1
|
Chakraborty D, Zhu H, Jüngel A, Summa L, Li YN, Matei AE, Zhou X, Huang J, Trinh-Minh T, Chen CW, Lafyatis R, Dees C, Bergmann C, Soare A, Luo H, Ramming A, Schett G, Distler O, Distler JHW. Fibroblast growth factor receptor 3 activates a network of profibrotic signaling pathways to promote fibrosis in systemic sclerosis. Sci Transl Med 2021; 12:12/563/eaaz5506. [PMID: 32998972 DOI: 10.1126/scitranslmed.aaz5506] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Aberrant activation of fibroblasts with progressive deposition of extracellular matrix is a key feature of systemic sclerosis (SSc), a prototypical idiopathic fibrotic disease. Here, we demonstrate that the profibrotic cytokine transforming growth factor β selectively up-regulates fibroblast growth factor receptor 3 (FGFR3) and its ligand FGF9 to promote fibroblast activation and tissue fibrosis, leading to a prominent FGFR3 signature in the SSc skin. Transcriptome profiling, in silico analysis and functional experiments revealed that FGFR3 induces multiple profibrotic pathways including endothelin, interleukin-4, and connective tissue growth factor signaling mediated by transcription factor CREB (cAMP response element-binding protein). Inhibition of FGFR3 signaling by fibroblast-specific knockout of FGFR3 or FGF9 or pharmacological inhibition of FGFR3 blocked fibroblast activation and attenuated experimental skin fibrosis in mice. These findings characterize FGFR3 as an upstream regulator of a network of profibrotic mediators in SSc and as a potential target for the treatment of fibrosis.
Collapse
Affiliation(s)
- Debomita Chakraborty
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.,Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Astrid Jüngel
- Center of Experimental Rheumatology and Zurich Center of Integrative Human Physiology, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Lena Summa
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, PA 15261, USA
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Oliver Distler
- Center of Experimental Rheumatology and Zurich Center of Integrative Human Physiology, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
2
|
Choi IY, Lim H, Huynh A, Schofield J, Cho HJ, Lee H, Andersen P, Shin JH, Heo WD, Hyun SH, Kim YJ, Oh Y, Kim H, Lee G. Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency. Biomaterials 2020; 269:120222. [PMID: 32736809 DOI: 10.1016/j.biomaterials.2020.120222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
Stem cell fate is largely determined by cellular signaling networks and is heavily dependent on the supplementation of exogenous recombinant proteins into culture media; however, uneven distribution and inconsistent stability of recombinant proteins are closely associated with the spontaneous differentiation of pluripotent stem cells (PSCs) and result in significant costs in large-scale manufacturing. Here, we report a novel PSC culture system via wirelessly controllable optical activation of the fibroblast growth factor (FGF) signaling pathway without the need for supplementation of recombinant FGF2 protein, a key molecule for maintaining pluripotency of PSCs. Using a fusion protein between the cytoplasmic region of the FGF receptor-1 and a light-oxygen-voltage domain, we achieved tunable, blue light-dependent activation of FGF signaling in human and porcine PSCs. Our data demonstrate that a highly controllable optical stimulation of the FGF signaling pathway is sufficient for long-term maintenance of PSCs, without the loss of differentiation potential into three germ layers. This culture system will be a cost-effective platform for a large-scale stem cell culture.
Collapse
Affiliation(s)
- In Young Choi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Graduate School, Kyung Hee University, School of Medicine, Seoul, Republic of Korea
| | - HoTae Lim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; College of Veterinary Medicine, Chungbuk National University, Chungbuk, Republic of Korea
| | - Alex Huynh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Schofield
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Hosuk Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Andersen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Won Do Heo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Hwan Hyun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; College of Veterinary Medicine, Chungbuk National University, Chungbuk, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, Department of Biomedical Science, Graduate School, Kyung Hee University, School of Medicine, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Marzin P, Baujat G, Gensburger D, Huber C, Bole C, Panuel M, Finidori G, De la Dure M, Cormier-Daire V. Heterozygous FGFR1 mutation may be responsible for an incomplete form of osteoglophonic dysplasia, characterized only by radiolucent bone lesions and teeth retentions. Eur J Med Genet 2020; 63:103729. [DOI: 10.1016/j.ejmg.2019.103729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/14/2019] [Accepted: 07/13/2019] [Indexed: 01/19/2023]
|
4
|
Yamaji K, Morita J, Watanabe T, Gunjigake K, Nakatomi M, Shiga M, Ono K, Moriyama K, Kawamoto T. Maldevelopment of the submandibular gland in a mouse model of apert syndrome. Dev Dyn 2018; 247:1175-1185. [DOI: 10.1002/dvdy.24673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kojiro Yamaji
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Jumpei Morita
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Tsukasa Watanabe
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Kaori Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Kentaro Ono
- Division of Physiology, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Keiji Moriyama
- Division of Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| |
Collapse
|
5
|
Castillo GM, Nishimoto-Ashfield A, Jones CC, Kabirov KK, Zakharov A, Lyubimov AV. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury. PLoS One 2017; 12:e0171703. [PMID: 28207794 PMCID: PMC5313194 DOI: 10.1371/journal.pone.0171703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized.
Collapse
Affiliation(s)
| | | | | | - Kasim K. Kabirov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander Zakharov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
6
|
Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep 2016; 6:21642. [PMID: 26869337 PMCID: PMC4751498 DOI: 10.1038/srep21642] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/25/2016] [Indexed: 01/07/2023] Open
Abstract
FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs.
Collapse
|
7
|
Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform. Fertil Steril 2015; 104:1261-7.e1. [PMID: 26277103 DOI: 10.1016/j.fertnstert.2015.07.1142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). DESIGN Cross-sectional study. SETTING Multicentric. PATIENT(S) Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. RESULT(S) Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. CONCLUSION(S) Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms.
Collapse
|
8
|
McGowan SE, McCoy DM. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L463-74. [PMID: 26138642 DOI: 10.1152/ajplung.00013.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pulmonary alveolar fibroblasts produce extracellular matrix in a temporally and spatially regulated pattern to yield a durable yet pliable gas-exchange surface. Proliferation ensures a sufficient complement of cells, but they must differentiate into functionally distinct subtypes: contractile myofibroblasts (MF), which generate elastin and regulate air-flow at the alveolar ducts, and, in mice and rats, lipofibroblasts (LF), which store neutral lipids. PDGF-A is required but acts in conjunction with other differentiation factors arising from adjacent epithelia or within fibroblasts. We hypothesized that FGF receptor (FGFR) expression and function vary for MF and LF and contributes to their divergent differentiation. Whereas approximately half of the FGFR3 was extracellular in MF, FGFR2 and FGFR4 were primarily intracellular. Intracellular FGFR3 localized to the multivesicular body, and its abundance may be modified by Sprouty and interaction with heat shock protein-90. FGF18 mRNA is more abundant in MF, whereas FGF10 mRNA predominated in LF, which also express FGFR1 IIIb, a receptor for FGF10. FGF18 diminished fibroblast proliferation and was chemotactic for cultured fibroblasts. Although PDGF receptor-α (PDGFR-α) primarily signals through phosphoinositide 3-kinase and Akt, p42/p44 MAP kinase (Erk1/2), a major signaling pathway for FGFRs, influenced the abundance of cell-surface PDGFR-α. Observing different FGFR and ligand profiles in MF and LF is consistent with their divergent differentiation although both subpopulations express PDGFR-α. These studies also emphasize the importance of particular cellular locations of FGFR3 and PDGFR-α, which may modify their effects during alveolar development or repair.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
9
|
Dabrowski A, Terauchi A, Strong C, Umemori H. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 2015; 142:1818-30. [PMID: 25926357 PMCID: PMC4440923 DOI: 10.1242/dev.115568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Neurogenesis/physiology
- Neurons/cytology
- Neurons/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cameron Strong
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
10
|
Tong L, Bi J, Zhu X, Wang G, Liu J, Rong L, Wang Q, Xu N, Zhong M, Zhu D, Song Y, Bai C. Keratinocyte growth factor-2 is protective in lipopolysaccharide-induced acute lung injury in rats. Respir Physiol Neurobiol 2014; 201:7-14. [PMID: 24973472 DOI: 10.1016/j.resp.2014.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 11/26/2022]
Abstract
Keratinocyte growth factor-2 (KGF-2) plays a key role in lung development, but its role in acute lung injury has not been well characterized. Lipopolysaccharide instillation caused acute lung injury, which significantly elevated lung wet-to-dry weight ratio, protein and neutrophils in bronchoalveolar lavage fluid (BALF), inhibited surfactant protein A and C expression in lung tissue, and increased pathological injury. Pretreatment with KGF-2 improved the above lung injury parameters, partially restored surfactant protein A and C expression, and KGF-2 given 2-3 days before LPS challenge showed maximum lung injury improvement. Pretreatment with KGF-2 also markedly reduced the levels of TNF-α, MIP-2, IL-1β and IL-6 in BALF and the levels of IL-1β and IL-6 in lung tissue. Histological analysis showed there was increased proliferation of alveolar type II epithelial cells in lung parenchyma, which reached maximal 2 days after KGF-2 instillation. Intratracheal administration of KGF-2 attenuates lung injury induced by LPS, suggesting KGF-2 may be potent in the intervention of acute lung injury.
Collapse
Affiliation(s)
- Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jing Bi
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guifang Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jie Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Linyi Rong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Qin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Nuo Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Ming Zhong
- Division of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Duming Zhu
- Division of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Public Health Clinical Center, Shanghai 201508, PR China; Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, PR China.
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
11
|
Bi J, Tong L, Zhu X, Yang D, Bai C, Song Y, She J. Keratinocyte growth factor-2 intratracheal instillation significantly attenuates ventilator-induced lung injury in rats. J Cell Mol Med 2014; 18:1226-35. [PMID: 24650242 PMCID: PMC4508161 DOI: 10.1111/jcmm.12269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Abstract
Preservation or restoration of normal alveolar epithelial barrier function is crucial for pulmonary oedema resolution. Keratinocyte growth factor-2 (KGF-2), a potent epithelial cell mitogen, may have a role in preventing ventilator-induced lung injury (VILI), which occurs frequently in mechanically ventilated patients. The aim of the study was to test the role of KGF-2 in VILI in rats. Forty healthy adult male Sprague-Dawley rats were randomly allocated into four groups, where rats in Groups HVZP (high-volume zero positive end-expiratory pressure) and HVZP+KGF-2 were given intratracheally equal PBS and 5 mg/kg KGF-2 72 hrs before 4 hrs HVZP ventilation (20 ml/kg), respectively, while PBS and KGF-2 were administered in the same manner in Groups Control and KGF-2, which underwent tracheotomy only with spontaneous breathing. Inflammatory cytokines (tumour necrosis factor-α, macrophage inflammatory protein 2), neutrophil and total protein levels in bronchoalveolar lavage fluid and surfactant protein mRNA expression in lung tissue were detected; the number of alveolar type II cells, lung water content and lung morphology were also evaluated. The results indicate that pre-treatment with KGF-2 showed dramatic improvement in lung oedema and inflammation compared with HVZP alone, together with increased surfactant protein mRNA and alveolar type II cells. Our results suggest that KGF-2 might be considered a promising prevention for human VILI or other acute lung injury diseases.
Collapse
Affiliation(s)
- Jing Bi
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Laestander C, Engström W. Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif 2014; 47:3-11. [PMID: 24354576 PMCID: PMC6495704 DOI: 10.1111/cpr.12084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) are signalling peptides that control important cell processes such as proliferation, differentiation, migration, adhesion and survival. Through binding to different types of receptor on the cell surface, these peptides can have different effects on a target cell, the effect achieved depending on many features. Thus, each of the known FGFs elicits specific biological responses. FGF receptors (FGFR 1-5) initiate diverse intracellular pathways, which in turn lead to a variety of results. FGFs also bind the range of FGFRs with a series of affinities and each type of cells expresses FGFRs in different qualitative and quantitative patterns, which also affect responses. To summarize, cell response to binding of an FGF ligand depends on type of FGF, FGF receptor and target cell, all interacting in concert. This review aims to examine properties of the FGF family and its members receptors. It also aims to summarize features of intracellular signalling and highlight differential effects of the various FGFs in different circumstances.
Collapse
Affiliation(s)
- C. Laestander
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| | - W. Engström
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
13
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
14
|
Yanochko GM, Vitsky A, Heyen JR, Hirakawa B, Lam JL, May J, Nichols T, Sace F, Trajkovic D, Blasi E. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction. Toxicol Sci 2013; 135:451-64. [PMID: 23872713 DOI: 10.1093/toxsci/kft161] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.
Collapse
|
15
|
Belov AA, Mohammadi M. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol 2013; 5:a015958. [PMID: 23732477 PMCID: PMC3660835 DOI: 10.1101/cshperspect.a015958] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand-receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases.
Collapse
Affiliation(s)
- Artur A Belov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
16
|
Lin TC, Chen JH, Chen YH, Teng TM, Su CH, Hsu SH. Biodegradable micelles from a hyaluronan-poly(ε-caprolactone) graft copolymer as nanocarriers for fibroblast growth factor 1. J Mater Chem B 2013; 1:5977-5987. [DOI: 10.1039/c3tb21134g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Speer AL, Alam DA, Sala FG, Ford HR, Bellusci S, Grikscheit TC. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis. PLoS One 2012; 7:e49127. [PMID: 23133671 PMCID: PMC3486796 DOI: 10.1371/journal.pone.0049127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022] Open
Abstract
The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.
Collapse
Affiliation(s)
- Allison L. Speer
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Denise Al Alam
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Frederic G. Sala
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Henri R. Ford
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Saverio Bellusci
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- University of Giessen Lung Center, Department of Internal Medicine II, Giessen, Germany
| | - Tracy C. Grikscheit
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Meyer M, Müller AK, Yang J, Moik D, Ponzio G, Ornitz DM, Grose R, Werner S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J Cell Sci 2012; 125:5690-701. [PMID: 22992463 DOI: 10.1242/jcs.108167] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Efficient wound repair is essential for the maintenance of the integrity of the skin. The repair process is controlled by a variety of growth factors and cytokines, and their abnormal expression or activity can cause healing disorders. Here, we show that wound repair is severely delayed in mice lacking fibroblast growth factor receptors (FGFR) 1 and 2 in keratinocytes. As the underlying mechanism, we identified impaired wound contraction and a delay in re-epithelialization that resulted from impaired keratinocyte migration at the wound edge. Scratch wounding and transwell assays demonstrated that FGFR1/2-deficient keratinocytes had a reduced migration velocity and impaired directional persistence owing to inefficient formation and turnover of focal adhesions. Underlying this defect, we identified a significant reduction in the expression of major focal adhesion components in the absence of FGFR signaling, resulting in a general migratory deficiency. These results identify FGFs as key regulators of keratinocyte migration in wounded skin.
Collapse
Affiliation(s)
- Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The aging process decreases tissue function and regenerative capacity, which has been associated with cellular senescence and a decline in adult or somatic stem cell numbers and self-renewal within multiple tissues. The potential therapeutic application of stem cells to reduce the burden of aging and stimulate tissue regeneration after trauma is very promising. Much research is currently ongoing to identify the factors and molecular mediators of stem cell self-renewal to reach these goals. Over the last two decades, fibroblast growth factors (FGFs) and their receptors (FGFRs) have stood up as major players in both embryonic development and tissue repair. Moreover, many studies point to somatic stem cells as major targets of FGF signaling in both tissue homeostasis and repair. FGFs appear to promote self-renewing proliferation and inhibit cellular senescence in nearly all tissues tested to date. Here we review the role of FGFs and FGFRs in stem cell self-renewal, cellular senescence, and aging.
Collapse
Affiliation(s)
- Daniel L Coutu
- Stem Cell Dynamics Research Unit, Helmholtz Zentrum München, Munich, Germany
| | | |
Collapse
|
20
|
Gupte J, Yang L, Wu X, Weiszmann J, Hecht R, Lemon B, Lindberg R, Wang Z, Li Y. The FGFR D3 domain determines receptor selectivity for fibroblast growth factor 21. J Mol Biol 2011; 408:491-502. [PMID: 21392510 DOI: 10.1016/j.jmb.2011.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 11/29/2022]
Abstract
FGF21 is a member of a unique subfamily of fibroblast growth factors that function as endocrine hormones and regulate a variety of metabolic activities. Unlike paracrine FGFs, FGF21 does not bind heparin and requires βKlotho as a co-receptor to activate FGFR signaling. In the presence of βKlotho, FGF21 is able to activate FGFRs 1c, 2c and 3c but not FGFR4. Chimeric FGFR1c/FGFR4 receptors were constructed to identify domains that confer this specificity and to understand regions important for FGF21-induced receptor activation. With these chimeras, we showed that domain 3 of the FGFR1c extracellular domain plays a critical role in specificity determination and receptor activation by FGF21. Furthermore, we were able to narrow down the sequences important for this function to a six amino acid region within domain 3 of FGFR1c. It is interesting to note that this region falls into the βC'-βE loop, which has been shown to be important for receptor specificity determination in paracrine FGFs, suggesting a common principle in both endocrine and paracrine FGF receptor interaction and activation.
Collapse
Affiliation(s)
- Jamila Gupte
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010; 24:2050-64. [PMID: 20667984 PMCID: PMC2954642 DOI: 10.1210/me.2010-0142] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/01/2010] [Indexed: 01/16/2023] Open
Abstract
Although members of the fibroblast growth factor (FGF) family and their receptors have well-established roles in embryogenesis, their contributions to adult physiology remain relatively unexplored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all 22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interestingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in a third group that does not include any FGFRs, underscoring their roles in signaling between tissues. We further show that the most recently identified Klotho family member, Lactase-like, is highly and selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the physiological functions of FGFs in adult animals.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saxena K, Schieborr U, Anderka O, Duchardt-Ferner E, Elshorst B, Gande SL, Janzon J, Kudlinzki D, Sreeramulu S, Dreyer MK, Wendt KU, Herbert C, Duchaussoy P, Bianciotto M, Driguez PA, Lassalle G, Savi P, Mohammadi M, Bono F, Schwalbe H. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex. J Biol Chem 2010; 285:26628-40. [PMID: 20547770 DOI: 10.1074/jbc.m109.095109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF.FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM(6)), octasaccharide (HM(8)), and decasaccharide (HM(10)), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM(8) and HM(10) are significantly more potent than HM(6) in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1.FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2.FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1.FGFR4 interaction site and a direct FGFR4.FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF.FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM(8) relative to HM(6) in stimulating FGF2.FGFR4 signaling correlates with the higher affinity of HM(8) to bind and dimerize FGF2. Notably FGF2.HM(8) exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF.FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.
Collapse
Affiliation(s)
- Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Miura K, Miura S, Yoshiura KI, Seminara S, Hamaguchi D, Niikawa N, Masuzaki H. A case of Kallmann syndrome carrying a missense mutation in alternatively spliced exon 8A encoding the immunoglobulin-like domain IIIb of fibroblast growth factor receptor 1. Hum Reprod 2010; 25:1076-80. [PMID: 20139426 DOI: 10.1093/humrep/deq006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is one of the causative genes for Kallmann syndrome (KS), which is characterized by isolated hypogonadotropic hypogonadism with anosmia/hyposmia. The third immunoglobulin-like domain (D3) of FGFR1 has the isoforms FGFR1-IIIb and FGFR1-IIIc, which are generated by alternative splicing of exons 8A and 8B, respectively. To date, the only mutations to have been identified in D3 of FGFR1 are in exon 8B. We performed mutation analysis of FGFR1 in a 23-year-old female patient with KS and found a missense mutation (c.1072C>T) in exon 8A of FGFR1. The c.1072C>T mutation was not detected in her family members or in 220 normal Japanese and 100 Caucasian female controls. No mutation in other KS genes, KS 1, prokineticin-2, prokineticin receptor-2 and FGF-8 was detected in the affected patient or in her family members. Therefore, this is the first case of KS carrying a de novo missense mutation in FGFR1 exon 8A, suggesting that isoform FGFR1-IIIb, as well as isoform FGFR1-IIIc, plays a crucial role in the pathogenesis of KS.
Collapse
Affiliation(s)
- Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang JF, Cai X, Zou MJ, Wang YY, Wang JX, Xu DG. Thr-114 is an important functional residue of fibroblast growth factor 10 identified by structure-based mutational analysis. Cytokine 2009; 49:338-43. [PMID: 20036575 DOI: 10.1016/j.cyto.2009.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/27/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Fibroblast growth factor 10 (FGF10) plays important roles in vertebrate limb development, lung branching morphogenesis, and epidermis regeneration. The receptor (FGFR2b) binding specificity is an essential element in regulating the diverse functions of FGF10. Analyzing the FGF10:FGFR2b complex we found that Thr-114 in beta4 of FGF10 could form specific interactions with D3 of FGFR2b. To investigate the role of Thr-114 played on functions of FGF10, two mutants of FGF10 were constructed, named TA (Thr-114-->Ala) and TR (Thr-114-->Arg), respectively. The biological activity assays showed that the receptor-binding affinity, the stimulating growth effect on rat tracheal epithelium (RTE) cells, and the inducing ability in receptor phosphorylation of both mutants were decreased, which were consistent with the interaction analysis of the TA:FGFR2b and TR:FGFR2b complexes. These results suggested that Thr-114 is a crucial functional residue for FGF10, and mutating Thr-114 to Ala or Arg would lead to great decrease in receptor-binding affinity and biological activity of FGF10.
Collapse
|
25
|
Cuppini C, Ambrogini P, Lattanzi D, Ciuffoli S, Cuppini R. FGF2 modulates the voltage-dependent K+ current and changes excitability of rat dentate gyrus granule cells. Neurosci Lett 2009; 462:203-6. [PMID: 19616069 DOI: 10.1016/j.neulet.2009.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/03/2009] [Accepted: 07/10/2009] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in hippocampus-dependent learning. In this study, the effects of FGF2 on the excitability were investigated in granule cells of rat dentate gyrus. Hippocampal slices were used to perform patch clamp recordings in granule cells. Extracellularly applied FGF2 early quenched the depolarization-induced repetitive firing, suggesting a decreased excitability under these conditions. Consistently, transient and sustained voltage-gated K(+) currents decreased in a dose-dependent manner, repolarization phase of action potential was slowed down, afterhyperpolarization was reduced, and membrane resistance was decreased. These effects were not mediated by tyrosine kinase FGF2 receptors. Moreover, an involvement of G protein signaling was ruled out, as well as an intracellular action of FGF2. Considering the relationship between FGF2 and hippocampal functions, the modulation of neuron excitability by activity-driven FGF2 release may be regarded as a part of a homeostatic mechanism of self-regulation of hippocampal activity.
Collapse
Affiliation(s)
- Carla Cuppini
- Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura-Sezione di Fisiologia, Università degli Studi di Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | |
Collapse
|
26
|
Gorbenko O, Ovcharenko G, Volkova D, Mayilo D, Gaman N, Khozhayenko Y, Usenko V, Gout I, Filonenko V. Monoclonal antibodies with selective specificity towards different glycosylation isoforms of FGFR1. Hybridoma (Larchmt) 2009; 28:287-93. [PMID: 19663702 DOI: 10.1089/hyb.2009.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a member of the FGFR family of receptor tyrosine kinases, whose function has been implicated in diverse biological processes including cell proliferation, differentiation, survival, and tumorigenesis. This diversity is possibly mediated by the existence of multiple FGFR1 isoforms, generated by alternative splicing and post-translational modifications, mainly through glycosylation. In this study we report the generation and characterization of a panel of monoclonal antibodies directed towards FGFR1. To achieve this, we used as an antigen a fragment of FGFR1, corresponding to loop II-III of the extracellular domain, which shares low homology to other members of the FGFR family and possesses numerous antigentic determinants. Two rounds of ELISA screening and Western blot analysis allowed us to isolate a panel of monoclonal antibodies, which recognize specifically recombinant FGFR1 loop II-III. The ability of generated antibodies to recognize endogenous FGFR1 was examined in 3T3 L1 cells, which are known to express FGFR1, but not other members of FGFR family. Immunoblot analysis of 3T3 L1 cell lysates with hybridoma media of selected clones revealed a different, but overlapping pattern of immunoreactive bands, which might represent splicing and post-translationally modified forms of FGFR1. Furthermore, we also tested the cross-reactivity of generated antibodies towards recombinant full-length FGFR3 and their ability to recognize FGFR1 in 3T3 L1 cells by cyto- and immunocytochemistry. In summary, generated antibodies should be useful as tools for examining the expression pattern and biological functions of FGFR1 in normal and pathological tissues.
Collapse
Affiliation(s)
- Olena Gorbenko
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
HOSOKAWA RYOICHI, DENG XUEMEI, TAKAMORI KAZUNORI, XU XUN, URATA MARK, BRINGAS PABLO, CHAI YANG. Epithelial-specific requirement of FGFR2 signaling during tooth and palate development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:343-50. [PMID: 19235875 PMCID: PMC2896559 DOI: 10.1002/jez.b.21274] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reciprocal interactions between epithelium and mesenchyme are crucial for embryonic development. Fibroblast growth factors (FGFs) are a growth factor family that play an important role in epithelial-mesenchymal tissue interaction. We have generated epithelial-specific conditional knockout mice targeting Fibroblast growth factor receptor 2 (Fgfr2) to investigate the function of FGF signaling during craniofacial development. K14-Cre;Fgfr2(fl/fl) mice have skin defects, retarded tooth formation, and cleft palate. During the formation of the tooth primordium and palatal processes, cell proliferation in the epithelial cells of K14-Cre;Fgfr2(fl/fl) mice is reduced. Thus, FGF signaling via FGFR2 in the epithelium is crucial for cell proliferation activity during tooth and palate development.
Collapse
Affiliation(s)
- RYOICHI HOSOKAWA
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California
| | - XUEMEI DENG
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California
| | - KAZUNORI TAKAMORI
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - XUN XU
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California
| | - MARK URATA
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California
| | - PABLO BRINGAS
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California
| | - YANG CHAI
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
Construction and characterization of a high activity mutant of human keratinocyte growth factor-2. Biotechnol Lett 2009; 31:797-802. [PMID: 19224135 DOI: 10.1007/s10529-009-9948-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
Keratinocyte growth factor-2 (KGF-2) plays an important role in vertebrate limb development, lung branching morphogenesis, regeneration and reconstruction of the epidermis. Previous studies have used the wild type factor. Here, we have constructed a double-site mutant of human KGF-2, named STEA. STEA possesses higher receptor binding affinity and promotes better proliferation activity on rat tracheal epithelium (RTE) cells than recombinant human KGF-2. These results suggest that the simultaneous mutation of Ser115 to Thr and Glu117 to Ala improves the biological activity of KGF-2.
Collapse
|
29
|
Abstract
OBJECTIVES Fibroblast growth factor receptor 1 (FGFR1) isoform IIIc enhances and FGFR1-IIIb inhibits pancreatic cancer cell growth. Nothing is presently known about the expression and regulation of human FGFR1-III isoforms. The aim of this study was to identify regulators modulating the specific expression of human FGFR1-IIIb and FGFR1-IIIc. METHODS Parental cells, cells overexpressing FGFR1-III isoforms, and cells harboring a tetracycline-inducible cyclin D1 antisense expression vector system were used as model systems. RESULTS FGFR1-IIIb and -IIIc were coexpressed in human pancreatic cancer cells, with FGFR1-IIIc being the predominant isoform. FGFR1-IIIb mRNA expression decreased at higher cell density, whereas FGFR1-IIIc expression remained constant. Insulinlike growth factor I and epidermal growth factor induced expression of FGFR1-IIIc without altering FGFR1-IIIb. In contrast, fibroblast growth factor (FGF)1, FGF2, and FGF5 induced FGFR1-IIIc and reduced the expression of FGFR1-IIIb. Overexpression of one isoform did not alter the expression of the corresponding FGFR1-III isoform. Inhibition of cyclin D1, known to be induced by insulinlike growth factor I, epidermal growth factor, and FGF2, resulted in an inhibition of FGFR1-IIIc expression, whereas FGFR1-IIIb expression was enhanced. CONCLUSIONS This study demonstrated for the first time that FGFR1-IIIb and FGFR1-IIIc are coexpressed and that the FGFR1-III isoformsare differentially regulated by growth factors and cyclin D1.
Collapse
|
30
|
Liu Z, Ishiwata T, Zhou S, Maier S, Henne-Bruns D, Korc M, Bachem M, Kornmann M. Human fibroblast growth factor receptor 1-IIIb is a functional fibroblast growth factor receptor expressed in the pancreas and involved in proliferation and movement of pancreatic ductal cells. Pancreas 2007; 35:147-57. [PMID: 17632321 DOI: 10.1097/mpa.0b013e318053e7e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The possible functions of the human IIIb-messenger RNA splice variant of fibroblast growth factor (FGF) receptor 1 (FGFR-1 IIIb) are yet to be delineated. In this study, the expression and functionality of the human FGFR-1 IIIb were characterized in the pancreas. METHODS In situ hybridization with a specific FGFR-1 IIIb probe in human pancreatic tissues demonstrated that FGFR-1 IIIb localized in normal pancreatic acinar and in ductal-like pancreatic cancer cells. To further assess the potential role of this receptor, a full-length human FGFR-1 IIIb was stably expressed in TAKA-1 pancreatic ductal cells not expressing endogenous FGFR-1. RESULTS The FGFR-1 IIIb-expressing TAKA-1 cells synthesized a glycosylated 110-kd protein capable of inducing proliferation on incubation with exogenous FGF-1, -2, and -4. These effects were paralleled by tyrosine phosphorylation of FGFR substrate 2 and association of FGFR substrate 2 with FGFR-1 IIIb. The FGF-1, -2, and -10 induced the activation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK, and c-Jun N-terminal kinase. Pharmacological inhibition revealed that FGF-induced proliferation was dependent on the concomitant activation of p44/42 MAPK and c-Jun N-terminal kinase. The FGFR-1 IIIb expression enhanced single-cell movement and plating efficacy. CONCLUSIONS Our results demonstrate that the human FGFR-1 IIIb variant is a functional FGFR expressed in the pancreas that can alter pancreatic functions that regulate proliferation, adhesion, and movement.
Collapse
Affiliation(s)
- Zhanbing Liu
- Department of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Z, Neiss N, Zhou S, Henne-Bruns D, Korc M, Bachem M, Kornmann M. Identification of a fibroblast growth factor receptor 1 splice variant that inhibits pancreatic cancer cell growth. Cancer Res 2007; 67:2712-9. [PMID: 17363592 DOI: 10.1158/0008-5472.can-06-3843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor receptors (FGFR) play important roles in many biological processes. Nothing is presently known about possible roles of the human FGFR1-IIIb mRNA splice variant. In this study, we characterized for the first time the effects of FGFR1-IIIb expression on the transformed phenotype of human pancreatic cancer cells. The full-length FGFR1-IIIb cDNA was generated and stably expressed in PANC-1 and MIA PaCa-2 pancreatic cancer and TAKA-1 pancreatic ductal cells. FGFR1-IIIb-expressing cells synthesized a glycosylated 110-kDa protein enhancing tyrosine phosphorylation of FGFR substrate-2 on FGF-1 stimulation. The basal anchorage-dependent and anchorage-independent cell growth was significantly inhibited. These effects were associated with a marked reduction of p44/42 mitogen-activated protein kinase (MAPK) phosphorylation in combination with enhanced activity of p38 MAPK and c-Jun NH(2)-terminal kinase. FGFR1-IIIb expression inhibited single-cell movement and in vitro invasion as determined by time-lapse microscopy and Boyden chamber assay as well as in vivo tumor formation and growth in nude mice. Microscopic analysis of the xenograft tumors revealed a reduced Ki-67 labeling and a lower amount of tumor necrosis in FGFR1-IIIb-expressing tumors. Our results show that FGFR1-IIIb is a functional FGFR that inhibits the transformed phenotype of human pancreatic cancer cells.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/physiology
- Female
- Humans
- Immunohistochemistry
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
Collapse
Affiliation(s)
- Zhanbing Liu
- Department of General, Visceral and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Sun HD, Malabunga M, Tonra JR, DiRenzo R, Carrick FE, Zheng H, Berthoud HR, McGuinness OP, Shen J, Bohlen P, Leibel RL, Kussie P. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am J Physiol Endocrinol Metab 2007; 292:E964-76. [PMID: 17132826 DOI: 10.1152/ajpendo.00089.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We generated three fully human monoclonal antibody antagonists against fibroblast growth factor receptor-1 (FGFR1) that potently block FGF signaling. We found that antibodies targeting the c-splice form of the receptor (FGFR1c) were anorexigenic when administered intraperitoneally three times weekly to mice, resulting in rapid, dose-dependent weight loss that plateaued (for doses>4 mg/kg) at 35-40% in 2 wk. Animals appeared healthy during treatment and regained their normal body weights and growth trajectories upon clearance of the antibodies from the bloodstream. Measurements of food consumption and energy expenditure indicated that the rapid weight loss was induced primarily by decreased energy intake and not by increased energy expenditure or cachexia and was accompanied by a greater reduction in fat than lean body mass. Hypophagia was not caused through malaise or illness, as indicated by absence of conditioned taste aversion, pica behavior, and decreased need-induced salt intake in rats. In support of a hypothalamic site of action, we found that, after intraperitoneal injections, anti-FGFR1c (IMC-A1), but not a control antibody, accumulated in the median eminence and adjacent mediobasal hypothalamus and that FGFR1c is enriched in the hypothalamus of mice. Furthermore, a single intracerebroventricular administration of 3 microg of IMC-A1 via the 3rd ventricle to mice caused an approximately 36% reduction in food intake and an approximately 6% weight loss within the ensuing 24 h. Our data suggest that FGF signaling through FGFR1c may play a physiological role in hypothalamic feeding circuit and that blocking it leads to hypophagia and weight loss.
Collapse
Affiliation(s)
- Haijun D Sun
- ImClone Systems Inc., 180 Varick St., New York, NY 10014, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lai AKW, Hou WL, Verdon DJ, Nicholson LFB, Barling PM. The distribution of the growth factors FGF-2 and VEGF, and their receptors, in growing red deer antler. Tissue Cell 2007; 39:35-46. [PMID: 17316726 DOI: 10.1016/j.tice.2007.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cellular distributions of the growth factors FGF-2 and VEGF, and their receptors FGFR1, FGFR2 and FGFR3, and VEGFR-2 respectively, were visualized by immunohistochemistry and light microscopy in sections of growing red deer antler. Both of these signalling systems were widely expressed in the integument and osteocartilaginous compartments. FGF-2 was found in the same cells as all three FGFRs, indicating that FGF signalling may be principally autocrine. The patterns of labelling for VEGF and its receptor were similar to those seen for FGF-2 and FGFR-3, in both compartments. Our data are consistent with the findings of others in suggesting that FGF-2 induces expression of VEGF, to stimulate and maintain high rates of neovascularisation and angiogenesis, thereby providing nutrients to both velvet and bone as they rapidly grow and develop. The presence of FGF and VEGF and their receptors in epithelial cells suggests that these signalling systems play a role in skin development, raising the possibility that one or both may be involved in the close coupling of the coordinated growth of the integument and osteocartilage of antler, a process which is poorly understood at present.
Collapse
Affiliation(s)
- Angela K W Lai
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|
34
|
Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281:15694-700. [PMID: 16597617 PMCID: PMC2080618 DOI: 10.1074/jbc.m601252200] [Citation(s) in RCA: 917] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.
Collapse
Affiliation(s)
- Xiuqin Zhang
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Omar A. Ibrahimi
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shaun K. Olsen
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Hisashi Umemori
- Department of Biological Chemistry, Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - David M. Ornitz
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
35
|
Shin M, Noji S, Neubüser A, Yasugi S. FGF10 is required for cell proliferation and gland formation in the stomach epithelium of the chicken embryo. Dev Biol 2006; 294:11-23. [PMID: 16616737 DOI: 10.1016/j.ydbio.2005.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/21/2005] [Accepted: 12/07/2005] [Indexed: 11/20/2022]
Abstract
The development of digestive organs in vertebrates involves active epithelial-mesenchymal interactions. In the chicken proventriculus (glandular stomach), the morphogenesis and cytodifferentiation of the epithelium are controlled by the inductive signaling factors that are secreted from the underlying mesenchyme. Previous studies have shown that Fgf10 is expressed in the developing chicken proventricular mesenchyme, whereas its receptors are present in the epithelium. In our present study, we show that FGF10 is an early mesenchymal signal that is critically associated with the developmental processes in the proventricular epithelium. Furthermore, virus-mediated Fgf10 overexpression in ovo results in a hypermorphic epithelial structure and an increase in epithelial cell number. In contrast, the overexpression of a secreted FGFR2b (sFGFR2b), an FGF10 antagonist, blocks cell proliferation and gland formation in the proventricular epithelium in ovo. This downregulation of proliferative activity was subsequently found to retard gland formation and also to delay differentiation of the epithelium. These results demonstrate that FGF10 signaling, mediated by FGFR1b and/or FGFR2b, is required for proliferation and gland formation in the epithelium in the developing chick embryo.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
36
|
Jackson RA, Nurcombe V, Cool SM. Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis. Gene 2006; 379:79-91. [PMID: 16797878 DOI: 10.1016/j.gene.2006.04.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/17/2006] [Accepted: 04/20/2006] [Indexed: 01/13/2023]
Abstract
Growth and lineage-specific differentiation constitute crucial phases in the development of stem cells. Control over these processes is exerted by particular elements of the extracellular matrix, which ultimately trigger a cascade of signals that regulate uncommitted cells, by modulating their survival and cell cycle progression, to shape developmental processes. Uncontrolled, constitutive activation of fibroblast growth factor receptors (FGFR) results in bone abnormalities, underlining the stringent control over fibroblast growth factor (FGF) activity that must be maintained for normal osteogenesis to proceed. Mounting evidence suggests that FGF signalling, together with a large number of other growth and adhesive factors, is controlled by the extracellular glycosaminoglycan sugar, heparan sulfate (HS). In this review, we focus on FGF activity during osteogenesis, their receptors, and the use of HS as a therapeutic adjuvant for bone repair.
Collapse
Affiliation(s)
- Rebecca A Jackson
- Laboratory of Stem Cells and Tissue Repair, Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | | | |
Collapse
|
37
|
Kanda S, Miyata Y, Kanetake H. Current status and perspective of antiangiogenic therapy for cancer: urinary cancer. Int J Clin Oncol 2006; 11:90-107. [PMID: 16622744 DOI: 10.1007/s10147-006-0565-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Indexed: 12/27/2022]
Abstract
Angiogenesis is considered a prerequisite for solid tumor growth. Antiangiogenic therapy reduces tumor size and extends host survival in a number of preclinical animal models. However, in humans antiangiogenic therapy is a poor promoter of tumor regression and has shown minimal effect on patient survival. In urinary cancers, such as renal cell cancer, prostate cancer, and bladder cancer, advanced refractory disease is a good candidate for antiangiogenic therapy because of its resistance to ordinary chemotherapy, radiotherapy, and hormonal therapy. Unique characteristics of molecular mechanisms underlie the induction of angiogenesis in urinary cancers. In this review, we summarize these unique mechanisms and review the results of clinical trials of antiangiogenic therapy for these cancers, discussing prospects and problems relating to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shigeru Kanda
- Department of Molecular Microbiology and Immunology, Division of Endothelial Cell Biology, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | | | | |
Collapse
|
38
|
Morriss-Kay GM, Wilkie AOM. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 2006; 207:637-53. [PMID: 16313397 PMCID: PMC1571561 DOI: 10.1111/j.1469-7580.2005.00475.x] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The mammalian skull vault is constructed principally from five bones: the paired frontals and parietals, and the unpaired interparietal. These bones abut at sutures, where most growth of the skull vault takes place. Sutural growth involves maintenance of a population of proliferating osteoprogenitor cells which differentiate into bone matrix-secreting osteoblasts. Sustained function of the sutures as growth centres is essential for continuous expansion of the skull vault to accommodate the growing brain. Craniosynostosis, the premature fusion of the cranial sutures, occurs in 1 in 2500 children and often presents challenging clinical problems. Until a dozen years ago, little was known about the causes of craniosynostosis but the discovery of mutations in the MSX2, FGFR1, FGFR2, FGFR3, TWIST1 and EFNB1 genes in both syndromic and non-syndromic cases has led to considerable insights into the aetiology, classification and developmental pathology of these disorders. Investigations of the biological roles of these genes in cranial development and growth have been carried out in normal and mutant mice, elucidating their individual and interdependent roles in normal sutures and in sutures undergoing synostosis. Mouse studies have also revealed a significant correspondence between the neural crest-mesoderm boundary in the early embryonic head and the position of cranial sutures, suggesting roles for tissue interaction in suture formation, including initiation of the signalling system that characterizes the functionally active suture.
Collapse
|
39
|
Jackson RA, Kumarasuriyar A, Nurcombe V, Cool SM. Long-term loading inhibits ERK1/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. J Cell Physiol 2006; 209:894-904. [PMID: 16972271 DOI: 10.1002/jcp.20779] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. In conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.
Collapse
Affiliation(s)
- Rebecca A Jackson
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | | | | | | |
Collapse
|
40
|
Milanesi L, Petrillo M, Sepe L, Boccia A, D'Agostino N, Passamano M, Di Nardo S, Tasco G, Casadio R, Paolella G. Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity. BMC Bioinformatics 2005; 6 Suppl 4:S20. [PMID: 16351747 PMCID: PMC1866387 DOI: 10.1186/1471-2105-6-s4-s20] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Protein kinases are a well defined family of proteins, characterized by the presence of a common kinase catalytic domain and playing a significant role in many important cellular processes, such as proliferation, maintenance of cell shape, apoptosys. In many members of the family, additional non-kinase domains contribute further specialization, resulting in subcellular localization, protein binding and regulation of activity, among others. About 500 genes encode members of the kinase family in the human genome, and although many of them represent well known genes, a larger number of genes code for proteins of more recent identification, or for unknown proteins identified as kinase only after computational studies. Results A systematic in silico study performed on the human genome, led to the identification of 5 genes, on chromosome 1, 11, 13, 15 and 16 respectively, and 1 pseudogene on chromosome X; some of these genes are reported as kinases from NCBI but are absent in other databases, such as KinBase. Comparative analysis of 483 gene regions and subsequent computational analysis, aimed at identifying unannotated exons, indicates that a large number of kinase may code for alternately spliced forms or be incorrectly annotated. An InterProScan automated analysis was perfomed to study domain distribution and combination in the various families. At the same time, other structural features were also added to the annotation process, including the putative presence of transmembrane alpha helices, and the cystein propensity to participate into a disulfide bridge. Conclusion The predicted human kinome was extended by identifiying both additional genes and potential splice variants, resulting in a varied panorama where functionality may be searched at the gene and protein level. Structural analysis of kinase proteins domains as defined in multiple sources together with transmembrane alpha helices and signal peptide prediction provides hints to function assignment. The results of the human kinome analysis are collected in the KinWeb database, available for browsing and searching over the internet, where all results from the comparative analysis and the gene structure annotation are made available, alongside the domain information. Kinases may be searched by domain combinations and the relative genes may be viewed in a graphic browser at various level of magnification up to gene organization on the full chromosome set.
Collapse
Affiliation(s)
- Luciano Milanesi
- Biomedical Technologies Institute (ITB), National Research Council, Milano, Italy
- CILEA, Segrate, Italy
| | | | - Leandra Sepe
- Biomedical Technologies Institute (ITB), National Research Council, Milano, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Universita' di Napoli Federico II, Italy
| | | | - Nunzio D'Agostino
- Biomedical Technologies Institute (ITB), National Research Council, Milano, Italy
| | - Myriam Passamano
- Biomedical Technologies Institute (ITB), National Research Council, Milano, Italy
| | - Salvatore Di Nardo
- Biomedical Technologies Institute (ITB), National Research Council, Milano, Italy
| | - Gianluca Tasco
- Biomedical Technologies Institute (ITB), National Research Council, Milano, Italy
- Department of Biology, University of Bologna, Italy
| | - Rita Casadio
- Department of Biology, University of Bologna, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Universita' di Napoli Federico II, Italy
- Dipartimento SAVA, Universita' del Molise, Italy
| |
Collapse
|
41
|
Shin M, Watanuki K, Yasugi S. Expression of Fgf10 and Fgf receptors during development of the embryonic chicken stomach. Gene Expr Patterns 2005; 5:511-6. [PMID: 15749079 DOI: 10.1016/j.modgep.2004.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/02/2004] [Accepted: 12/13/2004] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor 10 (FGF10) is involved in numerous different aspects of embryonic development and especially in active epithelial-mesenchymal interactions during morphogenesis of many organs as a mesenchymal regulator by activating its receptors (FGFR1b and FGFR2b) expressed in the epithelial tissue. FGFR2b is also activated by FGF7 although FGF7 does not bind to FGFR1b. To provide basic data to analyze function of FGFs in the developing gut, here we cloned Fgf7 and studied expression patterns of Fgf7, Fgf10 and Fgfr1-4 during the development of chicken stomach (glandular stomach; proventriculus and muscular stomach; gizzard). Fgf10 is expressed both in the proventricular and gizzard mesenchyme while Fgf7 is expressed only in gizzard mesenchyme. Fgfr1-4 are expressed both in the epithelium and mesenchyme with a different spatial expression patterns. Furthermore, RT-PCR analysis reveals that Fgfr1b and Fgfr2b are expressed only in epithelia of both organs.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
42
|
Gabler C, Plath-Gabler A, Killian GJ, Berisha B, Schams D. Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reprod Domest Anim 2005; 39:321-7. [PMID: 15367264 DOI: 10.1111/j.1439-0531.2004.00517.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of the corpus luteum (CL) is accompanied by very active angiogenesis. We hypothesize that during this process endothelial cells (EC) are under the control of several angiogenic factors and steroids. The aim of this study was to examine the expression of the angiogenic growth factor systems - fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) - in EC derived from the bovine CL. Endothelial cells were cultured in serum-free medium and treated for 24 h with different concentrations of oestradiol (range from 10(-13) to 10(-5) mol/l), VEGF or FGF-2 (1, 10 and 100 ng/ml, respectively) and compared with untreated controls. Cells were harvested, total RNA extracted and subjected to semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Treatment with oestradiol or FGF-2 stimulated the expression of FGF-2, but VEGF treatment showed no effect on the FGF-2 expression. FGF-2 or VEGF treatment resulted in an up-regulation of the FGF receptor (FGFR) mRNA. However, no FGF-1 expression was detected in EC. For the VEGF system, treatment with FGF-2, VEGF or oestradiol did not affect VEGF expression. However, the presence of FGF-2 in the medium up-regulated the expression of both VEGF receptors (VEGFR-1 and VEGFR-2), whereas oestradiol or VEGF treatment showed no effect on the expression of these receptors. Our results reveal that functional angiogenic growth factor systems were expressed in vitro in bovine EC derived from the CL. This suggests that the angiogenic FGF and VEGF system members were regulated by FGF or VEGF, but not by oestradiol-17beta.
Collapse
Affiliation(s)
- C Gabler
- Institute of Physiology, TU Munich-Weihenstephan, Freising, Germany
| | | | | | | | | |
Collapse
|
43
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
44
|
Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, Thesleff I, Rice DPC. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J Clin Invest 2004; 113:1692-700. [PMID: 15199404 PMCID: PMC420504 DOI: 10.1172/jci20384] [Citation(s) in RCA: 283] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 04/14/2004] [Indexed: 12/16/2022] Open
Abstract
Classical research has suggested that early palate formation develops via epithelial-mesenchymal interactions, and in this study we reveal which signals control this process. Using Fgf10-/-, FGF receptor 2b-/- (Fgfr2b-/-), and Sonic hedgehog (Shh) mutant mice, which all exhibit cleft palate, we show that Shh is a downstream target of Fgf10/Fgfr2b signaling. Our results demonstrate that mesenchymal Fgf10 regulates the epithelial expression of Shh, which in turn signals back to the mesenchyme. This was confirmed by demonstrating that cell proliferation is decreased not only in the palatal epithelium but also in the mesenchyme of Fgfr2b-/- mice. These results reveal a new role for Fgf signaling in mammalian palate development. We show that coordinated epithelial-mesenchymal interactions are essential during the initial stages of palate development and require an Fgf-Shh signaling network.
Collapse
Affiliation(s)
- Ritva Rice
- Departments of Craniofacial Development and Orthodontics, King's College, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kessaris N, Jamen F, Rubin LL, Richardson WD. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 2004; 131:1289-98. [PMID: 14960493 DOI: 10.1242/dev.01027] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (SHH) and fibroblast growth factor 2 (FGF2) can both induce neocortical precursors to express the transcription factor OLIG2 and generate oligodendrocyte progenitors (OLPs) in culture. The activity of FGF2 is unaffected by cyclopamine, which blocks Hedgehog signalling, demonstrating that the FGF pathway to OLP production is Hedgehog independent. Unexpectedly, SHH-mediated OLP induction is blocked by PD173074, a selective inhibitor of FGF receptor (FGFR) tyrosine kinase. SHH activity also depends on mitogen-activated protein kinase (MAPK) but SHH does not itself activate MAPK. Instead, constitutive activity of FGFR maintains a basal level of phosphorylated MAPK that is absolutely required for the OLIG2- and OLP-inducing activities of SHH. Stimulating the MAPK pathway with a retrovirus encoding constitutively active RAS shows that the requirement for MAPK is cell-autonomous, i.e. MAPK is needed together with SHH signalling in the cells that become OLPs.
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
46
|
Alvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bösl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T. Requirements for FGF3 and FGF10 during inner ear formation. Development 2004; 130:6329-38. [PMID: 14623822 DOI: 10.1242/dev.00881] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.
Collapse
Affiliation(s)
- Yolanda Alvarez
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wiedłocha A, Sørensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 2004; 286:45-79. [PMID: 15645710 DOI: 10.1007/978-3-540-69494-6_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The fibroblast growth factor (FGF) family contains 23 members in mammals including its prototype members FGF-1 and FGF-2. FGFs have been implicated in regulation of many key cellular responses involved in developmental and physiological processes. These includes proliferation, differentiation, migration, apoptosis, angiogenesis, and wound healing. FGFs bind to five related, specific cell surface receptors (FGFRs). Four of these have intrinsic tyrosine kinase activity. Dimerization of the receptor is a prerequisite for receptor transphosphorylation and activation of downstream signaling molecules. All members of the FGF family have a high affinity for heparin and for cell surface heparan sulfate proteoglycans, which participate in formation of stable and active FGF-FGFR complexes. FGF-mediated signaling is an evolutionarily conserved signaling module operative in invertebrates and vertebrates. It seems that some members of the family have a dual mode of action. FGF-1, FGF-2, FGF-3, and FGF-11-14 have been found intranuclearly as endogenous proteins. Exogenous FGF-1 and FGF-2 are internalized by receptor-mediated endocytosis, in a clathrin-dependent and -independent way. Internalized FGF-1 and FGF-2 are able to cross cellular membranes to reach the cytosol and the nuclear compartment. The role of FGF internalization and the intracellular activity of some FGFs are discussed in the context of the known signaling induced by FGF.
Collapse
Affiliation(s)
- A Wiedłocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
48
|
Zhang H, Dessimoz J, Beyer TA, Krampert M, Williams LT, Werner S, Grose R. Fibroblast growth factor receptor 1-IIIb is dispensable for skin morphogenesis and wound healing. Eur J Cell Biol 2004; 83:3-11. [PMID: 15085950 DOI: 10.1078/0171-9335-00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing in the extracellular domain is a characteristic feature of members of the fibroblast growth factor receptor (FGFR) family. This splicing event generates receptor variants, which differ in their ligand binding specificities. A poorly characterized splice variant is FGFR1-IIIb, recently found to be a functional FGF receptor predominantly expressed in the skin. Here we show that FGFR1-IIIb is expressed in normal and wounded mouse skin. Reduced expression of this type of receptor was found in wounds of healing-impaired genetically diabetic mice, suggesting that downregulation of FGFR1-IIIb is associated with wound healing defects. To address this possibility, we deleted the IIIb exon of FGFR1 in mice. The lack of FGFR-IIIb did not alter the expression of either FGFR1-IIIc, other FGF receptor genes or of FGFR1-IIIb ligands in normal and wounded skin. Histological analysis of the skin of FGFR1-IIIb knockout animals did not reveal any obvious abnormalities. Furthermore, full-thickness excisional skin wounds in these mice healed normally and no defects could be observed at the macroscopic or histological level. Finally, several genes that encode key players in wound repair were normally expressed in these animals. These data demonstrate that FGFR1-IIIb is dispensable for skin development and wound repair.
Collapse
Affiliation(s)
- Hongbing Zhang
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | |
Collapse
|
50
|
Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:335-51. [PMID: 12575827 DOI: 10.1007/978-1-4615-0123-7_12] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several members of the FGF family, in particular FGF2, are intimately involved in neuronal protection and repair after ischemic, metabolic or traumatic brain injury. Expression of Fgf2 mRNA and protein is strongly upregulated after neuronal damage, with glial cells as the predominant source. Given its survival-promoting effects on cultured neurons, exogenous FGF2 was tested in several animal models of stroke and excitotoxic damage, in which it consistently proved protective against neuronal loss. FGF2 affords neuroprotection by interfering with a number of signaling pathways, including expression and gating of NMDA receptors, maintenance of Ca2+ homeostasis and regulation of ROS detoxifying enzymes. FGF2 prevents apoptosis by strengthening anti-apoptotic pathways and promotes neurogenesis in adult hippocampus after injury. The protective action of FGF2 has been linked to its augmenting effect on the lesion-induced upregulation of activin A, a member of the TGF-beta superfamily. Despite the well-documented benefits of FGF2 in animal models of stroke, there is currently no clinical development in stroke, after a phase II/III trial with FGF2 in acute stroke patients was discontinued because of an unfavorable risk-to-benefit ratio. As the molecular targets of FGF2 are going to be unraveled over the next years, new therapeutic strategies will hopefully emerge that enable us to influence the various protective mechanisms of FGF2 in a more specific fashion.
Collapse
Affiliation(s)
- Christian Alzheimer
- Institute of Physiology, University of Munich, Pettenkoferstr. 12, D-80336 Munich, Germany
| | | |
Collapse
|