1
|
Wang W, Chen Y, Yin Y, Wang X, Ye X, Jiang K, Zhang Y, Zhang J, Zhang W, Zhuge Y, Chen L, Peng C, Xiong A, Yang L, Wang Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2022; 96:2003-2019. [PMID: 35357534 PMCID: PMC9151551 DOI: 10.1007/s00204-022-03281-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.
Collapse
Affiliation(s)
- Weiqian Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xuanling Ye
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Li Chen
- Department of Gastroenterology, School of Medicine, Ruijin Hospital, Shanghai JiaoTong University, Shanghai, 201801, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| |
Collapse
|
2
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
3
|
Ma J, Xia Q, Fu PP, Lin G. Pyrrole-protein adducts - A biomarker of pyrrolizidine alkaloid-induced hepatotoxicity. J Food Drug Anal 2018; 26:965-972. [PMID: 29976414 PMCID: PMC9303027 DOI: 10.1016/j.jfda.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are phytotoxins identified in over 6000 plant species worldwide. Approximately 600 toxic PAs and PA N-oxides have been identified in about 3% flowering plants. PAs can cause toxicities in different organs particularly in the liver. The metabolic activation of PAs is catalyzed by hepatic cytochrome P450 and generates reactive pyrrolic metabolites that bind to cellular proteins to form pyrrole-protein adducts leading to PA-induced hepatotoxicity. The mechanisms that pyrrole-protein adducts induce toxicities have not been fully characterized. Methods for qualitative and quantitative detection of pyrrole-protein adducts have been developed and applied for the clinical diagnosis of PA exposure and PA-induced liver injury. This mini-review addresses the mechanisms of PA-induced hepatotoxicity mediated by pyrrole-protein adducts, the analytical methods for the detection of pyrrole-protein adducts, and the development of pyrrole-protein adducts as the mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China.
| |
Collapse
|
4
|
Lachant DJ, Meoli DF, Haight D, Lyons JA, Swarthout RF, White RJ. Low dose monocrotaline causes a selective pulmonary vascular lesion in male and female pneumonectomized rats. Exp Lung Res 2018; 44:51-61. [PMID: 29381088 DOI: 10.1080/01902148.2017.1422157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose/Aim: Low doses (30-80 mg/kg) of monocrotaline are commonly used to create experimental models of pulmonary hypertension in rats. At these doses, monocrotaline causes pulmonary endothelial apoptosis and acute lung injury which ultimately results in pulmonary vascular disease. Higher doses of monocrotaline (300 mg/kg) are known to create severe liver injury, but previous investigations with lower doses have not reported histology in other organs to determine whether the vascular injury with monocrotaline is pulmonary-selective or generalized. MATERIALS AND METHODS We therefore sought to determine whether monocrotaline caused extra-pulmonary injury at doses commonly used in pulmonary hypertension studies. We performed left pneumonectomy on young male and female rats before administering 50-60 mg/kg monocrotaline 7 days later. We monitored serum chemistry and urine dipsticks during the first 3 weeks while the animals developed pulmonary hypertension. After 3 weeks, we sacrificed animals and stained the lungs and highly vascular visceral organs (kidney, liver, and spleen) for elastin to evaluate the degree of vascular injury and remodeling. RESULTS We did not observe proteinuria or significant transaminitis over the 3 weeks following monocrotaline. As previously published, monocrotaline caused severe pulmonary vascular disease with neointimal lesions and medial hypertrophy. We did not identify significant large or small arterial damage in the kidneys, liver, or spleen. Two external veterinary pathologists did not identify histopathology in the kidneys, liver, or spleen of these rats. CONCLUSIONS We conclude that 50-60 mg/kg of monocrotaline causes a selective pulmonary vascular lesion and that male and female rats have little non-pulmonary damage over 3 weeks at these doses of monocrotaline.
Collapse
Affiliation(s)
- Daniel J Lachant
- a Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester , New York , USA.,b Division of Pulmonary and Critical Care Medicine , University of Rochester Medical Center , Rochester , New York , USA
| | - David F Meoli
- a Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester , New York , USA.,b Division of Pulmonary and Critical Care Medicine , University of Rochester Medical Center , Rochester , New York , USA
| | - Deborah Haight
- a Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester , New York , USA.,b Division of Pulmonary and Critical Care Medicine , University of Rochester Medical Center , Rochester , New York , USA
| | - Jason A Lyons
- a Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester , New York , USA.,b Division of Pulmonary and Critical Care Medicine , University of Rochester Medical Center , Rochester , New York , USA
| | - Robert F Swarthout
- a Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester , New York , USA.,b Division of Pulmonary and Critical Care Medicine , University of Rochester Medical Center , Rochester , New York , USA
| | - R James White
- a Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester , New York , USA.,b Division of Pulmonary and Critical Care Medicine , University of Rochester Medical Center , Rochester , New York , USA
| |
Collapse
|
5
|
Avouac J, Konstantinova I, Guignabert C, Pezet S, Sadoine J, Guilbert T, Cauvet A, Tu L, Luccarini JM, Junien JL, Broqua P, Allanore Y. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann Rheum Dis 2017; 76:1931-1940. [PMID: 28801346 DOI: 10.1136/annrheumdis-2016-210821] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH). METHODS IVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. RESULTS IVA337 demonstrated at a dose of 100 mg/kg a marked protection from the development of lung fibrosis in both mouse models compared with mice receiving 30 mg/kg of IVA337 or vehicle. Histological score was markedly reduced by 61% in the bleomycin model and by 50% in Fra-2 transgenic mice, and total lung hydroxyproline concentrations decreased by 28% and 48%, respectively, as compared with vehicle-treated mice. IVA337 at 100 mg/kg also significantly decreased levels of fibrogenic markers in lesional lungs of both mouse models. In addition, IVA337 substantially alleviated PH in Fra-2 transgenic mice by improving haemodynamic measurements and vascular remodelling. In primary human lung fibroblasts, IVA337 inhibited in a dose-dependent manner fibroblast to myofibroblasts transition induced by TGF-β and fibroblast proliferation mediated by PDGF. CONCLUSION We demonstrate that treatment with 100 mg/kg IVA337 prevents lung fibrosis in two complementary animal models and substantially attenuates PH in the Fra-2 mouse model. These findings confirm that the pan-PPAR agonist IVA337 is an appealing therapeutic candidate for these cardiopulmonary involvements.
Collapse
Affiliation(s)
- Jerome Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité , Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | | | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sonia Pezet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Jeremy Sadoine
- EA 2496 Pathologie, Imagerieet Biothérapies Orofaciales, UFR Odontologie, Université ParisDescartes and PIDV, PRES Sorbonne Paris Cité, Montrouge, France
| | - Thomas Guilbert
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Anne Cauvet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | | | | | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité , Service de Rhumatologie A, Hôpital Cochin, Paris, France
- EA 2496 Pathologie, Imagerieet Biothérapies Orofaciales, UFR Odontologie, Université ParisDescartes and PIDV, PRES Sorbonne Paris Cité, Montrouge, France
| |
Collapse
|
6
|
Xiao R, Su Y, Feng T, Sun M, Liu B, Zhang J, Lu Y, Li J, Wang T, Zhu L, Hu Q. Monocrotaline Induces Endothelial Injury and Pulmonary Hypertension by Targeting the Extracellular Calcium-Sensing Receptor. J Am Heart Assoc 2017; 6:JAHA.116.004865. [PMID: 28330842 PMCID: PMC5533002 DOI: 10.1161/jaha.116.004865] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Monocrotaline has been widely used to establish an animal model of pulmonary hypertension. The molecular target underlying monocrotaline-induced pulmonary artery endothelial injury and pulmonary hypertension remains unknown. The extracellular calcium-sensing receptor (CaSR) and particularly its extracellular domain hold the potential structural basis for monocrotaline to bind. This study aimed to reveal whether monocrotaline induces pulmonary hypertension by targeting the CaSR. METHODS AND RESULTS Nuclear magnetic resonance screening through WaterLOGSY (water ligand-observed gradient spectroscopy) and saturation transfer difference on protein preparation demonstrated the binding of monocrotaline to the CaSR. Immunocytochemical staining showed colocalization of monocrotaline with the CaSR in cultured pulmonary artery endothelial cells. Cellular thermal shift assay further verified the binding of monocrotaline to the CaSR in pulmonary arteries from monocrotaline-injected rats. Monocrotaline enhanced the assembly of CaSR, triggered the mobilization of calcium signaling, and damaged pulmonary artery endothelial cells in a CaSR-dependent manner. Finally, monocrotaline-induced pulmonary hypertension in rats was significantly attenuated or abolished by the inhibitor, the general or lung knockdown or knockout of CaSR. CONCLUSIONS Monocrotaline aggregates on and activates the CaSR of pulmonary artery endothelial cells to trigger endothelial damage and, ultimately, induces pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tian Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Mengxiang Sun
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiwei Zhang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yankai Lu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China .,Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China .,Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
7
|
Response to “Comment to the article ‘Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation’”. J Mol Cell Cardiol 2017; 103:137-138. [DOI: 10.1016/j.yjmcc.2017.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/17/2017] [Indexed: 11/22/2022]
|
8
|
Gan J, Zhang H, Humphreys WG. Drug–Protein Adducts: Chemistry, Mechanisms of Toxicity, and Methods of Characterization. Chem Res Toxicol 2016; 29:2040-2057. [DOI: 10.1021/acs.chemrestox.6b00274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinping Gan
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - Haiying Zhang
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - W. Griffith Humphreys
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| |
Collapse
|
9
|
Yang X, Bartlett MG. Identification of protein adduction using mass spectrometry: Protein adducts as biomarkers and predictors of toxicity mechanisms. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:652-664. [PMID: 26842586 DOI: 10.1002/rcm.7462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
The determination of protein-xenobiotic adducts using mass spectrometry is an emerging area which allows detailed understanding of the underlying mechanisms involved in toxicity. These approaches can also be used to reveal potential biomarkers of exposure or toxic response. The following review covers studies of protein adducts resulting from exposure to a wide variety of xenobiotics including organophosphates, polycyclic aromatic hydrocarbons, acetaminophen, alkylating agents and other related compounds.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA, 30602-2352, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA, 30602-2352, USA
| |
Collapse
|
10
|
Colvin KL, Yeager ME. Proteomics of pulmonary hypertension: could personalized profiles lead to personalized medicine? Proteomics Clin Appl 2015; 9:111-20. [PMID: 25408474 DOI: 10.1002/prca.201400157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver, Aurora, CO, USA; Cardiovascular Pulmonary Research, University of Colorado Denver, Aurora, CO, USA; Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
11
|
Ikutomi M, Sahara M, Nakajima T, Minami Y, Morita T, Hirata Y, Komuro I, Nakamura F, Sata M. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation. J Mol Cell Cardiol 2015; 86:121-35. [DOI: 10.1016/j.yjmcc.2015.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 01/29/2023]
|
12
|
Karagoz S, Ilgin S, Atli O, Perk BO, Burukoglu D, Ergun B, Sirmagul B. IsN-acetyl cysteine protective against monocrotaline-induced toxicity? TOXIN REV 2013. [DOI: 10.3109/15569543.2013.809547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Viquez OM, Caito SW, McDonald WH, Friedman DB, Valentine WM. Electrophilic adduction of ubiquitin activating enzyme E1 by N,N-diethyldithiocarbamate inhibits ubiquitin activation and is accompanied by striatal injury in the rat. Chem Res Toxicol 2012; 25:2310-21. [PMID: 22874009 DOI: 10.1021/tx300198h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have shown ubiquitin activating enzyme E1 to be sensitive to adduction through both Michael addition and SN(2) chemistry in vitro. E1 presents a biologically important putative protein target for adduction due to its role in initiating ubiquitin based protein processing and the involvement of impaired ubiquitin protein processing in two types of familial Parkinson's disease. We tested whether E1 is susceptible to xenobiotic-mediated electrophilic adduction in vivo and explored the potential contribution of E1 adduction to neurodegenerative events in an animal model. N,N-Diethyldithiocarbamate (DEDC) was administered to rats using a protocol that produces covalent cysteine modifications in vivo, and brain E1 protein adducts were characterized and mapped using shotgun LC-MS/MS. E1 activity, global and specific protein expression, and protein carbonyls were used to characterize cellular responses and injury in whole brain and dorsal striatal samples. The data demonstrate that DEDC treatment produced S-(ethylaminocarbonyl) adducts on Cys234 and Cys179 residues of E1 and decreased the levels of activated E1 and total ubiquitinated proteins. Proteomic analysis of whole brain samples identified expression changes for proteins involved in myelin structure, antioxidant response, and catechol metabolism, systems often disrupted in neurodegenerative disease. Our studies also delineated localized injury within the striatum as indicated by decreased levels of tyrosine hydroxylase, elevated protein carbonyl content, increased antioxidant enzyme and α-synuclein expression, and enhanced phosphorylation of tau and tyrosine hydroxylase. These data are consistent with E1 having similar susceptibility to adduction in vivo as previously reported in vitro and support further investigation into environmental agent adduction of E1 as a potential contributing factor to neurodegenerative disease. Additionally, this study supports the predictive value of in vitro screens for identifying sensitive protein targets that can be used to guide subsequent in vivo experiments.
Collapse
Affiliation(s)
- Olga M Viquez
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2561, USA
| | | | | | | | | |
Collapse
|
14
|
Polonio IB, Acencio MMP, Pazetti R, Almeida FMD, Canzian M, Silva BSD, Pereira KAB, Souza RD. Comparação de dois modelos experimentais de hipertensão pulmonar. J Bras Pneumol 2012; 38:452-60. [DOI: 10.1590/s1806-37132012000400007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/10/2012] [Indexed: 11/22/2022] Open
Abstract
OBJETIVO: Comparar dois modelos de hipertensão pulmonar (monocrotalina e monocrotalina+pneumonectomia) em relação à gravidade hemodinâmica, estrutura de artérias pulmonares, marcadores inflamatórios (IL-1 e PDGF) e sobrevida em 45 dias. MÉTODOS: Foram utilizados 80 ratos Sprague-Dawley em dois protocolos de estudo: análise estrutural e de sobrevida. Os animais foram divididos em quatro grupos: controle, monocrotalina (M), pneumonectomia (P) e monocrotalina+pneumonectomia (M+P). Para a análise estrutural, 40 animais (10/grupo) foram cateterizados após 28 dias para a medição dos valores hemodinâmicos e sacrificados, obtendo-se tecidos cardíaco e pulmonar. O ventrículo direito (VD) foi dissecado do septo interventricular (SI), e a relação do peso do VD e do peso do ventrículo esquerdo (VE) com o SI foi obtida como índice de hipertrofia de VD. No tecido pulmonar, foram realizadas análises histológicas e dosados IL-1 e PDGF por ELISA. Para o estudo de sobrevida, 40 animais (10/grupo) foram observados por 45 dias. RESULTADOS: Os grupos M e M+P apresentaram hipertensão pulmonar em relação aos demais. Houve um aumento significativo da relação VD/VE+S no grupo M+P em relação aos demais. Não houve diferenças significativas entre os grupos M e M+P quanto à área da camada média das artérias pulmonares, dosagens de IL-1 e PDGF ou sobrevida. CONCLUSÕES: Baseados nos resultados, não podemos afirmar que o modelo de monocrotalina+pneumonectomia é superior ao modelo de monocrotalina.
Collapse
Affiliation(s)
- Igor Bastos Polonio
- Universidade de São Paulo; Irmandade da Santa Casa de Misericórdia de São Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sahara M, Sata M, Morita T, Hirata Y, Nagai R. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension. PLoS One 2012; 7:e33367. [PMID: 22479390 PMCID: PMC3316574 DOI: 10.1371/journal.pone.0033367] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background An antianginal KATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH) have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT)-induced PAH in rats. Materials and Methods Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg−1·day−1) alone; or nicorandil as well as either a KATP channel blocker glibenclamide or a nitric oxide synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (l-NAME), from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP) was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs). Results Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg), whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01). Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS) expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in HUVECs, accompanied with the upregulation of both eNOS and Bcl-2 expression. Conclusions Nicorandil attenuated MCT-induced vascular endothelial damage and PAH through production of eNOS and anti-apoptotic factors, suggesting that nicorandil might have a promising therapeutic potential for PAH.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/administration & dosage
- Antihypertensive Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Caspase 3/metabolism
- Cells, Cultured
- Drug Therapy, Combination
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Familial Primary Pulmonary Hypertension
- Glyburide/administration & dosage
- Glyburide/pharmacology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Injections, Intraperitoneal
- MAP Kinase Signaling System/drug effects
- Male
- Monocrotaline/toxicity
- NG-Nitroarginine Methyl Ester/administration & dosage
- NG-Nitroarginine Methyl Ester/pharmacology
- Nicorandil/administration & dosage
- Nicorandil/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- Makoto Sahara
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Earlier electron microscopic data had shown that a hallmark of the vascular remodeling in pulmonary arterial hypertension (PAH) in man and experimental models includes enlarged vacuolated endothelial and smooth muscle cells with increased endoplasmic reticulum and Golgi stacks in pulmonary arterial lesions. In cell culture and in vivo experiments in the monocrotaline model, we observed disruption of Golgi function and intracellular trafficking with trapping of diverse vesicle tethers, SNAREs and SNAPs in the Golgi membranes of enlarged pulmonary arterial endothelial cells (PAECs) and pulmonary arterial smooth muscle cells (PASMCs). Consequences included the loss of cell surface caveolin-1, hyperactivation of STAT3, mislocalization of eNOS with reduced cell surface/caveolar NO and hypo-S-nitrosylation of trafficking-relevant proteins. Similar Golgi tether, SNARE and SNAP dysfunctions were also observed in hypoxic PAECs in culture and in PAECs subjected to NO scavenging. Strikingly, a hypo-NO state promoted PAEC mitosis and cell proliferation. Golgi dysfunction was also observed in pulmonary vascular cells in idiopathic PAH (IPAH) in terms of a marked cytoplasmic dispersal and increased cellular content of the Golgi tethers, giantin and p115, in cells in the proliferative, obliterative and plexiform lesions in IPAH. The question of whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH was approached by genetic means using HIV-nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the non-chimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and increase in giantin and p115. Specifically, it was the HIV-nef–positive cells that showed increased giantin. Elucidating how each of these changes fits into the multifactorial context of hypoxia, reduced NO bioavailability, mutations in BMPR II, modulation of disease penetrance and gender effects in disease occurrence in the pathogenesis of PAH is part of the road ahead.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | | |
Collapse
|
17
|
Ilgin S, Burukoglu D, Atli O, Sirmagul B. Effects of Everolimus in Combination with Sildenafil in Monocrotaline-induced Pulmonary Hypertension in Rats. Cardiovasc Toxicol 2011; 12:46-55. [DOI: 10.1007/s12012-011-9137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wideman RF, Hamal KR. Idiopathic pulmonary arterial hypertension: an avian model for plexogenic arteriopathy and serotonergic vasoconstriction. J Pharmacol Toxicol Methods 2011; 63:283-95. [PMID: 21277983 DOI: 10.1016/j.vascn.2011.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 01/15/2023]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a disease of unknown cause that is characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance attributable to vasoconstriction and vascular remodeling of small pulmonary arteries. Vascular remodeling includes hypertrophy and hyperplasia of smooth muscle (medial hypertrophy) accompanied in up to 80% of the cases by the formation of occlusive plexiform lesions (plexogenic arteriopathy). Patients tend to be unresponsive to vasodilator therapy and have a poor prognosis for survival when plexogenic arteriopathy progressively obstructs their pulmonary arteries. Research is needed to understand and treat plexogenic arteriopathy, but advances have been hindered by the absence of spontaneously developing lesions in existing laboratory animal models. Young domestic fowl bred for meat production (broiler chickens, broilers) spontaneously develop IPAH accompanied by semi-occlusive endothelial proliferation that progresses into fully developed plexiform lesions. Plexiform lesions develop in both female and male broilers, and lesion incidences (lung sections with lesions/lung sections examined) averaged approximately 40% in 8 to 52 week old birds. Plexiform lesions formed distal to branch points in muscular interparabronchial pulmonary arteries, and were associated with perivascular mononuclear cell infiltrates. Serotonin (5-hydroxytryptamine, 5-HT) is a potent vasoconstrictor and mitogen known to stimulate vascular endothelial and smooth muscle cell proliferation. Serotonin has been directly linked to the pathogenesis of IPAH in humans, including IPAH linked to serotonergic anorexigens that trigger the formation of plexiform lesions indistinguishable from those observed in primary IPAH triggered by other causes. Serotonin also plays a major role in the susceptibility of broilers to IPAH. This avian model of spontaneous IPAH constitutes a new animal model for biomedical research focused on the pathogenesis of IPAH and plexogenic arteriopathy.
Collapse
Affiliation(s)
- Robert F Wideman
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
19
|
Nakayama Wong LS, Lamé MW, Jones AD, Wilson DW. Differential cellular responses to protein adducts of naphthoquinone and monocrotaline pyrrole. Chem Res Toxicol 2011; 23:1504-13. [PMID: 20695460 DOI: 10.1021/tx1002436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein-xenobiotic adducts are byproducts of xenobiotic metabolism. While there is a correlation between protein adduction and target organ toxicity, a cause and effect relationship is not often clear. Naphthoquinone (NQ) and monocrotaline pyrrole (MCTP) are two pneumotoxic electrophiles that form covalent adducts with a similar select group of proteins rich in reactive thiols. In this study, we treated human pulmonary artery endothelial cells (HPAEC) with NQ, MCTP, or preformed NQ or MCTP adducts to the protein galectin-1 (gal-1) and examined indicators of reactive oxygen species (ROS) oxidative injury, markers of apoptosis (caspase-3 and annexin V), and gene responses of cellular stress. ROS production was assayed fluorescently using CM-H(2)DCFDA. NQ adducts to gal-1 (NQ-gal) produced 183% more intracellular ROS than gal-1 alone (p < 0.0001). Caspase-3 activity and annexin V staining of phosphatidylserine were used to assess apoptotic activity in treated cells. HPAEC exposed to MCTP-gal had increases in both caspase-3 activation and membrane translocation of annexin V relative to gal-1 alone (p < 0.0001). Direct application of NQ produced significantly more ROS and induced significant caspase-3 activation, whereas MCTP did not. Human bronchial epithelial cells were also exposed to MCTP-gal and found to have significant increases in both caspase-3 activation and annexin V staining in comparison to that of gal-1 (p < 0.05). Western blot analysis showed that both NQ and MCTP significantly induced the Nrf2 mediated stress response pathway despite differences in ROS generation. ER stress was not induced by either adducts or parent compounds as seen by quantitative RT-PCR, but HOX-1 expression was significantly induced by NQ-gal and MCTP alone. Electrophile adduction to gal-1 produces different cytotoxic effects specific to each reactive intermediate.
Collapse
Affiliation(s)
- Lynn S Nakayama Wong
- Departments of Veterinary Medicine, Pathology, Microbiology, and Immunology, and Molecular Biosciences, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
20
|
Lee J, Reich R, Xu F, Sehgal PB. Golgi, trafficking, and mitosis dysfunctions in pulmonary arterial endothelial cells exposed to monocrotaline pyrrole and NO scavenging. Am J Physiol Lung Cell Mol Physiol 2009; 297:L715-28. [PMID: 19648287 DOI: 10.1152/ajplung.00086.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although the administration of monocrotaline (MCT) into experimental animals is in widespread use today in investigations of pulmonary arterial hypertension (PAH), the underlying cellular and subcellular mechanisms that culminate in vascular remodeling are incompletely understood. Bovine pulmonary arterial endothelial cells (PAECs) in culture exposed to monocrotaline pyrrole (MCTP) develop "megalocytosis" 18-24 h later characterized by enlarged hyperploid cells with enlarged Golgi, mislocalization of endothelial nitric oxide synthase away from the plasma membrane, decreased cell-surface/caveolar nitric oxide (NO), and hypo-S-nitrosylation of caveolin-1, clathrin heavy chain, and N-ethylmaleimide-sensitive factor. We investigated whether MCTP did in fact affect functional intracellular trafficking. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) and the NO donor diethylamine NONOate were used for comparison. Both MCTP and c-PTIO produced distinctive four- to fivefold enlarged PAECs within 24-48 h with markedly enlarged/dispersed Golgi, as visualized by immunostaining for the Golgi tethers/matrix proteins giantin, GM130, and p115. Live-cell uptake of the Golgi marker C(5) ceramide revealed a compact juxtanuclear Golgi in untreated PAECs, brightly labeled enlarged circumnuclear Golgi after MCTP, but minimally labeled Golgi elements after c-PTIO. These Golgi changes were reduced by NONOate. After an initial inhibition during the first day, both MCTP and c-PTIO markedly enhanced anterograde secretion of soluble cargo (exogenous vector-expressed recombinant horseradish peroxidase) over the next 4 days. Live-cell internalization assays using fluorescently tagged ligands showed that both MCTP and c-PTIO inhibited the retrograde uptake of acetylated low-density lipoprotein, transferrin, and cholera toxin B. Moreover, MCTP, and to a variable extent c-PTIO, reduced the cell-surface density of all receptors assayed (LDLR, TfnR, BMPR, Tie-2, and PECAM-1/CD31). In an important distinction, c-PTIO enhanced mitosis in PAECs but MCTP inhibited mitosis, even that due to c-PTIO, despite markedly exaggerated Golgi dispersal. Taken together, these data define a broad-spectrum Golgi and subcellular trafficking dysfunction syndrome in endothelial cells exposed to MCTP or NO scavenging.
Collapse
Affiliation(s)
- Jason Lee
- Dept. of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
21
|
Cribb AE, Peyrou M, Muruganandan S, Schneider L. The Endoplasmic Reticulum in Xenobiotic Toxicity. Drug Metab Rev 2008; 37:405-42. [PMID: 16257829 DOI: 10.1080/03602530500205135] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) is involved in an array of cellular functions that play important roles in xenobiotic toxicity. The ER contains the majority of cytochrome P450 enzymes involved in xenobiotic metabolism, as well as a number of conjugating enzymes. In addition to its role in drug bioactivation and detoxification, the ER can be a target for damage by reactive intermediates leading to cell death or immune-mediated toxicity. The ER contains a set of luminal proteins referred to as ER stress proteins (including GRP78, GRP94, protein disulfide isomerase, and calreticulin). These proteins help regulate protein processing and folding of membrane and secretory proteins in the ER, calcium homeostasis, and ER-associated apoptotic pathways. They are induced in response to ER stress. This review discusses the importance of the ER in molecular events leading to cell death following xenobiotic exposure. Data showing that the ER is important in both renal and hepatic toxicity will be discussed.
Collapse
Affiliation(s)
- Alastair E Cribb
- Laboratory of Comparative Pharmacogenetics, Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | | | | | | |
Collapse
|
22
|
Moore RE, Knottenbelt D, Matthews JB, Beynon RJ, Whitfield PD. Biomarkers for ragwort poisoning in horses: identification of protein targets. BMC Vet Res 2008; 4:30. [PMID: 18691403 PMCID: PMC2527303 DOI: 10.1186/1746-6148-4-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 08/08/2008] [Indexed: 11/10/2022] Open
Abstract
Background Ingestion of the poisonous weed ragwort (Senecio jacobea) by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.
Collapse
Affiliation(s)
- Rowan E Moore
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool, L69 7ZJ, UK.
| | | | | | | | | |
Collapse
|
23
|
Abstract
The peroxisome proliferator-activated receptor (PPAR) gamma is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Thiazolidinediones, pharmacological ligands for PPARgamma, are currently used in the management of type 2 diabetes. Peroxisome proliferator-activated receptor gamma is expressed in the lung and pulmonary vasculature, and its expression is reduced in the vascular lesions of patients with pulmonary hypertension. Furthermore, thiazolidinedione PPARgamma ligands reduced pulmonary hypertension and vascular remodeling in several experimental models of pulmonary hypertension. This report reviews current evidence that PPARgamma may represent a novel therapeutic target in pulmonary hypertension and examines studies that have begun to elucidate mechanisms that underlie these potential therapeutic effects.
Collapse
Affiliation(s)
- C Michael Hart
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
24
|
Ramos MF, Lamé MW, Segall HJ, Wilson DW. Smad Signaling in the Rat Model of Monocrotaline Pulmonary Hypertension. Toxicol Pathol 2008; 36:311-20. [DOI: 10.1177/0192623307311402] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the bone morphogenetic protein receptor type II (BMPrII) gene have been implicated in the development of familial pulmonary artery hypertension (PAH). The function of BMP signal transduction within the pulmonary vasculature and the role BMPrII mutations have in the development of PAH are incompletely understood. We used the monocrotaline (MCT) model of PAH to examine alterations in Smad signal transduction pathways in vivo. Lungs harvested from Sprague-Dawley rats treated with a single 60-mg/kg intraperitoneal (IP) injection of MCT were compared to saline-treated controls 2 weeks following treatment. Smad 4 was localized by immunohistochemistry to endothelial nuclei of the intra-acinar vessels undergoing remodeling. Smad 4, common to both BMP and transforming growth factor β (TGFβ) signaling, and BMP-specific Smad 1 were significantly decreased in western blot from whole lungs of treated animals, while no change was found for TGFβ-specific Smad 2. MCT-treated rats also had increased expression of phosphorylated Smad 1 (P-Smad 1) but not phosphorylated Smad 2 (P-Smad 2). There was a decrease in the expression of the full BMPrII protein but not its short form variant in MCT-treated rat lungs. The type I receptor Alk1 had increased expression. Collectively, our data indicate that vascular remodeling in the MCT model is associated with alterations in BMP receptors and persistent endothelial Smad 1 signaling.
Collapse
Affiliation(s)
| | - Michael W. Lamé
- Molecular BioSciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Henry J. Segall
- Molecular BioSciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
25
|
Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol 2007; 21:117-28. [PMID: 18052106 DOI: 10.1021/tx700235t] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been 60 years since the Millers first described the covalent binding of carcinogens to tissue proteins. Protein covalent binding was gradually overshadowed by the emergence of DNA adduct formation as the dominant paradigm in chemical carcinogenesis but re-emerged in the early 1970s as a critical mechanism of drug and chemical toxicity. Technology limitations hampered the characterization of protein adducts until the emergence of mass spectrometry-based proteomics in the late 1990s. The time since then has seen rapid progress in the characterization of the protein targets of electrophiles and the consequences of protein damage. Recent integration of novel affinity chemistries for electrophile probes, shotgun proteomics methods, and systems modeling tools has led to the identification of hundreds of protein targets of electrophiles in mammalian systems. The technology now exists to map the targets of damage to critical components of signaling pathways and metabolic networks and to understand mechanisms of damage at a systems level. The implementation of sensitive, specific analyses for protein adducts from both xenobiotic-derived and endogenous electrophiles offers a means to link protein damage to clinically relevant health effects of both chemical exposures and disease processes.
Collapse
Affiliation(s)
- Daniel C Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine,, Nashville, Tennessee 37232, USA.
| |
Collapse
|
26
|
Laudi S, Steudel W, Jonscher K, Schöning W, Schniedewind B, Kaisers U, Christians U, Trump S. Comparison of lung proteome profiles in two rodent models of pulmonary arterial hypertension. Proteomics 2007; 7:2469-78. [PMID: 17623304 DOI: 10.1002/pmic.200600848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the lung proteome changes in two widely used models of pulmonary arterial hypertension (PAH): monocrotaline (MCT) injection and chronic hypoxia (CH); untreated rats were used as controls (n = 6/group). After 28 days, invasive right ventricular systolic pressure (RVSP) was measured. Lungs were immunostained for alpha-smooth muscle actin (alphaSMA). 2-DE (n = 4/group) followed by nano-LC-MS/MS was applied for protein identification. Western blotting was used additionally if possible. RVSP was significantly increased in MCT- and CH-rats (MCT 62.5 +/- 4.4 mmHg, CH 62.2 +/- 4.1 mmHg, control 25.0 +/- 1.7 mmHg, p<0.001). This was associated with an increase of alphaSMA positive vessels. In both groups, there was a significantly increased expression of proteins associated with the contractile apparatus (diphosphoHsp27 (p<0.001), Septin2 (p<0.001), F-actin capping protein (p<0.01), and tropomyosin beta (p<0.02)). In CH, proteins of the nitric oxide (Hsc70; p = 0.002), carbon monoxide (biliverdin reductase; p = 0.005), and vascular endothelial growth factor (VEGF) pathway (annexin 3; p<0.001) were significantly increased. In MCT, proteins involved in serotonin synthesis (14-3-3; p = 0.02), the enhanced unfolded protein response (ERp57; p = 0.02), and intracellular chloride channels (CLIC 1; p = 0.002) were significantly elevated. Therefore, MCT- and CH-induced vasoconstriction and remodeling seemed to be mediated via different signaling pathways. These differences should be considered in future studies using either PAH model.
Collapse
Affiliation(s)
- Sven Laudi
- University of Leipzig Medical Faculty, Department of Anesthesiology and Intensive Care Medicine, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thijssen VLJL, Poirier F, Baum LG, Griffioen AW. Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 2007; 110:2819-27. [PMID: 17591944 DOI: 10.1182/blood-2007-03-077792] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Galectins are emerging as a family of proteins that play an important role in several steps of tumorigenesis. Evidence is accumulating that galectins are expressed by the tumor endothelium, where they contribute to different steps of tumor progression such as immune escape and metastasis. Recent studies have identified an important role for galectins in tumor angiogenesis. Moreover, it has been shown that galectins in the endothelium can be targeted for therapeutic applications. This opens a window of opportunity for the development of tumor-type independent treatment strategies. This review focuses on the expression of galectins in the tumor endothelium, their contribution to tumor progression, and their application in tumor-type independent cancer therapy.
Collapse
Affiliation(s)
- Victor L J L Thijssen
- Angiogenesis Laboratory, Research Institute for Growth and Development, Department of Pathology, University Maastricht and Academic Hospital Maastricht, the Netherlands.
| | | | | | | |
Collapse
|
28
|
Ramos M, Lamé MW, Segall HJ, Wilson DW. Monocrotaline pyrrole induces Smad nuclear accumulation and altered signaling expression in human pulmonary arterial endothelial cells. Vascul Pharmacol 2007; 46:439-48. [PMID: 17336165 PMCID: PMC2570208 DOI: 10.1016/j.vph.2007.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 01/03/2007] [Accepted: 01/22/2007] [Indexed: 12/31/2022]
Abstract
The mechanistic relationship between the widely used monocrotaline model of primary pulmonary hypertension and altered TGFbeta family signaling due to genetic defects in the Bone Morphogenetic Protein type II receptor in affected humans has not been investigated. In this study we use fluorescent microscopy to demonstrate nuclear translocation of Smad 4 in human pulmonary arterial endothelial cell (HPAEC) cultures treated with monocrotaline pyrrole (MCTP), Bone Morphogenetic Protein (BMP) and TGFbeta. While MCTP induced transient nuclear accumulation of phosphorylated Smad 1 (P-Smad 1) and phosphorylated Smad 2 (P-Smad 2), only expression of P-Smad 1 was significantly altered in western blots. P-Smad 1 expression significantly increased 30 min following treatment with MCTP correlating with P-Smad 1 and Smad 4 nuclear translocation. Although a modest, but significant decrease in P-Smad 1 expression occurred 1 h after treatment, expression was significantly increased at 72 h. Evaluation of components of the signal and response pathway at 72 h showed decreased expression of the BMP type II receptor (BMPrII), no change in TGFbeta Activin Receptor-like Kinase 1 (Alk 1), no change in Smad 4 but increase in the inhibitory Smad 6, decrease in the alternate BMP signaling pathway p38(MAPK) but no change in the psmad1 response element ID 1. Our results suggest transient activation of Smad signaling pathways in initial MCTP endothelial cell toxicity, and a persistent dysregulation of BMP signaling. Electron microscopy of cell membrane caveoli revealed a dramatic decrease in these structures after 72 h. Loss of these structural elements, noted for their sequestration and inhibition of receptor activity, may contribute to prolonged alterations in BMP signaling.
Collapse
Affiliation(s)
- M Ramos
- Department of Veterinary Medicine, Pathology, Immunology, Microbiology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
29
|
Shin NY, Liu Q, Stamer SL, Liebler DC. Protein targets of reactive electrophiles in human liver microsomes. Chem Res Toxicol 2007; 20:859-67. [PMID: 17480101 PMCID: PMC2556149 DOI: 10.1021/tx700031r] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Liver microsomes are widely used to study xenobiotic metabolism in vitro, and covalent binding to microsomal proteins serves as a surrogate marker for toxicity mediated by reactive metabolites. We have applied liquid chromatography-tandem mass spectrometry (LC-MS-MS) to identify protein targets of the biotin-tagged model electrophiles 1-biotinamido-4-(4'-[maleimidoethylcyclohexane]-carboxamido)butane (BMCC) and N-iodoacetyl-N-biotinylhexylenediamine (IAB) in human liver microsomes. The biotin-tagged peptides resulting from in-gel tryptic digestion were enriched by biotin-avidin chromatography and LC-MS-MS was used to identify 376 microsomal cysteine thiol targets of BMCC and IAB in 263 proteins. Protein adduction was selective and reproducible, and only 90 specific cysteine sites in 70 proteins (approximately 25% of the total) were adducted by both electrophiles. Differences in adduction selectivity correlated with different biological effects of the compounds, as IAB- but not BMCC-induced ER stress in HEK293 cells. Targeted LC-MS-MS analysis of microsomal glutathione-S-transferase cysteine 50, a target of both IAB and BMCC, detected time-dependent adduction by the reactive acetaminophen metabolite N-acetyl-p-benzoquinoneimine during microsomal incubations. The results indicate that electrophiles selectively adduct microsomal proteins, but display differing target selectivities that correlate with differences in toxicity. Analysis of selected microsomal protein adduction reactions thus could provide a more specific indication of potential toxicity than bulk covalent binding of radiolabeled compounds.
Collapse
Affiliation(s)
| | | | | | - Daniel C. Liebler
- Author to whom correspondence should be addressed at: Department of Biochemistry, Vanderbilt University School of Medicine, Rm. U1213C Medical Research Building III, 465 21 Avenue South, Nashville, TN 37232-8575, Phone 615 322-3063, FAX 615 343-8372,
| |
Collapse
|
30
|
Sehgal PB, Mukhopadhyay S, Xu F, Patel K, Shah M. Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1526-42. [PMID: 17337506 DOI: 10.1152/ajplung.00463.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monocrotaline (MCT)-induced pulmonary hypertension (PH) in the rat is a widely used experimental model. We have previously shown that MCT pyrrole (MCTP) produces loss of caveolin-1 (cav-1) and endothelial nitric oxide synthase from plasma membrane raft microdomains in pulmonary arterial endothelial cells (PAEC) with the trapping of these proteins in the Golgi organelle (the Golgi blockade hypothesis). In the present study, we investigated the mechanisms underlying this intracellular trafficking block in experiments in cell culture and in the MCT-treated rat. In cell culture, PAEC showed trapping of cav-1 in Golgi membranes as early as 6 h after exposure to MCTP. Phenotypic megalocytosis and a reduction in anterograde trafficking (assayed in terms of the secretion of horseradish peroxidase derived from exogenously transfected expression constructs) were evident within 12 h after MCTP. Cell fractionation and immunofluorescence techniques revealed the marked accumulation of diverse Golgi tethers, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), and soluble NSF attachment proteins (SNAPs), which mediate membrane fusion during vesicular trafficking (GM130, p115, giantin, golgin 84, clathrin heavy chain, syntaxin-4, -6, Vti1a, Vti1b, GS15, GS27, GS28, SNAP23, and alpha-SNAP) in the enlarged/circumnuclear Golgi in MCTP-treated PAEC and A549 lung epithelial cells. Moreover, NSF, an ATPase required for the "disassembly" of SNARE complexes subsequent to membrane fusion, was increasingly sequestered in non-Golgi membranes. Immunofluorescence studies of lung tissue from MCT-treated rats confirmed enlargement of perinuclear Golgi elements in lung arterial endothelial and parenchymal cells as early as 4 days after MCT. Thus MCT-induced PH represents a disease state characterized by dysfunction of Golgi tethers, SNAREs, and SNAPs and of intracellular vesicular trafficking.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Depatment of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
31
|
Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R. Diverse Contribution of Bone Marrow–Derived Cells to Vascular Remodeling Associated With Pulmonary Arterial Hypertension and Arterial Neointimal Formation. Circulation 2007; 115:509-17. [PMID: 17242277 DOI: 10.1161/circulationaha.106.655837] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Recent evidence suggests that bone marrow (BM)–derived cells may differentiate into vascular cells that participate in arterial repair and/or lesion formation. However, it remains uncertain whether BM-derived cells also can participate in vascular remodeling associated with pulmonary arterial hypertension.
Methods and Results—
The BM of Sprague-Dawley rats was reconstituted with that of green fluorescent protein–transgenic rats. The BM-chimeric rats were injected intraperitoneally with 60 mg/kg monocrotaline after unilateral subpneumonectomy, and they concurrently underwent wire-mediated endovascular injury in femoral artery. After 28 days, they had elevated right ventricular systolic pressure (58.8±5.4 versus 20.4±2.4 mm Hg in sham-control;
P
<0.01). The pulmonary arterioles were markedly thickened, with an infiltration of green fluorescent protein–positive macrophages into the perivascular areas. The endothelium of pulmonary arterioles contained only a few green fluorescent protein–positive cells, and green fluorescent protein–positive cells were seldom detected as smooth muscle cells in the lesions of thickened pulmonary arterioles. In contrast, BM-derived smooth muscle–like cells could be readily detected in the thickened neointima and media of the wire-injured femoral artery. Moreover, intravenous injection of 1×10
8
BM cells from young rats had no beneficial effects on pulmonary hypertension, pulmonary arterial remodeling, or survival in the aged rats treated with monocrotaline plus unilateral subpneumonectomy. No injected BM cell was identified as an endothelial cell or a smooth muscle cell.
Conclusions—
These results suggest that BM-derived cells can participate in arterial neointimal formation after mechanical injury, whereas they do not contribute substantially to pulmonary arterial remodeling associated with monocrotaline-induced pulmonary arterial hypertension in the pneumonectomized rats.
Collapse
Affiliation(s)
- Makoto Sahara
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Asif AR, Armstrong VW, Voland A, Wieland E, Oellerich M, Shipkova M. Proteins identified as targets of the acyl glucuronide metabolite of mycophenolic acid in kidney tissue from mycophenolate mofetil treated rats. Biochimie 2006; 89:393-402. [PMID: 17069946 DOI: 10.1016/j.biochi.2006.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 09/25/2006] [Indexed: 11/26/2022]
Abstract
Covalent binding of the acyl glucuronide (AcMPAG) metabolite of the immunosuppressant mycophenolic acid (MPA) to proteins is considered a possible initiating event for organ toxicity. Since the kidney is involved in the formation and excretion of AcMPAG, it can be hypothesized that this tissue may be exposed to relatively high concentrations of this metabolite and would, therefore, be a particularly suitable organ to investigate AcMPAG protein targets. In the present study we identified potential AcMPAG target proteins in kidney tissues from Wistar rats treated with mycophenolate mofetil (40 mg/kg/day over 21 days). Proteins were separated by 2-DE and covalent protein adducts were detected by Western blotting with an antibody specific for MPA/AcMPAG. The corresponding coomassie blue stained proteins from parallel gels were subjected to in-gel tryptic digestion and peptides were characterized on a Q-TOF Ultima Global. The protein targets were further verified by immunoprecipitation with anti-MPA/AcMPAG antibody to purify the modified proteins followed by 1-DE and MS analysis. Database searches revealed several AcMPAG target proteins that could be related to ultrastructural abnormalities, metabolic effects, and altered oxidative stress/detoxification responses. Predominately cytosolic proteins such as selenium binding protein, protein disulfide isomerase, aldehyde dehydrogenase, triosephosphate isomerase, and kidney aminoacylase were involved in adduct formation. Two cytoskeletal proteins tropomyosin 1 and 4 as well as the antioxidant proteins peroxiredoxin 3 and 6 were also targets of AcMPAG. Functional consequences from these protein modifications remain to be demonstrated.
Collapse
Affiliation(s)
- Abdul R Asif
- Abteilung Klinische Chemie, Georg-August-Universität, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Mukhopadhyay S, Sehgal PB. Discordant regulatory changes in monocrotaline-induced megalocytosis of lung arterial endothelial and alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1216-26. [PMID: 16414977 DOI: 10.1152/ajplung.00535.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monocrotaline (MCT) causes pulmonary hypertension in the rat by a mechanism characterized by megalocytosis (enlarged cells with enlarged endoplasmic reticulum and Golgi and a cell cycle arrest) of pulmonary arterial endothelial (PAEC), arterial smooth muscle, and type II alveolar epithelial cells. In cell culture, although megalocytosis is associated with a block in entry into mitosis in both lung endothelial and epithelial cells, DNA synthesis is stimulated in endothelial but inhibited in epithelial cells. The molecular mechanism(s) for this dichotomy are unclear. While MCTP-treated PAEC and lung epithelial (A549) cells both showed an increase in the “promitogenic” transcription factor STAT3 levels and in the IL-6-induced nuclear pool of PY-STAT3, this was transcriptionally inactive in A549 but not in PAEC cells. This lack of transcriptional activity of STAT3 in A549 cells correlated with the cytoplasmic sequestration of the STAT3 coactivators CBP/p300 and SRC1/NcoA in A549 cells but not in PAEC. Both cell types displayed a Golgi trafficking block, loss of caveolin-1 rafts, and increased nuclear Ire1α, but an incomplete unfolded protein response (UPR) with little change in levels of UPR-induced chaperones including GRP78/BiP. There were discordant alterations in cell cycle regulatory proteins in the two cell types such as increase in levels of both cyclin D1 and p21 simultaneously, but with a decrease in cdc2/cdk1, a kinase required for entry into mitosis. While both cell types showed increased cytoplasmic geminin, the DNA synthesis-initiating protein Cdt1 was predominantly nuclear in PAEC but remained cytoplasmic in A549 cells, consistent with the stimulation of DNA synthesis in the former but an inhibition in the latter cell type. Thus differences in cell type-specific alterations in subcellular trafficking of critical regulatory molecules (such as CBP/p300, SRC1/NcoA, Cdt1) likely account for the dichotomy of the effects of MCTP on DNA synthesis in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
34
|
Lin CY, Boland BC, Lee YJ, Salemi MR, Morin D, Miller LA, Plopper CG, Buckpitt AR. Identification of proteins adducted by reactive metabolites of naphthalene and 1-nitronaphthalene in dissected airways of rhesus macaques. Proteomics 2006; 6:972-82. [PMID: 16453347 DOI: 10.1002/pmic.200500170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naphthalene and 1-nitronaphthalene are ambient air pollutants, which undergo P450-dependent bioactivation in the lung. Reactive metabolites of naphthalene and 1-nitronaphthalene covalently bind to proteins, and the formation of covalent adducts correlates with airway epithelial cell injury in rodent models. These studies were designed to identify protein adducts generated from these reactive metabolites within distal respiratory airways. Distal bronchioles and parenchyma from rhesus monkeys were incubated with [(14)C]naphthalene or [(14)C]1-nitronaphthalene. Proteins were separated by 2-DE, blotted to PVDF membranes, and adducted proteins imaged by storage phosphor analysis. MS of in-gel tryptic digests identified numerous adducted proteins including: eight cytoskeletal proteins, two chaperone proteins, seven metabolic enzymes, one redox protein, two proteins involved in ion balance and cell signaling, and two extracellular proteins. While many proteins are adducted by both naphthalene and 1-nitronaphthalene, some are unique to the individual toxicant and airway subcompartment. Although the role which adduction of these proteins plays in cytotoxicity was not evaluated, these studies provide candidate proteins for future work designed to determine the importance of protein adducts in the mechanisms of toxicity and for developing biomarkers useful in determining the relevance of findings in animal models to exposed human populations.
Collapse
Affiliation(s)
- Ching Yu Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lamé MW, Jones AD, Wilson DW, Segall HJ. Monocrotaline pyrrole targets proteins with and without cysteine residues in the cytosol and membranes of human pulmonary artery endothelial cells. Proteomics 2006; 5:4398-413. [PMID: 16222722 DOI: 10.1002/pmic.200402022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A single injection of monocrotaline produces a pulmonary insult in rats with a phenotype similar to human primary pulmonary hypertension. Although extensively used as a model, the mechanism(s) by which this chemical insult mimics a condition with genetic and environmental links remains an enigma, although formation of protein adducts has been implicated. Monocrotaline (MCT) is non-toxic and must undergo hepatic dehydrogenation to the soft electrophile monocrotaline pyrrole as prerequisite to damaging endothelial cells lining arterioles at remote pulmonary sites. In this report we extend our earlier investigation (J. Biol. Chem. 2000, 275, 29091-29099) by examining protein adducts to lower abundance adducts, a pI range not covered before, and subcellular localization of adduct-forming proteins associated with plasma membranes. Human pulmonary artery endothelial cells were exposed to [(14)C]MCT pyrrole (MCTP) and protein targets were identified using 2-DE with IPG 4-11. Adducted proteins were identified by pI, apparent molecular weight, and PMF using MALDI-TOF MS. Results of this study show that the majority of adducts form on proteins that contain reactive thiols in a CXXC motif, such as protein disulfide isomerase A(3) (ERp57), protein disulfide isomerase (PDI), and endothelial PDI. These same proteins were the major adduct-forming proteins associated with the plasma membrane. Other proteins found to be targets were thioredoxin, galectin-1, reticulocalbin 1 and 3, cytoskeletal tropomyosin, mitochondrial ATP synthase beta-chain, annexin A2 and cofilin-1. For the first time, MCTP adducts were observed on proteins not known to contain cysteine residues. However, known reactive proteins including nucleophosmin did not form detectable adducts, potentially indicating that MCTP did not reach the interior of nucleus to the same extent as other cellular sites. These findings suggest that molecular events underlying MCTP toxicity are initiated at the plasma membrane or readily accessible subcellular regions including the cytosol and membranes of the endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Michael W Lamé
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Idiosyncratic drug induced liver injury (DILI) remains poorly understood. It is assumed that the affected individuals possess a rare combination of genetic and non genetic factors that, if identified, would greatly improve understanding of the underlying mechanisms. This single topic conference brought together basic scientists, translational investigators, and clinicians with an interest in DILI. The goal was to define high priority areas of investigation that will soon be made possible by The Drug-Induced Liver Injury Network (DILIN). Since 2004 DILIN has been collecting clinical data, genomic DNA and some tissues from patients who have experienced bone fide DILI. The presentations spanned many different areas of DILI, and included novel data concerning mechanisms of hepatotoxicity, new "omics" approaches, and the challenges of improving causation assessment.
Collapse
|
37
|
Mukhopadhyay S, Shah M, Patel K, Sehgal PB. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response. Toxicol Appl Pharmacol 2006; 211:209-20. [PMID: 16000202 DOI: 10.1016/j.taap.2005.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/27/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a "megalocytosis" phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the "Golgi blockade" hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and alpha-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1alpha and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
38
|
Isbell MA, Morin D, Boland B, Buckpitt A, Salemi M, Presley J. Identification of proteins adducted by reactive naphthalene metabolitesin vitro. Proteomics 2005; 5:4197-204. [PMID: 16206326 DOI: 10.1002/pmic.200401278] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic activation of inert chemicals to electrophilic intermediates has been correlated with the incidence and severity of cytotoxicity. The current studies have identified several proteins adducted by reactive metabolites of the lung toxicant, naphthalene. Proteins isolated from microsomal incubations of (14)C-naphthalene were separated by 2-DE, proteins were blotted to PVDF membranes and radioactive proteins were localized by storage phosphor analysis. Adducted proteins were isolated from complimentary gels and identified by peptide mass mapping. A total of 18 adducted proteins were identified including: protein disulfide isomerase precursor, ER-60 protease, alpha actin, mouse urinary proteins, and cytochrome b5 reductase. In supernatant fractions, protein disulfide isomerase, heat shock protein 70, and alpha-actin were key proteins to which reactive naphthalene metabolites were bound. All of the proteins adducted, with the exception of cytochrome b5 reductase were sulfhydryl rich. Although several of the proteins found to be adducted in these studies have also been shown to be adducted by other electrophiles, several others have not been reported as common targets of reactive metabolites. These studies provide a basis for both in situ and in vivo work designed to follow the fate and formation of reactive metabolite protein adducts.
Collapse
Affiliation(s)
- Margaret A Isbell
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Hongo M, Mawatari E, Sakai A, Ruan Z, Koizumi T, Terasawa F, Yazaki Y, Kinoshita O, Ikeda U, Shibamoto T. Effects of Nicorandil on Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats. J Cardiovasc Pharmacol 2005; 46:452-8. [PMID: 16160596 DOI: 10.1097/01.fjc.0000176728.74690.09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated whether nicorandil might prevent and reverse monocrotaline (MCT)-induced pulmonary arterial hypertension. Rats were injected with 50 mg/kg of MCT subcutaneously and randomized to either 7.5 mg/kg/d of nicorandil in drinking water or placebo for 3 weeks. Animals that were treated with MCT and survived for 3 weeks were assigned to either nicorandil or placebo. Nicorandil markedly attenuated pulmonary arterial hypertension with severe structural remodeling of the pulmonary vessels. The survival rate at 3 weeks after treatment was significantly increased in the nicorandil group compared with the placebo group (73% versus 39%, P<0.05). In the placebo group, endothelial nitric oxide synthase (eNOS) protein was significantly decreased, the numbers of the CD45-positive cells and those of the proliferating cell nuclear antigen-positive cells were increased in the lung tissue, and P-selectin was intensely expressed on the endothelium of the pulmonary arteries. These features were prevented by nicorandil. Late treatment with nicorandil did not palliate established pulmonary arterial hypertension nor improved survival. Thus, nicorandil inhibited development of MCT-induced pulmonary arterial hypertension but failed to reverse it. These effects were associated with marked up-regulation of diminished lung eNOS protein along with improvement of pulmonary vascular endothelial activation and anti-inflammatory and anti-proliferative effects in the lung tissue.
Collapse
Affiliation(s)
- Minoru Hongo
- Department of Cardiovascular Medicine, Shinshu University School of Health Sciences, Matsumoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The early and high-throughput application of assays for non-genetic toxicity is of great interest to the pharmaceutical industry, although few systems have been validated as being of good predictive value. New technologies could enable toxicity to be studied in the context of systems biology. An important factor to be considered is the metabolism of drugs to reactive intermediates. Chemical reactions of these with cell and tissue nucleophiles are relatively well understood, but predicting how biological modifications will affect signalling and regulatory networks remains a challenge. Some of these pathways could be useful as sentinels for toxicity. This article will cover some examples of drug toxicity and the prospects for future technology development.
Collapse
Affiliation(s)
- Daniel C Liebler
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 23rd and Pierce Avenues, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
41
|
Buermans HPJ, Redout EM, Schiel AE, Musters RJP, Zuidwijk M, Eijk PP, van Hardeveld C, Kasanmoentalib S, Visser FC, Ylstra B, Simonides WS. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 2005; 21:314-23. [PMID: 15728335 DOI: 10.1152/physiolgenomics.00185.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocardial right ventricular (RV) hypertrophy due to pulmonary hypertension is aimed at normalizing ventricular wall stress. Depending on the degree of pressure overload, RV hypertrophy may progress to a state of impaired contractile function and heart failure, but this cannot be discerned during the early stages of ventricular remodeling. We tested whether critical differences in gene expression profiles exist between ventricles before the ultimate development of either a compensated or decompensated hypertrophic phenotype. Both phenotypes were selectively induced in Wistar rats by a single subcutaneous injection of either a low or a high dose of the pyrrolizidine alkaloid monocrotaline (MCT). Spotted oligonucleotide microarrays were used to investigate pressure-dependent cardiac gene expression profiles at 2 wk after the MCT injections, between control rats and rats that would ultimately develop either compensated or decompensated hypertrophy. Clustering of significantly regulated genes revealed specific expression profiles for each group, although the degree of hypertrophy was still similar in both. The ventricles destined to progress to failure showed activation of pro-apoptotic pathways, particularly related to mitochondria, whereas the group developing compensated hypertrophy showed blocked pro-death effector signaling via p38-MAPK, through upregulation of MAPK phosphatase-1. In summary, we show that, already at an early time point, pivotal differences in gene expression exist between ventricles that will ultimately develop either a compensated or a decompensated phenotype, depending on the degree of pressure overload. These data reveal genes that may provide markers for the early prediction of clinical outcome as well as potential targets for early intervention.
Collapse
Affiliation(s)
- Henk P J Buermans
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shah M, Patel K, Sehgal PB. Monocrotaline pyrrole-induced endothelial cell megalocytosis involves a Golgi blockade mechanism. Am J Physiol Cell Physiol 2004; 288:C850-62. [PMID: 15561761 DOI: 10.1152/ajpcell.00327.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrrolizidine alkaloids initiate disease in the lung (pulmonary hypertension), liver (veno-occlusive disease and cirrhosis), and kidneys (afferent arteriolar block and mesangiolysis) by inducing a megalocytotic phenotype in target endothelial and parenchymal cells. A "hit-and-run" type of exposure to the bioactive pyrrolizidine results, within 2-3 days, in enlarged cells with large nuclei and enlarged Golgi and endoplasmic reticulum, while the cells remain in G2/M block. In the present study, we recapitulated monocrotaline pyrrole (MCTP)-induced megalocytosis in cultures of bovine pulmonary arterial endothelial cells (PAEC), human Hep3B hepatocytes, human type II-like alveolar epithelial cells (A549), and human pulmonary arterial smooth muscle cells (PASMC) and investigated the subcellular mechanism involved. There was an inverse relationship between reduction in caveolin (Cav)-1 levels and stimulation of promitogenic STAT3 and ERK1/2 cell signaling. In megalocytotic PAEC, the Golgi scaffolding protein GM130 was shifted from membranes with heavy density to those with a lighter density. This lighter Golgi fraction was enriched for hypo-oligomeric Cav-1, indicating dysfunctional trafficking of cargo. Immunofluorescence imaging studies confirmed the trapping of Cav-1 in a GM130-positive Golgi compartment. There was an increase in Ser25 phosphorylation of GM130 (typically a prelude to Golgi fragmentation and mitosis) and increased association between pGM130, cdc2 kinase, and Cav-1. Nevertheless, megalocytotic MCTP-treated cells showed reduced entry into mitosis upon stimulation with 2-methoxyestradiol (2-ME), reduced 2-ME-induced Golgi fragmentation, and a slowing of Golgi reassembly after nocodazole-induced fragmentation. These data suggest that a disruption of the trafficking and mitosis sensor functions of the Golgi may represent the subcellular mechanism leading to MCTP-induced megalocytosis ("the Golgi blockade hypothesis").
Collapse
Affiliation(s)
- Mehul Shah
- Dept. of Cell Biology and Anatomy, New York Medical College, 201 Basic Sciences Bldg., Valhalla, NY 10595, USA
| | | | | |
Collapse
|
43
|
Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004; 110:1499-506. [PMID: 15353500 DOI: 10.1161/01.cir.0000141576.39579.23] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the monocrotaline (MCT)-treated rat, there is marked stimulation of DNA synthesis and megalocytosis of pulmonary arterial endothelial cells (PAECs) within 3 to 4 days, followed by pulmonary hypertension (PH) 10 to 14 days later. Growing evidence implicates caveolin-1 (cav-1) in plasma membrane rafts as a negative regulator of promitogenic signaling. We have investigated the integrity and function of endothelial cell-selective cav-1alpha/raft signaling in MCT-induced PH. METHODS AND RESULTS Although PH and right ventricular hypertrophy developed by 2 weeks after MCT, a reduction in cav-1alpha levels in the lung was apparent within 48 hours, declining to approximately 30% by 2 weeks, accompanied by an increase in activation of the promitogenic transcription factor STAT3 (PY-STAT3). Immunofluorescence studies showed a selective loss of cav-1alpha and platelet endothelial cell adhesion molecule-1 in the PAEC layer within 48 hours after MCT but an increase in PY-STAT3. PAECs with cav-1alpha loss displayed high PY-STAT3 and nuclear immunostaining for proliferating cell nuclear antigen (PCNA). Biochemical studies showed a loss of cav-1alpha from the detergent-resistant lipid raft fraction concomitant with hyperactivation of STAT3. Moreover, cultured PAECs treated with MCT-pyrrole for 48 hours developed megalocytosis associated with hypo-oligomerization and reduction of cav-1alpha, hyperactivation of STAT3 and ERK1/2 signaling, and stimulation of DNA synthesis. CONCLUSIONS MCT-induced disruption of cav-1alpha chaperone and scaffolding function in PAECs likely accounts for diverse alterations in endothelial cell signaling in this model of PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
44
|
Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1-23. [PMID: 15187006 DOI: 10.1152/ajplung.00301.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave. HSW 825, San Francisco, CA 94143-0130, USA.
| | | | | | | |
Collapse
|
45
|
Nishimura T, Vaszar LT, Faul JL, Zhao G, Berry GJ, Shi L, Qiu D, Benson G, Pearl RG, Kao PN. Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation 2003; 108:1640-5. [PMID: 12963647 DOI: 10.1161/01.cir.0000087592.47401.37] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary vascular injury by toxins can induce neointimal formation, pulmonary arterial hypertension (PAH), right ventricular failure, and death. We showed previously that simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in pneumonectomized rats injected with the alkaloid toxin monocrotaline. The present study was undertaken to investigate the efficacy of simvastatin and its mechanism of reversing established neointimal vascular occlusion and pulmonary hypertension. METHODS AND RESULTS Pneumonectomized rats injected with monocrotaline at 4 weeks demonstrated severe PAH at 11 weeks (mean pulmonary artery pressure [mPAP]=42 versus 17 mm Hg in normal rats) and death by 15 weeks. When rats with severe PAH received simvastatin (2 mg x kg(-1) x d(-1) by gavage) from week 11, there was 100% survival and reversal of PAH after 2 weeks (mPAP=36 mm Hg) and 6 weeks (mPAP=24 mm Hg) of therapy. Simvastatin treatment reduced right ventricular hypertrophy and reduced proliferation and increased apoptosis of pathological smooth muscle cells in the neointima and medial walls of pulmonary arteries. Longitudinal transcriptional profiling revealed that simvastatin downregulated the inflammatory genes fos, jun, and tumor necrosis factor-alpha and upregulated the cell cycle inhibitor p27Kip1, endothelial nitric oxide synthase, and bone morphogenetic protein receptor type 1a. CONCLUSIONS Simvastatin reverses pulmonary arterial neointimal formation and PAH after toxic injury.
Collapse
Affiliation(s)
- Toshihiko Nishimura
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, Calif 94305-5236, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Mario Chojkier
- Department of Medicine and Center for Molecular Genetics, Veterans Affairs Healthcare System and University of California San Diego, VAMC (111-D), San Diego, CA 92161, USA.
| |
Collapse
|
47
|
Deleve LD, Wang X, Tsai J, Kanel G, Strasberg S, Tokes ZA. Sinusoidal obstruction syndrome (veno-occlusive disease) in the rat is prevented by matrix metalloproteinase inhibition. Gastroenterology 2003; 125:882-90. [PMID: 12949732 DOI: 10.1016/s0016-5085(03)01056-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The mechanical origins of the obstruction in sinusoidal obstruction syndrome are initiated by dehiscence of sinusoidal endothelial cells from the space of Disse. The biochemical changes that permit the dehiscence of the sinusoidal endothelial cells were investigated. METHODS In vitro and in vivo studies examined changes induced by monocrotaline, a pyrrolizidine alkaloid that induces sinusoidal obstruction syndrome in both humans and experimental animals. RESULTS In the monocrotaline-induced rat model of sinusoidal obstruction syndrome, there was an early increase of matrix metalloproteinase-9 and a later, lower-magnitude increase of matrix metalloproteinase-2 in the liver. In vitro studies of sinusoidal endothelial cells, hepatocytes, stellate cells, and Kupffer cells showed that sinusoidal endothelial cells are the major source of both basal and monocrotaline-induced matrix metalloproteinase-9/matrix metalloproteinase-2 activity. Monocrotaline caused depolymerization of F-actin in sinusoidal endothelial cells, and blocking of F-actin depolymerization prevented the increase in matrix metalloproteinase activity. Administration of matrix metalloproteinase inhibitors prevented the signs and histological changes associated with sinusoidal obstruction syndrome. CONCLUSIONS Monocrotaline causes depolymerization of F-actin in sinusoidal endothelial cells, which leads to increased expression of metalloproteinase-9 and matrix metalloproteinase-2 by sinusoidal endothelial cells. Inhibition of matrix metalloproteinase-9 and matrix metalloproteinase-2 prevents the development of sinusoidal obstruction syndrome, establishing that matrix metalloproteinase inhibitors may be a therapeutically viable strategy for prevention.
Collapse
Affiliation(s)
- Laurie D Deleve
- Division of Gastrointestinal and Liver Disease, University of Southern California Keck School of Medicine, Los angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Qiu D, Kao PN. Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D 2003; 4:1-18. [PMID: 12568630 DOI: 10.2165/00126839-200304010-00001] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Extracts of Tripterygium wilfordii hook. f. (leigong teng, Thundergod vine) are effective in traditional Chinese medicine for treatment of immune inflammatory diseases including rheumatoid arthritis, systemic lupus erythematosus, nephritis and asthma. Characterisation of the terpenoids present in extracts of Tripterygium identified triptolide, a diterpenoid triepoxide, as responsible for most of the immunosuppressive, anti-inflammatory and antiproliferative effects observed in vitro. Triptolide inhibits lymphocyte activation and T-cell expression of interleukin-2 at the level of transcription. In all cell types examined, triptolide inhibits nuclear factor-kappaB transcriptional activation at a unique step in the nucleus after binding to DNA. Further characterisation of the molecular mechanisms of triptolide action will serve to elucidate pathways of immune system regulation.
Collapse
Affiliation(s)
- Daoming Qiu
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California 94305, USA.
| | | |
Collapse
|
49
|
DeLeve LD, Ito Y, Bethea NW, McCuskey MK, Wang X, McCuskey RS. Embolization by sinusoidal lining cells obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Gastrointest Liver Physiol 2003; 284:G1045-52. [PMID: 12584111 DOI: 10.1152/ajpgi.00526.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms leading to the obstruction of the microcirculation in sinusoidal obstruction syndrome (SOS) have been unclear. Because this occurs at the onset of disease, this is a potential key target for therapeutic intervention. Rats were treated with monocrotaline with or without continuous intraportal infusion of glutathione and were studied at 0.5, 1, 2, 4, 6, and 10 days after monocrotaline treatment with the use of in vivo microscopy and transmission electron microscopy. Sinusoidal perfusion decreased from days 1 through 10 with a nadir on day 4. At 12 h, numerous swollen sinusoidal endothelial cells (SECs) were observed. Subsequently, red blood cells penetrated into the space of Disse through gaps between and through swollen SEC and dissected the sinusoidal lining away from the parenchymal cells. Sinusoidal blood flow was obstructed by an embolism of aggregates of sinusoidal lining cells, red blood cells, and adherent monocytes. All changes were prevented by glutathione infusion, notably the initial swelling of SEC. SOS is initiated by changes in SEC. Microcirculatory obstruction is due to dissection of the sinusoidal lining, followed by embolization of the sinusoid by sinusoidal lining cells, compounded by aggregates of monocytes adherent in the sinusoids. Glutathione prevents SOS by preserving an intact sinusoidal barrier.
Collapse
Affiliation(s)
- Laurie D DeLeve
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Taylor DW, Lamé MW, Nakayama LS, Segall HJ, Wilson DW. Effects of monocrotaline pyrrole and thrombin on pulmonary endothelial cell junction and matrix adhesion proteins. Toxicology 2003; 184:227-40. [PMID: 12499124 DOI: 10.1016/s0300-483x(02)00582-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous work in our laboratory has shown that monocrotaline pyrrole (MCTP) interacts with actin and potentiates thrombin-mediated endothelial barrier permeability through increasing the overall surface area of intercellular gaps. To better characterize endothelial barrier leak in this model, we examined the effects of MCTP and thrombin on the localization and structure of three adhesion associated proteins that directly or indirectly interact with actin in regulating barrier function: cell-cell occludens junction molecule (ZO-1), the cell-cell adherens junction linker, ss-catenin, and the cell-matrix intermediary signaling protein, focal adhesion kinase (FAK). Immunohistochemistry demonstrated that thrombin treatment resulted in radial reorganization of focal adhesions and broader distribution of adherens and occludins junctions at the cell border suggestive of membrane stretching in contracture. MCTP pretreatment resulted in fewer and more disorganized focal adhesions and marked thinning of occludins and adherens junctions. MCTP pretreatment also interfered with thrombin stimulated junctional reorganization. Western blot analysis showed thrombin stimulated catalysis of ZO-1 and FAK while MCTP pretreatment resulted in FAK fragmentation similar to previous reports for apoptosis. We conclude that both MCTP and thrombin alter critical endothelial cell adhesion molecules and this may be an underlying mechanism for the potentiating effect MCTP has on thrombin induced vascular permeability in vitro.
Collapse
Affiliation(s)
- Debra W Taylor
- Department of Veterinary, University of California-Davis, 95616, USA
| | | | | | | | | |
Collapse
|