1
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
2
|
Sawasdikosol S, Burakoff S. A perspective on HPK1 as a novel immuno-oncology drug target. eLife 2020; 9:55122. [PMID: 32896273 PMCID: PMC7478889 DOI: 10.7554/elife.55122] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
In this perspective review, the role Hematopoietic Progenitor Kinase 1 (HPK1) in tumor immunity will be reviewed, with special emphasis on how T cells are negatively-regulated at different junctures of cancer-immunity cycle by this regulatory kinase. The review will highlight the strengths and weaknesses of HPK1 as a candidate target for novel immuno-oncology (IO) drug development that is centered on the use of small molecule kinase inhibitor to modulate the immune response against cancer. Such a therapeutic approach, if proven successful, could supplement the cancer cell-centric standard of care therapies in order to fully meet the therapeutic needs of cancer patients.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| | - Steven Burakoff
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| |
Collapse
|
3
|
Yang CY, Chuang HC, Tsai CY, Xiao YZ, Yang JY, Huang RH, Shih YC, Tan TH. DUSP11 Attenuates Lipopolysaccharide-Induced Macrophage Activation by Targeting TAK1. THE JOURNAL OF IMMUNOLOGY 2020; 205:1644-1652. [PMID: 32796023 DOI: 10.4049/jimmunol.2000334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/19/2020] [Indexed: 01/23/2023]
Abstract
Dual-specificity phosphatase 11 (DUSP11, also named as PIR1) is a member of the atypical DUSP protein tyrosine phosphatase family. DUSP11 is only known to be an RNA phosphatase that regulates noncoding RNA stability. To date, the role of DUSP11 in immune cell signaling and immune responses remains unknown. In this study, we generated and characterized the immune cell functions of DUSP11-deficient mice. We identified TGF-β-activated kinase 1 (TAK1) as a DUSP11-targeted protein. DUSP11 interacted directly with TAK1, and the DUSP11-TAK1 interaction was enhanced by LPS stimulation in bone marrow-derived macrophages. DUSP11 deficiency enhanced the LPS-induced TAK1 phosphorylation and cytokine production in bone marrow-derived macrophages. Furthermore, DUSP11-deficient mice were more susceptible to LPS-induced endotoxic shock. The LPS-induced serum levels of IL-1β, TNF-α, and IL-6 were significantly elevated in DUSP11-deficient mice compared with those of wild-type mice. The data indicate that DUSP11 inhibits LPS-induced macrophage activation by targeting TAK1.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 33302 Tao-Yuan, Taiwan; and
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan
| | - Yu-Zhi Xiao
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan
| | - Jhih-Yu Yang
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan
| | - Rou-Huei Huang
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan
| | - Ying-Chun Shih
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35053 Zhunan, Taiwan; .,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
4
|
Liu J, Curtin J, You D, Hillerman S, Li-Wang B, Eraslan R, Xie J, Swanson J, Ho CP, Oppenheimer S, Warrack BM, McNaney CA, Nelson DM, Blum J, Kim T, Fereshteh M, Reily M, Shipkova P, Murtaza A, Sanjuan M, Hunt JT, Salter-Cid L. Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance. PLoS One 2019; 14:e0212670. [PMID: 30913212 PMCID: PMC6435129 DOI: 10.1371/journal.pone.0212670] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.
Collapse
Affiliation(s)
- Jinqi Liu
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Joshua Curtin
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Dan You
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Stephen Hillerman
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Bifang Li-Wang
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Rukiye Eraslan
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jenny Xie
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jesse Swanson
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Ching-Ping Ho
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Simone Oppenheimer
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Bethanne M. Warrack
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Colleen A. McNaney
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - David M. Nelson
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jordan Blum
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Taeg Kim
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Mark Fereshteh
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Reily
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Petia Shipkova
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Anwar Murtaza
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Miguel Sanjuan
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - John T. Hunt
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Luisa Salter-Cid
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| |
Collapse
|
5
|
Chen J, Hutchison KE, Bryan AD, Filbey FM, Calhoun VD, Claus ED, Lin D, Sui J, Du Y, Liu J. Opposite Epigenetic Associations With Alcohol Use and Exercise Intervention. Front Psychiatry 2018; 9:594. [PMID: 30498460 PMCID: PMC6249510 DOI: 10.3389/fpsyt.2018.00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Alcohol use disorder (AUD) is a devastating public health problem in which both genetic and environmental factors play a role. Growing evidence supports that epigenetic regulation is one major mechanism in neuroadaptation that contributes to development of AUD. Meanwhile, epigenetic patterns can be modified by various stimuli including exercise. Thus, it is an intriguing question whether exercise can lead to methylation changes that are opposite to those related to drinking. We herein conducted a comparative study to explore this issue. Three cohorts were profiled for DNA methylation (DNAm), including a longitudinal exercise intervention cohort (53 healthy participants profiled at baseline and after a 12-months exercise intervention), a cross-sectional case-control cohort (81 hazardous drinkers and 81 healthy controls matched in age and sex), and a cross-sectional binge drinking cohort (281 drinkers). We identified 906 methylation sites showing significant DNAm differences between drinkers and controls in the case-control cohort, as well as, associations with drinking behavior in the drinking cohort. In parallel, 341 sites were identified for significant DNAm alterations between baseline and follow-up in the exercise cohort. Thirty-two sites overlapped between these two set of findings, of which 15 sites showed opposite directions of DNAm associations between exercise and drinking. Annotated genes of these 15 sites were enriched in signaling pathways related to synaptic plasticity. In addition, the identified methylation sites significantly associated with impaired control over drinking, suggesting relevance to neural function. Collectively, the current findings provide preliminary evidence that exercise has the potential to partially reverse DNAm differences associated with drinking at some CpG sites, motivating rigorously designed longitudinal studies to better characterize epigenetic effects with respect to prevention and intervention of AUD.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM, United States
| | - Kent E Hutchison
- The Mind Research Network, Albuquerque, NM, United States.,Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Eric D Claus
- The Mind Research Network, Albuquerque, NM, United States
| | - Dongdong Lin
- The Mind Research Network, Albuquerque, NM, United States
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM, United States.,Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Du
- The Mind Research Network, Albuquerque, NM, United States.,School of Computer & Information Technology, Shanxi University, Taiyuan, China
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
6
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
7
|
Abstract
The ADP-ribosyltransferase C3 exoenzyme from C. botulinum selectively inactivates Rho and is therefore often used as an inhibitor for investigations on Rho signaling. Previous studies of our group revealed that C3 inhibited cell proliferation in HT22 cells accompanied by increased transcriptional activities of Sp1 and c-Jun and reduced levels of cyclin D1, p21 and phosphorylated p38. By use of a p38α-deficient and a p38α-expressing control cell line, the impact of p38 on C3-mediated inhibition of cell proliferation and alterations on MAPK signaling was studied by growth kinetic experiments and Western blot analyses. The cell growth of p38α-expressing cells was impaired by C3, while the p38α-deficient cells did not exhibit any C3-induced effect. The activity of the MKK3/6-p38 MAPK signaling cascade as well as the phosphorylation of c-Jun and JNK was reduced by C3 exclusively in the presence of p38α. Moreover, the activity of upstream MAPKKK TAK1 was lowered in the p38α-expressing cells. These results indicated a resistance of p38α-deficient cells to C3-mediated inhibition of cell growth. This anti-proliferative effect was highly associated with the decreased activity of c-Jun and upstream p38 and JNK MAPK signaling as a consequence of the absence of p38α in these cells.
Collapse
|
8
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
9
|
Wang H, Chen Y, Lin P, Li L, Zhou G, Liu G, Logsdon C, Jin J, Abbruzzese JL, Tan TH, Wang H. The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1. J Biol Chem 2013; 289:4009-17. [PMID: 24362026 DOI: 10.1074/jbc.m113.520106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HPK1, a member of mammalian Ste20-like serine/threonine kinases, is lost in >95% pancreatic cancer through proteasome-mediated degradation. However, the mechanism of HPK1 loss has not been defined. The aims of this study are to identify the ubiquitin ligase and to examine the mechanisms that targets HPK1 degradation. We found that the CUL7/Fbxw8 ubiquitin ligase targeted HPK1 for degradation via the 26 S proteasome. The ubiquitination of HPK1 required its kinase activity and autophosphorylation. Wild-type protein phosphatase 4 (PP4), but not the phosphatase-dead PP4 mutant, PP4-RL, inhibits the interaction of Fbxw8 with HPK1 and Fbxw8-mediated ubiquitination of HPK1. In addition, we showed that Thr-355 of HPK1 is a key PP4 dephosphorylation site, through which CUL7/Fbxw8 ubiquitin ligase and PP4 regulates HPK1 stability. Knockdown of Fbxw8 restores endogenous HPK1 protein expression and inhibits cell proliferation of pancreatic cancer cells. Our study demonstrated that targeted degradation of HPK1 by the CUL7/Fbxw8 ubiquitin ligase constitutes a negative-feedback loop to restrain the activity of HPK1 and that CUL7/Fbxw8 ubiquitin ligase promotes pancreatic cancer cell proliferation. CUL7/Fbxw8 ubiquitin ligase-mediated HPK1 degradation revealed a direct link and novel role of CUL7/Fbxw8 ubiquitin ligase in the MAPK pathway, which plays a critical role in cell proliferation and differentiation.
Collapse
Affiliation(s)
- Hua Wang
- From the Departments of Gastrointestinal Medical Oncology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang X, Li JP, Chiu LL, Lan JL, Chen DY, Boomer J, Tan TH. Attenuation of T cell receptor signaling by serine phosphorylation-mediated lysine 30 ubiquitination of SLP-76 protein. J Biol Chem 2012; 287:34091-100. [PMID: 22902619 DOI: 10.1074/jbc.m112.371062] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) is an adaptor protein that is essential for T cell development and T cell receptor (TCR) signaling activation. Previous studies have identified an important negative feedback regulation of SLP-76 by HPK1 (hematopoietic progenitor kinase 1; MAP4K1)-induced Ser-376 phosphorylation. Ser-376 phosphorylation of SLP-76 mediates 14-3-3 binding, resulting in the attenuation of SLP-76 activation and downstream signaling; however, the underlying mechanism of this action remains unknown. Here, we report that phosphorylated SLP-76 is ubiquitinated and targeted for proteasomal degradation during TCR signaling. SLP-76 ubiquitination is mediated by Ser-376 phosphorylation. Furthermore, Lys-30 is identified as a ubiquitination site of SLP-76. Loss of Lys-30 ubiquitination of SLP-76 results in enhanced anti-CD3 antibody-induced ERK and JNK activation. These results reveal a novel regulation mechanism of SLP-76 by ubiquitination and proteasomal degradation of activated SLP-76, which is mediated by Ser-376 phosphorylation, leading to down-regulation of TCR signaling.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang Q, Zhang Y, Yang HS. Pdcd4 knockdown up-regulates MAP4K1 expression and activation of AP-1 dependent transcription through c-Myc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1807-14. [PMID: 22801218 DOI: 10.1016/j.bbamcr.2012.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 12/16/2022]
Abstract
Programmed cell death 4 (Pdcd4) is a novel tumor suppressor, whose expression is frequently down-regulated in several types of cancers. In the present study, we demonstrated that Pdcd4 knockdown up-regulates MAP kinase kinase kinase kinase 1 (MAP4K1) expression and increases phosphorylation of c-Jun. Over-expression of c-Myc in HEK293 cells increases the levels of MAP4K1, MAP4K1 promoter activity, and phospho-c-Jun. Mutation analysis showed that the c-Myc binding site at -536bp (relative to the initiation ATG) of map4k1 promoter responds to c-Myc regulation. In addition, chromatin immunoprecipitation demonstrated that c-Myc directly binds to map4k1 promoter at this site. Down-regulation of c-Myc reverses MAP4K1 expression and AP-1 activation in Pdcd4 knockdown cells. Moreover, over-expression of dominant negative Tcf4 decreases expression of c-Myc and MAP4K1, JNK activation, and AP-1 dependent transcription. Thus, activation of β-catenin/Tcf dependent transcription in Pdcd4 knockdown cells up-regulates MAP4K1 expression and AP-1 activity via c-Myc. The study presented here further reveals in detail the mechanism of how Pdcd4 inhibits tumor cell invasion and provides a functional connection between β-catenin/Tcf and AP-1 dependent transcription.
Collapse
Affiliation(s)
- Qing Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
12
|
Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J Autoimmun 2011; 37:180-9. [PMID: 22014533 DOI: 10.1016/j.jaut.2011.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by T cell overactivation and B cell hyper-stimulation. Hematopoietic progenitor kinase 1 (HPK1, also called MAP4K1) negatively regulates T cell-mediated immune responses. However, the role of HPK1 and the mechanisms that regulate HPK1 expression in SLE remain poorly understood. Using chromatin immunoprecipitation (ChIP) microarray data, we identified markedly increased histone H3 lysine 27 trimethylation (H3K27me3) enrichment at the HPK1 promoter of SLE CD4+ T cells relative to controls, and confirmed this observation using ChIP and real-time PCR experiments. We further found that HPK1 mRNA and protein levels were significantly decreased in CD4+ T cells of patients with SLE, and that this decrease was not caused by exposure to standard SLE medications. Down-regulating HPK1 in healthy CD4+ T cells significantly accelerated T cell proliferation and production of IFNγ and IgG. Consistent with these findings, overexpressing HPK1 in SLE CD4+ T cells caused a significant decrease in T cell reactivity. In addition, we observed a striking decrease in jumonji domain containing 3 (JMJD3) binding, but no marked change in enhancer of zeste homolog 2 (EZH2) binding, at the HPK1 promoter region in SLE CD4+ T cells compared to healthy controls. SiRNA knock down of JMJD3 in healthy CD4+ T cells led to decreased JMJD3 binding and increased H3K27me3 enrichment at the HPK1 promoter region, thus inhibiting the expression of HPK1. Concordantly, plasmid-induced overexpression of JMJD3 in SLE CD4+ T cells led to increased JMJD3 binding, decreased H3K27me3 enrichment, and up-regulated HPK1 expression. Our results show for the first time that inhibited HPK1 expression in SLE CD4+ T cells is associated with loss of JMJD3 binding and increased H3K27me3 enrichment at the HPK1 promoter, contributing to T cell overactivation and B cell overstimulation in SLE. These findings suggest that HPK1 may serve as a novel target for effective SLE therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim SI, Kwak JH, Na HJ, Kim JK, Ding Y, Choi ME. Transforming growth factor-beta (TGF-beta1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-beta receptor kinase activity in mesangial cells. J Biol Chem 2009; 284:22285-22296. [PMID: 19556242 DOI: 10.1074/jbc.m109.007146] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that signals through the interaction of type I (TbetaRI) and type II (TbetaRII) receptors to activate distinct intracellular pathways. TAK1 is a serine/threonine kinase that is rapidly activated by TGF-beta1. However, the molecular mechanism of TAK1 activation is incompletely understood. Here, we propose a mechanism whereby TAK1 is activated by TGF-beta1 in primary mouse mesangial cells. Under unstimulated conditions, endogenous TAK1 is stably associated with TbetaRI. TGF-beta1 stimulation causes rapid dissociation from the receptor and induces TAK1 phosphorylation. Deletion mutant analysis indicates that the juxtamembrane region including the GS domain of TbetaRI is crucial for its interaction with TAK1. Both TbetaRI-mediated TAK1 phosphorylation and TGF-beta1-induced TAK1 phosphorylation do not require kinase activity of TbetaRI. Moreover, TbetaRI-mediated TAK1 phosphorylation correlates with the degree of its association with TbetaRI and requires kinase activity of TAK1. TAB1 does not interact with TGF-beta receptors, but TAB1 is indispensable for TGF-beta1-induced TAK1 activation. We also show that TRAF6 and TAB2 are required for the interaction of TAK1 with TbetaRI and TGF-beta1-induced TAK1 activation in mouse mesangial cells. Taken together, our data indicate that TGF-beta1-induced interaction of TbetaRI and TbetaRII triggers dissociation of TAK1 from TbetaRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation and not by the receptor kinase activity of TbetaRI.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Joon Hyeok Kwak
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hee-Jun Na
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jin Kuk Kim
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Internal Medicine, Bucheon Hospital, Soonchunhyang University, Bucheon, 420-767, Korea
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
14
|
Alzabin S, Bhardwaj N, Kiefer F, Sawasdikosol S, Burakoff S. Hematopoietic Progenitor Kinase 1 Is a Negative Regulator of Dendritic Cell Activation. THE JOURNAL OF IMMUNOLOGY 2009; 182:6187-94. [DOI: 10.4049/jimmunol.0802631] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Wang H, Song X, Logsdon C, Zhou G, Evans DB, Abbruzzese JL, Hamilton SR, Tan TH, Wang H. Proteasome-mediated degradation and functions of hematopoietic progenitor kinase 1 in pancreatic cancer. Cancer Res 2009; 69:1063-70. [PMID: 19141650 DOI: 10.1158/0008-5472.can-08-1751] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) regulates stress responses, proliferation, and apoptosis in hematopoietic cells. In this study, we examined the expression, regulation, and functions of HPK1 in pancreatic ductal adenocarcinomas (PDA). We found that loss of HPK1 protein expression correlated significantly with the progression of pancreatic intraepithelial neoplasias (P = 0.001) and development of invasive PDA. Similarly, HPK1 protein was not expressed in any of eight PDA cell lines examined but was expressed in immortalized human pancreatic duct epithelial (HPDE) cells. There was no difference in HPK1 mRNA levels in PDA cell lines or primary PDA compared with those in HPDE cells or ductal epithelium in chronic pancreatitis and normal pancreas, respectively. Treatment of Panc-1 cells with a proteasome inhibitor, MG132, increased the HPK1 protein levels in a dose-dependent manner, suggesting that alteration in proteasome activity contributes to the loss of HPK1 protein expression in pancreatic cancer. Like the endogenous HPK1, both wild-type HPK1 and its kinase-dead mutant, HPK1-M46, overexpressed in Panc-1 cells, were also targeted by proteasome-mediated degradation. After MG132 withdrawal, wild-type HPK1 protein expression was markedly decreased within 24 hours, but kinase-dead HPK1 mutant protein expression was sustained for up to 96 hours. Therefore, HPK1 kinase activities were required for the loss of HPK1 protein in PDAs. Furthermore, restoring wild-type HPK1 protein in PDA cells led to the increase in p21 and p27 protein expression and cell cycle arrest. Thus, HPK1 may function as a novel tumor suppressor and its loss plays a critical role in pancreatic cancer.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li T, Yu XJ, Zhang GY. Tyrosine phosphorylation of HPK1 by activated Src promotes ischemic brain injury in rat hippocampal CA1 region. FEBS Lett 2008; 582:1894-900. [PMID: 18498770 DOI: 10.1016/j.febslet.2008.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 11/23/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that HPK1 is involved in c-Jun NH2-terminal kinase (JNK) signaling pathway by sequential activation of MLK3-MKK7-JNK3 after cerebral ischemia. Here, we used 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP2) and MK801 to investigate the events upstream of HPK1 in ischemic brain injury. Immunoprecipitation and immunoblot results showed that PP2 and MK801 significantly decreased the activation of Src, HPK1, MLK3, JNK3 and c-Jun, respectively, during ischemia/reperfusion. Histology and TUNEL staining showed PP2 or MK801 protects against neuron death after brain ischemia. We speculate that this unique signaling pathway through the tyrosine phosphorylation of HPK1 promotes ischemic brain injury by activated Src via N-methyl-d-aspartate receptor and, ultimately, the activation of the MLK3-MKK7-JNK3 pathway after cerebral ischemia.
Collapse
Affiliation(s)
- Ting Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China
| | | | | |
Collapse
|
17
|
Sawasdikosol S, Pyarajan S, Alzabin S, Matejovic G, Burakoff SJ. Prostaglandin E2 activates HPK1 kinase activity via a PKA-dependent pathway. J Biol Chem 2007; 282:34693-9. [PMID: 17895239 DOI: 10.1074/jbc.m707425200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that the immunosuppressive eicosanoid, prostaglandin E(2) (PGE(2)), is capable of activating HPK1 in T cells. In this report, we demonstrate that unlike the TCR-induced activation of HPK1 kinase activity, the induction of HPK1 catalytic activity by PGE(2) does not require the presence of phosphotyrosine-based signaling molecules such as Lck, ZAP-70, SLP-76, and Lat. Nor does the PGE(2)-induced HPK1 activation require the intermolecular interaction between its proline-rich regions and the SH3 domain-containing adaptor proteins, as required by the signaling from the TCR to HPK1. Instead, our study reveals that PGE(2) signal to HPK1 via a 3' -5 '-cyclic adenosine monophosphate-regulated, PKA-dependent pathway. Consistent with this observation, changing the serine 171 residue that forms the optimal PKA phosphorylation site within the "activation loop" of HPK1 to alanine completely prevents this mutant from responding to PGE(2)-generated stimulation signals. Moreover, the inability of HPK1 to respond to PGE(2) stimulation in PKA-deficient S49 cells further supports the importance of PKA in this signaling pathway. We speculate that this unique signaling pathway enables PGE(2) signals to engage a proven negative regulator of TCR signal transduction pathway and uses it to inhibit T cell activation.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- New York University School of Medicine, New York University Cancer Institute, New York, New York 10016-6402, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Osteoimmunology is an interdisciplinary research field combining the exciting fields of osteology and immunology. An observation that contributed enormously to the emergence of osteoimmunology was the accelerated bone loss caused by inflammatory diseases such as rheumatoid arthritis. Receptor activator of nuclear factor kappaB ligand (RANKL), which is the main regulator of osteoclastogenesis, was found to be the primary culprit responsible for the enhanced activation of osteoclasts: activated T cells directly and indirectly increased the expression of RANKL, and thereby promoted osteoclastic activity. Excessive bone loss is not only present in inflammatory diseases but also in autoimmune diseases and cancer. Furthermore, there is accumulating evidence that the very prevalent skeletal disorder osteoporosis is associated with alterations in the immune system. Meanwhile, numerous connections have been discovered in osteoimmunology beyond merely the actions of RANKL. These include the importance of osteoblasts in the maintenance of the hematopoietic stem cell niche and in lymphocyte development as well as the functions of immune cells participating in osteoblast and osteoclast development. Furthermore, research is being done investigating cytokines, chemokines, transcription factors and co-stimulatory molecules which are shared by both systems. Research in osteoimmunology promises the discovery of new strategies and the development of innovative therapeutics to cure or alleviate bone loss in inflammatory and autoimmune diseases as well as in osteoporosis. This review gives an introduction to bone remodeling and the cells governing that process and summarizes the most recent discoveries in the interdisciplinary field of osteoimmunology. Furthermore, an alternative large animal model will be discussed and the pathophysiological alterations of the immune system in osteoporosis will be highlighted.
Collapse
Affiliation(s)
- Martina Rauner
- Ludwig Boltzmann Institute of Aging Research, Vienna, Austria
| | | | | |
Collapse
|
19
|
Santibañez JF. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett 2006; 580:5385-91. [PMID: 16989819 DOI: 10.1016/j.febslet.2006.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 11/24/2022]
Abstract
In this study we analyzed the role of the c-Jun N-terminal kinases (JNK) pathway in the TGF-beta1 stimulation of urokinase-type plasminogen activator (uPA), initial stages of epithelial-mesenchymal transdifferentiation (EMT) and cell migration. TGF-beta1 induces JNK phosphorylation, c-Jun transactivation and AP1 activation. The involvement of JNK was evaluated using dominant negative mutants SEK-1 AL, JNK and cJun, depletion of JNK1,2 proteins by treatment of cells with antisense oligonucleotides, as well as the chemical inhibitor SP600125. Our results demonstrated that the JNK pathway is required in the TGF-beta1 enhancement of uPA, fibronectin, E-cadherin delocalization, actin re-organization and vimentin expression, concomitant with the induction of cell migration. These results allow us to suggest a role of JNK in the TGF-beta1 induction of EMT in relation with the stimulation of malignant properties of mouse transformed keratinocytes.
Collapse
Affiliation(s)
- Juan F Santibañez
- Laboratorio de Biologia Celular, Instituto de Nutrición y Tecnología de los Alimentos, INTA, Universidad de Chile, Casilla 138, Santiago 11, Chile.
| |
Collapse
|
20
|
Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CCH, Tan TH, Colburn NH. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 2006; 26:1297-306. [PMID: 16449643 PMCID: PMC1367180 DOI: 10.1128/mcb.26.4.1297-1306.2006] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death 4 (Pdcd4) suppresses neoplastic transformation by inhibiting the activation of c-Jun and consequently AP-1-dependent transcription. We report that Pdcd4 blocks c-Jun activation by inhibiting the expression of mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1)/hematopoietic progenitor kinase 1, a kinase upstream of Jun N-terminal kinase (JNK). cDNA microarray analysis of Pdcd4-overexpressing RKO human colon carcinoma cells revealed MAP4K1 as the sole target of Pdcd4 on the JNK activation pathway. Cotransfection of a MAP4K1 promoter-reporter with Pdcd4 demonstrated inhibition of transcription from the MAP4K1 promoter. Ectopic expression of Pdcd4 in metastatic RKO cells suppressed invasion. MAP4K1 activity is functionally significant in invasion, as overexpression of a dominant negative MAP4K1 (dnMAP4K1) mutant in RKO cells inhibited not only c-Jun activation but also invasion. Overexpression of a MAP4K1 cDNA in Pdcd4-transfected cells rescued the kinase activity of JNK. Thus, Pdcd4 suppresses tumor progression in human colon carcinoma cells by the novel mechanism of down-regulating MAP4K1 transcription, with consequent inhibition of c-Jun activation and AP-1-dependent transcription.
Collapse
Affiliation(s)
- Hsin-Sheng Yang
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Transforming growth factor beta (TGF-beta) is a biologically multipotent regulatory protein implicated in functions that include the regulation of cellular growth, differentiation, extracellular matrix formation, and wound healing. It also plays a role in the pathologies of Alzheimer's disease, cancer and autoimmune disorders. TGF-beta modulates gene expression by affecting transcriptional activation and mRNA turnover rate. Steady-state mRNA levels depend on both the transcriptional activity and mRNA half-life. The stability of mRNA can be modified by the binding of trans-acting factors to cis-elements on the message. These can protect the mRNA from cleavage by RNAses, or they may promote mRNA cleavage. Changes in mRNA stability can lead to changes in the proteome and subsequently in cellular metabolism. The SMAD family of proteins has been implicated in the transduction of the TGF-beta signal, where they regulate transcriptional activity. This review attempts to provide new insights into the role played by TGF-beta in the regulation of mRNA turnover.
Collapse
|
22
|
Abstract
TGF-beta1 is a ubiquitous growth factor that is implicated in the control of proliferation, migration, differentiation, and survival of many different cell types. It influences such diverse processes as embryogenesis, angiogenesis, inflammation, and wound healing. In skeletal tissue, TGF-beta1 plays a major role in development and maintenance, affecting both cartilage and bone metabolism, the latter being the subject of this review. Because it affects both cells of the osteoblast and osteoclast lineage, TGF-beta1 is one of the most important factors in the bone environment, helping to retain the balance between the dynamic processes of bone resorption and bone formation. Many seemingly contradictory reports have been published on the exact functioning of TGF-beta1 in the bone milieu. This review provides an overall picture of the bone-specific actions of TGF-beta1 and reconciles experimental discrepancies that have been reported for this multifunctional cytokine.
Collapse
Affiliation(s)
- Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Campus Drie Eiken, 2610 Antwerp, Belgium
| | | | | | | |
Collapse
|
23
|
Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 2005; 24:5742-50. [PMID: 16123807 DOI: 10.1038/sj.onc.1208928] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members signal via membrane-bound heteromeric serine-threonine kinase receptor complexes. Upon ligand-binding, receptor activation leads to phosphorylation of cytoplasmic protein substrates of the Smad family. Following phosphorylation and oligomerization, the latter move into the nucleus to act as transcription factors to regulate target gene expression. TGF-beta responses are not solely the result of the activation Smad cascade, but are highly cell-type specific and dependent upon interactions of Smad signaling with a variety of other intracellular signaling mechanisms, initiated or not by TGF-beta itself, that may either potentiate, synergize, or antagonize, the rather linear TGF-beta/Smad pathway. These include, (a), regulation of Smad activity by mitogen-activated protein kinases (MAPKs), (b), nuclear interaction of activated Smads with transcriptional cofactors, whether coactivators or corepressors, that may be themselves be regulated by diverse signaling mechanisms, and (c), negative feedback loops exerted by inhibitory Smads, transcriptional targets of the Smad cascade. This review focuses on how MAPKs modulate the outcome of Smad activation by TGF-beta, and how cross-signaling mechanisms between the Smad and MAPK pathways may take place and affect cell fate in the context of carcinogenesis.
Collapse
Affiliation(s)
- Delphine Javelaud
- INSERM U697, Pavillon Bazin, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris 75010, France
| | | |
Collapse
|
24
|
Qiao B, Padilla SR, Benya PD. Transforming growth factor (TGF)-beta-activated kinase 1 mimics and mediates TGF-beta-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J Biol Chem 2005; 280:17562-71. [PMID: 15743758 DOI: 10.1074/jbc.m500646200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF)-beta, bone morphogenetic protein (BMP), and interleukin-1beta activate TGF-beta-activated kinase 1 (TAK1), which lies upstream of the p38 MAPK, JNK, and NF-kappaB pathways. Our knowledge remains incomplete of TAK1 target genes, requirement for cooperative signaling, and capacity for shared or segregated ligand-dependent responses. We show that adenoviral overexpression of TAK1a in articular chondrocytes stimulated type II collagen protein synthesis 3-6-fold and mimicked the response to TGF-beta1 and BMP2. Both factors activated endogenous TAK1 and its activating protein, TAB1, and the collagen response was inhibited by dominant-negative TAK1a. Isoform-specific antibodies to TGF-beta blocked the response to endogenous and exogenous TGF-beta but not the response to TAK1a. Expression of Smad3 did not stimulate type II collagen synthesis or enhance that caused by TGF-beta1 or TAK1a, in contrast to its effects on its endogenous targets, CTGF and plasminogen-activated inhibitor-1. TAK1a, overexpressed alone and immunoprecipitated, phosphorylated MKK6 and stimulated the plasminogen-activated inhibitor-1 promoter following transient transfection; both effects were enhanced by TAB1 coexpression, but type II collagen synthesis was not. Stimulation by TAK1a or TGF-beta did not require increased Col2a1 mRNA, and TAK1 actually reduced Col2a1 mRNA in parallel with the cartilage markers, SRY-type HMG box 9 (Sox9) and aggrecan. Thus, TAK1 increased target gene expression (Col2a1) by translational or posttranslational mechanisms as a Smad3-independent response shared by TGF-beta1 and BMP2.
Collapse
Affiliation(s)
- Bo Qiao
- Orthopaedic Hospital, Los Angeles, J. Vernon Luck, Sr., M.D. Research Center and UCLA-Orthopaedic Hospital Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
25
|
Zhou G, Boomer JS, Tan TH. Protein Phosphatase 4 Is a Positive Regulator of Hematopoietic Progenitor Kinase 1. J Biol Chem 2004; 279:49551-61. [PMID: 15364934 DOI: 10.1074/jbc.m410317200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic specific mammalian Ste20-like protein kinase and has been implicated in many cellular signaling pathways including T cell receptor (TCR) signaling. However, little is known about the in vivo regulation of HPK1. We present evidence that HPK1 is positively regulated by protein phosphatase 4 (PP4; also called PPX and PPP4), a serine/threonine phosphatase. We found that PP4 interacted with HPK1 and that the proline-rich region of HPK1 was necessary and sufficient for this interaction. We also found that PP4 had phosphatase activity toward HPK1 in vivo and that co-transfection of PP4 with HPK1 resulted in specific kinase activation of HPK1. Moreover, we found that the PP4-induced HPK1 kinase activation was accompanied by an increase in protein expression of HPK1. Pulse-chase analysis showed that PP4 increased the half-life of HPK1. Further studies showed that HPK1 was subject to regulation by ubiquitination and ubiquitin-targeted degradation and that PP4 inhibited HPK1 ubiquitination. In addition, we found that TCR stimulation enhanced the PP4-HPK1 interaction and that wild-type PP4 enhanced, whereas a phosphatase-dead PP4 mutant inhibited, TCR-induced activation of HPK1 in Jurkat T cells. Combined with the observation that PP4 enhanced HPK1-induced JNK activation, our studies identify PP4 as a positive regulator for HPK1 and the HPK1-JNK signaling pathway.
Collapse
Affiliation(s)
- Guisheng Zhou
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
26
|
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells.
Collapse
Affiliation(s)
- Mark de Caestecker
- Division of Nephrology, S-3223 Medical Center North, 1161 21st Street S, Nashville, TN 37232-2372, USA.
| |
Collapse
|
27
|
Yue J, Sun B, Liu G, Mulder KM. Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor. J Cell Physiol 2004; 199:284-292. [PMID: 15040011 DOI: 10.1002/jcp.10469] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated that activation of the Ras/Mapk pathways is required for transforming growth factor beta (TGF-beta) induction of TGF-beta(1) expression. Here we examined the role of the Ras/Mapk pathways in TGF-beta induction of urokinase-type plasminogen activator receptor (uPAR) expression in untransformed intestinal epithelial cells (IECs). TGF-beta activated the stress-activated protein kinases (Sapk)/c-Jun N-terminal kinases (JNKs) within 5-10 min, an effect that preceeded TGF-beta induction of uPAR expression in these cells. TGF-beta induction of both JNK1 activity and JunD phosphorylation was blocked by expression of a dominant-negative mutant of the type II TGF-beta receptor (DN TbetaRII), a dominant-negative mutant of MKK4 (DN MKK4), or a dominant-negative mutant of Ras (RasN17), or by the addition of the JNK inhibitor SP600125. TGF-beta also induced AP-1 complex formation at the distal AP-1 site (-184 to -178) of the uPAR promoter within 2 h of TGF-beta addition, consistent with the time-dependent up-regulation of uPAR expression. The primary components present in the TGF-beta-stimulated AP-1 complex bound to the uPAR promoter were Jun D and Fra-2. Moreover, addition of SP600125, or expression of DN MKK4 or DN TbetaRII, blocked TGF-beta up-regulation of uPAR in IECs. Accordingly, our results indicate that TGF-beta activates the Ras/MKK4/JNK1 signaling cascade, leading to induction of AP-1 activity, which, in turn, up-regulates uPAR expression. Our results also indicate that the type II TGF-beta receptor (RII) is required for TGF-beta activation of JNK1 and the resulting up-regulation of uPAR expression.
Collapse
Affiliation(s)
- Jianbo Yue
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
28
|
Lewitzky M, Harkiolaki M, Domart MC, Jones EY, Feller SM. Mona/Gads SH3C binding to hematopoietic progenitor kinase 1 (HPK1) combines an atypical SH3 binding motif, R/KXXK, with a classical PXXP motif embedded in a polyproline type II (PPII) helix. J Biol Chem 2004; 279:28724-32. [PMID: 15100220 DOI: 10.1074/jbc.m402745200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is implicated in signaling downstream of the T cell receptor. Its non-catalytic, C-terminal half contains several prolinerich motifs, which have been shown to interact with different SH3 domain-containing adaptor proteins in vitro. One of these, Mona/Gads, was also shown to bind HPK1 in mouse T cells in vivo. The region of HPK1 that binds to the Mona/Gads C-terminal SH3 domain has been mapped and shows only very limited similarity to a recently identified high affinity binding motif in SLP-76, another T-cell adaptor. Using isothermal titration calorimetry and x-ray crystallography, the binding of the HPK1 motif to Mona/Gads SH3C has now been characterized in molecular detail. The results indicate that although charge interactions through an RXXK motif are essential for complex formation, a PXXP motif in HPK1 strongly complements binding. This unexpected binding mode therefore differs considerably from the previously described interaction of Mona/Gads SH3C with SLP-76. The crystal structure of the complex highlights the great versatility of SH3 domains, which allows interactions with very different proteins. This currently limits our ability to categorize SH3 binding properties by simple rules.
Collapse
Affiliation(s)
- Marc Lewitzky
- Cancer Research UK Cell Signalling Group, Molecular Oncology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Cowland JB, Sørensen OE, Sehested M, Borregaard N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. THE JOURNAL OF IMMUNOLOGY 2004; 171:6630-9. [PMID: 14662866 DOI: 10.4049/jimmunol.171.12.6630] [Citation(s) in RCA: 284] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of the antimicrobial protein neutrophil gelatinase-associated lipocalin (NGAL) increases dramatically in bronchial epithelial cells and alveolear type II pneumocytes during lung inflammation. IL-1beta induces a >10-fold up-regulation of NGAL expression in the type II pneumocyte-derived cell line A549 cells, whereas TNF-alpha, IL-6, and LPS had no effect. Similar IL-1beta selectivity was demonstrated in primary bronchial epithelial cells and epidermal keratinocytes and for an NGAL promoter fragment transfected into A549 cells. By deletion and substitution analysis of the NGAL promoter, a 40-bp region containing an NF-kappaB consensus site was found to control the IL-1beta-specific up-regulation. Involvement of the NF-kappaB site was demonstrated by site-directed mutagenesis, by transfection with a dominant-negative inhibitor of the NF-kappaB pathway, and by EMSA. TNF-alpha activation of NF-kappaB, in contrast, did not increase NGAL synthesis, even though induced binding of NF-kappaB to the NGAL promoter was observed in vitro. IL-1beta specificity was not contained within the NF-kappaB site of the NGAL promoter, as determined by exchanging the NGAL promoter's NF-kappaB-binding sequence with that of the IL-8 promoter or with the NF-kappaB consensus sequence and by testing the NF-kappaB-binding sequence of the NGAL promoter against the heterologous SV40 promoter. Selectivity for the IL-1 pathway was substantiated by demonstrating that NGAL promoter activity could be induced by LPS stimulation of A549 cells transiently expressing Toll-like receptor 4, which use the same intracellular signaling pathway as the IL-1R. Together, this demonstrates a selective up-regulation of NGAL by the IL-1 pathway.
Collapse
Affiliation(s)
- Jack B Cowland
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
30
|
Yustein JT, Xia L, Kahlenburg JM, Robinson D, Templeton D, Kung HJ. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene 2003; 22:6129-41. [PMID: 13679851 DOI: 10.1038/sj.onc.1206605] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.
Collapse
Affiliation(s)
- Jason T Yustein
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ono K, Ohtomo T, Ninomiya-Tsuji J, Tsuchiya M. A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-beta. Biochem Biophys Res Commun 2003; 307:332-7. [PMID: 12859960 DOI: 10.1016/s0006-291x(03)01207-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is crucially virulent in the progression of fibrotic disorders. TAK1 (TGF-beta activated kinase 1) is one of the mitogen-activated kinase kinase kinase (MAPKKK) that is involved in TGF-beta signal transduction. To elucidate the importance of TAK1 in TGF-beta-induced fibrotic marker expression, we investigated whether dominant negative TAK1 could suppress TGF-beta signaling. Based on the finding that TAB1 (TAK1 binding protein 1) binding to TAK1 is required for TAK1 activation, a minimal portion of TAK1 lacking kinase activity that binds to TAB1 was designed as a TAK1 dominant negative inhibitor (TAK1-DN). The effect of TAK1-DN was assessed in the cells that respond to TGF-beta stimulation and that lead to the increase in production of extracellular matrix (ECM) proteins. TAK1-DN, indeed, decreased the ECM protein production, indicating that TAK1-DN retains the ability to intercept the TGF-beta signaling effectively.
Collapse
Affiliation(s)
- Koichiro Ono
- Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Gotemba-shi, Shizuoka-ken, Japan.
| | | | | | | |
Collapse
|
32
|
Lui WY, Lee WM, Cheng CY. TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. INTERNATIONAL JOURNAL OF ANDROLOGY 2003; 26:147-60. [PMID: 12755993 DOI: 10.1046/j.1365-2605.2003.00410.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are known to regulate multiple physiological functions in the testis, which include spermatogenesis, Leydig cell steroidogenesis, extracellular matrix synthesis and testis development. More recent studies have shown that TGF-beta3 also regulates Sertoli cell tight junction (TJ) dynamics in vitro via the p38 mitogen-activated protein (MAP) kinase pathway, suggesting that this cytokine plays a crucial role in regulating the opening and closing of the blood-testis barrier (BTB). This in turn regulates the passage of pre-leptotene and leptotene spermatocytes across the BTB at stages VIII-XI of the seminiferous epithelial cycle. This review summarizes recent advances of studies on TGF-betas in the testis, highlighting their regulatory role in TJ dynamics.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | | | |
Collapse
|
33
|
Poitras L, Jean S, Islam N, Moss T. PAK interacts with NCK and MLK2 to regulate the activation of jun N-terminal kinase. FEBS Lett 2003; 543:129-35. [PMID: 12753919 DOI: 10.1016/s0014-5793(03)00424-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The p21-GTPase activated kinase, PAK1, and the mixed lineage kinase, MLK2, have been implicated in the activation of jun N-terminal kinase (JNK). However, the role of PAK1 in JNK activation is still not understood. Here we show that over-expression of the SH3-SH2 adapter Nck 'squelches' JNK activation but this squelching is relieved by over-expression of PAK1. In turn, PAK1 squelches activation of JNK by MLK2 and these kinases interact via their catalytic domains. The data suggest that PAK1 recruits MLK2 to an activated receptor via the adapter Nck, but cannot itself induce activation of the JNK cascade.
Collapse
Affiliation(s)
- Luc Poitras
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Quebec, 9 rue McMahon, G1R 2J6, Québec, QC, Canada
| | | | | | | |
Collapse
|
34
|
Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH, ten Dijke P. Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem 2003; 278:3751-61. [PMID: 12446693 DOI: 10.1074/jbc.m208258200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) elicits cellular effects by activating specific Smad proteins that control the transcription of target genes. Whereas there is growing evidence that there are TGF-beta type I receptor-initiated intracellular pathways that are distinct from the pivotal Smad pathway, their physiological importance in TGF-beta signaling is not well understood. Therefore, we generated TGF-beta type I receptors (also termed ALK5s) with mutations in the L45 loop of the kinase domain, termed ALK5(D266A) and ALK5(3A). These mutants showed retained kinase activity but were unable to activate Smads. Characterization of their signaling properties revealed that the two L45 loop mutants did not mediate Smad-dependent transcriptional responses, TGF-beta-induced growth inhibition, and fibronectin and plasminogen activator-1 production in R4-2 mink lung epithelial cells lacking functional ALK5 protein. Mutation in the L45 loop region did not affect the binding of inhibitory Smads but did abrogate the weak binding of X-linked inhibitor of apoptosis protein and Disabled-2 to ALK5. This suggests that the L45 loop in the kinase domain is important for docking of other binding proteins. Interestingly, JNK MAP kinase activity was found to be activated by the ALK5(3A) mutant in various cell types. In addition, TGF-beta-induced inhibition of cyclin D1 expression and stimulation of PMEPA1 (androgen-regulated prostatic mRNA) expression were found to occur, albeit weakly, in an Smad-independent manner in normal murine mammary gland cells. However, the TGF-beta-induced epithelial to mesenchymal transdifferentiation was found to require an intact L45 loop and is likely to be dependent on the Smad pathways.
Collapse
MESH Headings
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type I/physiology
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Base Sequence
- Cell Division/physiology
- DNA Primers
- DNA-Binding Proteins/metabolism
- Enzyme Activation
- Fibronectins/biosynthesis
- Genes, Tumor Suppressor
- Humans
- Mink
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasminogen Activator Inhibitor 1/biosynthesis
- Protein Binding
- Protein Serine-Threonine Kinases
- Proteins/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Transforming Growth Factor beta/physiology
- Smad Proteins
- Trans-Activators/metabolism
- Tumor Suppressor Proteins
- X-Linked Inhibitor of Apoptosis Protein
Collapse
Affiliation(s)
- Susumu Itoh
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Chen AJ, Zhou G, Juan T, Colicos SM, Cannon JP, Cabriera-Hansen M, Meyer CF, Jurecic R, Copeland NG, Gilbert DJ, Jenkins NA, Fletcher F, Tan TH, Belmont JW. The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 2002; 277:36592-601. [PMID: 12138158 DOI: 10.1074/jbc.m200453200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of dual specificity phosphatases (DSPs) in the mitogen-activated protein kinase (MAPK) signaling has been mostly limited to the inactivation of MAPKs by the direct dephosphorylation of the TXY motif within their activation loop. We report the cloning and characterization of a murine DSP, called JNK pathway-associated phosphatase (JKAP), which lacks the regulatory region present in most other MAP kinase phosphatases (MKPs) and is preferentially expressed in murine Lin(-)Sca-1(+) stem cells. Overexpression of JKAP in human embryonic kidney 293T cells specifically activated c-Jun N-terminal kinase (JNK) but not p38 and extracellular signal-regulated kinase 2. Overexpression of a mutant JKAP, JKAP-C88S, blocked tumor necrosis factor-alpha-induced JNK activation. Targeted gene disruption in murine embryonic stem cells abolished JNK activation by tumor necrosis factor-alpha and transforming growth factor-beta, but not by ultraviolet-C irradiation, indicating that JKAP is necessary for optimal JNK activation. JKAP associated with JNK and MKK7, but not SEK1, in vivo. However, JKAP did not interact with JNK in vitro, suggesting that JKAP exerts its effect on JNK in an indirect manner. Taken together, these studies identify a positive regulator for the JNK pathway and suggest a novel role for DSP in mitogen-activated protein kinase regulation.
Collapse
Affiliation(s)
- Alice J Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Akiyama-Uchida Y, Ashizawa N, Ohtsuru A, Seto S, Tsukazaki T, Kikuchi H, Yamashita S, Yano K. Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts. Hypertension 2002; 40:148-54. [PMID: 12154105 DOI: 10.1161/01.hyp.0000025443.61926.12] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac fibrosis results from proliferation of interstitial fibroblasts and concomitant increased biosynthesis of extracellular matrix (ECM) components and is often complicated by cardiac hypertrophy. This study was conducted to investigate whether norepinephrine (NE) potentiates transforming growth factor-beta (TGF-beta)-induced cardiac fibrosis. The expression of the cardiac ECM proteins, plasminogen activator inhibitor-1 (PAI-1), fibronectin, and collagen type I, was examined by Western blotting using extracts from neonatal rat primary cardiac fibroblasts. In cardiac fibroblasts, treatment with a combination of NE and TGF-beta1 increased cell proliferation and ECM expression. Luciferase assays were conducted to clarify the effect of NE on TGF-beta signaling. TGF-beta1 (1 ng/mL) increased the specific signaling activity 2-fold, whereas the combination of NE (10 micro mol/L) and TGF-beta1 (1 ng/mL) resulted in an approximate 10-fold increase in specific signaling activity. We confirmed that treatment with NE markedly enhances TGF-beta-induced phosphorylation of activating transcription factor 2 (ATF-2). These results indicated that NE has a synergistic effect on TGF-beta signaling. To determine whether this activation by NE was mediated by the TGF-beta1 receptor, we used a dominant negative vector of the TGF-beta1 type II receptor, and the synergistic effects were inhibited. Furthermore, this synergistic effect was attenuated by a specific inhibitor of p38, SB203680. These data indicate that NE enhances cardiac fibrosis through TGF-beta1 post-receptor signaling, predominantly via the p38 MAP kinase pathway.
Collapse
Affiliation(s)
- Yuri Akiyama-Uchida
- Department of Cardiovascular Medicine, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 2002; 277:24571-8. [PMID: 11964407 DOI: 10.1074/jbc.m202561200] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor (TGF)-beta promotes breast cancer metastasis to bone. To determine whether the osteolytic factor parathyroid hormone-related protein (PTHrP) is the primary mediator of the tumor response to TGF-beta, mice were inoculated with MDA-MB-231 breast cancer cells expressing a constitutively active TGF-beta type I receptor. Treatment of the mice with a PTHrP-neutralizing antibody greatly decreased osteolytic bone metastases. There were fewer osteoclasts and significantly decreased tumor area in the antibody-treated mice. TGF-beta can signal through both Smad and mitogen-activated protein (MAP) kinase pathways. Stable transfection of wild-type Smad2, Smad3, or Smad4 increased TGF-beta-stimulated PTHrP secretion, whereas dominant-negative Smad2, Smad3, or Smad4 only partially reduced TGF-beta-stimulated PTHrP secretion. When the cells were treated with a variety of protein kinases inhibitors, only specific inhibitors of the p38 MAP kinase pathway significantly reduced both basal and TGF-beta-stimulated PTHrP production. The combination of Smad dominant-negative blockade and p38 MAP kinase inhibition resulted in complete inhibition of TGF-beta-stimulated PTHrP production. Furthermore, TGF-beta treatment of MDA-MB-231 cells resulted in a rapid phosphorylation of p38 MAP kinase. Thus, the p38 MAP kinase pathway appears to be a major component of Smad-independent signaling by TGF-beta and may provide a new molecular target for anti-osteolytic therapy.
Collapse
Affiliation(s)
- Sanna-Maria Kakonen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, Texas 78245-3217, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Using specific cell surface receptors lymphocytes continuously sample their environment. Maturation of the immune system and initiation of a specific immune response rely on an array of extracellular cues that elicit complex intracellular biochemical signals. Essential molecules involved in signal transduction from immunoreceptors have emerged. After immunoreceptor engagement a core signaling complex is assembled comprising cytoplasmic immunoreceptor chains, kinases of the Src and ZAP70 families and various cytoplasmic and transmembrane adaptor molecules. Further effectors nucleate onto this complex evoking the characteristic responses of lymphocyte activation. Successful maturation of T cells into effector cells relies on the presence of a persistent stimulus presented in an appropriate extracellular environment. Encounter of MHC presented antigenic peptides and their cognate T cell receptors (TCRs) results in the formation of a nanometer intercellular gap between T cells and antigen presenting cells, which is now commonly referred to as the immunological synapse. The synapse is believed to sustain persistent TCR engagement. Its formation requires massive changes in T cell cytoskeletal architecture which essentially relies on signals provided by costimulatory molecules. The well orchestrated interplay between TCR and costimulatory signals decides about successful immune response and tolerance induction or immune failure and autoimmunity.
Collapse
Affiliation(s)
- Friedemann Kiefer
- Max-Planck-Institute for Physiological and Clinical Research, WG. Kerckhoff-Jnstitute, Bad Nauheim, Germany.
| | | | | |
Collapse
|
40
|
Xiao YQ, Malcolm K, Worthen GS, Gardai S, Schiemann WP, Fadok VA, Bratton DL, Henson PM. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-beta. J Biol Chem 2002; 277:14884-93. [PMID: 11842088 DOI: 10.1074/jbc.m111718200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis of apoptotic cells by macrophages results in the production of transforming growth factor-beta (TGF-beta), which plays an important role in induction of an anti-inflammatory phenotype and resolution of inflammation. In this study, we show that TGF-beta prevents pro-inflammatory cytokine production through inhibition of p38 mitogen-activated protein kinase (MAPK) and NF-kappaB. Blockade of extracellular signal-regulated kinase (ERK) signaling by the MEK-1/2 inhibitor PD 98059 reversed the inhibitory effects of TGF-beta, suggesting that cross-talk between MAPKs is essential for this response. Further investigation indicated that TGF-beta activated ERK, which in turn up-regulated MAPK phosphatase-1, thereby inactivating p38 MAPK. On the other hand, TGF-beta maintained or slightly increased production of the CC chemokine MCP-1, which is regulated predominantly by AP-1. Although SB 203580, an inhibitor of p38 MAPK, and dominant-negative p38 MAPK both increased AP-1 transcription, lack of effect of TGF-beta on lipopolysaccharide-stimulated SAPK/JNK phosphorylation along with a demonstrated inhibition of TGF-beta-induced AP-1 activation by dominant-negative Smad3 suggest that TGF-beta-stimulated AP-1 activation was not caused by inhibition of p38 MAPK but rather through the activation of Smads. Our data provide evidence that TGF-beta selectively inhibits inflammatory cytokine production through cross-talk between MAPKs.
Collapse
Affiliation(s)
- Yi Qun Xiao
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Piek E, Roberts AB. Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis. Adv Cancer Res 2002; 83:1-54. [PMID: 11665716 DOI: 10.1016/s0065-230x(01)83001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGF-beta) has been implicated in oncogenesis since the time of its discovery almost 20 years ago. The complex, multifunctional activities of TGF-beta endow it with both tumor suppressor and tumor promoting activities, depending on the stage of carcinogenesis and the responsivity of the tumor cell. Dysregulation or alteration of TGF-beta signaling in tumorigenesis can occur at many different levels, including activation of the ligand, mutation or transcriptional suppression of the receptors, or alteration of downstream signal transduction pathways resulting from mutation or changes in expression patterns of signaling intermediates or from changes in expression of other proteins which modulate signaling. New insights into signaling from the TGF-beta receptors, including the identification of Smad signaling pathways and their interaction with mitogen-activated protein (MAP) kinase pathways, are providing an understanding of the changes involved in the change from tumor suppressor to tumor promoting activities of TGF-beta. It is now appreciated that loss of sensitivity to inhibition of growth by TGF-beta by most tumor cells is not synonymous with complete loss of TGF-beta signaling but rather suggests that tumor cells gain advantage by selective inactivation of the tumor suppressor activities of TGF-beta with retention of its tumor promoting activities, especially those dependent on cross talk with MAP kinase pathways and AP-1.
Collapse
Affiliation(s)
- E Piek
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-8395, USA
| | | |
Collapse
|
42
|
Zhou G, Mihindukulasuriya KA, MacCorkle-Chosnek RA, Van Hooser A, Hu MCT, Brinkley BR, Tan TH. Protein phosphatase 4 is involved in tumor necrosis factor-alpha-induced activation of c-Jun N-terminal kinase. J Biol Chem 2002; 277:6391-8. [PMID: 11698396 DOI: 10.1074/jbc.m107014200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 4 (PP4, previously named protein phosphatase X (PPX)), a PP2A-related serine/threonine phosphatase, has been shown to be involved in essential cellular processes, such as microtubule growth and nuclear factor kappa B activation. We provide evidence that PP4 is involved in tumor necrosis factor (TNF)-alpha signaling in human embryonic kidney 293T (HEK293T) cells. Treatment of HEK293T cells with TNF-alpha resulted in time-dependent activation of endogenous PP4, peaking at 10 min, as well as increased serine and threonine phosphorylation of PP4. We also found that PP4 is involved in relaying the TNF-alpha signal to c-Jun N-terminal kinase (JNK) as indicated by the ability of PP4-RL, a dominant-negative PP4 mutant, to block TNF-alpha-induced JNK activation. Moreover, the response of JNK to TNF-alpha was inhibited in HEK293 cells stably expressing PP4-RL in comparison to parental HEK293 cells. The involvement of PP4 in JNK signaling was further demonstrated by the specific activation of JNK, but not p38 and ERK2, by PP4 in transient transfection assays. However, no direct PP4-JNK interaction was detected, suggesting that PP4 exerts its positive regulatory effect on JNK in an indirect manner. Taken together, these data indicate that PP4 is a signaling component of the JNK cascade and involved in relaying the TNF-alpha signal to the JNK pathway.
Collapse
Affiliation(s)
- Guisheng Zhou
- Department of Immunology, Baylor College of Medicine , Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Sauer K, Liou J, Singh SB, Yablonski D, Weiss A, Perlmutter RM. Hematopoietic progenitor kinase 1 associates physically and functionally with the adaptor proteins B cell linker protein and SLP-76 in lymphocytes. J Biol Chem 2001; 276:45207-16. [PMID: 11487585 DOI: 10.1074/jbc.m106811200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.
Collapse
Affiliation(s)
- K Sauer
- Department of Immunology and Rheumatology and Department of Molecular Systems, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Bradham CA, Hatano E, Brenner DA. Dominant-negative TAK1 induces c-Myc and G(0) exit in liver. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1279-89. [PMID: 11668037 DOI: 10.1152/ajpgi.2001.281.5.g1279] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1), a serine/threonine kinase, is reported to function in the signaling pathways of TGF-beta, interleukin 1, and ceramide. However, the physiological role of TAK1 in vivo is largely unknown. To assess the function of TAK1 in vivo, dominant-negative TAK1 (dnTAK1) was expressed in the rat liver by adenoviral gene transfer. dnTAK1 expression abrogated c-Jun NH(2)-terminal kinase and c-Jun but not nuclear factor (NF)-kappaB or SMAD activation after partial hepatectomy (PH). Expression of dnTAK1 or TAM-67, a dominant-negative c-Jun, induced G(0) exit in quiescent liver and accelerated cell cycle progression after PH. Finally, dnTAK1 and TAM-67 induced c-myc expression in the liver before and after PH, suggesting that G(0) exit induced by dnTAK1 and TAM-67 is mediated by c-myc induction.
Collapse
Affiliation(s)
- C A Bradham
- Department of Medicine, University of North Carolina at Chapel Hill, 27707, USA
| | | | | |
Collapse
|
45
|
Lin JL, Chen HC, Fang HI, Robinson D, Kung HJ, Shih HM. MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 2001; 20:6559-69. [PMID: 11641781 DOI: 10.1038/sj.onc.1204818] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Revised: 07/05/2001] [Accepted: 07/09/2001] [Indexed: 11/09/2022]
Abstract
In this study, we report the cloning and characterization of a novel human Ste20-related kinase that we designated MST4. The 416 amino acid full-length MST4 contains an amino-terminal kinase domain, which is highly homologous to MST3 and SOK, and a unique carboxy-terminal domain. Northern blot analysis indicated that MST4 is highly expressed in placenta, thymus, and peripheral blood leukocytes. Wild-type but not kinase-dead MST4 can phosphorylate myelin basic protein in an in vitro kinase assay. MST4 specifically activates ERK but not JNK or p38 MAPK in transient transfected cells or in stable cell lines. Overexpression of dominant negative MEK1 or treatment with PD98059 abolishes MST4-induced ERK activity, whereas dominant-negative Ras or c-Raf-1 mutants failed to do so, indicating MST4 activates MEK1/ERK via a Ras/Raf-1 independent pathway. HeLa and Phoenix cell lines overexpressing wild-type, but not kinase-dead, MST4 exhibit increased growth rate and form aggressive soft-agar colonies. These phenotypes can be inhibited by PD98059. These results provide the first evidence that MST4 is biologically active in the activation of MEK/ERK pathway and in mediating cell growth and transformation.
Collapse
Affiliation(s)
- J L Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, 128, Sec2, Yen-Chiu-Yuan RD, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Transforming growth factor (TGF)-beta is a natural and potent growth inhibitor of a variety of cell types, including epithelial, endothelial, and hematopoietic cells. The ability of TGF-beta to potently inhibit the growth of many solid tumors of epithelial origin, including breast and colon carcinomas, is of particular interest. However, many solid tumor cells become refractory to the growth inhibitory effects of TGF-beta due to defects in TGF-beta signaling pathways. In addition, TGF-beta may stimulate the invasiveness of tumor cells via the paracrine effects of TGF-beta. Accordingly, in order to develop more effective anticancer therapeutics, it is necessary to determine the TGF-beta signal transduction pathways underlying the growth inhibitory effects and other cellular effects of TGF-beta in normal epithelial cells. Thus far, two primary signaling cascades downstream of the TGF-beta receptors have been elucidated, the Sma and mothers against decapentaplegic homologues and the Ras/mitogen-activated protein kinase pathways. The major objective of this review is to summarize TGF-beta signaling in epithelial cells, focusing on recent advances involving the Sma and mothers against decapentaplegic homologues and Ras/mitogen-activated protein kinase pathways. This review is particularly timely in that it provides a comprehensive summary of both signal transduction mechanisms and the cell cycle effects of TGF-beta.
Collapse
Affiliation(s)
- J Yue
- Department of Pharmacology, MC H078, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
47
|
Ito Y, Pandey P, Sathyanarayana P, Ling P, Rana A, Weichselbaum R, Tan TH, Kufe D, Kharbanda S. Interaction of hematopoietic progenitor kinase 1 and c-Abl tyrosine kinase in response to genotoxic stress. J Biol Chem 2001; 276:18130-8. [PMID: 11278340 DOI: 10.1074/jbc.m007294200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The c-Abl protein tyrosine kinase is activated by certain DNA-damaging agents and regulates induction of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). The hematopoietic progenitor kinase 1 (HPK1) has also been shown to act upstream to the SAPK/JNK signaling pathway. We report here that exposure of hematopoietic Jurkat T cells to genotoxic agents is associated with activation of HPK1. The results demonstrate that exposure of Jurkat cells to DNA-damaging agents is associated with translocation of active c-Abl from nuclei to cytoplasm and binding of c-Abl to HPK1. Our findings also demonstrate that c-Abl phosphorylates HPK1 in cytoplasm and stimulates HPK1 activity. The functional significance of the c-Abl-HPK1 interaction is supported by the demonstration that this complex regulates SAPK/JNK activation. Overexpression of c-Abl(K-R) inhibits HPK1-induced activation of SAPK/JNK. Conversely, the dominant negative mutant of HPK1 blocks c-Abl-mediated induction of SAPK/JNK. These findings indicate that activation of HPK1 and formation of HPK1/c-Abl complexes are functionally important in the stress response of hematopoietic cells to genotoxic agents.
Collapse
Affiliation(s)
- Y Ito
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Arnold R, Liou J, Drexler HC, Weiss A, Kiefer F. Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFkappaB into an inhibitor of NFkappaB. J Biol Chem 2001; 276:14675-84. [PMID: 11278403 DOI: 10.1074/jbc.m008343200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related protein kinase, is a potent stimulator of the stress-activated protein kinases (SAPKs/JNKs). Here we report activation of NFkappaB transcription factors by HPK1 that was independent of SAPK/JNK activation. Overexpression of a dominant-negative SEK1 significantly inhibited SAPK/JNK activation, whereas NFkappaB stimulation by HPK1 remained unaffected. Furthermore, activation of NFkappaB required the presence of full-length, kinase-active HPK1, whereas the isolated kinase domain of HPK1 was sufficient for activation of SAPK/JNK. We also demonstrate that overexpression of a dominant-negative IKKbeta blocks HPK1-mediated NFkappaB activation suggesting that HPK1 acts upstream of the IkappaB kinase complex. In apoptotic myeloid progenitor cells HPK1 was cleaved at a DDVD motif resulting in the release of the kinase domain and a C-terminal part. Although expression of the isolated HPK1 kinase domain led to SAPK/JNK activation, the C-terminal part inhibited NFkappaB activation. This dominant-negative effect was not only restricted to HPK1-mediated but also to NIK- and tumor necrosis factor alpha-mediated NFkappaB activation, suggesting an impairment of the IkappaB kinase complex. Thus HPK1 activates both the SAPK/JNK and NFkappaB pathway in hematopoietic cells but is converted into an inhibitor of NFkappaB activation in apoptotic cells.
Collapse
Affiliation(s)
- R Arnold
- Max-Planck Institute for Physiological and Clinical Research, W. G. Kerckhoff Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
49
|
Ma W, Xia C, Ling P, Qiu M, Luo Y, Tan TH, Liu M. Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes. Oncogene 2001; 20:1703-14. [PMID: 11313918 DOI: 10.1038/sj.onc.1204224] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2000] [Revised: 12/21/2000] [Accepted: 01/04/2001] [Indexed: 11/09/2022]
Abstract
Immune cell-specific adaptor proteins create various combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, modulating the specificity and selectivity of intracellular signal transduction. Grap2 is a newly identified adaptor protein specifically expressed in lymphoid tissues. This protein shares 40--50% sequence homology in the SH3 and the SH2 domain with Grb2 and Grap. However, the Grap2 protein has a unique 120-amino acid glutamine- and proline-rich domain between the SH2 and C-terminal SH3 domains. The expression of Grap2 is highly restricted to lymphoid organs and T lymphocytes. In order to understand the role of this specific adaptor protein in immune cell signaling and activation, we searched for the Grap2 interacting protein in T lymphocytes. We found that Grap2 interacted with the hematopoietic progenitor kinase 1 (HPK1) in vitro and in Jurkat T cells. The interaction was mediated by the carboxyl-terminal SH3 domain of Grap2 with the second proline-rich motif of HPK1. Coexpression of Grap2 with HPK1 not only increased the kinase activity of HPK1 in the cell, but also had an additive effect on HPK1 mediated JNK activation. Furthermore, over expression of Grap2 and HPK1 induced significant transcriptional activation of c-Jun in the JNK signaling pathway and IL-2 gene reporter activity in stimulated Jurkat T cells. Therefore, our data suggest that the hematopoietic specific proteins Grap2 and HPK1 form a signaling complex to mediate the c-Jun NH(2)-terminal kinase (JNK) signaling pathway in T cells.
Collapse
Affiliation(s)
- W Ma
- Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family bind to type II and type I serine/threonine kinase receptors, which initiate intracellular signals through activation of Smad proteins. Receptor-regulated Smads (R-Smads) are anchored to the cell membrane by interaction with membrane-bound proteins, including Smad anchor for receptor activation (SARA). Upon ligand stimulation, R-Smads are phosphorylated by the receptors and form oligomeric complexes with common-partner Smads (Co-Smads). The oligomeric Smad complexes then translocate into the nucleus, where they regulate the transcription of target genes by direct binding to DNA, interaction with various DNA-binding proteins, and recruitment of transcriptional coactivators or corepressors. A third class of Smads, inhibitory Smads (I-Smads), inhibits the signals from the serine/threonine kinase receptors. Since the expression of I-Smads is induced by the TGF-beta superfamily proteins, Smads constitute an autoinhibitory signaling pathway. The functions of Smads are regulated by other signaling pathways, such as the MAP kinase pathway. Moreover, Smads interact with and modulate the functions of various transcription factors which are downstream targets of other signaling pathways. Loss of function of certain Smads is involved in tumorigenesis, e.g., pancreatic and colorectal cancers. Analyses by gene targeting revealed pivotal roles of Smads in early embryogenesis, angiogenesis, and immune functions in vivo.
Collapse
Affiliation(s)
- K Miyazono
- Department of Biochemistry, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | |
Collapse
|