1
|
Shi J, Chen L, Yuan X, Yang J, Xu Y, Shen L, Huang Y, Wang B, Yu F. A potential XGBoost Diagnostic Score for Staphylococcus aureus bloodstream infection. Front Immunol 2025; 16:1574003. [PMID: 40330459 PMCID: PMC12052945 DOI: 10.3389/fimmu.2025.1574003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Staphylococcus aureus (S. aureus) bloodstream infection is often life-threatening, and increasing in incidence. We identified 63 differentially expressed genes (DEGs) in the GSE33341 S. aureus infection samples. Subsequently, intersecting the 63 DEGs with 950 genes from the blue module through weighted gene co-expression network analysis (WGCNA) yielded 38 genes. We leveraged Boruta and least absolute shrinkage and selection operator (LASSO) algorithms and identified5 diagnostic genes (DRAM1, UPP1, IL18RAP, CLEC4A, and PGLYRP1). Comparative analysis revealed that Extreme Gradient Boosting (XGBoost) surpassed SVM-RFE and Random Forest models, demonstrating superior diagnostic performance for S. aureus bloodstream infection (mean AUC for XGBoost =0.954; mean AUC for SVM-RFE =0.93275; mean AUC for Random Forest =0.94625). The XGBoost Diagnostic Score correlated with multiple immune cells to varying degrees, manifesting significant negative associations with CD8 T cells and CD4 naive T cells in both human and mouse samples. The diagnostic power of the Diagnostic Score was further validated by RT-qPCR results obtained from both mouse and patient samples, as well as RNA-Seq analysis conducted on mouse samples. XGBoost Diagnostic Score, consisting of DRAM1, UPP1, IL18RAP, CLEC4A, and PGLYRP1, may serve as a Diagnostic tool for S. aureus bloodstream infection.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xinru Yuan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinjin Yang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Huang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Niu T, Yang B, Wang M, Wang Q, He D, Liu H, Li Y. Functional characterization and regulatory pattern of Neoseiulus barkeri peptidoglycan recognition protein (PGRP). Int J Biol Macromol 2025; 293:139458. [PMID: 39755301 DOI: 10.1016/j.ijbiomac.2025.139458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Compared with traditional biological control, the co-use of entomopathogenic fungi and multiple enemies has made great progress in biocontrol technology. However, the risk posed by entomopathogenic fungi to their host has not been fully evaluated. Further, the interaction between them has not described adequately. In this study, we investigated the crucial role of peptidoglycan recognition protein (PGRP), an important pattern recognition receptor, involved in the resistance of Neoseiulus barkeri against the entomopathogenic fungus, Beauveria bassiana. Results showed that N. barkeri possessed one NbPGRP gene, which was mainly enriched in the ventral cuticle, and was significantly upregulated after B. bassiana induction. Knocking down NbPGRP resulted in decreased survival rate of mites and increased B. bassiana load. Also, recombinant NbPGRP inhibited the proliferation of B. bassiana, but also attached to spores by binding to surface PAMPs. Furthermore, the transcriptomics after NbPGRP silencing indicates that NbPGRP has a potential regulatory role in mite physiologies. These results showed that NbPGRP has a dual function of inhibiting the proliferation of entomopathogenic fungi and regulating mite resistance upon recognition of entomopathogens. This enhances understanding of the interaction mechanism between entomopathogens and their insect hosts.
Collapse
Affiliation(s)
- Tiandi Niu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Bowei Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Mian Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Qian Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Danyang He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China
| | - Huai Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China.
| | - Yaying Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China.
| |
Collapse
|
3
|
Liang Y, Adamson C, Feng S, Qiao Y. Exploring the Impact of Amidation Status in Meso-Diaminopimelic-Acid-Containing Disaccharide Peptidoglycan Fragments on Host Innate Immune Activation. ACS Chem Biol 2025; 20:69-76. [PMID: 39749870 DOI: 10.1021/acschembio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts. The focus of this study is on the amidation status of γ-d-glutamic acid and meso-diaminopimelic acid (mDAP) at the second and third positions of stem peptides in peptidoglycan, which represent key structural features that vary across different bacterial species. With four synthetic mDAP-containing disaccharide PGNs of different amidation states, we systematically investigated their structure-activity relationship in stimulating host innate immune responses in vitro. Our findings revealed that the amidation of disaccharide PGNs has distinct effects on NOD1 and NOD2 induction, along with their differential immunostimulatory activities in macrophage cells. Additionally, we found that, like the canonical NOD2 ligand, natural PGNs confer immune tolerance to LPS, and amidation states do not affect this outcome. Overall, our work highlights the potential immunological implications of these differentially amidated mDAP-type disaccharide PGNs in host-microbe crosstalk.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Shiliu Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
4
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
5
|
Todorova VK, Azhar G, Stone A, Malapati SJ, Che Y, Zhang W, Makhoul I, Wei JY. Neutrophil Biomarkers Can Predict Cardiotoxicity of Anthracyclines in Breast Cancer. Int J Mol Sci 2024; 25:9735. [PMID: 39273682 PMCID: PMC11395913 DOI: 10.3390/ijms25179735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX), a commonly used anticancer agent, causes cardiotoxicity that begins with the first dose and may progress to heart failure years after treatment. An inflammatory response associated with neutrophil recruitment has been recognized as a mechanism of DOX-induced cardiotoxicity. This study aimed to validate mRNA expression of the previously identified biomarkers of DOX-induced cardiotoxicity, PGLYRP1, CAMP, MMP9, and CEACAM8, and to assay their protein expression in the peripheral blood of breast cancer patients. Blood samples from 40 breast cancer patients treated with DOX-based chemotherapy were collected before and after the first chemotherapy cycle and > 2 years after treatment. The protein and gene expression of PGLYRP1/Tag7, CAMP/LL37, MMP9/gelatinase B, and CEACAM8/CD66b were determined using ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of each candidate biomarker. Patients with cardiotoxicity (n = 20) had significantly elevated levels of PGLYRP1, CAMP, MMP9, and CEACAM8 at baseline, after the first dose of DOX-based chemotherapy, and at > 2 years after treatment relative to patients without cardiotoxicity (n = 20). The first dose of DOX induced significantly higher levels of all examined biomarkers in both groups of patients. At > 2 years post treatment, the levels of all but MMP9 dropped below the baseline. There was a good correlation between the expression of mRNA and the target proteins. We demonstrate that circulating levels of PGLYRP1, CAMP, MMP9, and CEACAM8 can predict the cardiotoxicity of DOX. This novel finding may be of value in the early identification of patients at risk for cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Hematology/Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Gohar Azhar
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Annjanette Stone
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Sindhu J Malapati
- Division of Hematology/Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yingni Che
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wei Zhang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Issam Makhoul
- Division of Hematology/Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Nathani A, Aare M, Sun L, Bagde A, Li Y, Rishi A, Singh M. Unlocking the Potential of Camel Milk-Derived Exosomes as Novel Delivery Systems: Enhanced Bioavailability of ARV-825 PROTAC for Cancer Therapy. Pharmaceutics 2024; 16:1070. [PMID: 39204415 PMCID: PMC11359469 DOI: 10.3390/pharmaceutics16081070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the use of camel milk-derived exosomes (CMEs) as carriers for ARV-825, an anticancer agent targeting bromodomain-containing protein 4 (BRD4), in oral chemotherapy. CMEs were isolated and characterized, and ARV-825-loaded CME formulations were prepared and evaluated through various in vitro and in vivo tests. The ARV-825-CME formulation exhibited an entrapment efficiency of 42.75 ± 5.05%, a particle size of 136.8 ± 1.94 nm, and a zeta potential of -32.75 ± 0.70 mV, ensuring stability and sustained drug release. In vitro studies showed a 5.4-fold enhancement in drug release kinetics compared to the free ARV-825 solution. Permeability studies indicated a 3.2-fold increase in apparent permeability, suggesting improved cellular uptake. Cytotoxicity assays demonstrated potent anticancer activity, with IC50 values decreasing by 1.5 to 2-fold in cancer cell lines SF8628 DIPG and H1975R (resistant to Osimertinib). In vivo pharmacokinetic studies in Sprague-Dawley rats revealed superior systemic absorption and bioavailability of ARV-825 from CMEs, with a 2.55-fold increase in plasma concentration and a 5.56-fold increase in AUC. Distribution studies confirmed absorption through the ileum. This research highlights the potential of CMEs as a promising delivery platform for ARV-825, enhancing its therapeutic efficacy and offering a novel approach to cancer treatment.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (L.S.); (Y.L.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (L.S.); (Y.L.)
| | - Arun Rishi
- Department of Oncology, John D. Dingell VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| |
Collapse
|
7
|
Wang J, He M, Yang M, Ai X. Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci 2024; 345:122612. [PMID: 38588949 DOI: 10.1016/j.lfs.2024.122612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Gut microbiota is a complex microbial community with the ability of maintaining intestinal health. Intestinal homeostasis largely depends on the mucosal immune system to defense external pathogens and promote tissue repair. In recent years, growing evidence revealed the importance of gut microbiota in shaping intestinal mucosal immunity. Therefore, according to the existing findings, this review first provided an overview of intestinal mucosal immune system before summarizing the regulatory roles of gut microbiota in intestinal innate and adaptive immunity. Specifically, this review delved into the gut microbial interactions with the cells such as intestinal epithelial cells (IECs), macrophages, dendritic cells (DCs), neutrophils, and innate lymphoid cells (ILCs) in innate immunity, and T and B lymphocytes in adaptive immunity. Furthermore, this review discussed the main effects of gut microbiota dysbiosis in intestinal diseases and offered future research prospects. The review highlighted the key regulatory roles of gut microbiota in intestinal mucosal immunity via various host-microbe interactions, providing valuable references for the development of microbial therapy in intestinal diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
8
|
Wen Z, Li H, Zhou C, Chen L, Zhang L, Chen Y, Zhang S, Pan X, Huang S, Shang W, Shen X, Liu Y, Liu J, Chen D. Thymopentin plays a key role in restoring the function of macrophages to alleviate the sepsis process. Int Immunopharmacol 2024; 126:111295. [PMID: 38048668 DOI: 10.1016/j.intimp.2023.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Immune dysfunction is one of the leading causes of death of sepsis. How to regulate host immune functions to improve prognoses of septic patients has always been a clinical focus. Here we elaborate on the efficacy and potential mechanism of a classical drug, thymopentin (TP5). TP5 could decrease peritoneal bacterial load, and reduce inflammatory cytokine levels both in the peritoneal lavage fluid (PLF) and serum, alleviate pathological injuries in tissue and organ, coaxed by cecal ligation and perforation (CLP) in mice, ultimately improve the prognosis of septic mice. Regarding the mechanism, using RNA-seq and flow cytometry, we found that TP5 induced peptidoglycan recognition protein 1 (PGLYRP1) expression, increased phagocytosis and restored TNF-α expression of small peritoneal macrophage (SPM) in the septic mice. This may be increased SPM's ability to clear peritoneal bacteria, thereby attenuates the inflammatory response both in the peritoneal cavity and the serum. It was shown that TP5 plays a key role in restoring the function of peritoneal macrophages to alleviate the sepsis process. We reckon that this is closely relevant to SPM phagocytosis, which might involve increased PGLYRP1 expression and restored TNF-α secretion.
Collapse
Affiliation(s)
- Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Hui Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Chenghua Zhou
- Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Limin Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Weifeng Shang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Xuan Shen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China.
| |
Collapse
|
9
|
Maurya A, Sharma P, Singh PK, Viswanathan V, Kaur P, Sharma S, Singh TP. Structure of the complex of camel peptidoglycan recognition protein-S with hexanoic acid reveals novel features of the versatile ligand-binding site at the dimeric interface. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140887. [PMID: 36596432 DOI: 10.1016/j.bbapap.2022.140887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
The short peptidoglycan recognition protein (PGRP-S) of the innate immune system recognizes the invading microbes through binding to their cell wall molecules. In order to understand the mode of binding of PGRP-S to bacterial cell wall molecules, the structure of the complex of camel PGRP-S (CPGRP-S) with hexanoic acid has been determined at 2.07 Å resolution. Previously, we had reported the structures of CPGRP-S in the native unbound state as well as in the complexed forms with the components of various bacterial cell wall molecules such as peptidoglycan (PGN), lipopolysaccharide (LPS), lipoteichoic acid (LTA), mycolic acid (MA) and other fatty acids. These structures revealed that CPGRP-S formed two homodimers which were designated as A-B and CD dimers. It also showed that the fatty acids bind to CPGRP-S in the binding site at the A-B dimer while the non-fatty acids were shown to bind at the interfaces of both A-B and CD dimers. The present structure of the complex of CPGRP-S with hexanoic acid (HA) showed that HA binds to CPGRP-S at the interface of CD dimer. HA was located in the same groove at the CD interface which was occupied by non-fatty acids such as PGN, LPS and LTA and interacts with residues from both C and D molecules. HA is firmly held in the groove with several hydrogen bonds and a number of van der Waals contacts. This is the first structure which reports the binding of a fatty acid in the cleft at the interface of CD dimer.
Collapse
Affiliation(s)
- Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant K Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - V Viswanathan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Kwiatkowski P, Rogulska K, Pruss A, Sienkiewicz M, Dołęgowska B, Wojciechowska-Koszko I. Immunomodulatory effects of trans-anethole-treated Staphylococcus aureus Newman strain. Sci Rep 2023; 13:6881. [PMID: 37106063 PMCID: PMC10140024 DOI: 10.1038/s41598-023-34138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
In our former studies based on a human whole-blood model infected with trans-anethole (TA)-treated Staphylococcus aureus Newman strain, we have observed that selected parameters/mechanisms of innate and acquired immune response were more enhanced in comparison to samples infected with non-treated bacteria. Due to this observation, the current study aimed to evaluate the concentration of selected proteins involved in both types of responses (IL-1α, IL-1β, IL-2, IL-6, IL-12, IL-17, TNF-α, IFN-γ, G-CSF, C5a, CCL1-CCL5, CXCL1, CXCL2, CXCL9-CXCL11, MMP-8, TLR2, and PGLYRP1) in healthy participants' plasma after blood stimulation of TA-treated S. aureus Newman strain. Determination of analyzed protein concentration was conducted using Luminex and ELISA assays. Based on the results, it has been proven that the immunomodulatory potential of TA-treated S. aureus Newman strain on increasing IL-1β, IL-6, TNF-α, IL-12, G-CSF, C5a, CCL2-CCL4, CXCL1, CXCL2, MMP-8 and PGLYRP1 levels in plasma. Moreover, it has been also demonstrated an association between TNF-α and CCL4 in a blood model infected with TA-treated cells. More research is warranted to find more underlying mechanisms involved in the effects of TA-treated S. aureus Newman in human blood, mainly whether the observed "immunity boost" can be regulated after bacteria elimination. Therefore, the potential of TA should be further explored to understand under which conditions it might help treat or prevent infections caused by S. aureus.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland.
| | - Karolina Rogulska
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151, Lodz, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich, 70-111, Szczecin, Poland
| |
Collapse
|
11
|
The Chloroplast Envelope of Angiosperms Contains a Peptidoglycan Layer. Cells 2023; 12:cells12040563. [PMID: 36831230 PMCID: PMC9954125 DOI: 10.3390/cells12040563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Plastids in plants are assumed to have evolved from cyanobacteria as they have maintained several bacterial features. Recently, peptidoglycans, as bacterial cell wall components, have been shown to exist in the envelopes of moss chloroplasts. Phylogenomic comparisons of bacterial and plant genomes have raised the question of whether such structures are also part of chloroplasts in angiosperms. To address this question, we visualized canonical amino acids of peptidoglycan around chloroplasts of Arabidopsis and Nicotiana via click chemistry and fluorescence microscopy. Additional detection by different peptidoglycan-binding proteins from bacteria and animals supported this observation. Further Arabidopsis experiments with D-cycloserine and AtMurE knock-out lines, both affecting putative peptidoglycan biosynthesis, revealed a central role of this pathway in plastid genesis and division. Taken together, these results indicate that peptidoglycans are integral parts of plastids in the whole plant lineage. Elucidating their biosynthesis and further roles in the function of these organelles is yet to be achieved.
Collapse
|
12
|
Relationship between polymorphism within Peptidoglycan Recognition Protein 1 gene (PGLYRP1) and somatic cell counts in milk of Holstein cows. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Bovine peptidoglycan recognition protein 1 (PGLYRP1) is an important receptor that binds to murein peptidoglycans (PGN) of Gram-positive and Gram-negative bacteria and is, therefore, involved in innate immunity. The SNP T>C rs68268284 located in the 1st exon of the PGLYRP1 gene was identified by the PCR-RFLP method in a population of 319 Holstein cows. Somatic cell count (SCC) was measured 7–10 times in each of three completed lactations to investigate whether the PGLYRP1 polymorphism is associated with SCC. Using the GLM model, it was found that cows with the TT genotype showed significantly lower somatic cell counts than those with the CC genotype during the first lactation (P = 0.023). Moreover, during lactations 1–2 and 1–3, cows with the TT genotype reveal significantly lower SCC than CT heterozygotes, at P = 0.025 and P = 0.006, respectively. Computer-aided analysis showed that rs68268284 polymorphism could modify the PGLYRP1 functions because the mutated residue is located in a domain that is important for the binding of other molecules.
Collapse
|
13
|
A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat. Foods 2021; 10:foods10092158. [PMID: 34574268 PMCID: PMC8472115 DOI: 10.3390/foods10092158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, camel milk (CM) has been considered as a health-promoting icon due to its medicinal and nutritional benefits. CM fat globule membrane has numerous health-promoting properties, such as anti-adhesion and anti-bacterial properties, which are suitable for people who are allergic to cow's milk. CM contains milk fat globules with a small size, which accounts for their rapid digestion. Moreover, it also comprises lower amounts of cholesterol and saturated fatty acids concurrent with higher levels of essential fatty acids than cow milk, with an improved lipid profile manifested by reducing cholesterol levels in the blood. In addition, it is rich in phospholipids, especially plasmalogens and sphingomyelin, suggesting that CM fat may meet the daily nutritional requirements of adults and infants. Thus, CM and its dairy products have become more attractive for consumers. In view of this, we performed a comprehensive review of CM fat's composition and nutritional properties. The overall goal is to increase knowledge related to CM fat characteristics and modify its unfavorable perception. Future studies are expected to be directed toward a better understanding of CM fat, which appears to be promising in the design and formulation of new products with significant health-promoting benefits.
Collapse
|
14
|
Telegin GB, Chernov AS, Kazakov VA, Romanova EA, Sharapova TN, Yashin DV, Gabibov AG, Sashchenko LP. A 8-mer Peptide of PGLYRP1/Tag7 Innate Immunity Protein Binds to TNFR1 Receptor and Inhibits TNFα-Induced Cytotoxic Effect and Inflammation. Front Immunol 2021; 12:622471. [PMID: 34163464 PMCID: PMC8215708 DOI: 10.3389/fimmu.2021.622471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Search for novel regulatory protein fragments with potential functional roles is required both for understanding the immune response mechanisms and the development of targeted immunotherapy. Earlier we demonstrated that the PGLYRP1/Tag7 innate immunity protein can be regarded as an inhibitor of TNFα cytotoxic activity via the interaction with its TNF receptor 1 (TNFR1). A C-terminal peptide fragment 17.1 of the molecule is responsible for this function. In this study we have identified a minimal 8-mer region of this peptide (hereinafter – 17.1A) capable to bind to TNFR1. As a result of such interaction, the cytotoxic signals induced by this receptor are blocked. Also, this peptide demonstrates an anti-inflammatory activity in vivo in the complete Freund’s adjuvant (CFA)-induced arthritis model in laboratory mice. Peptide 17.1A is capable to reduce periarticular inflammation, inhibit the development of synovitis and exhibit a protective effect on cartilage and bone tissues. This peptide can turn out to be a promising medicinal agent for autoimmune arthritis and other diseases.
Collapse
Affiliation(s)
- Georgii B Telegin
- Animal Breeding Facility, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia
| | - Aleksandr S Chernov
- Animal Breeding Facility, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia
| | - Vitaly A Kazakov
- Animal Breeding Facility, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Russia
| | - Elena A Romanova
- Laboratory of Molecular Immunogenetics of Cancer, Institute of Gene Biology Russian Academy of Science, Moscow, Russia
| | - Tatiana N Sharapova
- Laboratory of Molecular Immunogenetics of Cancer, Institute of Gene Biology Russian Academy of Science, Moscow, Russia
| | - Denis V Yashin
- Laboratory of Molecular Immunogenetics of Cancer, Institute of Gene Biology Russian Academy of Science, Moscow, Russia
| | - Alexander G Gabibov
- Laboratory of Biocatalysis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Lidia P Sashchenko
- Laboratory of Molecular Immunogenetics of Cancer, Institute of Gene Biology Russian Academy of Science, Moscow, Russia
| |
Collapse
|
15
|
Turturice BA, Theorell J, Koenig MD, Tussing-Humphreys L, Gold DR, Litonjua AA, Oken E, Rifas-Shiman SL, Perkins DL, Finn PW. Perinatal granulopoiesis and risk of pediatric asthma. eLife 2021; 10:e63745. [PMID: 33565964 PMCID: PMC7889076 DOI: 10.7554/elife.63745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
There are perinatal characteristics, such as gestational age, reproducibly associated with the risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation was observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil-specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil-specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
Collapse
Affiliation(s)
- Benjamin A Turturice
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Juliana Theorell
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Mary Dawn Koenig
- Department of Women, Children and Family Health Science, College of Nursing, University of IllinoisChicagoUnited States
| | | | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Augusto A Litonjua
- Division of Pulmonary Medicine, Department of Pediatrics, University of RochesterRochesterUnited States
| | - Emily Oken
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - David L Perkins
- Department of Medicine, Division of Nephrology, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| | - Patricia W Finn
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| |
Collapse
|
16
|
Chatterton DEW, Aagaard S, Hesselballe Hansen T, Nguyen DN, De Gobba C, Lametsch R, Sangild PT. Bioactive proteins in bovine colostrum and effects of heating, drying and irradiation. Food Funct 2021; 11:2309-2327. [PMID: 32108849 DOI: 10.1039/c9fo02998b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine colostrum (BC) contains bioactive proteins, such as immunoglobulin G (IgG), lactoferrin (LF) and lactoperoxidase (LP). BC was subjected to low-temperature, long-time pasteurization (LTLT, 63 °C, 30 min) or high-temperature, short-time pasteurization (HTST, 72 °C, 15 s) and spray-drying (SD), with or without γ-irradiation (GI, ∼14 kGy) to remove microbial contamination. Relative to unpasteurized liquid BC, SD plus GI increased protein denaturation by 6 and 11%, respectively, increasing to 19 and 27% after LTLT and to 48% after HTST, with no further effects after GI (all P < 0.05). LTLT, without or with GI, resulted in 15 or 29% denaturation of IgG, compared with non-pasteurized BC, and 34 or 58% for HTST treatment (all P < 0.05, except LTLT without GI). For IgG, only GI, not SD or LTLT, increased denaturation (30-38%, P < 0.05) but HTST increased denaturation to 40%, with further increases after GI (60%, P < 0.05). LTLT and HTST reduced LP levels (56 and 81% respectively) and LTLT reduced LF levels (21%), especially together with GI (47%, P < 0.05). Denaturation of BSA, β-LgA, β-LgB and α-La were similar to IgG. Methionine, a protective amino acid against free oxygen radicals, was oxidised by LTLT + GI (P < 0.05) while LTLT and HTST had no effect. Many anti-inflammatory proteins, including serpin anti-proteinases were highly sensitive to HTST and GI but preserved after LTLT pasteurization. LTLT, followed by SD is an optimal processing technique preserving bioactive proteins when powdered BC is used as a diet supplement for sensitive patients.
Collapse
Affiliation(s)
| | - Sasha Aagaard
- Department of Food Science, University of Copenhagen, DK-1958, Denmark. and Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | | | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - René Lametsch
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| |
Collapse
|
17
|
Yashin DV, Sashchenko LP, Georgiev GP. Mechanisms of Action of the PGLYRP1/Tag7 Protein in Innate and Acquired Immunity. Acta Naturae 2021; 13:91-101. [PMID: 33959389 PMCID: PMC8084298 DOI: 10.32607/actanaturae.11102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
One of the promising fields of modern molecular biology is the search for new proteins that regulate the various stages of the immune response and the investigation of the molecular mechanisms of action of these proteins. Such proteins include the multifunctional protein PGLYRP1/Tag7, belonging to the PGRP-S protein family, whose gene was discovered in mice at the Institute of Gene Biology, Russian Academy of Sciences, in 1996. PGLYRP1/Tag7 is classified as a protein of innate immunity; however, it can also participate in the regulation of acquired immunity mechanisms. In this paper, we consider the involvement of PGLYRP1/Tag7 in the triggering of antimicrobial defense mechanisms and formation of subsets of cytotoxic lymphocytes that kill tumor cells. The paper emphasizes that the multifaceted functional activity of Tag7 in the immune response has to do with its ability to interact with various proteins to form stable protein complexes. Hsp70-associated Tag7 can induce the death of tumor cells carrying the TNFR1 receptor. Tag7, associated with the Mts1 (S100A4) protein, can stimulate the migration of innate and adaptive immune cytotoxic lymphocytes to a lesion site. Involvement of Tag7 in the regulation of immunological processes suggests that it may be considered as a promising agent in cancer therapy. These properties of Tag7 were used to develop autologous vaccines that have passed the first and second phases of clinical trials in patients with end-stage melanoma and renal cancer. The C-terminal peptide of Tag7, isolated by limited proteolysis, was shown to protect the cartilage and bone tissue of the ankle joint in mice with induced autoimmune arthritis and may be a promising drug for suppressing the development of inflammatory processes.
Collapse
Affiliation(s)
- D. V. Yashin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | | |
Collapse
|
18
|
Gupta A, Arora G, Rosen CE, Kloos Z, Cao Y, Cerny J, Sajid A, Hoornstra D, Golovchenko M, Rudenko N, Munderloh U, Hovius JW, Booth CJ, Jacobs-Wagner C, Palm NW, Ring AM, Fikrig E. A human secretome library screen reveals a role for Peptidoglycan Recognition Protein 1 in Lyme borreliosis. PLoS Pathog 2020; 16:e1009030. [PMID: 33175909 PMCID: PMC7657531 DOI: 10.1371/journal.ppat.1009030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lyme disease, the most common vector-borne illness in North America, is caused by the spirochete Borrelia burgdorferi. Infection begins in the skin following a tick bite and can spread to the hearts, joints, nervous system, and other organs. Diverse host responses influence the level of B. burgdorferi infection in mice and humans. Using a systems biology approach, we examined potential molecular interactions between human extracellular and secreted proteins and B. burgdorferi. A yeast display library expressing 1031 human extracellular proteins was probed against 36 isolates of B. burgdorferi sensu lato. We found that human Peptidoglycan Recognition Protein 1 (PGLYRP1) interacted with the vast majority of B. burgdorferi isolates. In subsequent experiments, we demonstrated that recombinant PGLYRP1 interacts with purified B. burgdorferi peptidoglycan and exhibits borreliacidal activity, suggesting that vertebrate hosts may use PGLYRP1 to identify B. burgdorferi. We examined B. burgdorferi infection in mice lacking PGLYRP1 and observed an increased spirochete burden in the heart and joints, along with splenomegaly. Mice lacking PGLYRP1 also showed signs of immune dysregulation, including lower serum IgG levels and higher levels of IFNγ, CXCL9, and CXCL10.Taken together, our findings suggest that PGLYRP1 plays a role in the host’s response to B. burgdorferi and further demonstrate the utility of expansive yeast display screening in capturing biologically relevant interactions between spirochetes and their hosts. Lyme disease is the most common vector-borne illness in North America and is caused by the spirochete Borrelia burgdorferi. The disease starts with a tick bite that leads to a skin rash and inflammation in other organs of the body, such as hearts and joints. B. burgdorferi uses many strategies to evade detection and persist in the human host. It is important to have efficient methods to be able to identify the various components of the immune system that interact with B. burgdorferi to better understand the disease process, but few currently exist. In this study, we used a novel yeast display screening assay of over 1,000 human immune proteins probed against several isolates of Borrelia to uncover biologically relevant interactions for the Lyme disease pathogen. We identified Peptidoglycan Recognition Protein 1 (PGLYRP1), an innate immune protein important in defense against bacteria, as a major candidate from this screen. We validated the interaction of PGLYRP1 with Borrelia and were able to use PGLYRP1-deficient mice as a model to understand the role of this protein in Lyme disease pathogenesis. Our study demonstrates the potential implications of yeast screens in uncovering important host-pathogen interactions.
Collapse
Affiliation(s)
- Akash Gupta
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Connor E. Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zachary Kloos
- Microbiology Program, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yongguo Cao
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Clinical Veterinary Medicine, and Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiri Cerny
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Faculty of Tropical AgriSciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dieuwertje Hoornstra
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Maryna Golovchenko
- Biology Centre, Institute of Parasitology Czech Academy of Sciences, Buweiss, Czech Republic
| | - Natalie Rudenko
- Biology Centre, Institute of Parasitology Czech Academy of Sciences, Buweiss, Czech Republic
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Joppe W. Hovius
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Carmen J. Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, United States of America
- ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (NWP); (AMR); (EF)
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (NWP); (AMR); (EF)
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (NWP); (AMR); (EF)
| |
Collapse
|
19
|
O’Connor D, Pinto MV, Sheerin D, Tomic A, Drury RE, Channon‐Wells S, Galal U, Dold C, Robinson H, Kerridge S, Plested E, Hughes H, Stockdale L, Sadarangani M, Snape MD, Rollier CS, Levin M, Pollard AJ. Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine. Mol Syst Biol 2020; 16:e9888. [PMID: 33210468 PMCID: PMC7674973 DOI: 10.15252/msb.20209888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post-vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP-IPV-Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post-vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G-CSF, IL-1RA and IL-6. Post-vaccination fever was associated with increased expression of SELL, involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin-3, -5 and GM-CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine.
Collapse
Affiliation(s)
- Daniel O’Connor
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Marta Valente Pinto
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Dylan Sheerin
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Adriana Tomic
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
- Institute of Immunity, Transplantation and InfectionStanford University School of MedicineStanfordCAUSA
| | - Ruth E Drury
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Samuel Channon‐Wells
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Ushma Galal
- Nuffield Department of Primary Health CareClinical Trials UnitUniversity of OxfordOxfordUK
| | - Christina Dold
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Hannah Robinson
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Simon Kerridge
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Emma Plested
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Harri Hughes
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Lisa Stockdale
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Matthew D Snape
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Christine S Rollier
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Michael Levin
- Division of Infectious DiseasesDepartment of MedicineImperial College LondonLondonUK
| | - Andrew J Pollard
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
20
|
Exclusive use of digital PCR allows an absolute assay of heat-killed Lactobacilli in foods targeting multiple copies of 16S rDNA. Sci Rep 2020; 10:12691. [PMID: 32728064 PMCID: PMC7391674 DOI: 10.1038/s41598-020-69206-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/09/2020] [Indexed: 11/15/2022] Open
Abstract
The real-time PCR (qPCR) and digital PCR (dPCR) to amplify a single-copy of house-keeping genes (i.e., hsp60, pheS or tuf) are used for the assay of limited microbial species. In general, with a single-copy gene, there are obviously varied DNA sequences for even the same microbial species, which could cause difficulties with design of primers and probes for PCR when targeting various single copy genes. In general, for identification by dPCR (as a representative case: Lactobacillus paracasei), accumulated DNA sequence information of 16S rDNA, which is much more frequently used, should be targeted. In contrast, next-generation sequencing revealed that there are five copies of 16S rDNA in a live L. paracasei MCC1849. Therefore, we aimed to reveal, if heat-killed L. paracasei supplemented in nutritional foods that aid the host immune system have the relevant five copies per chromosomal DNA, and if the relevant copies remain unchanged on the same chromosomal DNA or remain to be different chromosomal DNA fragments. So, we revealed the actual distribution of the potential original five copies of 16S rDNA using our innovative dPCR, in which both 16S rDNA and hsp60 genes were simultaneously elongated. The molecular ratios of 16S rDNA/hsp60 dispersed in the dPCR chip were then estimated. The 16S rDNA/hsp60 molecular ratios of the heat-killed L. paracasei in foods, resultantly ranged from 5.0 to 7.2, being the same or higher than that of the five copies determined by next-generation sequencing. The 16S rDNA copy number/ratio indicated the chromosomal DNA molecular number and the associated cell number. As significance, different nutritional foods could potentially cause the loss of chromosomal DNA of supplemented beneficial microbes to a much greater degree. Our absolute dPCR does not require standard correlative samples for the estimation of final products. The estimation principle of the ratio of 16S rDNA/a house-keeping single-copy gene by our absolute dPCR could lead to a useful and accurate assay for various nutritional foods.
Collapse
|
21
|
Torrens G, Escobar-Salom M, Oliver A, Juan C. Activity of mammalian peptidoglycan-targeting immunity against Pseudomonas aeruginosa. J Med Microbiol 2020; 69:492-504. [PMID: 32427563 DOI: 10.1099/jmm.0.001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
22
|
Hu Z, Cao X, Guo M, Li C. Identification and characterization of a novel short-type peptidoglycan recognition protein in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:257-266. [PMID: 32061713 DOI: 10.1016/j.fsi.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of the innate immune system via specific recognizing peptidoglycan, a unique component of bacterial cell wall. In the present study, a homologous gene encoding PGRP-S was identified and characterized from Apostichopus japonicus and designated as AjPGRP-S. The open reading frame of AjPGRP-S is 756 bp encoding a polypeptide of 251 amino acids (aa) with a signal peptide (1-24 aa) and a typical PGRP domain (37-178 aa). Phylogenetic analysis and sequence alignment revealed that AjPGRP-S is a member of the PGRP-S family. In healthy sea cucumbers, AjPGRP-S was expressed in all examined tissues with the highest distribution in body wall, muscle, and intestine. In Vibrio splendidus-infected sea cucumbers, AjPGRP-S was remarkably induced in coelomocytes. The recombinant AjPGRP-S (rAjPGRP-S) was shown to possess the highly amidase activity in the presence of Zn2+. Moreover, rAjPGRP-S exhibited agglutination abilities and strong bacteriostatic activities against V. splendidus, V. harveyi, V. parahaemolyticus, Staphylococcus aureus, and Micrococcus luteus. Furthermore, the agglutination ability can be enhanced in the presence of Zn2+. In conclusion, our results suggested that AjPGRP-S serves as a pattern recognition molecule involved in the immune response towards various pathogenic infections.
Collapse
Affiliation(s)
- Zhenguo Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Xuebin Cao
- National Algae and Sea Cucumber Project Technology Research Center, Shandong Oriental Ocean Sci-Tech Company Limited, Yantai, 264003, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
23
|
A 12-mer Peptide of Tag7 (PGLYRP1) Forms a Cytotoxic Complex with Hsp70 and Inhibits TNF-Alpha Induced Cell Death. Cells 2020; 9:cells9020488. [PMID: 32093269 PMCID: PMC7072780 DOI: 10.3390/cells9020488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Investigation of interactions between a pro-inflammatory cytokine tumor necrosis factor (TNFα) and its receptor is required for the development of new treatments for autoimmune diseases associated with the adverse effects of TNFα. Earlier, we demonstrated that the innate immunity protein Tag7 (PGRP-S, PGLYRP1) can interact with the TNFα receptor, TNFR1, and block the transduction of apoptotic signals through this receptor. A complex formed between the Tag7 protein and the major heat shock protein Hsp70 can activate TNFR1 receptor and induce tumor cell death via either apoptotic or necroptotic pathway. In this study, we show that a 12-mer peptide, designated 17.1, which was derived from the Tag7 protein, can be regarded as a novel TNFα inhibitor, also is able to form a cytotoxic complex with the heat shock protein Hsp70. This finding demonstrates a new role for Hsp70 protein in the immune response. Also, this new inhibitory 17.1 peptide demonstrates an anti-inflammatory activity in the complete Freund's adjuvant (CFA)-induced autoimmune arthritis model in laboratory mice. It appears that the 17.1 peptide could potentially be used as an anti-inflammatory agent.
Collapse
|
24
|
Banskar S, Detzner AA, Juarez-Rodriguez MD, Hozo I, Gupta D, Dziarski R. The Pglyrp1-Regulated Microbiome Enhances Experimental Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2019; 203:3113-3125. [PMID: 31704882 DOI: 10.4049/jimmunol.1900711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Changes in intestinal or respiratory microbiomes in infants correlate with increased incidence of asthma, but the causative role of microbiome in the susceptibility to asthma and the host genes that regulate these changes in microbiome are mostly unknown. In this study, we show that decreased responsiveness to allergic asthma in Pglyrp1 -/- mice (lacking bactericidal peptidoglycan recognition protein 1) could be transferred to germ-free wild-type mice by colonization of mothers and newborns with microbiota from Pglyrp1 -/- mice. These colonized mice had decreased airway resistance and fewer inflammatory cells, less severe histopathology, and lower levels of IgE and proallergic cytokines and chemokines in the lungs. This microbiome-dependent decreased responsiveness to asthma was most pronounced in colonized germ-free BALB/c mice (genetically predisposed to asthma), only partially evident in outbred germ-free Swiss Webster mice, and marginal in conventional BALB/c mice following depletion of microbiome with antibiotics. Mice with a low asthmatic response colonized with microbiota from Pglyrp1 -/- mice had increased abundance of Bacteroidetes and decreased abundance of Firmicutes, Tenericutes, Deferribacteres, and Spirochaetes in the feces and increased abundance of Pasteurella in the oropharynx. These changes in bacterial abundance in the feces and oropharynx correlated with lower asthmatic responses in the lungs. Thus, our results show that Pglyrp1 enhances allergic asthmatic responses primarily through its effect on the host intestinal microbiome and identify several bacteria that may increase or decrease sensitivity to asthma. This effect of microbiome is strong in asthma-prone BALB/c mice and weak in asthma-resistant outbred mice and requires germ-free conditions before colonization with microbiota from Pglyrp1 -/- mice.
Collapse
Affiliation(s)
- Sunil Banskar
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Ashley A Detzner
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | | | - Iztok Hozo
- Department of Mathematics, Indiana University-Northwest, Gary, IN 46408
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| |
Collapse
|
25
|
Rout AK, Paramanik S, Dehury B, Acharya V, Swain HS, Pradhan SK, Behera B, Pati SK, Behera BK, Das BK. Elucidating the molecular interaction of Zebrafish (Danio rerio) peptidoglycan recognition protein 2 with diaminopimelic acid and lysine type peptidoglycans using in silico approaches. J Biomol Struct Dyn 2019; 38:3687-3699. [DOI: 10.1080/07391102.2019.1666742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Sunanda Paramanik
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Varsha Acharya
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Himanshu Sekhar Swain
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Soumen Kumar Pati
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| |
Collapse
|
26
|
Irazoki O, Hernandez SB, Cava F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 2019; 10:500. [PMID: 30984120 PMCID: PMC6448482 DOI: 10.3389/fmicb.2019.00500] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.
Collapse
Affiliation(s)
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Dabrowski AN, Conrad C, Behrendt U, Shrivastav A, Baal N, Wienhold SM, Hackstein H, N'Guessan PD, Aly S, Reppe K, Suttorp N, Zahlten J. Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection. Front Microbiol 2019; 10:199. [PMID: 30837960 PMCID: PMC6389715 DOI: 10.3389/fmicb.2019.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PGN) recognition proteins (PGLYRPs) are a highly conserved group of host defense proteins in insects and mammals that sense bacterial cell wall PGN and act bactericidally or cleave PGN by amidase function. Streptococcus (S.) pneumoniae is one of the top five killers worldwide and causes, e.g., pneumonia, endocarditis, meningitis and sepsis. S. pneumoniae accounts for approximately 1.5–2 million deaths every year. The risk of antibiotic resistance and a general poor prognosis in young children and elderly people have led to the need for new treatment approaches. To the best of our knowledge, there is no report on the relevance of PGLYRP2 in lung infections. Therefore, we infected mice deficient for PGLYRP2 transnasally with S. pneumoniae and examined the innate immune response in comparison to WT animals. As expected, PGLYRP2-KO animals had to be sacrificed earlier than their WT counterparts, and this was due to higher bacteremia. The higher bacterial load in the PGLYRP2-KO mice was accomplished with lower amounts of proinflammatory cytokines in the lungs. This led to an abolished recruitment of neutrophils into the lungs, the spread of bacteria and the subsequent aggravated course of the disease and early mortality of the PGLYRP2-KO mice. These data suggest a substantial role of PGLYRP2 in the early defense against S. pneumoniae infection, and PGLYRP2 might also affect other infections in the lungs.
Collapse
Affiliation(s)
- Alexander N Dabrowski
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Behrendt
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anshu Shrivastav
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nelli Baal
- Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sandra M Wienhold
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Hackstein
- Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Philippe D N'Guessan
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sahar Aly
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
28
|
Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation. Infect Immun 2018; 87:IAI.00601-18. [PMID: 30510103 DOI: 10.1128/iai.00601-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Incidence of whooping cough (pertussis), a bacterial infection of the respiratory tract caused by the bacterium Bordetella pertussis, has reached levels not seen since the 1950s. Antibiotics fail to improve the course of disease unless administered early in infection. Therefore, there is an urgent need for the development of antipertussis therapeutics. Sphingosine-1-phosphate receptor (S1PR) agonists have been shown to reduce pulmonary inflammation during Bordetella pertussis infection in mouse models. However, the mechanisms by which S1PR agonists attenuate pertussis disease are unknown. We report the results of a transcriptome sequencing study examining pulmonary transcriptional responses in B. pertussis-infected mice treated with S1PR agonist AAL-R or vehicle control. This study identified peptidoglycan recognition protein 4 (PGLYRP4) as one of the most highly upregulated genes in the lungs of infected mice following S1PR agonism. PGLYRP4, a secreted, innate mediator of host defenses, was found to limit early inflammatory pathology in knockout mouse studies. Further, S1PR agonist AAL-R failed to attenuate pertussis disease in PGLYRP4 knockout (KO) mice. B. pertussis virulence factor tracheal cytotoxin (TCT), a secreted peptidoglycan breakdown product, induces host tissue damage. TCT-oversecreting strains were found to drive an early inflammatory response similar to that observed in PGLYRP4 KO mice. Further, TCT-oversecreting strains induced significantly greater pathology in PGLYRP4-deficient animals than their wild-type counterparts. Together, these data indicate that S1PR agonist-mediated protection against pertussis disease is PGLYRP4 dependent. Our data suggest PGLYRP4 functions, in part, by preventing TCT-induced airway damage.
Collapse
|
29
|
Zhao S, Wang X, Cai S, Zhang S, Luo H, Wu C, Zhang R, Zhang J. A novel peptidoglycan recognition protein involved in the prophenoloxidase activation system and antimicrobial peptide production in Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:78-85. [PMID: 29734021 DOI: 10.1016/j.dci.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Pattern recognition receptors (PRRs) are employed in insects to defend against infectious pathogens by triggering various immune responses. Peptidoglycan recognition proteins (PGRPs), a vital family of PRRs, are widely distributed and highly conserved from vertebrates to invertebrates. To date, five PGRP genes have been identified in Antheraea pernyi, but their biochemical roles still remain unknown. In this study, we focused on the immune functions of PGRP-SA in A. pernyi (ApPGRP-SA), which was confirmed to be immune-related according to its significantly up-regulated expression level post microbial injection. In addition, the binding properties of ApPGRP-SA were investigated using a recombinant protein produced in a prokaryotic expression system, revealing that rApPGRP-SA displayed a multi-binding ability to various microbes, including the Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus, Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans, together with their surface pathogen associated molecular patterns (PAMPs). Further studies showed that after recognition, the mixture of rApPGRP-SA/PAMP remarkably stimulated prophenoloxidase (PPO) activation in the hemolymph of A. pernyi in vitro, while the ds-PGRP-SA-treated hemolymph exhibited a lower sensitivity to PAMPs in comparison to the native sample. Moreover, the transcriptional level of the three antimicrobial peptides was also decreased in PGRP-SA knock-down larvae in response to immune-challenge. In summary, we conclude that ApPGRP-SA is a novel identified PGRP in A. pernyi that might act as a broad-spectrum pattern recognition receptor and is involved in the PPO activation system as well as antimicrobial peptide production.
Collapse
Affiliation(s)
- Siqi Zhao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Siyu Cai
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Siqiang Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Chunfu Wu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China.
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, China.
| |
Collapse
|
30
|
Yang PJ, Zhan MY, Ye C, Yu XQ, Rao XJ. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:665-676. [PMID: 28703893 DOI: 10.1111/imb.12330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity.
Collapse
Affiliation(s)
- P-J Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - M-Y Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - C Ye
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - X-Q Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - X-J Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
31
|
Mati A, Senoussi-Ghezali C, Si Ahmed Zennia S, Almi-Sebbane D, El-Hatmi H, Girardet JM. Dromedary camel milk proteins, a source of peptides having biological activities – A review. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
How innate immunity proteins kill bacteria and why they are not prone to resistance. Curr Genet 2017; 64:125-129. [PMID: 28840318 DOI: 10.1007/s00294-017-0737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/11/2023]
Abstract
Recent advances on antibacterial activity of peptidoglycan recognition proteins (PGRPs) offer some insight into how innate immunity has retained its antimicrobial effectiveness for millions of years with no frequent emergence of resistant strains. First, PGRP can bind to multiple components of bacterial envelope (peptidoglycan, lipoteichoic acid, and lipopolysaccharide). Second, PGRP simultaneously induces oxidative, thiol, and metal stress responses in bacteria, which individually are bacteriostatic, but in combination are bactericidal. Third, PGRP induces oxidative, thiol, and metal stress responses in bacteria through three independent pathways. Fourth, antibacterial effects of PGRP are enhanced by other innate immune responses. Thus, emergence of PGRP resistance is prevented by bacteriostatic effect and independence of each PGRP-induced stress response, as PGRP resistance would require simultaneous acquisition of three separate mechanisms disabling the induction of all three stress responses. By contrast, each antibiotic has one primary target and one primary antibacterial mechanism, and for this reason resistance to antibiotics can be generated by inhibition of this primary mechanism. Manipulating bacterial metabolic responses can enhance bacterial killing by antibiotics and elimination of antibiotic-tolerant bacteria, but such manipulations do not overcome genetically encoded antibiotic resistance. Pathogens cause infections by evading, inhibiting, or subverting host immune responses.
Collapse
|
33
|
Unveiling differentially expressed genes upon regulation of transcription factors in sepsis. 3 Biotech 2017; 7:46. [PMID: 28444588 DOI: 10.1007/s13205-017-0713-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023] Open
Abstract
In this study, we integrated the gene expression data of sepsis to reveal more precise genome-wide expression signature to shed light on the pathological mechanism of sepsis. Differentially expressed genes via integrating five microarray datasets from the Gene Expression Omnibus database were obtained. The gene function and involved pathways of differentially expressed genes (DEGs) were detected by GeneCodis3. Transcription factors (TFs) targeting top 20 dysregulated DEGs (including up- and downregulated genes) were found based on the TRANSFAC. A total of 1339 DEGs were detected including 788 upregulated and 551 downregulated genes. These genes were mostly involved in DNA-dependent transcription regulation, blood coagulation, and innate immune response, pathogenic escherichia coli infection, epithelial cell signaling in helicobacter pylori infection, and chemokine signaling pathway. TFs bioinformatic analysis of 20 DEGs generated 374 pairs of TF-target gene involving 47 TFs. At last, we found that five top ten upregulated DEGs (S100A8, S100A9, S100A12, PGLYRP1 and MMP9) and three downregulated DEGs (ZNF84, CYB561A3 and BST1) were under the regulation of three hub TFs of Pax-4, POU2F1, and Nkx2-5. The identified eight DEGs may be regarded as the diagnosis marker and drug target for sepsis.
Collapse
|
34
|
Zhu X, Zhang M, Yao F, Yin Y, Zou X, Hou L. Involvement of PGRP-SC2 from Artemia sinica in the innate immune response against bacteria and expression pattern at different developmental stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:276-286. [PMID: 27646138 DOI: 10.1016/j.dci.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan-recognition protein-SC2 precursor-like protein (PGRP-SC2) is a vital protein in innate immunity with a vita role in response to bacteria challenge in invertebrates. Here, a 678-bp full-length cDNA of pgrp-sc2 from A. sinica was obtained containing a 558-bp open reading frame encoding 185 amino acids with a calculated molecular mass of 19.6 kDa. The predicted protein contains a PGRP and an Amidase2 domain, indicating that PGRP-SC2 is a PGRP family member and has N-acetylmuramoyl-l-alanine amidase activity. The expression and localization of pgrp-sc2/PGRP-SC2 in A.sinica during embryonic development and bacterial challenge were determined by qPCR, WB and ISH. During different A. sinica embryonic development stages, the expression level of pgrp-sc2/PGRP-SC2 was most highly expressed at 0 and 5 h and after challenge by Gram-positive bacteria, it increased with increasing bacterial concentrations, indicating that it plays a vital role in A. sinica early embryonic development and innate immunity.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Mengchen Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Yuling Yin
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Xiangyang Zou
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
35
|
Zhang H, Hu G, Liu Q, Zhang S. Cloning and expression study of a Toll-like receptor 2 (tlr2) gene from turbot, Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2016; 59:137-148. [PMID: 27713068 DOI: 10.1016/j.fsi.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 2 (TLR2) in mammals is a member of the ancient Toll-like family of receptors that predominantly recognizes conserved components of Gram-positive bacteria. In the present study, a tlr2 gene and its 5'-flanking sequence were cloned from turbot, Scophthalmus maximus, its responsive expressions to various immunostimulants were subsequently studied in vivo. The turbot (sm)tlr2 gene spans over 9.0 kb with a structure of 12 exon-11 intron and encodes 816 amino acids. The deduced protein shows the highest sequence identity (76.1%) to Japanese flounder Tlr2 and possesses a signal peptide sequence, a leucine-rich repeat (LRR) domain composed of 19 LRR motifs, a transmembrane region and a Toll/interleukin-1 receptor (TIR) domain. Phylogenetic analysis grouped it with other neoteleostei Tlr2as. A number of transcription factor binding sites known to be important for the basal transcriptional activity of TLR3 and response of TLR2 to lipopolysaccharide (LPS) signalling in mammals were predicted in the 5'-flanking sequence of smtlr2. Quantitative real-time PCR (qPCR) analysis demonstrated the constitutive expression of smtlr2 mRNA in all twelve examined tissues with higher levels in the lymphomyeloid-rich tissues and liver. Further, smtlr2 expression was up-regulated following stimulation with LPS, peptidoglycan (PGN) or polyinosinic: polycytidylic acid [poly(I:C)] in the gills, head kidney, spleen and muscle. Finally, for all three immunostimulants, a two-wave induced smtlr2 expression was observed in the head kidney and spleen in a 7-day time course and the strongest inducibility in the head kidney. These findings suggest a possible role of Smtlr2 in the immune responses to the infections of a broad range of pathogens that include Gram-positive and Gram-negative bacteria and RNA virus.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Qiuming Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
36
|
Dukhanina EA, Lukyanova TI, Romanova EA, Guerriero V, Gnuchev NV, Georgiev GP, Yashin DV, Sashchenko LP. A new role for PGRP-S (Tag7) in immune defense: lymphocyte migration is induced by a chemoattractant complex of Tag7 with Mts1. Cell Cycle 2016; 14:3635-43. [PMID: 26654597 DOI: 10.1080/15384101.2015.1104440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7-Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4(+) and CD8(+) lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.
Collapse
Affiliation(s)
- E A Dukhanina
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia.,b Engelhardt Institute of Molecular Biology; RAS ; Moscow , Russia
| | - T I Lukyanova
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia.,c M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry; RAS ; Moscow , Russia
| | - E A Romanova
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - V Guerriero
- d School of Animal and Comparative Biomedical Sciences; University of Arizona ; Tucson , AZ USA
| | - N V Gnuchev
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - G P Georgiev
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - D V Yashin
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - L P Sashchenko
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| |
Collapse
|
37
|
Abstract
The innate immune system recognizes micro-organisms through a series of pattern recognition receptors that are highly conserved in evolution. Peptidoglycan (PGN) is a unique and essential component of the cell wall of virtually all bacteria, is not present in eukaryotes, and is an excellent target for the innate immune system. Indeed, higher eukaryotes, including mammals, have several PGN recognition molecules, including CD14, Toll-like receptor 2 (TLR2), nucleotide oligomerization domain (Nod)-containing proteins, a family of peptidoglycan recognition proteins (PGRPs), and PGN-lytic enzymes (lysozyme and amidase). These molecules induce host responses to micro-organisms, degrade PGN, or have direct antimicrobial effects.
Collapse
Affiliation(s)
- Roman Dziarski
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana, USA,
| | - Dipika Gupta
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana, USA
| |
Collapse
|
38
|
Guan R, Roychowdury A, Ember B, Kumar S, Boons GJ, Mariuzza RA. Crystal structure of a peptidoglycan recognition protein (PGRP) in complex with a muramyl tripeptide from Gram-positive bacteria. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110010901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind, and in some cases hydrolyse, bacterial peptidoglycans (PGNs). We determined the crystal structure of the C-terminal PGN-binding domain of human PGRP-Iα in complex with a muramyl tripeptide representing the conserved core of lysine-type PGNs. The peptide stem of the ligand is buried at the deep end of a long binding groove, with N-acetylmuramic acid situated in the middle of the groove, whose shallow end could accommodate N-acetylglucosamine. Both peptide and glycan moieties are essential for binding by PGRPs. Conservation of key PGN-contacting residues indicates that all PGRPs employ this basic PGN-binding mode. The structure identifies variable residues that likely mediate discrimination between lysine- and diaminopimelic acid-type PGNs. In addition, we propose a mechanism for PGN hydrolysis by Zn2+-containing catalytic PGRPs.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA
| | - Abhijit Roychowdury
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Brian Ember
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sanjay Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Roy A. Mariuzza
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA,
| |
Collapse
|
39
|
Jennewein C, Sowa R, Faber AC, Dildey M, von Knethen A, Meybohm P, Scheller B, Dröse S, Zacharowski K. Contribution of Ninjurin1 to Toll-like receptor 4 signaling and systemic inflammation. Am J Respir Cell Mol Biol 2016; 53:656-63. [PMID: 25860173 DOI: 10.1165/rcmb.2014-0354oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nerve injury-induced protein (Ninjurin [Ninj]) 1 is an adhesion molecule originally identified in Schwann cells after nerve injury, whereas it is also expressed in leukocytes, epithelium, endothelium, and various organs, and is induced under inflammatory conditions. Its contribution to inflammation was so far restricted to the nervous system and exclusively attributed to its role during leukocyte migration. We hypothesized a proinflammatory role for Ninj1 also outside the nervous system. To elucidate its impact during inflammation, we analyzed expression levels and its contribution to inflammation in septic mice and studied its effect on inflammatory signaling in vitro. The effect on inflammation was analyzed by genetic (only in vitro) and pharmacologic repression in septic mice (cecal ligation and puncture) and cell culture, respectively. Repression of Ninj1 by an inhibitory peptide or small interfering RNA attenuated LPS-triggered inflammation in macrophages and endothelial cells by modulating p38 phosphorylation and activator protein-1 activation. Inhibition of Ninj1 in septic mice reduced systemic and pulmonary inflammation as well as organ damage, and ameliorated survival after 24 hours. Ninj1 is elevated under inflammatory conditions and contributes to inflammation not only by mediating leukocyte migration, but also by modulating Toll-like receptor 4-dependent expression of inflammatory mediators. We assume that, owing to both mechanisms, inhibition reduces systemic inflammation and organ damage in septic mice. Our data contribute to a better understanding of the complex inflammatory mechanisms and add a novel therapeutic target for inflammatory conditions such as sepsis.
Collapse
Affiliation(s)
- Carla Jennewein
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Ralf Sowa
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Anne C Faber
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Madlen Dildey
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Andreas von Knethen
- 2 Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Patrick Meybohm
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Bertram Scheller
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Stefan Dröse
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Kai Zacharowski
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| |
Collapse
|
40
|
Functions of Peptidoglycan Recognition Proteins (Pglyrps) at the Ocular Surface: Bacterial Keratitis in Gene-Targeted Mice Deficient in Pglyrp-2, -3 and -4. PLoS One 2015; 10:e0137129. [PMID: 26332373 PMCID: PMC4558058 DOI: 10.1371/journal.pone.0137129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Functions of antimicrobial peptidoglycan recognition proteins (Pglyrp1-4) at the ocular surface are poorly understood. Earlier, we reported an antibacterial role for Pglyrp-1 in Pseudomonas aeruginosa keratitis. Here we investigated functions of three other related genes Pglyrp-2, -3 and -4 in a mouse model of P. aeruginosa keratitis. METHODS Wild type (WT) and each of the Pglyrp-null genotypes were challenged with P. aeruginosa keratitis. The eyes were scored in a blinded manner 24 and 48h post infection. Viable bacterial counts and inflammatory factors (IL-12, TNF-α, IFN-γ, CCL2, IL-6 and IL-10) were measured in whole eye homogenates using cytometric bead arrays. Expressions of Pglyrp-1-4, mouse beta defensins (mBD)-2,-3, cathelicidin-related antimicrobial peptide (CRAMP) were determined by qRTPCR in total RNA extracts of uninfected and infected eyes of WT and each of the Pglyrp-null mouse types. RESULTS The Pglyrp-2-/- mice showed reduced disease and lower induction of pro-inflammatory TNF-α (p = 0.02) than WT or the other Pglyrp null mice. Viable bacterial yield was significantly lower in the Pglyrp-2-/- (p = 0.0007) and the Pglyrp-4-/- (p = 0.098) mice. With regards to expression of these antimicrobial genes, Pglyrp-2 expression was induced after infection in WT mice. Pglyrp-3 expression was low before and after infection in WT mice, while Pglyrp-4 expression was slightly elevated after infection in WT, Pglyrp-2 and -3 null mice. Pglyrp-1 expression was slightly elevated after infection in all genotypes without statistical significance. Transcripts for antimicrobial peptides mBD2, mBD3 and CRAMP were elevated in infected Pglyrp-2-/- males without statistical significance. CONCLUSIONS Efficient resolution of keratitis in the Pglyrp-2-/- mice may be due to a reduced pro-inflammatory microenvironment and synergistic antibacterial activities of defensins, CRAMP and Pglyrp-1. Therefore, in ocular infections the pro-inflammatory functions of Pglyrp-2 must be regulated to benefit the host.
Collapse
|
41
|
Hua X, Yuan X, Li Z, Coursey TG, Pflugfelder SC, Li DQ. A Novel Innate Response of Human Corneal Epithelium to Heat-killed Candida albicans by Producing Peptidoglycan Recognition Proteins. PLoS One 2015; 10:e0128039. [PMID: 26039076 PMCID: PMC4454663 DOI: 10.1371/journal.pone.0128039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Fungal infections of the cornea can be sight-threatening and have a worse prognosis than other types of microbial corneal infections. Peptidoglycan recognition proteins (PGLYRP), which are expressed on the ocular surface, play an important role in the immune response against bacterial corneal infections by activating toll-like receptors (TLRs) or increasing phagocytosis. However, the role of PGLYRPs in innate immune response to fungal pathogens has not been investigated. In this study, we observed a significant induction of three PGLYRPs 2–4 in primary human corneal epithelial cells (HCECs) exposed to live or heat-killed Candida albicans (HKCA). The C-type lectin receptor dectin-1 plays a critical role in controlling Candida albicans infections by promoting phagocytic activity and cytokine production in macrophages and dendritic cells. Here, we demonstrate that dectin-1 is expressed by normal human corneal tissue and primary HCECs. HKCA exposure increased expression of dectin-1 on HCECs at mRNA and protein levels. Interestingly, dectin-1 neutralizing antibody, IκB-α inhibitor BAY11-7082, and NF-κB activation inhibitor quinazoline blocked NF-κB p65 nuclear translocation, as well as the induction of the PGLYRPs by HKCA in HCECs. Furthermore, rhPGLYRP-2 was found to suppress colony-forming units of Candida albicans in vitro. In conclusion, these findings demonstrate that dectin-1 is expressed by human corneal epithelial cells, and dectin-1/NF-κB signaling pathway plays an important role in regulating Candida albicans/HKCA-induced PGLYRP secretion by HCECs.
Collapse
Affiliation(s)
- Xia Hua
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail: (XYY); (DQL)
| | - Zhijie Li
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Terry G. Coursey
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail: (XYY); (DQL)
| |
Collapse
|
42
|
De Marzi MC, Todone M, Ganem MB, Wang Q, Mariuzza RA, Fernández MM, Malchiodi EL. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology 2015; 145:429-42. [PMID: 25752767 DOI: 10.1111/imm.12460] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 02/02/2023] Open
Abstract
Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iβ have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iβ. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile.
Collapse
Affiliation(s)
- Mauricio C De Marzi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Marcos Todone
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - María B Ganem
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Qian Wang
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 2015; 6:19. [PMID: 25674081 PMCID: PMC4309185 DOI: 10.3389/fmicb.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors (PRRs) initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors, and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal PRRs for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.
Collapse
Affiliation(s)
- Bethany A Stokes
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Upasana Shokal
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - L C Smith
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| |
Collapse
|
44
|
New candidate biomarkers in the female genital tract to evaluate microbicide toxicity. PLoS One 2014; 9:e110980. [PMID: 25333937 PMCID: PMC4205019 DOI: 10.1371/journal.pone.0110980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/17/2014] [Indexed: 01/14/2023] Open
Abstract
Vaginal microbicides hold great promise for the prevention of viral diseases like HIV, but the failure of several microbicide candidates in clinical trials has raised important questions regarding the parameters to be evaluated to determine in vivo efficacy in humans. Clinical trials of the candidate microbicides nonoxynol-9 (N9) and cellulose sulfate revealed an increase in HIV infection, vaginal inflammation, and recruitment of HIV susceptible lymphocytes, highlighting the need to identify biomarkers that can accurately predict microbicide toxicity early in preclinical development and in human trials. We used quantitative proteomics and RT-PCR approaches in mice and rabbits to identify protein changes in vaginal fluid and tissue in response to treatment with N9 or benzalkonium chloride (BZK). We compared changes generated with N9 and BZK treatment to the changes generated in response to tenofovir gel, a candidate microbicide that holds promise as a safe and effective microbicide. Both compounds down regulated mucin 5 subtype B, and peptidoglycan recognition protein 1 in vaginal tissue; however, mucosal brush samples also showed upregulation of plasma proteins fibrinogen, plasminogen, apolipoprotein A-1, and apolipoprotein C-1, which may be a response to the erosive nature of N9 and BZK. Additional proteins down-regulated in vaginal tissue by N9 or BZK treatment include CD166 antigen, olfactomedin-4, and anterior gradient protein 2 homolog. We also observed increases in the expression of C-C chemokines CCL3, CCL5, and CCL7 in response to treatment. There was concordance in expression level changes for several of these proteins using both the mouse and rabbit models. Using a human vaginal epithelial cell line, the expression of mucin 5 subtype B and olfactomedin-4 were down-regulated in response to N9, suggesting these markers could apply to humans. These data identifies new proteins that after further validation could become part of a panel of biomarkers to effectively evaluate microbicide toxicity.
Collapse
|
45
|
Kashyap DR, Rompca A, Gaballa A, Helmann JD, Chan J, Chang CJ, Hozo I, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog 2014; 10:e1004280. [PMID: 25032698 PMCID: PMC4102600 DOI: 10.1371/journal.ppat.1004280] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS), a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria. Bacterial infections are still a major cause of morbidity and mortality because of increasing antibiotic resistance. New targets for developing new approaches to antibacterial therapy are needed, because discovering new or improving current antibiotics have become increasingly difficult. One such approach is developing new antibacterial agents based on the antibacterial mechanisms of bactericidal innate immunity proteins, such as human peptidoglycan recognition proteins (PGRPs). Thus, our aim was to determine how PGRPs kill bacteria. We previously proposed that PGRPs kill bacteria by inducing toxic oxygen by-products (“reactive oxygen species”, ROS) in bacteria. It was also previously proposed, but recently refuted, that bactericidal antibiotics kill bacteria by inducing ROS production in bacteria. These findings prompted us to evaluate in greater detail the mechanism of PGRP-induced bacterial killing, including the role of ROS in PGRP killing. We show here that PGRPs kill bacteria through synergistic induction of ROS, depletion of thiols, and increasing intracellular concentration of metals, which are all required, but individually not sufficient for bacterial killing. Our results reveal a novel bactericidal mechanism of innate immunity proteins, which differs from killing by antibiotics and offers alternative targets for developing new antibacterial therapies for antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Des Raj Kashyap
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Annemarie Rompca
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Jefferson Chan
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Christopher J. Chang
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, Indiana, United States of America
| | - Dipika Gupta
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Roman Dziarski
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Sahoo BR, Dubey PK, Goyal S, Bhoi GK, Lenka SK, Maharana J, Pradhan SK, Kataria RS. Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation. Chem Biol Interact 2014; 220:255-68. [PMID: 25014416 DOI: 10.1016/j.cbi.2014.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/28/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022]
Abstract
The peptidoglycan recognition proteins (PGRPs) are the key components of innate-immunity, and are highly specific for the recognition of bacterial peptidoglycans (PGN). Among different mammalian PGRPs, the PGRP1 binds to murein PGN of Gram-positive bacteria (lysine-type) and also have bactericidal activity towards Gram-negative bacteria (diaminopimelic acid or Dap-type). Buffaloes are the major sources of milk and meat in Asian sub-continents and are highly exposed to bacterial infections. The PGRP activates the innate-immune signaling, but their studies has been confined to limited species due to lack of structural and functional information. So, to understand the structural constituents, 3D model of buffalo PGRP1 (bfPGRP1) was constructed and conformational and dynamics properties of bfPGRP1 was studied. The bfPGRP1 model highly resembled human and camel PGRP structure, and shared a highly flexible N-terminus and centrally placed L-shaped cleft. Docking simulation of muramyl-tripeptide, tetrapeptide, pentapeptide-Dap-(MTP-Dap, MTrP-Dap and MPP-Dap) and lysine-type (MTP-Lys, MTrP-Lys and MPP-Lys) in AutoDock 4.2 and ArgusLab 4.0.1 anticipated β1, α2, α4, β4, and loops connecting β1-α2, α2-β2, β3-β4 and α4-α5 as the key interacting domains. The bfPGRP1-ligand complex molecular dynamics simulation followed by free binding energy (BE) computation conceded BE values of -18.30, -35.53, -41.80, -25.03, -24.62 and -22.30 kJ mol(-1) for MTP-Dap, MTrP-Dap, MPP-Dap, MTP-Lys, MTrP-Lys and MPP-Lys, respectively. The groove-surface and key binding residues involved in PGN-Dap and Lys-type interaction intended by the molecular docking, and were also accompanied by significant BE values directed their importance in pharmacogenomics, and warrants further in vivo studies for drug targeting and immune signaling pathways exploration.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India; Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka Prefecture 5650871, Japan.
| | - Praveen Kumar Dubey
- Immunology Frontier Research Centre, Osaka University, Osaka Prefecture 5650871, Japan.
| | - Shubham Goyal
- RIKEN Center for Life Science Technologies, Yokohama 2300045, Japan
| | - Gopal Krushna Bhoi
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India
| | - Santosh Kumar Lenka
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India
| | - Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India; Biotechnology Laboratory, Central Inland Fisheries Research Institute, Kolkata, West Bengal 700120, India
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751001, India
| | - Ranjit Singh Kataria
- Division of Animal Biotechnology, National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| |
Collapse
|
47
|
Myllymäki H, Valanne S, Rämet M. The Drosophila Imd Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2014; 192:3455-62. [DOI: 10.4049/jimmunol.1303309] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Imler JL. Overview of Drosophila immunity: a historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:3-15. [PMID: 24012863 DOI: 10.1016/j.dci.2013.08.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 05/24/2023]
Abstract
The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
49
|
Jiang W, Yin Y, Zhou Y, He G, Qi Y. Isolation and characterization of peptidoglycan recognition protein 1 from antler base of sika deer (Cervus nippon). Int J Biol Macromol 2013; 64:313-8. [PMID: 24360898 DOI: 10.1016/j.ijbiomac.2013.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are secreted innate immunity pattern recognition molecules. In this study, a new peptidoglycan recognition protein 1 named cnPGRP1 was isolated from an antler base of sika deer Cervus nippon. The antler base antimicrobial proteins (AAP) were subjected to consecutive chromatographic methods connected to Sephadex G-25 gel filtration column (CM) anion-exchange column, and RP-HPLC. The molecular weight of cnPGRP1 was 17.2 kDa under SDS-PAGE, and peptide mass fingerprint analysis by MALDI-TOF-MS as peptidoglycan recognition protein 1 matched to Dasypus novemcinctus. The matched amino acids sequences were RLYEIIQKWPHYRA. Both Gram-positive and Gram-negative bacteria can be killed by cnPGRP1 in the 50-250 μg/mL range through in vitro. Furthermore, cnPGRP1 has been found to bind Gram-positive bacteria, Gram-negative bacteria, and even fungus.
Collapse
Affiliation(s)
- Wei Jiang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Yongguang Yin
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Yajun Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Guidan He
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Yue Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| |
Collapse
|
50
|
Ermund A, Gustafsson JK, Hansson GC, Keita ÅV. Mucus properties and goblet cell quantification in mouse, rat and human ileal Peyer's patches. PLoS One 2013; 8:e83688. [PMID: 24358305 PMCID: PMC3865249 DOI: 10.1371/journal.pone.0083688] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/15/2013] [Indexed: 02/08/2023] Open
Abstract
Peyer's patches (PPs) are collections of lymphoid follicles in the small intestine, responsible for scanning the intestinal content for foreign antigens such as soluble molecules, particulate matter as well as intact bacteria and viruses. The immune cells of the patch are separated from the intestinal lumen by a single layer of epithelial cells, the follicle-associated epithelium (FAE). This epithelium covers the dome of the follicle and contains enterocyte-like cells and M cells, which are particularly specialized in taking up antigens from the gut. However, the presence and number of goblet cells as well as the presence of mucus on top of the FAE is controversial. When mouse ileal PPs were mounted in a horizontal Ussing-type chamber, we could observe a continuous mucus layer at mounting and new, easily removable mucus was released from the villi on the patch upon stimulation. Confocal imaging using fluorescent beads revealed a penetrable mucus layer covering the domes. Furthermore, immunostaining of FAE from mice, rats and humans with a specific antibody against the main component of intestinal mucus, the MUC2 mucin, clearly identify mucin-containing goblet cells. Transmission electron micrographs further support the identification of mucus releasing goblet cells on the domes of PPs in these species.
Collapse
Affiliation(s)
- Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Jenny K. Gustafsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Åsa V. Keita
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University and County Council of Östergötland, Linköping, Sweden
| |
Collapse
|