 completely blocked basal and Smad2/3-stimulated FSHbeta activity. Interestingly, the effect of Smad3 was much higher than that of Smad2, suggesting that Smad3 is likely the principal signal transducing molecule involved in activin stimulation of FSHbeta expression in the goldfish. This work lays a foundation for further analysis of goldfish FSHbeta promoter for the cis-regulatory elements involved in activin signaling.
Collapse
Affiliation(s)
- Man-Tat Lau
- Department of Biology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | |
Collapse
|
40
|
Pardali K, Kowanetz M, Heldin CH, Moustakas A. Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21WAF1/Cip1. J Cell Physiol 2005; 204:260-72. [PMID: 15690394 DOI: 10.1002/jcp.20304] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGF-beta) inhibits epithelial cell growth, in part via transcriptional induction of the cell cycle inhibitor p21(WAF1/Cip1) (p21). We show that bone morphogenetic protein (BMP)-7 induces higher p21 expression than TGF-beta1 in various epithelial cells. Despite this, BMP-7 only weakly suppresses epithelial cell proliferation, as Id2, a cell cycle-promoting factor, becomes concomitantly induced by BMP-7. Signaling studies with all type I receptors of the TGF-beta superfamily show that BMP receptors induce higher p21 expression than TGF-beta/activin receptors. Smad4 is essential for p21 regulation by all receptor pathways. Based on the previously known ability of c-Myc to block p21 expression and epithelial growth arrest in response to TGF-beta1, we demonstrate that ectopic c-Myc expression can abrogate Smad-mediated p21 induction by all TGF-beta and BMP receptors. Furthermore, p21 induction by all receptor pathways can be blocked by the natural inhibitors of the TGF-beta superfamily. Smad7 inhibits all pathways whereas Smad6 selectively inhibits the BMP pathways. The observed pathway specificity reflects the efficiency by which BMP Smads, compared to TGF-beta Smads, transactivate the p21 promoter. In addition, BMP-specific Smads, Smad1, Smad5, and especially Smad8, induce endogenous p21 mRNA and protein levels, while they fail to induce epithelial growth inhibition when compared to TGF-beta receptor-phosphorylated Smads (R-Smads), Smad2 and Smad3. Thus, p21 is a common target of all TGF-beta superfamily pathways. However, the ability of TGF-beta superfamily members to induce cell growth arrest depends on the regulation of additional gene targets.
Collapse
|
41
|
Undevia NS, Dorscheid DR, Marroquin BA, Gugliotta WL, Tse R, White SR. Smad and p38-MAPK signaling mediates apoptotic effects of transforming growth factor-beta1 in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L515-24. [PMID: 15132952 DOI: 10.1152/ajplung.00044.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.
Collapse
Affiliation(s)
- Nidhi S Undevia
- Univ. of Chicago, Sect. of Pulmonary and Critical Care Medicine, 5841 S. Maryland Ave., MC 6076, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
42
|
Smith L, Dahler AL, Cavanagh LL, Popa C, Barnes LM, Serewko-Auret MMM, Fai Wong C, Saunders NA. Modulation of proliferation-specific and differentiation-specific markers in human keratinocytes by SMAD7. Exp Cell Res 2004; 294:356-65. [PMID: 15023526 DOI: 10.1016/j.yexcr.2003.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/08/2003] [Indexed: 10/26/2022]
Abstract
We examined the potential role of SMAD7 in human epidermal keratinocyte differentiation. Overexpression of SMAD7 inhibited the activity of the proliferation-specific promoters for the keratin 14 and cdc2 genes and reduced the expression of the mRNA for the proliferation-specific genes cdc2 and E2F1. The ability of SMAD7 to suppress cdc2 promoter activity was lost in transformed keratinocyte cell lines and was mediated by a domain(s) located between aa 195-395 of SMAD7. This domain lies outside the domain required to inhibit TGFbeta1 signaling, suggesting that this activity is mediated by a novel functional domain(s). Examination of AP1, NFkappaB, serum response element, Gli, wnt, and E2F responsive reporters indicated that SMAD7 significantly suppressed the E2F responsive reporter and modestly increased AP1 activity in proliferating keratinocytes. These data suggest that SMAD7 may have a role in TGFbeta-independent signaling events in proliferating/undifferentiated keratinocytes. The effects of SMAD7 in differentiated keratinocytes indicated a more traditional role for SMAD7 as an inhibitor of TGFbeta action. SMAD7 was unable to initiate the expression of differentiation markers but was able to superinduce/derepress differentiation-specific markers and genes in differentiated keratinocytes. This latter role is consistent with the ability of SMAD7 to inhibit TGFbeta-mediated suppression of keratinocyte differentiation and suggest that the opposing actions of SMAD7 and TGFbeta may serve to modulate squamous differentiation.
Collapse
Affiliation(s)
- Louise Smith
- Epithelial Pathobiology Group, Cancer Biology Programme, Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004; 6:R215-31. [PMID: 15084245 PMCID: PMC400675 DOI: 10.1186/bcr778] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 02/10/2004] [Accepted: 02/20/2004] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Transforming growth factor (TGF)-beta1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell-cell contacts. Although there is growing interest in TGF-beta1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS To identify alternative cell systems in which to study TGF-beta1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-beta1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-beta1 was also determined by [3H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS TGF-beta1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-beta1. In contrast, TGF-beta1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-beta1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-beta1-induced EMT. CONCLUSION The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-beta1, most show evidence of TGF-beta1 signal transduction, but only a few cell lines undergo TGF-beta1-mediated EMT.
Collapse
Affiliation(s)
- Kimberly A Brown
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary E Aakre
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnieska E Gorska
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James O Price
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Medical Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sakina E Eltom
- Department of Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jennifer A Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harold L Moses
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. ACTA ACUST UNITED AC 2004; 164:291-300. [PMID: 14718519 PMCID: PMC2172339 DOI: 10.1083/jcb.200307151] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cascade of phosphorylation is a pivotal event in transforming growth factor β (TGFβ) signaling. Reversible phosphorylation regulates fundamental aspects of cell activity. TGFβ-induced Smad7 binds to type I receptor (TGFβ type I receptor; TβRI) functioning as a receptor kinase antagonist. We found Smad7 interacts with growth arrest and DNA damage protein, GADD34, a regulatory subunit of the protein phosphatase 1 (PP1) holoenzyme, which subsequently recruits catalytic subunit of PP1 (PP1c) to dephosphorylate TβRI. Blocking Smad7 expression by RNA interference inhibits association of GADD34–PP1c complex with TβRI, indicating Smad7 acts as an adaptor protein in the formation of the PP1 holoenzyme that targets TβRI for dephosphorylation. SARA (Smad anchor for receptor activation) enhances the recruitment PP1c to the Smad7–GADD34 complex by controlling the specific subcellular localization of PP1c. Importantly, GADD34–PP1c recruited by Smad7 inhibits TGFβ-induced cell cycle arrest and mediates TGFβ resistance in responding to UV light irradiation. The dephosphorylation of TβRI mediated by Smad7 is an effective mechanism for governing negative feedback in TGFβ signaling.
Collapse
Affiliation(s)
- Weibin Shi
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Carey JL, Sasur LM, Kawakubo H, Gupta V, Christian B, Bailey PM, Maheswaran S. Mutually antagonistic effects of androgen and activin in the regulation of prostate cancer cell growth. Mol Endocrinol 2003; 18:696-707. [PMID: 14684851 DOI: 10.1210/me.2003-0360] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the TGFbeta superfamily, is expressed in the prostate and inhibits growth. We demonstrate that the effects of activin and androgen on regulation of prostate cancer cell growth are mutually antagonistic. In the absence of androgen, activin induced apoptosis in the androgen-dependent human prostate cancer cell line LNCaP, an effect suppressed by androgen administration. Although activin by itself did not alter the cell cycle distribution, it potently suppressed androgen- induced progression of cells into S-phase of the cell cycle and thus inhibited androgen-stimulated growth of LNCaP cells. Expression changes in cell cycle regulatory proteins such as Rb, E2F-1, and p27 demonstrated a strong correlation with the mutually antagonistic growth regulatory effects of activin and androgen. The inhibitory effect of activin on growth was independent of serine, serine, valine, serine motif phosphorylation of Smad3. Despite their antagonistic effect on growth, activin and androgen costimulated the expression of prostate-specific antigen through a Smad3-mediated mechanism. These observations indicate the existence of a complex cross talk between activin and androgen signaling in regulation of gene expression and growth of the prostate.
Collapse
Affiliation(s)
- Jennifer L Carey
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
ten Dijke P, Korchynskyi O, Valdimarsdottir G, Goumans MJ. Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol 2003; 211:105-13. [PMID: 14656483 DOI: 10.1016/j.mce.2003.09.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional proteins that regulate the fate of different cell types, including mesenchymal and endothelial cells. BMPs inhibit myogenic differentiation, but promote the differentiation of mesenchymal cells into osteoblasts. Furthermore, endothelial migration and tube formation are stimulated by BMPs. Like other members of the transforming growth factor-beta (TGF-beta) superfamily, BMPs elicit their cellular effects via specific types I and II serine/threonine receptors. The activated BMP type I receptor phosphorylates specific receptor-regulated (R)-Smad proteins, which assemble into heteromeric complexes with common partner (Co)-Smad4. Heteromeric Smad complexes efficiently translocate into the nucleus, where they regulate the transcription of target genes. Inhibitors of differentiation (Id) are genes that are specifically induced by BMPs in tissues of different origin. Promoter analysis of Id1 indicates three distinct sequence elements that are sufficient and essential for efficient BMP-induced activation. Furthermore, recent studies reveal an important effector function for Id1 in various BMP-induced biological responses.
Collapse
Affiliation(s)
- Peter ten Dijke
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Benchabane H, Wrana JL. GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol Cell Biol 2003; 23:6646-61. [PMID: 12944489 PMCID: PMC193708 DOI: 10.1128/mcb.23.18.6646-6661.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Smad7, an inhibitor of transforming growth factor beta superfamily signaling, is induced by bone morphogenetic protein (BMP) in an inhibitory feedback loop. Here, we identify multiple BMP response elements (BREs) in the Smad7 gene and demonstrate that they function differentially to interpret BMP signals in a cell type-specific manner. Two BREs (BRE-1 and -2) reside in the promoter region. One of these contains several conserved Smad1 and Smad4 binding sites that cooperate to mediate BMP-dependent induction, most likely in the absence of DNA binding partners. The third BRE (I-BRE) resides in the first intron and contains GATA factor binding sites. GATA-1, -5, or -6 is required for strong activation of I-BRE, and we show that they assemble with Smad1 on the I-BRE in living cells. Activation of the I-BRE is mediated by a specific region in GATA-5 and -6 but does not require direct physical interaction with Smad1. Comparison of I-BRE to BRE-1 showed that I-BRE is more responsive to low BMP concentrations. Moreover, analysis by chromatin immunoprecipitation experiments demonstrates that the endogenous I-BRE is occupied more robustly by endogenous Smad1 than is BRE-1. This correlates with regulation of the Smad7 gene, which is induced at lower BMP concentrations in GATA-expressing cell lines compared to non-GATA-expressing lines. These data thus define how cooperative and noncooperative Smad-dependent transcriptional regulation can function to interpret different BMP concentrations.
Collapse
Affiliation(s)
- Hassina Benchabane
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Room 1075, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
48
|
Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JXJ. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L740-54. [PMID: 12740218 DOI: 10.1152/ajplung.00284.2002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular medial hypertrophy in primary pulmonary hypertension (PPH) is mainly caused by increased proliferation and decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Mutations of the bone morphogenetic protein (BMP) receptor type II (BMP-RII) gene have been implicated in patients with familial and sporadic PPH. The objective of this study was to elucidate the apoptotic effects of BMPs on normal human PASMCs and to examine whether BMP-induced effects are altered in PASMCs from PPH patients. Using RT-PCR, we detected six isoforms of BMPs (BMP-1 through -6) and three subunits of BMP receptors (BMP-RIa, -RIb, and -RII) in PASMCs. Treatment of normal PASMCs with BMP-2 or -7 (100-200 nM, 24-48 h) markedly increased the percentage of cells undergoing apoptosis. The BMP-2-mediated apoptosis in normal PASMCs was associated with a transient activation or phosphorylation of Smad1 and a marked downregulation of the antiapoptotic protein Bcl-2. In PASMCs from PPH patients, the BMP-2- or BMP-7-induced apoptosis was significantly inhibited compared with PASMCs from patients with secondary pulmonary hypertension. These results suggest that the antiproliferative effect of BMPs is partially due to induction of PASMC apoptosis, which serves as a critical mechanism to maintain normal cell number in the pulmonary vasculature. Inhibition of BMP-induced PASMC apoptosis in PPH patients may play an important role in the development of pulmonary vascular medial hypertrophy in these patients.
Collapse
Affiliation(s)
- Shen Zhang
- Dept. of Medicine, UCSD Medical Center, 200 West Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ota F, Maeshima A, Yamashita S, Ikeuchi H, Kaneko Y, Kuroiwa T, Hiromura K, Ueki K, Kojima I, Nojima Y. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2003; 48:2442-9. [PMID: 13130463 DOI: 10.1002/art.11249] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate the expression of activin A and its receptors in rheumatoid arthritis (RA) synovial tissues, and to determine the effect of activin A on cultured fibroblast-like synoviocytes (FLS). METHODS The localization of activin A and activin type II receptor (ARII) in synovial tissues of RA patients was analyzed by immunohistochemistry. The expression of activin A and activin receptors in human cultured FLS was examined by reverse transcriptase-polymerase chain reaction and Western blotting. Enzyme-linked immunosorbent assay was used to measure activin A in culture supernatants. The cell growth of FLS was determined by (3)H-thymidine incorporation and MTT assay. RESULTS Immunohistochemical analysis confirmed the up-regulation of activin A in rheumatoid synovium as compared with osteoarthritis or normal joint tissues. CD68+ macrophage-lineage cells and vimentin-positive FLS were identified as activin-producing cells in rheumatoid synovium. Both cell types also expressed ARII. The expression of activin A and ARII on cultured FLS was confirmed at the protein and messenger RNA levels. Interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha, and transforming growth factor beta activated FLS to secrete activin A. Recombinant activin A accelerated the proliferation of FLS, while follistatin, an endogenous activin antagonist, partially inhibited FLS proliferation induced by IL-1 beta. CONCLUSION These results suggest that activin A acts as a growth factor of FLS in RA.
Collapse
Affiliation(s)
- Fumie Ota
- Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Yansong Bian
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | | |
Collapse
|