1
|
Cardoso AM, Silvério MNO, de Oliveira Maciel SFV. Purinergic signaling as a new mechanism underlying physical exercise benefits: a narrative review. Purinergic Signal 2021; 17:649-679. [PMID: 34590239 PMCID: PMC8677870 DOI: 10.1007/s11302-021-09816-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
In the last years, it has become evident that both acute and chronic physical exercise trigger responses/adaptations in the purinergic signaling and these adaptations can be considered one important mechanism related to the exercise benefits for health improvement. Purinergic system is composed of enzymes (ectonucleotidases), receptors (P1 and P2 families), and molecules (ATP, ADP, adenosine) that are able to activate these receptors. These components are widely distributed in almost all cell types, and they respond/act in a specific manner depending on the exercise types and/or intensities as well as the cell type (organ/tissue analyzed). For example, while acute intense exercise can be associated with tissue damage, inflammation, and platelet aggregation, chronic exercise exerts anti-inflammatory and anti-aggregant effects, promoting health and/or treating diseases. All of these effects are dependent on the purinergic signaling. Thus, this review was designed to cover the aspects related to the relationship between physical exercise and purinergic signaling, with emphasis on the modulation of ectonucleotidases and receptors. Here, we discuss the impact of different exercise protocols as well as the differences between acute and chronic effects of exercise on the extracellular signaling exerted by purinergic system components. We also reinforce the concept that purinergic signaling must be understood/considered as a mechanism by which exercise exerts its effects.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil.
- Graduate Program in Physical Education, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Mauro Nicollas Oliveira Silvério
- Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| | - Sarah Franco Vieira de Oliveira Maciel
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| |
Collapse
|
2
|
Yamada K, Shah JA, Tanabe T, Lanaspa MA, Johnson RJ. Xenotransplantation: Where Are We with Potential Kidney Recipients? Recent Progress and Potential Future Clinical Trials. CURRENT TRANSPLANTATION REPORTS 2017; 4:101-109. [PMID: 28989853 DOI: 10.1007/s40472-017-0149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Inter-species transplantation, xenotransplantation, is becoming a realistic strategy to solve the organ shortage crisis. Here we focus on seminal publications that have driven research in xenotransplantation, as well as recently published literature and future endeavors. RECENT FINDINGS Advances in gene editing technology have allowed for the efficient production of multi-transgenic porcine donors leading improved xenograft survival in baboons, up to 2-years following heterotopic heart xenotransplantation and from weeks to several months following life-supporting kidney xenotransplanation. As technology evolves, additional challenges have arisen, including the development of proteinuria, early graft loss associated with porcine CMV, disparities in organ growth between donors and recipients as well as high-dose continuous immunosuppression requirements. To address these issues, our laboratory developed a tolerance-inducing protocol which has allowed for >6 months survival of a life-supporting kidney with further approaches currently underway to address the challenges mentioned above. SUMMARY Our recent findings, reviewed in this article, led us to develop methods to overcome obstacles, which, in conjunction with the work of others, are promising for future clinical applications of xenotransplantation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Jigesh A Shah
- Transplantation Biology Research Laboratories, Massachusetts general Hospital, Harvard Medical School, Boston, MA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| |
Collapse
|
3
|
Pelletier J, Salem M, Lecka J, Fausther M, Bigonnesse F, Sévigny J. Generation and Characterization of Specific Antibodies to the Murine and Human Ectonucleotidase NTPDase8. Front Pharmacol 2017; 8:115. [PMID: 28337144 PMCID: PMC5341173 DOI: 10.3389/fphar.2017.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
The ectonucleotidase nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is the last member of the Ecto-NTPDase family to be discovered and characterized. It is a transmembrane protein which regulates the concentration of the agonists of P1 and P2 receptors at the cell surface. The functions of the enzyme are still not known partly due to the lack of specific tools such as antibodies. In this work, guinea pig polyclonal antibodies against mouse NTPDase8 and mouse monoclonal antibodies against human NTPDase8 have been generated and characterized. For the production of antibodies against mouse NTPDase8 several techniques have been tried. Several peptide antigens in several hosts (rabbit, rat, hamster, and guinea pig) failed to give a positive reaction suggesting that NTPDase8 is poorly immunogenic. In this study, we describe the successful process that led to anti-mouse NTPDase8, namely the cDNA immunization technique. Monoclonal antibodies to human NTPDase8 were also obtained by cDNA immunization followed by a final injection with transfected human embryonic kidney (HEK 293T) cells expressing human NTPDase8. The specificity of these antibodies was evaluated by Western blot, immunocytochemistry, immunohistochemistry and flow cytometry. In contrast, all commercial antibodies to NTPDase8 peptides that we have tested failed to give a specific positive signal against the expressed NTPDase8 protein when used to probe Western blots. In addition, immunohistochemistry experiments confirmed the presence of NTPDase8 in mouse liver canaliculi. The tools generated in this work will help characterize NTPDase8 localization and function in future studies and its contribution to the modulation of P1 and P2 receptor activation.
Collapse
Affiliation(s)
- Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City QC, Canada
| | - Mabrouka Salem
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada
| | - Joanna Lecka
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada
| | - Michel Fausther
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little RockAR, USA
| | - François Bigonnesse
- Centre de recherche du CHU de Québec - Université Laval, Québec City QC, Canada
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada
| |
Collapse
|
4
|
Cai XY, Ni XC, Yi Y, He HW, Wang JX, Fu YP, Sun J, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection. Medicine (Baltimore) 2016; 95:e4989. [PMID: 27749555 PMCID: PMC5059057 DOI: 10.1097/md.0000000000004989] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase-1 (ENTPD1/CD39) is the rate-limiting enzyme in a cascade leading to the generation of immunosuppressive adenosine and plays an important role in tumor progression. This study aimed to evaluate the expression of CD39 and CD39Foxp3 regulatory T cells (Tregs) and to determine their prognostic role in patients with hepatocellular carcinoma (HCC) after radical resection.Immunohistochemistry (IHC) and double IHC were used to analyze CD39 expression or the expression of CD39 and Foxp3 in a cohort of 324 HCC patients who underwent curative resection. The quantification of CD39 expression levels was determined using a computerized image analysis system and was evaluated by mean optical density (MOD), which corresponded to the positive staining intensity of CD39. The number of positive Foxp3 cells and both CD39 and Foxp3 positive cells in each 1-mm-diameter cylinder were counted under high-power magnification (×400). The "minimum P value" approach was used to obtain the optimal cutoff value for the best separation between groups of patients in relation to time to recurrence (TTR) or overall survival (OS). The expression of CD39 in HCC cell lines with stepwise metastatic potential and in human umbilical vein endothelial cells was determined by reverse transcription-polymerase chain reaction, Western blotting, and immunofluorescence. The SPSS 17.0 statistical package was used for statistics.CD39 was principally expressed on vascular endothelial cells, macrophagocytes, Tregs, and tumor cells in HCC. Compared with paired peritumoral tissues, tumoral tissues had a significantly higher expression level of CD39 (P < 0.0001). Overexpression of tumoral CD39 was related to increased tumor recurrence and shortened overall survival. Furthermore, the expression level of peritumoral CD39 showed a prognostic role in TTR and OS. Double IHC showed that tumoral tissues had significantly higher Foxp3Tregs and CD39Foxp3Tregs count per 1 mm core (14.1659 vs 4.9877, P = 0.001; 11.5254 vs 3.3930, P < 0.001) and a higher CD39Foxp3/Foxp3 ratio compared with paired peritumoral tissues. CD39Foxp3Tregs were a better prognosticator than CD39Tregs for TTR.Overexpression of CD39 protein in HCC was an independent predictor of poor outcome after radical resection. The CD39Foxp3Tregs count added prognostic power to Foxp3Tregs, providing a potential target for tumor immunotherapy.
Collapse
Affiliation(s)
- Xiao-Yan Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
- Department of General Surgery, Gongli Hospital
| | - Xiao-Chun Ni
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Yong Yi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Hong-Wei He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Jia-Xing Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Yi-Peng Fu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Jian Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Yun-Feng Cheng
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian-Jun Jin
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Correspondence: Shuang-Jian Qiu, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China (e-mail: )
| |
Collapse
|
5
|
Rapaport E, Salikhova A, Abraham EH. Continuous intravenous infusion of ATP in humans yields large expansions of erythrocyte ATP pools but extracellular ATP pools are elevated only at the start followed by rapid declines. Purinergic Signal 2015; 11:251-62. [PMID: 25917594 DOI: 10.1007/s11302-015-9450-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 01/18/2023] Open
Abstract
The pharmacokinetics of adenosine 5'-triphosphate (ATP) was investigated in a clinical trial that included 15 patients with advanced malignancies (solid tumors). ATP was administered by continuous intravenous infusions of 8 h once weekly for 8 weeks. Three values of blood ATP levels were determined. These were total blood (erythrocyte) and blood plasma (extracellular) ATP pools along with the initial rate of release of ATP into the blood plasma. We found that values related to erythrocyte ATP pools showed great variability (diversity) among individuals (standard deviation of about 30-40% of mean at baseline). It was discovered that erythrocyte baseline ATP pool sizes are unique to each individual and that they fall within a narrow range in each individual. At the end of an 8 h continuous intravenous infusion of ATP, intracellular erythrocyte ATP pools were increased in the range of 40-60% and extracellular ATP declined from elevated levels achieved at the beginning and middle of the infusion, to baseline levels. The ability of erythrocytes to sequester exogenously administered ATP to this degree, after its initial conversion to adenosine in the blood plasma is unexpected, considering that some of the adenosine is likely to have been degraded by in vivo catabolic activities or taken up by organs. The data suggest that administration of ATP by short-term intravenous infusions, of up to 4 h, may be a favorable way for elevating extracellular ATP pools. A large fraction of the total exogenously administered ATP is sequestered into the intracellular compartments of the erythrocytes after an 8 h intravenous infusion. Erythrocytes loaded with ATP are known to release their ATP pools by the application of previously established agents or conditions applied locally or globally to circulating erythrocytes. Rapid degradation of intravenously administered ATP to adenosine and subsequent accumulation of ATP inside erythrocytes indicate the existence of very effective mechanisms for uptake of adenosine from blood plasma. These in vivo studies offer an understanding as to how both adenosine and ATP can act as purinergic transmission signals. ATP levels in blood are always accompanied by adenosine formed by catabolism of ATP. The continuous uptake of adenosine enables both to act in transmission of sometimes opposite functions.
Collapse
|
6
|
Lecka J, Gillerman I, Fausther M, Salem M, Munkonda MN, Brosseau JP, Cadot C, Martín-Satué M, d'Orléans-Juste P, Rousseau E, Poirier D, Künzli B, Fischer B, Sévigny J. 8-BuS-ATP derivatives as specific NTPDase1 inhibitors. Br J Pharmacol 2014; 169:179-96. [PMID: 23425137 DOI: 10.1111/bph.12135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ectonucleotidases control extracellular nucleotide levels and consequently, their (patho)physiological responses. Among these enzymes, nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3 and -8 are the major ectonucleotidases responsible for nucleotide hydrolysis at the cell surface under physiological conditions, and NTPDase1 is predominantly located at the surface of vascular endothelial cells and leukocytes. Efficacious inhibitors of NTPDase1 are required to modulate responses induced by nucleotides in a number of pathological situations such as thrombosis, inflammation and cancer. EXPERIMENTAL APPROACH Here, we present the synthesis and enzymatic characterization of five 8-BuS-adenine nucleotide derivatives as potent and selective inhibitors of NTPDase1. KEY RESULTS The compounds 8-BuS-AMP, 8-BuS-ADP and 8-BuS-ATP inhibit recombinant human and mouse NTPDase1 by mixed type inhibition, predominantly competitive with Ki values <1 μM. In contrast to 8-BuS-ATP which could be hydrolyzed by other NTPDases, the other BuS derivatives were resistant to hydrolysis by either NTPDase1, -2, -3 or -8. 8-BuS-AMP and 8-BuS-ADP were the most potent and selective inhibitors of NTPDase1 expressed in human umbilical vein endothelial cells as well as in situ in human and mouse tissues. As expected, as a result of their inhibition of recombinant human NTPDase1, 8-BuS-AMP and 8-BuS-ADP impaired the ability of this enzyme to block platelet aggregation. Importantly, neither of these two inhibitors triggered platelet aggregation nor prevented ADP-induced platelet aggregation, in support of their inactivity towards P2Y1 and P2Y12 receptors. CONCLUSIONS AND IMPLICATIONS The 8-BuS-AMP and 8-BuS-ADP have therefore potential to serve as drugs for the treatment of pathologies regulated by NTPDase1.
Collapse
Affiliation(s)
- Joanna Lecka
- Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire (CHU) de Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
8
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
9
|
Ectonucleotidases in solid organ and allogeneic hematopoietic cell transplantation. J Biomed Biotechnol 2012; 2012:208204. [PMID: 23125523 PMCID: PMC3482062 DOI: 10.1155/2012/208204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules which modulate distinct physiological and pathological processes. Nucleotide concentrations in the extracellular space are strictly regulated by cell surface enzymes, called ectonucleotidases, which hydrolyze nucleotides to the respective nucleosides. Recent studies suggest that ectonucleotidases play a significant role in inflammation by adjusting the balance between ATP, a widely distributed proinflammatory danger signal, and the anti-inflammatory mediator adenosine. There is increasing evidence for a central role of adenosine in alloantigen-mediated diseases such as solid organ graft rejection and acute graft-versus-host disease (GvHD). Solid organ and hematopoietic cell transplantation are established treatment modalities for a broad spectrum of benign and malignant diseases. Immunological complications based on the recognition of nonself-antigens between donor and recipient like transplant rejection and GvHD are still major challenges which limit the long-term success of transplantation. Studies in the past two decades indicate that purinergic signalling influences the severity of alloimmune responses. This paper focuses on the impact of ectonucleotidases, in particular, NTPDase1/CD39 and ecto-5'-nucleotidase/CD73, on allograft rejection, acute GvHD, and graft-versus-leukemia effect, and on possible clinical implications for the modulation of purinergic signalling after transplantation.
Collapse
|
10
|
Scalea J, Hanecamp I, Robson SC, Yamada K. T-cell-mediated immunological barriers to xenotransplantation. Xenotransplantation 2012; 19:23-30. [PMID: 22360750 DOI: 10.1111/j.1399-3089.2011.00687.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xenotransplantion remains the most viable option for significant expansion of the donor organ pool in clinical transplantation. With the advent of nuclear transfer technologies, the production of transgenic swine has become a possibility. These animals have allowed transplant investigators to overcome humoral mechanisms of hyperacute xenograft rejection in experimental pig-to-non-human primate models. However, other immunologic barriers preclude long-term acceptance of xenografts. This review article focuses on a major feature of xenogeneic rejection: xenogeneic T cell responses. Evidence obtained from both small and large animal models, particularly those using either islet cells or kidneys, have demonstrated that T cell responses play a major role in xenogeneic rejection, and that immunosuppression alone is likely incapable of completely suppressing these responses. Additionally, both the direct and indirect pathway of antigen presentation appear to be involved in these anti donor processes. Enhanced understanding of (i) CD47 and its role in transduced xeno-bone marrow (ii) CD39 and its role in coagulation dysregulation and (iii) thymic transplantation have provided us with encouraging results. Presently, experiments evaluating the possibility of xenogeneic tolerance are underway.
Collapse
Affiliation(s)
- Joseph Scalea
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
11
|
Fausther M, Lecka J, Soliman E, Kauffenstein G, Pelletier J, Sheung N, Dranoff JA, Sévigny J. Coexpression of ecto-5'-nucleotidase/CD73 with specific NTPDases differentially regulates adenosine formation in the rat liver. Am J Physiol Gastrointest Liver Physiol 2012; 302:G447-59. [PMID: 22135310 PMCID: PMC3287391 DOI: 10.1152/ajpgi.00165.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ectonucleotidases modulate purinergic signaling by hydrolyzing ATP to adenosine. Here we characterized the impact of the cellular distribution of hepatic ectonucleotidases, namely nucleoside triphosphate diphosphohydrolase (NTPDase)1/CD39, NTPDase2/CD39L1, NTPDase8, and ecto-5'-nucleotidase/CD73, and of their specific biochemical properties, on the levels of P1 and P2 receptor agonists, with an emphasis on adenosine-producing CD73. Immunostaining and enzyme histochemistry showed that the distribution of CD73 (protein and AMPase activity) overlaps partially with those of NTPDase1, -2, and -8 (protein levels and ATPase and ADPase activities) in normal rat liver. CD73 is expressed in fibroblastic cells located underneath vascular endothelial cells and smooth muscle cells, which both express NTPDase1, in portal spaces in a distinct fibroblast population next to NTPDase2-positive portal fibroblasts, and in bile canaliculi, together with NTPDase8. In fibrotic rat livers, CD73 protein expression and activity are redistributed but still overlap with the NTPDases mentioned. The ability of the observed combinations of ectonucleotidases to generate adenosine over time was evaluated by reverse-phase HPLC with the recombinant rat enzymes at high "inflammatory" (500 μM) and low "physiological" (1 μM) ATP concentrations. Overall, ATP was rapidly converted to adenosine by the NTPDase1+CD73 combination, but not by the NTPDase2+CD73 combination. In the presence of NTPDase8 and CD73, ATP was sequentially dephosphorylated to the CD73 inhibitor ADP, and then to AMP, thus resulting in a delayed formation of adenosine. In conclusion, the specific cellular cocompartmentalization of CD73 with hepatic NTPDases is not redundant and may lead to the differential activation of P1 and P2 receptors, under normal and fibrotic conditions.
Collapse
Affiliation(s)
- Michel Fausther
- 1Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (pavillon CHUL), Québec and Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada; ,2Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; and ,3Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Joanna Lecka
- 1Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (pavillon CHUL), Québec and Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada;
| | - Elwy Soliman
- 2Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; and
| | - Gilles Kauffenstein
- 1Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (pavillon CHUL), Québec and Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada;
| | - Julie Pelletier
- 1Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (pavillon CHUL), Québec and Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada;
| | - Nina Sheung
- 2Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; and
| | - Jonathan A. Dranoff
- 2Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; and ,3Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jean Sévigny
- 1Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (pavillon CHUL), Québec and Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada;
| |
Collapse
|
12
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
13
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|
14
|
Caljon G, De Ridder K, De Baetselier P, Coosemans M, Van Den Abbeele J. Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS One 2010; 5:e9671. [PMID: 20351782 PMCID: PMC2843633 DOI: 10.1371/journal.pone.0009671] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/23/2010] [Indexed: 12/20/2022] Open
Abstract
Background Tsetse flies (Glossina sp.), the African trypanosome vectors, rely on anti-hemostatic compounds for efficient blood feeding. Despite their medical importance, very few salivary proteins have been characterized and functionally annotated. Methodology/Principal Findings Here we report on the functional characterisation of a 5′nucleotidase-related (5′Nuc) saliva protein of the tsetse fly Glossina morsitans morsitans. This protein is encoded by a 1668 bp cDNA corresponding at the genomic level with a single-copy 4 kb gene that is exclusively transcribed in the tsetse salivary gland tissue. The encoded 5′Nuc protein is a soluble 65 kDa glycosylated compound of tsetse saliva with a dual anti-hemostatic action that relies on its combined apyrase activity and fibrinogen receptor (GPIIb/IIIa) antagonistic properties. Experimental evidence is based on the biochemical and functional characterization of recombinant protein and on the successful silencing of the 5′nuc translation in the salivary gland by RNA interference (RNAi). Refolding of a 5′Nuc/SUMO-fusion protein yielded an active apyrase enzyme with Km and Vmax values of 43±4 µM and 684±49 nmol Pi/min×mg for ATPase and 49±11 µM and 177±37 nmol Pi/min×mg for the ADPase activity. In addition, recombinant 5′Nuc was found to bind to GPIIb/IIIa with an apparent KD of 92±25 nM. Consistent with these features, 5′Nuc potently inhibited ADP-induced thrombocyte aggregation and even caused disaggregation of ADP-triggered human platelets. The importance of 5′Nuc for the tsetse fly hematophagy was further illustrated by specific RNAi that reduced the anti-thrombotic activities in saliva by approximately 50% resulting in a disturbed blood feeding process. Conclusions/Significance These data show that this 5′nucleotidase-related apyrase exhibits GPIIb/IIIa antagonistic properties and represents a key thromboregulatory compound of tsetse fly saliva.
Collapse
Affiliation(s)
- Guy Caljon
- Unit of Entomology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Karin De Ridder
- Unit of Entomology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Patrick De Baetselier
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Marc Coosemans
- Unit of Entomology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Entomology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- * E-mail:
| |
Collapse
|
15
|
Hart ML, Gorzolla IC, Schittenhelm J, Robson SC, Eltzschig HK. SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. THE JOURNAL OF IMMUNOLOGY 2010; 184:4017-24. [PMID: 20207994 DOI: 10.4049/jimmunol.0901851] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ischemia/reperfusion injury (IRI) of the liver is an important cause of hepatic dysfunction. Ischemic preconditioning (IP) is associated with adenosine-mediated tissue protection from subsequent IRI. Extracellular nucleotides (e.g., ATP) represent the main source for extracellular adenosine. Therefore, we hypothesized that phosphohydrolysis of ATP/ADP via the ectonucleoside triphosphate diphosphohydrolase-1 (CD39), conversion of ATP/ADP to AMP, mediates IP-dependent liver protection. We found that hepatic IP was associated with significant induction of CD39 transcript, heightened protein expression, and improved outcomes after IRI. Targeted gene deletion or pharmacological inhibition of CD39 abolished hepatoprotection by IP as measured by serum markers of liver injury or histology. Therapeutic studies to mimic IP with i.p. apyrase (a soluble ectonucleoside triphosphate diphosphohydrolase, NTPDase) in the absence of IP attenuated hepatic injury after IRI. In additional in vivo studies, small interfering RNA treatment was used to achieve repression of the transcription factor Sp1, known to be implicated in CD39 transcriptional regulation. In fact, Sp1 small interfering RNA treatment was associated with attenuated CD39 induction and increased hepatic injury in vivo. Our data suggest a Sp1-dependent regulatory pathway for CD39 during hepatic IP. These studies reveal a novel role of CD39 in hepatic protection and suggest soluble apyrase for the treatment of liver ischemia.
Collapse
Affiliation(s)
- Melanie L Hart
- Department of Anesthesiology and Intensive Care Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Andrade CMB, Wink MR, Margis R, Borojevic R, Battastini AMO, Guma FCR. Changes in E-NTPDase 3 expression and extracellular nucleotide hydrolysis during the myofibroblast/lipocyte differentiation. Mol Cell Biochem 2010; 339:79-87. [PMID: 20058055 DOI: 10.1007/s11010-009-0371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 12/16/2009] [Indexed: 01/07/2023]
Abstract
Hepatic stellate cells (HSC) play a critical role in the development and maintenance of liver fibrosis. HSC are lipocytes that displayed the capacity to develop into myofibroblast-like cells. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate the concentration of extracellular nucleotides, signaling molecules that play a role in the pathogenesis of hepatic fibrosis. In the present study, we identified and compared the expressions of E-NTPDase family members in two different phenotypes of the mouse hepatic stellate cell line (GRX) and evaluated the nucleotide hydrolysis by these cells. We show that both phenotypes of GRX cell line expressed NTPDase 3 and 5. However, only activated cells expressed NTPDase 6. In quiescent-like cells, the hydrolysis of triphosphonucleosides was significantly higher, and was related to an increase in Entpd3 mRNA expression. The diphosphonucleosides were hydrolyzed at a similar rate by two phenotypes of GRX cells. We suggest that up-regulation of Entpd3 mRNA expression modulates the extracellular concentration of nucleotides/nucleosides and affect P2-receptor signaling differently in quiescent-like cells and may play a role in the regulation of HSC functions.
Collapse
Affiliation(s)
- Cláudia M B Andrade
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Shirley DG, Vekaria RM, Sévigny J. Ectonucleotidases in the kidney. Purinergic Signal 2009; 5:501-11. [PMID: 19333785 PMCID: PMC2776140 DOI: 10.1007/s11302-009-9152-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 03/10/2008] [Indexed: 11/24/2022] Open
Abstract
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5'-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5'-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K (m) values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes' varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.
Collapse
Affiliation(s)
- David G Shirley
- Centre for Nephrology, University College London Medical School, Hampstead Campus, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
18
|
Munkonda MN, Pelletier J, Ivanenkov VV, Fausther M, Tremblay A, Künzli B, Kirley TL, Sévigny J. Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3 : partial characterization of the inhibitory epitope and potential applications. FEBS J 2009; 276:479-96. [PMID: 19120451 DOI: 10.1111/j.1742-4658.2008.06797.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study and therapeutic modulation of purinergic signaling is hindered by a lack of specific inhibitors for NTP diphosphohydrolases (NTPDases),which are the terminating enzymes for these processes. In addition, little is known of the NTPDase protein structural elements that affect enzymatic activity and which could be used as targets for inhibitor design. In the present study, we report the first inhibitory monoclonal antibodies specific for an NTPDase, namely human NTPDase3 (EC 3.6.1.5), as assessed by ELISA, western blotting, flow cytometry, immunohistochemistry and inhibition assays. Antibody recognition of NTPDase3 is greatly attenuated by denaturation with SDS, and abolished by reducing agents, indicating the significance of the native conformation and the disulfide bonds for epitope recognition. Using site-directed chemical cleavage, the SDS-resistant parts of the epitope were located in two fragments of the C-terminal lobe ofNTPDase3 (i.e. Leu220-Cys347 and Cys347-Pro485), which are both required for antibody binding. Additional site-directed mutagenesis revealed the importance of Ser297 and the fifth disulfide bond (Cys399-Cys422) for antibody binding, indicating that the discontinuous inhibitory epitope is located on the extracellular C-terminal lobe of NTPDase3. These antibodies inhibit recombinant NTPDase3 by 60-90%, depending on the conditions. More importantly, they also efficiently inhibit the NTPDase3expressed in insulin secreting human pancreatic islet cells in situ. Because insulin secretion is modulated by extracellular ATP and purinergic receptors, this finding suggests the potential application of these inhibitory antibodies for the study and control of insulin secretion.
Collapse
Affiliation(s)
- Mercedes N Munkonda
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu J, Lavoie ÉG, Sheung N, Tremblay JJ, Sévigny J, Dranoff JA. IL-6 downregulates transcription of NTPDase2 via specific promoter elements. Am J Physiol Gastrointest Liver Physiol 2008; 294:G748-56. [PMID: 18202114 PMCID: PMC5239663 DOI: 10.1152/ajpgi.00208.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile ductular proliferation is markedly upregulated in biliary fibrosis and cirrhosis. However, the mechanisms regulating this upregulation in bile ductular proliferation have not been defined. Recently, we demonstrated that expression of the ectonucleotidase nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/Entpd2) by portal fibroblasts (PF) is a critical regulator of bile ductular proliferation. Since interleukin 6 (IL-6) is markedly upregulated in biliary cirrhosis, our aims were to determine the role and mechanism of IL-6 in the regulation of NTPDase2 by PF. We found that IL-6 downregulated NTPDase2 protein expression in a concentration-dependent and time-dependent fashion but did not alter PF alpha-smooth muscle actin expression. IL-6 markedly downregulated NTPDase2 mRNA expression. Expression of the IL-6 receptor gp130 but not the IL-6 receptor gp80 was detected in PF. Two transcription start sites were identified in rat Entpd2 by the method of RNA ligase-mediated rapid amplification of 5' cDNA ends. The minimal promoter construct, but not shorter constructs, was downregulated by IL-6. Three putative IL-6 response elements were identified in silico and mutated. Mutation of all three response elements, but not fewer elements, completely abolished the IL-6 response. Thus IL-6 transcriptionally downregulates NTPDase2 expression by PF via actions at specific promoter elements independently of myofibroblastic differentiation. This effect may represent a novel signaling pathway by which bile ductular proliferation is dysregulated in biliary cirrhosis and thus provides a potential therapeutic approach for the regulation of bile ductular growth.
Collapse
Affiliation(s)
- Jin Yu
- Yale University School of Medicine and Yale Liver Center, New Haven, Connecticut
| | - Élise G. Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Quebec, Canada
| | - Nina Sheung
- Yale University School of Medicine and Yale Liver Center, New Haven, Connecticut
| | - Jacques J. Tremblay
- Ontogeny-Reproduction Research Unit, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Quebec, Canada
| | - Jonathan A. Dranoff
- Yale University School of Medicine and Yale Liver Center, New Haven, Connecticut
| |
Collapse
|
20
|
Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC. The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. FRONT BIOSCI-LANDMRK 2008; 13:2588-603. [PMID: 17981736 DOI: 10.2741/2868] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Collapse
Affiliation(s)
- Guido Beldi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J. Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 2007; 292:G785-95. [PMID: 17095758 PMCID: PMC3952495 DOI: 10.1152/ajpgi.00293.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides regulate critical liver functions via the activation of specific transmembrane receptors. The hepatic levels of extracellular nucleotides, and therefore the related downstream signaling cascades, are modulated by cell-surface enzymes called ectonucleotidases, including nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2/CD39L1, and ecto-5'-nucleotidase/CD73. The goal of this study was to determine the molecular identity of the canalicular ecto-ATPase/ATPDase that we hypothesized to correspond to the recently cloned NTPDase8. Human and rat NTPDase8 cDNAs were cloned, and the genes were located on chromosome loci 9q34 and 3p13, respectively. The recombinant proteins, expressed in COS-7 and HEK293T cells, were biochemically characterized. NTPDase8 was also purified from rat liver by Triton X-100 solubilization, followed by DEAE, Affigel Blue, and concanavalin A chromatographies. Importantly, NTPDase8 was responsible for the major ectonucleotidase activity in liver. The ion requirement, apparent K(m) values, nucleotide hydrolysis profile, and preference as well as the resistance to azide were similar for recombinant NTPDase8s and both purified rat NTPDase8 and porcine canalicular ecto-ATPase/ATPDase. The partial NH(2)-terminal amino acid sequences of all NTPDase8s share high identity with the purified liver canalicular ecto-ATPase/ATPDase. Histochemical analysis showed high ectonucleotidase activities in bile canaliculi and large blood vessels of rat liver, in agreement with the immunolocalization of NTPDase1, 2, and 8 with antibodies developed for this study. No NTPDase3 expression could be detected in liver. In conclusion, NTPDase8 is the canalicular ecto-ATPase/ATPDase and is responsible for the main hepatic NTPDase activity. The canalicular localization of this enzyme suggests its involvement in the regulation of bile secretion and/or nucleoside salvage.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, 2705 Boulevard Laurier, local T1-49, G1V 4G2 Québec, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
23
|
E-NTPDases in human airways: Regulation and relevance for chronic lung diseases. Purinergic Signal 2006; 2:399-408. [PMID: 18404479 PMCID: PMC2096640 DOI: 10.1007/s11302-006-9001-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 12/21/2005] [Indexed: 12/01/2022] Open
Abstract
Chronic obstructive lung diseases are characterized by the inability to prevent bacterial infection and a gradual loss of lung function caused by recurrent inflammatory responses. In the past decade, numerous studies have demonstrated the importance of nucleotide-mediated bacterial clearance. Their interaction with P2 receptors on airway epithelia provides a rapid ‘on-and-off’ signal stimulating mucus secretion, cilia beating activity and surface hydration. On the other hand, abnormally high ATP levels resulting from damaged epithelia and bacterial lysis may cause lung edema and exacerbate inflammatory responses. Airway ATP concentrations are regulated by ecto nucleoside triphosphate diphosphohydrolases (E-NTPDases) which are expressed on the mucosal surface and catalyze the sequential dephosphorylation of nucleoside triphosphates to nucleoside monophosphates (ATP → ADP → AMP). The common bacterial product, Pseudomonas aeruginosa lipopolysaccharide (LPS), induces an acute reduction in azide-sensitive E-NTPDase activities, followed by a sustained increase in activity as well as NTPDase 1 and NTPDase 3 expression. Accordingly, chronic lung diseases, including cystic fibrosis (CF) and primary ciliary dyskinesia, are characterized by higher rates of nucleotide elimination, azide-sensitive E-NTPDase activities and expression. This review integrates the biphasic regulation of airway E-NTPDases with the function of purine signaling in lung diseases. During acute insults, a transient reduction in E-NTPDase activities may be beneficial to stimulate ATP-mediated bacterial clearance. In chronic lung diseases, elevating E-NTPDase activities may represent an attempt to prevent P2 receptor desensitization and nucleotide-mediated lung damage.
Collapse
|
24
|
Shimizu A, Yamada K, Yamamoto S, Lavelle JM, Barth RN, Robson SC, Sachs DH, Colvin RB. Thrombotic Microangiopathic Glomerulopathy in Human Decay Accelerating Factor–Transgenic Swine-to-Baboon Kidney Xenografts. J Am Soc Nephrol 2005; 16:2732-45. [PMID: 16049072 DOI: 10.1681/asn.2004121148] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Models of pig-to-baboon xenografting were examined to identify the mechanisms and pathologic characteristics of acute humoral xenograft rejection (AHXR). Thymus and kidney (composite thymokidney) from human decay accelerating factor-transgenic swine were transplanted into baboons (n = 16) that were treated with an immunosuppressive regimen that included extracorporeal immunoadsorption of anti-alphaGal antibody and inhibition of complement activation. Morphologic and immunohistochemical studies were performed on protocol biopsies and graftectomy samples. All renal xenografts avoided hyperacute rejection. However, graft rejection coincided with the increase of anti-alphaGal antibody in the recipient's circulation. The 16 xenografts studied were divided into two groups dependent on the rapid return (group 1) or gradual return (group 2) of anti-alphaGal antibody after immunoadsorption. In group 1 (n = 6), grafts were rejected to day 27 with development of typical AHXR, characterized by marked interstitial hemorrhage and thrombotic microangiopathy in the renal vasculature. In group 2 (n = 10), grafts also developed thrombotic microangiopathy affecting mainly the glomeruli by day 30 but also showed minimal evidence of interstitial injury and hemorrhage. In the injured glomeruli, IgM and C4d deposition, subsequent endothelial cell death and activation with upregulation of von Willebrand factor and tissue factor, and a decrease of CD39 expression developed with the formation of fibrin-platelet multiple microthrombi. In this model, the kidney xenografts, from human decay accelerating factor-transgenic swine, in baboons undergo AHXR. In slowly evolving AHXR, graft loss is associated with the development of thrombotic microangiopathic glomerulopathy. Also, anti-alphaGal IgM deposition and subsequent complement activation play an important role in the mechanism of glomerular endothelial injury and activation and the formation of multiple microthrombi.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S. Cholesterol-dependent Lipid Assemblies Regulate the Activity of the Ecto-nucleotidase CD39. J Biol Chem 2005; 280:26406-14. [PMID: 15890655 DOI: 10.1074/jbc.m413927200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Apyrase/biosynthesis
- Apyrase/chemistry
- Apyrase/metabolism
- Caveolin 1
- Caveolins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cricetinae
- Detergents/pharmacology
- Dogs
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Filipin/pharmacology
- Fluorescent Antibody Technique, Indirect
- Humans
- Immunohistochemistry
- Lipids/chemistry
- Lung/metabolism
- Membrane Microdomains/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Nystatin/pharmacology
- Placenta/metabolism
- Plasmids/metabolism
- Platelet Aggregation
- Protein Binding
- Protein Structure, Tertiary
- Spleen/metabolism
- Sucrose/pharmacology
- Time Factors
- Transfection
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Agathi Papanikolaou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 2005; 1:193-204. [PMID: 18404504 PMCID: PMC2096530 DOI: 10.1007/s11302-005-6217-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/19/2004] [Indexed: 11/16/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolases 1, 2, 3 and 8 (NTPDases 1, 2, 3 and 8) are the dominant ectonucleotidases and thereby expected to play important roles in nucleotide signaling. Distinct biochemical characteristics of individual NTPDases should allow them to regulate P2 receptor activation differentially. Therefore, the biochemical and kinetic properties of these enzymes were compared. NTPDases 1, 2, 3 and 8 efficiently hydrolyzed ATP and UTP with Km values in the micromolar range, indicating that they should terminate the effects exerted by these nucleotide agonists at P2X1- and P2Y2,4,11 receptors. Since NTPDase1 does not allow accumulation of ADP, it should terminate the activation of P2Y1,12,13 receptors far more efficiently than the other NTPDases. In contrast, NTPDases 2, 3 and 8 are expected to promote the activation of ADP specific receptors, because in the presence of ATP they produce a sustained (NTPDase2) or transient (NTPDases 3 and 8) accumulation of ADP. Interestingly, all plasma membrane NTPDases dephosphorylate UTP with a significant accumulation of UDP, favoring P2Y6 receptor activation. NTPDases differ in divalent cation and pH dependence, although all are active in the pH range of 7.0-.5. Various NTPDases may also distinctly affect formation of extracellular adenosine and therefore adenosine receptor-mediated responses, since they generate different amounts of the substrate (AMP) and inhibitor (ADP) of ecto-5-nucleotidase, the rate limiting enzyme in the production of adenosine. Taken together, these data indicate that plasma membrane NTPDases hydrolyze nucleotides in a distinctive manner and may therefore differentially regulate P2 and adenosine receptor signaling.
Collapse
|
27
|
Kapojos JJ, van den Berg A, Borghuis T, Banas B, Huitema S, Poelstra K, Bakker WW. Enhanced ecto-apyrase activity of stimulated endothelial or mesangial cells is downregulated by glucocorticoids in vitro. Eur J Pharmacol 2005; 501:191-8. [PMID: 15464078 DOI: 10.1016/j.ejphar.2004.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 08/02/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Endothelial as well as mesangial cells show enhanced activity of ecto-apyrase following pro-inflammatory stimulation in vitro. Since this ecto-enzyme appears to be able to regulate plasma hemopexin, which latter molecule plays a role in the pathogenesis of corticosteroid responsive nephrotic syndrome, the question was raised whether glucocorticoids are potentially able to downregulate ecto-apyrase activity of these cells. Therefore, cell cultures of endothelial or mesangial were stimulated with or without lipopolysaccharide (10 ng/ml). Parallel cultures were supplemented with prednisolone with or without the glucocorticoid receptor antagonist mifepristone in various concentrations. After 24 h, cytospins were prepared and cytochemically stained for ecto-apyrase activity. mRNA for apyrase of these cells was detected using reverse transcription-polymerase chain reaction (RT-PCR). Apyrase activity of either cells or soluble apyrase (0.16 U/ml buffer) with or without supplementation of prednisolone were biochemically assayed for their phosphatase activity. The results show significantly decreased ecto-apyrase activity of lipopolysaccharide-stimulated cells after treatment with prednisolone as compared to non-prednisolone-treated cells. Preincubation with mifepristone did not inhibit the effect of prednisolone. Identical mRNA signals for apyrase were found in prednisolone and non-prednisolone-treated cells. Interestingly, soluble apyrase also showed a significant decrease of activity following preincubation with prednisolone. It is concluded that prednisolone is able to downregulate ecto-apyrase of stimulated endothelial or mesangial cells, which may potentially inhibit the conversion of hemopexin to its pro-inflammatory isoform. As blocking of the cytosolic glucocorticoid receptor showed no effect upon the prednisolone action, whereas prednisolone is able to affect soluble apyrase per se, it is felt that this particular action of prednisolone may (at least partly) be mediated through a non-genomic pathway.
Collapse
Affiliation(s)
- Jola J Kapojos
- Department of Pathology and Laboratory Medicine, University Hospital Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H, Gill PS, Braun N, Zimmermann H, Sévigny J, Robson SC. Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am J Physiol Renal Physiol 2005; 288:F1032-43. [PMID: 15632415 DOI: 10.1152/ajprenal.00108.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulation of renal function by extracellular nucleotides encompasses alterations in glomerular hemodynamics, microvascular function, tubuloglomerular feedback, tubular transport, cell growth or apoptosis, and transport of water and solutes in the medullary collecting duct. Nearly all cells can release ATP or other nucleotides that are then rapidly hydrolyzed in the extracellular milieu. However, little information is available on the cellular expression of ectoenzymes that hydrolyze extracellular nucleotides within the kidney. Nucleoside triphosphate diphosphohydrolases (NTPDases) are plasma membrane-bound ectonucleotidases. NTPDase1 has identity with CD39, a B lymphocyte activation marker, and hydrolyzes extracellular ATP and ADP to AMP within the vasculature, whereas NTPDase2/CD39L(ike)1 preferentially converts ATP to ADP outside of blood vessels. Using immunohistochemical and in situ hybridization approaches, we localized the protein and mRNA of NTPDase1 and 2 in murine renal tissues. In the renal cortex, NTPDase1 is expressed by vascular smooth muscle cells and endothelium in interlobular arteries, afferent glomerular arterioles, and peritubular capillaries. In the inner medulla, NTPDase1 is expressed in ascending thin limbs of Henle's loop, ducts of Bellini, and in the pelvic wall. In contrast, NTPDase2 is expressed in Bowman's capsule, glomerular arterioles, adventitia of blood vessels, and pelvic wall. Thus the distribution patterns of NTPDases have parallels to the known distribution of P2 receptors within the kidney. NTPDases may modulate regulatory effects of ATP and degradation products within the vasculature and other sites and thereby potentially influence physiological as well as multiple pathological events in the kidney.
Collapse
Affiliation(s)
- Bellamkonda K Kishore
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake CIty, Utah, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sampram ESK, Ouriel K. In vitro verification of antithrombotic effect of recombinant soluble nucleotide triphosphate diphosphohydrolase 1. J Vasc Interv Radiol 2004; 15:379-84. [PMID: 15064342 DOI: 10.1097/01.rvi.0000121409.46920.b8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Ecto-ADPase (NTPDase1 or CD39) has been identified on endothelial cells and found to be antithrombogenic, with actions resulting from degradation of adenosine diphosphate (ADP), a thrombogenic molecule secreted by activated platelets at sites of vascular injury. Reasoning that the ADPase activity of CD39 might provide clinical use as an antithrombotic agent, the authors investigate the comparative ability of the agent to inhibit platelet and fibrin deposition. MATERIALS AND METHODS With use of an in vitro perfusion system, fresh, heparinized human blood was passed over expanded polytetrafluoroethylene grafts at hemodynamic conditions similar to those observed in the human arterial circulation. Three different concentrations of CD39 (30 mcg/mL, 100 mcg/mL, and 300 mcg/mL) were compared with abciximab (4 mcg/mL) and heparin controls. The deposition of radiolabeled platelets and fibrinogen was measured in five perfusions for each treatment group. RESULTS The addition of soluble CD39 to heparinized blood inhibited platelet deposition to an extent greater than that of heparin alone (P =.04). Effects were similar to those observed with abciximab. The addition of CD39 to heparinized blood did not result in augmentation of fibrin inhibition beyond that observed with heparin alone. The fibrin inhibitory effects of CD39 appeared to be less significant than the fibrin inhibition observed with abciximab, but this difference did not attain statistical significance. CONCLUSION These results suggest that recombinant CD39 holds potential as antithrombotic agent, with the potential to achieve antiplatelet effects similar to that observed with abciximab.
Collapse
Affiliation(s)
- Ellis S K Sampram
- Department of Vascular Surgery, The Cleveland Clinic Foundation, Desk S40, 9500 Euclid Ave, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
30
|
Borges E, Vuaden FC, Cognato GDP, Fauth MDG, Bonan CD, Turcato G, Rossi ICDC, Dias RD. Effects of starvation on haemolymphatic glucose levels, glycogen contents and nucleotidase activities in different tissues ofHelix aspersa(Müller, 1774) (mollusca, gastropoda). ACTA ACUST UNITED AC 2004; 301:891-7. [PMID: 15673110 DOI: 10.1002/jez.a.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, the glucose concentration in the haemolymph and glycogen levels were determined in the various body parts of the Helix aspersa snail after feeding lettuce ad libitum and after various periods of starvation. To characterize the effect of starvation on nucleotidase activity, enzyme assays were performed on membranes of the nervous ganglia and digestive gland. Results demonstrated the maintenance of the haemolymph glucose concentration for up to 30 days of starvation, probably due to the consumption of glycogen from the mantle. In the nervous ganglia, depletion of glycogen occurs progressively during the different periods of starvation. No significant changes were observed on ATP and ADP hydrolysis in the membranes of nervous ganglia and no alterations in Ca2+ -ATPase and Mg2+ -ATPase occurred in the membranes of the digestive gland of H. aspersa during the different periods of starvation. Although there were no changes in the enzyme activities during starvation, they could be modulated by effectors in situ with concomitant changes in products/reactants during starvation.
Collapse
Affiliation(s)
- Eliane Borges
- Laboratório de Pesquisa Bioquímica, Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Caixa postal 1429, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dranoff JA, Ogawa M, Kruglov EA, Gaça MDA, Sévigny J, Robson SC, Wells RG. Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G417-24. [PMID: 14764443 PMCID: PMC5241161 DOI: 10.1152/ajpgi.00294.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides regulate a variety of cellular activities, including proliferation of fibrogenic cells outside of the liver. However, the expression of receptors for extracellular nucleotides in hepatic stellate cells (HSC) is unknown. Thus our aims were to investigate the expression of mediators of nucleotide signaling in HSC and to determine whether extracellular nucleotides regulate HSC function. Confocal video microscopy was used to observe nucleotide-induced changes in cytosolic Ca(2+) (Ca(i)(2+)) in live HSC. P2Y receptor subtype expression and ectonucleotidase expression in quiescent and activated HSC were determined using RT-PCR, Northern blot, immunoblot, and confocal immunofluorescence. Functional ectonucleotidase activity was assessed using a colorimetric method. Nucleotide-sensitive procollagen-1 mRNA expression in activated HSC was assessed using real-time RT-PCR. Extracellular ATP increased Ca(i)(2+) in HSC; this was inhibited by the P2 receptor inhibitor suramin. Quiescent HSC expressed the P2Y subtypes P2Y(2) and P2Y(4) and were activated by ATP and UTP, whereas activated HSC expressed the P2Y subtype P2Y(6) and were activated by UDP and ATP. Activated but not quiescent HSC expressed the ectonucleotidase nucleoside triphosphate diphosphohydrolase 2, extracellular UDP tripled procollagen-1 mRNA expression in activated HSC, and this was inhibited by the P2Y receptor inhibitor suramin. HSC express functional P2Y receptors and switch the expression of P2Y receptor subtypes on activation. Moreover, HSC differentially regulate nucleoside triphosphate diphosphohydrolase expression after activation. Because activation of P2Y receptors in activated HSC regulates procollagen-1 transcription, P2Y receptors may be an attractive target to prevent or treat liver fibrosis.
Collapse
Affiliation(s)
- Jonathan A Dranoff
- Yale Univ. School of Medicine, Section of Digestive Diseases, 333 Cedar St. LMP 1080, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kordás KS, Sperlágh B, Tihanyi T, Topa L, Steward MC, Varga G, Kittel A. ATP and ATPase secretion by exocrine pancreas in rat, guinea pig, and human. Pancreas 2004; 29:53-60. [PMID: 15211112 DOI: 10.1097/00006676-200407000-00056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ATP is an extracellular regulator in numerous physiological and pathologic processes. Recently, 7 different subtypes of purinoceptors were identified on either the basolateral or the luminal membrane of pancreatic duct cells. However, the in vivo regulatory role of ATP in pancreatic function has not been established. We investigated the possible regulatory role of endogenous ATP in pancreatic function by measuring ATP concentrations and ATPase activity in pancreatic juice obtained from anesthetized rats and guinea pigs and from human patients undergoing endoscopy. Juice was collected from the main pancreatic duct in rats and guinea pigs under basal conditions or during stimulation with CCK, bombesin, or secretin. In guinea pigs, CCK, bombesin, and secretin did not affect ATP output, although they did stimulate fluid secretion. ATPase activity in the juice was evaluated by measuring the rate of hydrolysis of added ATP. Consistent with the low ATP concentrations in rat pancreatic juice, we found high levels of ATPase activity in this species. This was confirmed by HPLC, which also showed the metabolites of ATP hydrolysis. Ecto-ATPase activity was demonstrated by enzyme histochemistry in both the pancreatic acini and ducts in rats, but it was not detectable in guinea pigs and humans. These differences in ATP levels and ATPase expression may indicate significant species differences in the purinergic regulation of pancreatic secretion.
Collapse
Affiliation(s)
- Krisztina Sz Kordás
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Pafundo DE, Mut P, Pérez Recalde M, González-Lebrero RM, Fachino V, Krumschnabel G, Schwarzbaum PJ. Effects of extracellular nucleotides and their hydrolysis products on regulatory volume decrease of trout hepatocytes. Am J Physiol Regul Integr Comp Physiol 2004; 287:R833-43. [PMID: 15217790 DOI: 10.1152/ajpregu.00199.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In trout hepatocytes, hypotonic swelling is followed by a compensatory shrinkage called regulatory volume decrease (RVD). It has been postulated that extracellular ATP and other nucleotides may interact with type 2 receptors (P(2)) to modulate this response. In addition, specific ectoenzymes hydrolyze ATP sequentially down to adenosine, which may bind to type 1 receptors (P(1)) and also influence RVD. Accordingly, in this study, we assessed the role of extracellular nucleoside 5'-tri- and diphosphates and of adenosine on RVD of trout hepatocytes. The extent of RVD after 40 min of maximum swelling was denoted as RVD(40), whereas the initial rate of RVD was called v(RVD). In the presence of hypotonic medium (60% of isotonic), hepatocytes swelled 1.6 times followed by v(RVD) of 1.7 min(-1) and RVD(40) of 60.2%. ATP, UTP, UDP, or ATPgammaS (P(2) agonists; 5 microM) increased v(RVD) 1.5-2 times, whereas no changes were observed in the values of RVD(40). Addition of 100 microM suramin or cibacron blue (P(2) antagonists) to the hypotonic medium produced no effect on v(RVD) but a 53-58% inhibition of RVD(40). Incubation of hepatocytes in the presence of either 5 microM [gamma-(32)P]ATP or [alpha-(32)P]ATP induced the extracellular release of [gamma-(32)P]P(i) (0.21 nmol.10(-6) cells(-1).min(-1)) and [alpha-(32)P]P(i) ( approximately 8 x 10(-3) nmol.10(-6) cells(-1).min(-1)), suggesting the presence of ectoenzymes capable of fully dephosphorylating ATP. Concerning the effect of P(1) activation on RVD, 5 microM adenosine, both in the presence and absence of 100 microM S-(4-nitrobenzil)-6-tioinosine (a blocker of adenosine uptake), decreased RVD(40) by 37-44%, whereas 8-phenyl theophylline, a P(1) antagonist, increased RVD(40) by 15%. Overall, results indicate that ATP, UTP, and UDP, acting via P(2), are important factors promoting RVD of trout hepatocytes, whereas adenosine binding to P(1) inhibits this process.
Collapse
Affiliation(s)
- D E Pafundo
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
34
|
Knowles AF, Chiang WC. Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys 2003; 418:217-27. [PMID: 14522593 DOI: 10.1016/j.abb.2003.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have characterized the regulation of expressed human ecto-ATPase (E-NTPDase 2), a cell surface integral membrane glycoprotein. Ecto-ATPase activity is inhibited by parameters that decrease membrane protein interaction, i.e., detergents and high temperatures. These inhibitory effects are overcome when membranes are pretreated with concanavalin A or chemical cross-linking agents that increase the amounts of ecto-ATPase oligomers. Cross-linking agents also abrogate substrate inactivation of the ecto-ATPase, a unique characteristic of the enzyme. These effects indicate that the magnitude of negative substrate regulation is dependent on quaternary structures of the protein, which likely involves interaction of transmembrane domains. The importance of transmembrane domains of ecto-ATPase in activity modulation is demonstrated further by the stimulatory effect of digitonin, a steroid glycoside that preferentially interacts with cholesterol in the membranes but does not promote oligomer formation. These results indicate that ecto-ATPase activity is regulated by a multitude of mechanisms, some of which may have physiological significance. Ecto-ATPase is also susceptible to transcriptional regulation. Ecto-ATPase gene expression is increased in a human hepatoma whereas it is undetectable in the normal liver.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
35
|
Sørensen CE, Amstrup J, Rasmussen HN, Ankorina-Stark I, Novak I. Rat pancreas secretes particulate ecto-nucleotidase CD39. J Physiol 2003; 551:881-92. [PMID: 12832497 PMCID: PMC2343304 DOI: 10.1113/jphysiol.2003.049411] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/17/2003] [Accepted: 06/26/2003] [Indexed: 11/08/2022] Open
Abstract
In exocrine pancreas, acini release ATP and the excurrent ducts express several types of purinergic P2 receptors. Thereby, ATP, or its hydrolytic products, might play a role as a paracrine regulator between acini and ducts. The aim of the present study was to elucidate whether this acinar-ductal signalling is regulated by nucleotidase(s), and to characterize and localize one of the nucleotidases within the rat pancreas. Using RT-PCR and Western blotting we show that pancreas expresses the full length ecto-nucleoside triphosphate diphosphohydrolase, CD39. Immunofluorescence shows CD39 localization on basolateral membranes of acini and intracellularly. In small intercalated/ interlobular ducts, CD39 immunofluorescence was localized on the luminal membranes, while in larger ducts it was localized on the basolateral membranes. Upon stimulation with cholecystokinin-octapeptide-8 (CCK-8), acinar CD39 relocalizes in clusters towards the lumen and is secreted. As a result, pancreatic juice collected from intact pancreas stimulated with CCK-8 contained nucleotidase activity, including that of CD39, and no detectable amounts of ATP. Anti-CD39 antibodies detected the full length (78 kDa) CD39 in pancreatic juice. This CD39 was confined only to the particulate and not to the soluble fraction of CCK-8-stimulated secretion. No CD39 activity was detected in secretion stimulated by secretin. The role of secreted particulate, possibly microsomal, CD39 would be to regulate intraluminal ATP concentrations within the ductal tree. In conclusion, we show a novel inducible release of full length particulate CD39, and propose its role in the physiological context of pancreatic secretion.
Collapse
Affiliation(s)
- Christiane E Sørensen
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | |
Collapse
|
36
|
Dranoff JA, Kruglov EA, Robson SC, Braun N, Zimmermann H, Sévigny J. The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in a novel functional compartment within the liver. Hepatology 2002; 36:1135-44. [PMID: 12395323 DOI: 10.1053/jhep.2002.36823] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides regulate diverse biological functions and are important in the regulation of liver metabolism, hepatic blood flow, and bile secretion. Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) hydrolyze extracellular nucleotides and are therefore potential regulators of nucleotide-mediated signaling. To examine this, we have contrasted the structural and functional distributions of the 2 characterized membrane-bound NTPDases NTPDase1 and NTPDase2 within the rat liver. Hepatic expression of NTPDase2 was determined and contrasted to NTPDase1 using confocal immunofluorescence, immunoelectron microscopy, reverse-transcription polymerase chain reaction, Northern blot analysis, Western blot analysis, and functional assays. NTPDase2 was expressed in the periportal region surrounding intrahepatic bile ducts, whereas NTPDase1 was found in hepatic arteries, portal veins, and hepatic central veins, consistent with its known vascular distribution. Functional and molecular expression of NTPDase2 was shown in portal fibroblasts near basolateral membranes of bile duct epithelia. In conclusion, NTPDase2 is expressed in a novel cellular compartment surrounding intrahepatic bile ducts, namely portal fibroblasts. This distribution may represent a previously unrecognized mechanism for regulation of nucleotide signaling in bile ducts and other epithelia.
Collapse
Affiliation(s)
- Jonathan A Dranoff
- Yale University School of Medicine and Liver Center, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Wood E, Broekman MJ, Kirley TL, Diani-Moore S, Tickner M, Drosopoulos JHF, Islam N, Park JI, Marcus AJ, Rifkind AB. Cell-type specificity of ectonucleotidase expression and upregulation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys 2002; 407:49-62. [PMID: 12392715 DOI: 10.1016/s0003-9861(02)00465-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report here that induction of ectoATPase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is cell-type specific and not a generalized response to aryl hydrocarbon (Ah) receptor activation. TCDD increased [14C]-ATP and -ADP metabolism in two mouse hepatoma lines, Hepa1c1c7 and Hepa1-6 cells, but not in human hepatoma HepG2 or HuH-7 cells, human umbilical vein endothelial cells (HUVEC), chick hepatoma (LMH) cells, or chick primary hepatocytes or cardiac myocytes, even though all of those cell types were Ah receptor-responsive, as evidenced by cytochrome P4501A induction. To determine whether the differences in ectonucleotidase responsiveness to TCDD might be related to differences in cell-type ectonucleotidase expression, ATP and ADP metabolite patterns, the products of several classes of ectonucleotidases including ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), ectophosphodiesterase/pyrophosphatases (E-NPP enzymes) and ectoalkaline phosphatase activities were examined. Those patterns, together with results of enzyme assays, Western blotting, or semiquantitative RT-PCR show that NTPDase2 is the main ectonucleotidase for murine and human hepatoma cells, NTPDase3 for chick hepatocytes and LMH cells, and an E-NPP enzyme for chick cardiac myocytes. Evidence for NTPDase2 expression was lacking in all cells except the mouse and human hepatoma cells. TCDD increased expression of the NTPDase2 gene but only in the mouse and not in the human hepatoma cells. TCDD did not increase NTPDase3, NTPDase1, E-NPP, or alkaline phosphatase in any of the cell types examined. The failure of TCDD to increase ATP metabolism in HUVEC, chick LMH cells, hepatocytes, and cardiac myocytes can be attributed to their lack of NTPDase2 expression, while the increase in ATP metabolism by TCDD in the mouse but not the human hepatoma cells can be explained by differences in TCDD effects on mouse and human hepatoma NTPDase2 gene expression. In addition to characterizing effects of TCDD on ectonucleotidases, these studies reveal major differences in the complements of ectonucleotidases present in different cell types. It is likely that such differences are important for cell-specific susceptibility to extracellular nucleotide toxicity and responses to purinergic signaling.
Collapse
Affiliation(s)
- Emily Wood
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Junankar PR, Karjalainen A, Kirk K. The role of P2Y1 purinergic receptors and cytosolic Ca2+ in hypotonically activated osmolyte efflux from a rat hepatoma cell line. J Biol Chem 2002; 277:40324-34. [PMID: 12138101 DOI: 10.1074/jbc.m204712200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of HTC rat hepatoma cells to a 33% decrease in extracellular osmolality caused the cytosolic Ca(2+) concentration ([Ca(2+)](i)) to increase transiently by approximately 90 nm. This rise in [Ca(2+)](i) was inhibited strongly by apyrase, grade VII (which has a low ATP/ADPase ratio) but not by apyrase grade VI (which has a high ATP/ADPase ratio) or hexokinase, indicating that extracellular ADP and/or ATP play a role in the [Ca(2+)](i) increase. The hypotonically induced rise in [Ca(2+)](i) was prevented by the prior discharge of the intracellular Ca(2+) store of the cells by thapsigargin. Removal of extracellular Ca(2+) or inhibition of Ca(2+) influx by 1-10 microm Gd(3+) depleted the thapsigargin-sensitive Ca(2+) stores and thereby diminished the rise in [Ca(2+)](i). The hypotonically induced rise in [Ca(2+)](i) was prevented by adenosine 2'-phosphate-5'-phosphate (A2P5P) and pyridoxyl-5'-phosphate-6-azophenyl-2',4'-disulfonate, inhibitors of purinergic P2Y(1) receptors for which ADP is a major agonist. Both inhibitors also blocked the rise in [Ca(2+)](i) elicited by addition of ADP to cells in isotonic medium, whereas A2P5P had no effect on the rise in [Ca(2+)](i) elicited by the addition of the P2Y(2) and P2Y(4) receptor agonist, UTP. HTC cells were shown to express mRNA encoding for rat P2Y(1), P2Y(2), and P2Y(6) receptors. Inhibition of the hypotonically induced rise in [Ca(2+)](i) blocked hypotonically induced K(+) ((86)Rb(+)) efflux, modulated the hypotonically induced efflux of taurine, but had no significant effect on Cl(-) ((125)I-) efflux. The interaction of extracellular ATP and/or ADP with P2Y(1) purinergic receptors therefore plays a role in the response of HTC cells to osmotic swelling but does not account for activation of all the efflux pathways involved in the volume-regulatory response.
Collapse
Affiliation(s)
- Pauline R Junankar
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
39
|
Knowles AF, Nagy AK, Strobel RS, Wu-Weis M. Purification, characterization, cloning, and expression of the chicken liver ecto-ATP-diphosphohydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2373-82. [PMID: 11985621 DOI: 10.1046/j.1432-1033.2002.02898.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously demonstrated that the major ecto-nucleoside triphosphate phosphohydrolase in the chicken liver membranes is an ecto-ATP-diphosphohydrolase (ecto- ATPDase) [Caldwell, C., Davis, M.D. & Knowles, A.F. (1999) Arch. Biochem. Biophys. 362, 46-58]. Enzymatic properties of the liver membrane ecto-ATPDase are similar to those of the chicken oviduct ecto-ATPDase that we have previously purified and cloned. Using antibody developed against the latter, we have purified the chicken liver ecto-ATPDase to homogeneity. The purified enzyme is a glycoprotein with a molecular mass of 85 kDa and a specific activity of approximately 1000 U.mg protein-1. Although slightly larger than the 80-kDa oviduct enzyme, the two ecto-ATPDases are nearly identical with respect to their enzymatic properties and mass of the deglycosylated proteins. The primary sequence of the liver ecto-ATPDase deduced from its cDNA obtained by RT-PCR cloning also shows only minor differences from that of the oviduct ecto-ATPDase. Immunochemical staining demonstrates the distribution of the ecto-ATPDase in the bile canaliculi of the chicken liver. HeLa cells transfected with the chicken liver ecto-ATPDase cDNA express an ecto-nucleotidase activity with characteristics similar to the enzyme in its native membranes, most significant of these is stimulation of the ATPDase activity by detergents, which inhibits other members of the ecto- nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. The stimulation of the expressed liver ecto-ATPDase by detergents indicates that this property is intrinsic to the enzyme protein, and cannot be attributed to the lipid environment of the native membranes. The molecular identification and expression of a liver ecto-ATPDase, reported here for the first time, will facilitate future investigations into the differences between structure and function of the different E-NTPDases, existence of liver ecto-ATPDase isoforms in different species, its alteration in pathogenic conditions, and its physiological function.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry, San Diego State University, CA 92182-1030, USA.
| | | | | | | |
Collapse
|
40
|
Sévigny J, Sundberg C, Braun N, Guckelberger O, Csizmadia E, Qawi I, Imai M, Zimmermann H, Robson SC. Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood 2002; 99:2801-9. [PMID: 11929769 DOI: 10.1182/blood.v99.8.2801] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a recently described family of ectonucleotidases that differentially hydrolyze the gamma and beta phosphate residues of extracellular nucleotides. Expression of this enzymatic activity has the potential to influence nucleotide P2 receptor signaling within the vasculature. We and others have documented that NTPDase1 (CD39, 78 kd) hydrolyzes both triphosphonucleosides and diphosphonucleosides and thereby terminates platelet aggregation responses to adenosine diphosphate (ADP). In contrast, we now show that NTPDase2 (CD39L1, 75 kd), a preferential nucleoside triphosphatase, activates platelet aggregation by converting adenosine triphosphate (ATP) to ADP, the specific agonist of P2Y(1) and P2Y(12) receptors. We developed specific antibodies to murine NTPDase1 and NTPDase2 and observed that both enzymes are present in the cardiac vasculature; NTPDase1 is expressed by endothelium, endocardium, and to a lesser extent by vascular smooth muscle, while NTPDase2 is associated with the adventitia of muscularized vessels, microvascular pericytes, and other cell populations in the subendocardial space. Moreover, NTPDase2 represents a novel marker for microvascular pericytes. Differential expression of NTPDases in the vasculature suggests spatial regulation of nucleotide-mediated signaling. In this context, NTPDase1 should abrogate platelet aggregation and recruitment in intact vessels by the conversion of ADP to adenosine monophosphate, while NTPDase2 expression would promote platelet microthrombus formation at sites of extravasation following vessel injury. Our data suggest that specific NTPDases, in tandem with ecto-5'-nucleotidase, not only terminate P2 receptor activation and trigger adenosine receptors but may also allow preferential activation of specific subsets of P2 receptors sensitive to ADP (e.g., P2Y(1), P2Y(3), P2Y(12)) and uridine diphosphate (P2Y(6)).
Collapse
Affiliation(s)
- Jean Sévigny
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiménez PA, García L, Adarmes H, González E, Valenzuela MA. ATPase and Adpase activities in synovial membrane of equine metacarpophalangeal joint. Life Sci 2002; 70:2445-55. [PMID: 12150208 DOI: 10.1016/s0024-3205(02)01529-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ATPase and ADPase activities capable of hydrolyzing nucleoside di- and triphosphates in the presence of Ca2+ are present in synovial membrane of metacarpophalangeal joint mainly associated to membrane fractions. These hydrolytic activities have been considered involved in the inflammatory process where ATP and ADP are inflammatory mediators while adenosine counteracts this effect. Both, subcellular localization and kinetic properties of these nucleotidase activities, suggest that could correspond to single enzyme called ATP-diphosphohydrolase or apyrase. The comparison of the activity on ATP-Ca and ADP-Ca from normal and pathological equine synovial membrane did not show significant differences either in the subcellular fraction distribution or in the enrichment of each subcellular fraction. Neither differences on 5'-nucleotidase activity present in the microsomal fraction were observed.
Collapse
Affiliation(s)
- Paula A Jiménez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago
| | | | | | | | | |
Collapse
|
42
|
Alleva KE, Espelt MV, Krumschnabel G, Schwarzbaum PJ. Identification of two distinct E-NTPDases in liver of goldfish (Carassius auratus L.). Comp Biochem Physiol B Biochem Mol Biol 2002; 131:725-31. [PMID: 11923085 DOI: 10.1016/s1096-4959(02)00007-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently reported the existence of ATPase activity capable of hydrolyzing extracellular ATP and localized at the external cell membrane of goldfish hepatocytes [Am. J. Physiol. (1998) 274 R1031]. In the present study, we investigated whether one or more enzymes of the ATP diphosphohydrolase family (called E-NTPDases) are responsible for the hydrolysis of extracellular ATP and other nucleotides. Using soluble extracts from goldfish liver, enzyme activity was detected in the presence of ATP (32.1+/-4.0 nmol Pi liberated mg protein(-1) min(-1)), ADP (20.7+/-3.3 nmol Pi liberated mg protein(-1) min(-1)) and UTP (20.7+/-1.2 nmol Pi liberated mg protein(-1) min(-1)). In line with the presence of this hydrolytic activity, liver samples separated by non-denaturing gel electrophoresis and subsequently exposed to either ATP, ADP or UTP yielded a single band with enzyme activity and similar electrophoretic mobility. Subsequent SDS-PAGE electrophoresis of the active bands resulted in the appearance of two protein bands with molecular masses of 70 and 64 kDa. Immunoblotting of soluble extracts and microsomes obtained from goldfish liver, using a monoclonal antibody against CD39 (a well-known E-NTPDase), detected a single 97-kDa protein. The enzyme activity measured in solution and in native gels, together with structural information from denaturing gels plus immunoblots, points to the existence, in goldfish liver, of at least two different E-NTPDases.
Collapse
Affiliation(s)
- K E Alleva
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Caldwell CC, Hornyak SC, Pendleton E, Campbell D, Knowles AF. Regulation of chicken gizzard ecto-ATPase activity by modulators that affect its oligomerization status. Arch Biochem Biophys 2001; 387:107-16. [PMID: 11368171 DOI: 10.1006/abbi.2000.2216] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The major ectonucleoside triphosphate phosphohydrolase in the chicken gizzard smooth muscle membranes is an ecto-ATPase, an integral membrane glycoprotein belonging to the E-ATPase (or E-NTPDase) family. The gizzard ecto-ATPase is distinguished by its unusual kinetic properties, temperature dependence, and response to a variety of modulators. Compounds that promote oligomerization of the enzyme protein, i.e., concanavalin A, chemical cross-linking agent, and eosin iodoacetamide, increase its activity. Compounds that inhibit some ion-motive ATPases, e.g., sulfhydryl reagents, xanthene derivatives, NBD-halides, and suramin, also inhibit the gizzard ecto-ATPase, but not another E-ATPase, the chicken liver ecto-ATP-diphosphohydrolase, which contains the same conserved regions as the ecto-ATPase. Furthermore, inhibition of the gizzard ecto-ATPase by these compounds as well as detergents is not prevented by preincubation of the membranes with the substrate, ATP, indicating that their interaction with the enzyme occurs at a locus other than the catalytic site. On the other hand, the inhibitory effect of these compounds, except suramin, is abolished or reduced if the membranes are preincubated with concanavalin A. It is concluded that these structurally unrelated modulators exert their effect by interfering with the oligomerization of the ecto-ATPase protein. Our findings suggest that, under physiological conditions, the gizzard smooth muscle ecto-ATPase may exhibit a range of activities determined by membrane events that affect the status of oligomerization of the enzyme.
Collapse
Affiliation(s)
- C C Caldwell
- Department of Chemistry, San Diego State University, California 92182-1030, USA
| | | | | | | | | |
Collapse
|
44
|
Yeung G, Mulero JJ, McGowan DW, Bajwa SS, Ford JE. CD39L2, a gene encoding a human nucleoside diphosphatase, predominantly expressed in the heart. Biochemistry 2000; 39:12916-23. [PMID: 11041856 DOI: 10.1021/bi000959z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
E-NTPDases are extracellular enzymes that hydrolyze nucleotides. The human E-NTPDase gene family currently consists of five reported members (CD39, CD39L1, CD39L2, CD39L3, and CD39L4). Both membrane-bound and secreted family members have been predicted by encoded transmembrane and leader peptide motifs. In this report, we demonstrate that the human CD39L2 gene is expressed predominantly in the heart. In situ hybridization results from heart indicate that the CD39L2 message is expressed in muscle and capillary endothelial cells. We also show that the CD39L2 gene encodes an extracellular E-NTPDase. Flow cytometric experiments show that transiently expressed CD39L2 is present on the surface of COS-7 cells. Transfected cells also produce recombinant glycosylated protein in the medium, and this process can be blocked by brefeldin A, an inhibitor of the mammalian secretory pathway. The enzymology of CD39L2 shows characteristic features of a typical E-NTPDase, but with a much higher degree of specificity for NDPs over NTPs as enzymatic substrates. The kinetics of the ADPase activity exhibit positive cooperativity. The predominance of CD39L2 expression in the heart supports a functional role in regulating platelet activation and recruitment in this organ.
Collapse
Affiliation(s)
- G Yeung
- Functional Genomics Department, Immunology Group, Hyseq Inc., 670 Almanor Avenue, Sunnyvale, California 94086, USA
| | | | | | | | | |
Collapse
|
45
|
Lemmens R, Vanduffel L, Kittel A, Beaudoin AR, Benrezzak O, Sévigny J. Distribution, cloning, and characterization of porcine nucleoside triphosphate diphosphohydrolase-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4106-14. [PMID: 10866813 DOI: 10.1046/j.1432-1327.2000.01462.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we have investigated the distribution of the enzyme nucleoside triphosphate diphosphohydrolase-1 (NTPDase1; EC 3.6.1.5) in a subset of pig tissues by biochemical activity and Western blotting with antibodies against porcine NTPDase1. The highest expression of this enzyme was found in vascular endothelium, smooth muscle, spleen and lung. The complete cDNA of NTPDase1 from aorta endothelial cells was sequenced using primer walking. The protein consists of 510 amino acids, with a calculated molecular mass of 57 756 Da. The amino-acid sequence indicated seven putative N-glycosylation sites and one potential intracellular cGMP- and cAMP-dependent protein kinase phosphorylation site. As expected, the protein has a very high homology to other known mammalian ATPDases and CD39 molecules, and includes all five apyrase conserved regions. Expression of the complete cDNA in COS-7 cells confirmed that NTPDase1 codes for a transmembrane glycoprotein with ecto-ATPase and ecto-ADPase activities. Two proteolytic products of NTPDase1, with molecular mass of 54 and 27 kDa, respectively, were consistently present in proteins from transfected COS-7 cells and in particulate fractions from different tissues. A trypsin cleavage site, giving rise to these two cleavage products, was identified. In order to remain enzymatically active, the two cleavage products have to interact by non-covalent interactions.
Collapse
Affiliation(s)
- R Lemmens
- Department of Medische Basiswetenschappen, Limburgs Universitair Centrum, Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Leclerc MC, Grondin G, Gendron FP, Sévigny J, Beaudoin AR. Identification, characterization, and immunolocalization of a nucleoside triphosphate diphosphohydrolase in pig liver. Arch Biochem Biophys 2000; 377:372-8. [PMID: 10845716 DOI: 10.1006/abbi.2000.1800] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Different isoforms of nucleoside triphosphate diphosphohydrolases (NTPDases; EC 3.6.1.5), also identified as ATP diphosphohydrolases, have been previously described in mammalian tissues. We report here the biochemical characterization of NTPDases in the pig liver. Optimum pH of catalysis is more acidic for this enzyme than for NTPDases (neutral or alkaline pH) found in other mammalian tissues. It is less sensitive to bile salts than the bovine spleen NTPDase. Calculated Km values for ATP and ADP (31 and 21 microM, respectively) are slightly higher than those reported for the latter enzyme. Electrophoretograms of these enzymes also show different migration patterns. Western blots with Ringo, an antibody that recognizes the different isoforms of mammalian NTPDases, show a small but reproducible difference in estimated molecular masses (75 kDa for liver vs 78 kDa for spleen NTPDase). A second antibody, generated against a different sequence of NTPDase I, does not recognize the liver enzyme, thereby indicating some differences in primary structure. Immunolocalization produced a strong signal on hepatocytes, epithelial cells of the bile duct system, and vascular cells. Immunoreactivity was variable among hepatocytes of different lobules and among hepatocytes within a given lobule. In general, those located in the perilobular zone were more reactive than those located in the central zone and in the periphery of the centrolobular vein.
Collapse
Affiliation(s)
- M C Leclerc
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|