1
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Dedoni S, Olianas MC, Onali P. Lysophosphatidic Acid Stimulates Mitogenic Activity and Signaling in Human Neuroblastoma Cells through a Crosstalk with Anaplastic Lymphoma Kinase. Biomolecules 2024; 14:631. [PMID: 38927035 PMCID: PMC11201523 DOI: 10.3390/biom14060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.
Collapse
Affiliation(s)
| | | | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (S.D.); (M.C.O.)
| |
Collapse
|
3
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
4
|
Motono N, Ueda Y, Shimasaki M, Iwai S, Iijima Y, Usuda K, Uramoto H. Prognostic Impact of Sphingosine Kinase 1 in Nonsmall Cell Lung Cancer. CLINICAL PATHOLOGY 2021; 14:2632010X20988531. [PMID: 33623898 PMCID: PMC7879003 DOI: 10.1177/2632010x20988531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/25/2020] [Indexed: 12/02/2022]
Abstract
Bioactive sphingolipid is clearly relevant to lung physiology. The relationship of the bioactive sphingolipid pathway to pulmonary disease has been studied in cellular, tissue, and animal model, including lung cancer models. The samples of 53 patients diagnosed with nonsmall cell lung carcinoma (NSCLC) between June 2009 and May 2014 at our hospital were analyzed. Immunohistochemical (IHC) analysis was performed. The degree of immunostaining was reviewed and scored. Using this method of assessment, we evaluated the IHC score of sphingosine kinase 1 (SPHK1), vimentin, E-cadherin, and Ki-67. Both invasive adenocarcinoma cell and squamous cell carcinoma cell were well stained by SPHK1, and fibroblasts were also well stained by SPHK1. Although the IHC score of SPHK1 was not significantly differed between invasive adenocarcinoma and squamous cell carcinoma, the IHC scores of fibroblast, vimentin, and Ki-67 were higher in squamous cell carcinoma than invasive adenocarcinoma. Correlation among IHC scores in each of invasive adenocarcinoma and squamous cell carcinoma was performed. SPHK1 had positive correlation with both fibroblast and Ki-67, and fibroblast and Ki-67 had also positive correlation in invasive adenocarcinoma. On the contrary, SPHK1 had no significant correlation with fibroblast, and had negative correlation with Ki-67 in squamous cell carcinoma. Although there was not significant prognostic difference in SPHK1 score (P = .09), IHC score high group tended to be worse on relapse-free survival. SPHK1 might be prognostic factor in lung-invasive adenocarcinoma and novel target for drug against lung-invasive adenocarcinoma.
Collapse
Affiliation(s)
- Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | - Miyako Shimasaki
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
5
|
Du M, Wang G, Barsukov IL, Gross SR, Smith R, Rudland PS. Direct interaction of metastasis-inducing S100P protein with tubulin causes enhanced cell migration without changes in cell adhesion. Biochem J 2020; 477:1159-1178. [PMID: 32065231 PMCID: PMC7108782 DOI: 10.1042/bcj20190644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Overexpression of S100P promotes breast cancer metastasis in animals and elevated levels in primary breast cancers are associated with poor patient outcomes. S100P can differentially interact with nonmuscle myosin (NM) isoforms (IIA > IIC > IIB) leading to the redistribution of actomyosin filaments to enhance cell migration. Using COS-7 cells which do not naturally express NMIIA, S100P is now shown to interact directly with α,β-tubulin in vitro and in vivo with an equilibrium Kd of 2-3 × 10-7 M. The overexpressed S100P is located mainly in nuclei and microtubule organising centres (MTOC) and it significantly reduces their number, slows down tubulin polymerisation and enhances cell migration in S100P-induced COS-7 or HeLa cells. It fails, however, to significantly reduce cell adhesion, in contrast with NMIIA-containing S100P-inducible HeLa cells. When taxol is used to stabilise MTs or colchicine to dissociate MTs, S100P's stimulation of migration is abolished. Affinity-chromatography of tryptic digests of α and β-tubulin on S100P-bound beads identifies multiple S100P-binding sites consistent with S100P binding to all four half molecules in gel-overlay assays. When screened by NMR and ITC for interacting with S100P, four chemically synthesised peptides show interactions with low micromolar dissociation constants. The two highest affinity peptides significantly inhibit binding of S100P to α,β-tubulin and, when tagged for cellular entry, also inhibit S100P-induced reduction in tubulin polymerisation and S100P-enhancement of COS-7 or HeLa cell migration. A third peptide incapable of interacting with S100P also fails in this respect. Thus S100P can interact directly with two different cytoskeletal filaments to independently enhance cell migration, the most important step in the metastatic cascade.
Collapse
Affiliation(s)
- Min Du
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Igor L. Barsukov
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Richard Smith
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| |
Collapse
|
6
|
Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia 2019; 33:2884-2897. [PMID: 31097785 PMCID: PMC6887546 DOI: 10.1038/s41375-019-0478-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
Although the over-expression of angiogenic factors is reported in diffuse
large B-cell lymphoma (DLBCL), the poor response to anti-VEGF drugs observed in
clinical trials suggests that angiogenesis in these tumours might be driven by
VEGF-independent pathways. We show that sphingosine kinase-1 (SPHK1), which
generates the potent bioactive sphingolipid sphingosine-1-phosphate (S1P), is
over-expressed in DLBCL. A meta-analysis of over 2000 cases revealed that genes
correlated with SPHK1 mRNA expression in DLBCL were significantly enriched for
tumour angiogenesis meta-signature genes; an effect evident in both major cell
of origin (COO) and stromal subtypes. Moreover, we found that S1P induces
angiogenic signalling and a gene expression programme that is present within the
tumour vasculature of SPHK1-expressing DLBCL. Importantly, S1PR1 functional
antagonists, including Siponimod, and the S1P neutralising antibody, Sphingomab,
inhibited S1P signalling in DLBCL cells in vitro. Furthermore,
Siponimod, also reduced angiogenesis and tumour growth in an S1P-producing mouse
model of angiogenic DLBCL. Our data define a potential role for S1P signalling
in driving an angiogenic gene expression programme in the tumour vasculature of
DLBCL and suggest novel opportunities to target S1P-mediated angiogenesis in
patients with DLBCL.
Collapse
|
7
|
Lee JM, Park SJ, Im DS. Calcium Signaling of Lysophosphatidylethanolamine through LPA 1 in Human SH-SY5Y Neuroblastoma Cells. Biomol Ther (Seoul) 2017; 25:194-201. [PMID: 27302965 PMCID: PMC5340545 DOI: 10.4062/biomolther.2016.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023] Open
Abstract
Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular Ca2+ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with LPA1 antagonists showed LPE induced intracellular Ca2+ increases in an LPA1 GPCR-dependent manner. Furthermore, LPE increased intracellular Ca2+ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive IP3 receptors, Ca2+ release from intracellular Ca2+ stores, and subsequent Ca2+ influx across plasma membranes, and LPA acted on LPA1 and LPA2 receptors to induce Ca2+ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Jung-Min Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Parrington J, Tunn R. Ca(2+) signals, NAADP and two-pore channels: role in cellular differentiation. Acta Physiol (Oxf) 2014; 211:285-96. [PMID: 24702694 DOI: 10.1111/apha.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Ca(2+) signals regulate a wide range of physiological processes. Intracellular Ca(2+) stores can be mobilized in response to extracellular stimuli via a range of signal transduction mechanisms, often involving recruitment of diffusible second messenger molecules. The Ca(2+) -mobilizing messengers InsP3 and cADPR release Ca(2+) from the endoplasmic reticulum via the InsP3 and ryanodine receptors, respectively, while a third messenger, NAADP, releases Ca(2+) from acidic endosomes and lysosomes. Bidirectional communication between the endoplasmic reticulum (ER) and acidic organelles may have functional relevance for endolysosomal function as well as for the generation of Ca(2+) signals. The two-pore channels (TPCs) are currently strong candidates for being key components of NAADP-regulated Ca(2+) channels. Ca(2+) signals have been shown to play important roles in differentiation; however, much remains to be established about the exact signalling mechanisms involved. The investigation of the role of NAADP and TPCs in differentiation is still at an early stage, but recent studies have suggested that they are important mediators of differentiation of neurones, skeletal muscle cells and osteoclasts. NAADP signals and TPCs have also been implicated in autophagy, an important process in differentiation. Further studies will be required to identify the precise mechanism of TPC action and their link with NAADP signalling, as well as relating this to their roles in differentiation and other key processes in the cell and organism.
Collapse
Affiliation(s)
- J. Parrington
- Department of Pharmacology; University of Oxford; Oxford UK
| | - R. Tunn
- Department of Pharmacology; University of Oxford; Oxford UK
| |
Collapse
|
9
|
Talmont F, Moulédous L. Evaluation of commercial antibodies against human sphingosine-1-phosphate receptor 1. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:427-31. [DOI: 10.1007/s00210-014-0957-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
|
10
|
Kawabori M, Kacimi R, Karliner JS, Yenari MA. Sphingolipids in cardiovascular and cerebrovascular systems: Pathological implications and potential therapeutic targets. World J Cardiol 2013; 5:75-86. [PMID: 23675553 PMCID: PMC3653015 DOI: 10.4330/wjc.v5.i4.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
The sphingolipid metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) and its enzyme sphingosine kinase (SphK) play an important role in the regulation of cell proliferation, survival, inflammation, and cell death. Ceramide and sphingosine usually inhibit proliferation and promote apoptosis, while its metabolite S1P phosphorylated by SphK stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determine cell fate. The relevance of this “sphingolipid rheostat” and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that SphK is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic ceramide and sphingosine. Activation of bioactive sphingolipid S1P signaling has emerged as a critical protective pathway in response to acute ischemic injury in both cardiac and cerebrovascular disease, and these observations have considerable relevance for future potential therapeutic targets.
Collapse
|
11
|
[³⁵S]GTPγS binding as an index of total G-protein and Gα-subtype-specific activation by GPCRs. Methods Mol Biol 2011; 746:263-75. [PMID: 21607862 DOI: 10.1007/978-1-61779-126-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
On activation, G-protein-coupled receptors (GPCRs) exert many of their cellular actions through -promoting guanine nucleotide exchange on Gα subunits of heterotrimeric G proteins to release Gα-GTP and free βγ-subunits. In membrane preparations, GTP can be substituted by ³⁵S-labeled guanosine- 5'-O-(3-thio)triphosphate ([³⁵S]GTPγS) and on agonist stimulation a quasi-stable [³⁵S]GTPγS-Gα -complex forms and accumulates. Separation of [³⁵S]GTPγS-Gα complexes from free [³⁵S]GTPγS allows differences between basal and agonist-stimulated rates of [³⁵S]GTPγS-Gα complex formation- to be used to obtain pharmacological information on receptor-G-protein information transfer. Further, by releasing Gα-subunits into solution following the [³⁵S]GTPγS binding step, Gα-subunit-specific antibodies can be used to investigate the Gα-protein subpopulations activated by receptors by immunoprecipitation of [³⁵S]GTPγS-Gα complexes and quantification by scintillation counting. Here, we describe a total [³⁵S]GTPγS binding assay and a modification of this method that incorporates a Gα-specific immunoprecipitation step.
Collapse
|
12
|
Zhang L, Ussher JR, Oka T, Cadete VJJ, Wagg C, Lopaschuk GD. Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc Res 2010; 89:148-56. [PMID: 20729341 DOI: 10.1093/cvr/cvq266] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS the molecular processes leading to cardiac insulin resistance induced via a high-fat diet (HFD) remain unclear. We examined the changes in cardiac insulin sensitivity and the potential mechanism(s) involved following HFD in mice. METHODS AND RESULTS C57BL/6 mice were fed either a low-fat diet (LFD, 4% kcal fat) or a HFD (60% kcal fat) for 3 or 10 weeks. Insulin-stimulated glucose oxidation in isolated working hearts was decreased at 10 weeks of HFD compared with mice on LFD (249 ± 19 to 399 ± 46 vs. 551 ± 97 to 1464 ± 243 nmol/g dry wt/min; P < 0.05). The accumulation of myocardial diacylglycerol (DAG; 479 ± 174 vs. 266 ± 29 micromol/g wet wt; P < 0.05), but not long-chain acyl CoA, ceramide, or triacylglycerol, correlated with the development of insulin resistance. The accumulation of DAG occurred concomitantly with an increase in glycerol phosphate acyltransferase activity, a decrease in DAG acyltransferase activity, as well as an increase in the translocation of protein kinase C-α (PKCα) and phosphorylation of p70s6k. Neither HFD-induced accumulation of cardiac DAG nor up-regulation of phosphorylated p70s6k occurred in mice lacking malonyl CoA decarboxylase which are resistant to the development of HFD-induced insulin resistance. CONCLUSION the activation of myocardial p70s6k and PKCα is closely associated with cardiac insulin resistance in which the accumulation of intra-myocardial DAG could be responsible.
Collapse
Affiliation(s)
- Liyan Zhang
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, 423 Heritage Medical Research Center, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | | | |
Collapse
|
13
|
Cha B, Zhu XC, Chen W, Jones M, Ryoo S, Zachos NC, Chen TE, Lin R, Sarker R, Kenworthy AK, Tse M, Kovbasnjuk O, Donowitz M. NHE3 mobility in brush borders increases upon NHERF2-dependent stimulation by lyophosphatidic acid. J Cell Sci 2010; 123:2434-43. [PMID: 20571054 DOI: 10.1242/jcs.056713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epithelial brush border (BB) Na(+)/H(+) exchanger NHE3 is associated with the actin cytoskeleton by binding both directly and indirectly to ezrin; indirect binding is via attachment to NHERF family proteins. NHE3 mobility in polarized epithelial cell BBs is restricted by the actin cytoskeleton and NHERF binding such that only approximately 30% of NHE3 in the apical domain of an OK cell line stably expressing NHERF2 is mobile, as judged by FRAP analysis. Given that levels of NHE3 are partially regulated by changes in trafficking, we investigated whether the cytoskeleton association of NHE3 was dynamic and changed as part of acute regulation to allow NHE3 trafficking. The agonist studied was lysophosphatidic acid (LPA), an inflammatory mediator, which acutely stimulates NHE3 activity by increasing the amount of NHE3 on the BBs by stimulated exocytosis. LPA acutely stimulated NHE3 activity in OK cells stably expressing NHERF2. Two conditions that totally prevented LPA stimulation of NHE3 activity only partially prevented stimulation of NHE3 mobility: the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the NHE3F1 double mutant which has minimal direct binding of NHE3 to ezrin. These results show that LPA stimulation of NHE3 mobility occurs in two parts: (1) PI3K-dependent exocytic trafficking to the BB and (2) an increase in surface mobility of NHE3 in BBs under basal conditions. Moreover, the LPA stimulatory effect on NHE3 mobility required NHERF2. Although NHE3 and NHERF2 co-precipitated under basal conditions, they failed to co-precipitate 30 minutes after addition of LPA, whereas the physical association was re-established by 50-60 minutes. This dynamic interaction between NHERF2 and NHE3 was confirmed by acceptor photobleaching Förster Resonance energy Transfer (FRET). The restricted mobility of NHE3 in BBs under basal conditions as a result of cytoskeleton association is therefore dynamic and is reversed as part of acute LPA stimulation of NHE3. We suggest that this acute but transient increase in NHE3 mobility induced by LPA occurs via two processes: addition of NHE3 to the BB by exocytosis, a process which precedes binding of NHE3 to the actin cytoskeleton via NHERF2-ezrin, and by release of NHERF2 from the NHE3 already localized in the apical membrane, enabling NHE3 to distribute throughout the microvilli. These fractions of NHE3 make up a newly identified pool of NHE3 called the 'transit pool'. Moreover, our results show that there are two aspects of LPA signaling involved in stimulation of NHE3 activity: PI3K-dependent stimulated NHE3 exocytosis and the newly described, PI3K-independent dissociation of microvillar NHE3 from NHERF2.
Collapse
Affiliation(s)
- Boyoung Cha
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 212052, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kalari S, Zhao Y, Spannhake EW, Berdyshev EV, Natarajan V. Role of acylglycerol kinase in LPA-induced IL-8 secretion and transactivation of epidermal growth factor-receptor in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 296:L328-36. [PMID: 19112101 DOI: 10.1152/ajplung.90431.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
LPA (lysophosphatidic acid) is a potent bioactive phospholipid, which regulates a number of diverse cellular responses through G protein-coupled LPA receptors. Intracellular LPA is generated by the phosphorylation of monoacylglycerol by acylglycerol kinase (AGK); however, the role of intracellular LPA in signaling and cellular responses remains to be elucidated. Here, we investigated signaling pathways of IL-8 secretion mediated by AGK and intracellular LPA in human bronchial epithelial cells (HBEpCs). Expression of AGK in HBEpCs was detected by real-time PCR, and overexpressed AGK was mainly localized in mitochondria as determined by immunofluorescence and confocal microscopy. Overexpression of lentiviral AGK wild type increased intracellular LPA production ( approximately 1.8-fold), enhanced LPA-mediated IL-8 secretion, and stimulated tyrosine phosphorylation epidermal growth factor-receptor (EGF-R). Furthermore, downregulation of native AGK by AGK small interfering RNA decreased intracellular LPA levels ( approximately 2-fold) and attenuated LPA-induced p38 MAPK, JNK, and NF-kappaB activation, tyrosine phosphorylation of EGF-R, and IL-8 secretion. These results suggest that native AGK regulates LPA-mediated IL-8 secretion involving MAPKs, NF-kappaB, and transactivation of EGF-R. Thus AGK may play an important role in innate immunity and airway remodeling during inflammation.
Collapse
Affiliation(s)
- Satish Kalari
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
15
|
Li J, Guan HY, Gong LY, Song LB, Zhang N, Wu J, Yuan J, Zheng YJ, Huang ZS, Li M. Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clin Cancer Res 2008; 14:6996-7003. [PMID: 18980995 DOI: 10.1158/1078-0432.ccr-08-0754] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To characterize the expression of sphingosine kinase-1 (SPHK1) in human astrocytomas and to investigate the association between SPHK1 expression and progression of astrocytomas. EXPERIMENTAL DESIGN The expression of SPHK1 in normal human astrocytes, astrocytoma cell lines, and four pairs of matched astrocytoma tissues and their adjacent normal brain tissues were detected by quantitative reverse transcription-PCR and Western blot. In addition, SPHK1 protein expression was examined in 243 cases of histologically characterized astrocytomas by immunohistochemistry. Statistical analyses were applied to test for prognostic and diagnostic associations. RESULTS SPHK1 in astrocytoma cell lines was elevated at both mRNA and protein levels, and the SPHK1 mRNA and protein were significantly up-regulated by up to 6.8- and 40-fold, respectively, in primary astrocytomas compared with those in the adjacent noncancerous brain tissues. Immunohistochemical analysis showed that 100 of 243 (41.2%) paraffin-embedded archival astrocytoma biopsies exhibited high expression of SPHK1. Statistical analysis suggested that the up-regulation of SPHK1 was significantly correlated with the histologic grade of astrocytoma (P=0.000) and that patients with high SPHK1 level exhibited shorter survival time (P<0.001). Multivariate analysis revealed that SPHK1 up-regulation might be an independent prognostic indicator for the survival of patients with astrocytoma. CONCLUSIONS SPHK1 might represent a novel and useful prognostic marker for astrocytoma and play a role during the development and progression of the disease.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu YJ, Tappia PS, Goyal RK, Dhalla NS. Mechanisms of the lysophosphatidic acid-induced increase in [Ca(2+)](i) in skeletal muscle cells. J Cell Mol Med 2008; 12:942-54. [PMID: 18494935 PMCID: PMC4401138 DOI: 10.1111/j.1582-4934.2008.00139.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca2+]i) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca2+]i in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca2+]i, which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a Gi protein inhibitor, also inhibited the LPA-induced increase in [Ca2+]i. Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca2+]i due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca2+]i response to LPA. The LPA effect was also attenuated by ethylene glycolbis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), an extracellular Ca2+ chelator, Ni2+ and KB-R7943, inhibitors of the Na+-Ca2+ exchanger; the receptor operated Ca2+ channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca2+ channel blockers, verapamil and diltiazem; the store operated Ca2+ channel blockers, La3+ and Gd3+; a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca2+]i due to LPA. Our data suggest that the LPA-induced increase in [Ca2+]i might occur through Gi-protein coupled LPA1/3 receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na+-Ca2+ exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca2+]i and growth of skeletal muscle cells.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
17
|
K6PC-5, a Direct Activator of Sphingosine Kinase 1, Promotes Epidermal Differentiation Through Intracellular Ca2+ Signaling. J Invest Dermatol 2008; 128:2166-78. [DOI: 10.1038/jid.2008.66] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Lichte K, Rossi R, Danneberg K, Braak MT, Kürschner U, Jakobs KH, Kleuser B, Heringdorf DMZ. Lysophospholipid Receptor-Mediated Calcium Signaling in Human Keratinocytes. J Invest Dermatol 2008; 128:1487-98. [DOI: 10.1038/sj.jid.5701207] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, Mir A. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther 2007; 117:77-93. [PMID: 17961662 DOI: 10.1016/j.pharmthera.2007.08.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune, neurological disability with unknown etiology. The current therapies available for MS work by an immunomodulatory action, preventing T-cell- and macrophage-mediated destruction of brain-resident oligodendrocytes and axonal loss. Recently, FTY720 (fingolimod) was shown to significantly reduce relapse rates in MS patients and is currently in Phase III clinical trials. This drug attenuates trafficking of harmful T cells entering the brain by regulating sphingosine-1-phosphate (S1P) receptors. Here, we outline the direct roles that S1P receptors play in the central nervous system (CNS) and discuss additional modalities by which FTY720 may provide direct neuroprotection in MS.
Collapse
Affiliation(s)
- Kumlesh K Dev
- Department of Anatomy and Neuroscience, University College Cork, Windle Building, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Giussani P, Ferraretto A, Gravaghi C, Bassi R, Tettamanti G, Riboni L, Viani P. Sphingosine-1-phosphate and calcium signaling in cerebellar astrocytes and differentiated granule cells. Neurochem Res 2006; 32:27-37. [PMID: 17151916 DOI: 10.1007/s11064-006-9219-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/03/2006] [Indexed: 02/01/2023]
Abstract
S1P is involved in the regulation of multiple biological processes (cell survival, growth, migration and differentiation) both in neurons and glial cells. The study was aimed at investigating the possible effects of S1P on calcium signaling in cerebellar astrocytes and differentiated granule cells. In cerebellar astrocytes S1P is able to mediate calcium signaling mainly through Gi protein coupled receptors, whereas in differentiated neurons it failed to evoke any calcium signaling, despite acting both extracellularly and intracellularly. The data indicate strict cell specificity in S1P-evoked calcium response, which could be relevant to communication between neurons and glial cells in the cerebellum.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Chemistry, Biochemistry and Biotechnology, L.I.T.A. via F. Cervi 93, 20090 Segrate (Milan), Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Radeff-Huang J, Seasholtz TM, Chang JW, Smith JM, Walsh CT, Brown JH. Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J Biol Chem 2006; 282:863-70. [PMID: 17114809 DOI: 10.1074/jbc.m601698200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) has been shown to activate sphingosine kinase (SphK) in a variety of cell types. The extent to which SphK signaling mediates the pleiotropic effects of TNF-alpha is not entirely clear. The current study examined the role of SphK activity in TNF-alpha-stimulated cell proliferation in 1321N1 glioblastoma cells. We first demonstrated that pharmacological inhibitors of SphK markedly decrease TNF-alpha-stimulated DNA synthesis. Signaling mechanisms through which SphK mediated the effect of TNF-alpha on DNA synthesis were then examined. Inhibition of Rho proteins with C3 exoenzyme or of Rho kinase with Y27632 attenuated TNF-alpha-stimulated DNA synthesis. However, RhoA activation by TNF-alpha was not blocked by SphK inhibition. ERK activation was also required for TNF-alpha-stimulated DNA synthesis but likewise TNF-alpha-induced ERK activation was not blocked by inhibition of SphK. Thus, neither RhoA nor ERK activation are the SphK-dependent transducers of TNF-alpha-induced proliferation. In contrast, TNF-alpha-stimulated Akt phosphorylation, which was also required for DNA synthesis, was attenuated by SphK inhibition or SphK1 knockdown by small interfering RNA. Furthermore, cyclin D expression was increased by TNF-alpha in a SphK- and Akt-dependent manner. Additional studies demonstrated that TNF-alpha effects on DNA synthesis, ERK, and Akt phosphorylation are not mediated through cell surface Gi -coupled S1P receptors, because none of these responses were inhibited by pertussis toxin. We conclude that SphK-dependent Akt activation plays a significant role in TNF-alpha-induced cyclin D expression and cell proliferation.
Collapse
Affiliation(s)
- Julie Radeff-Huang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
22
|
Heacock AM, Dodd MS, Fisher SK. Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J Pharmacol Exp Ther 2006; 317:685-93. [PMID: 16415087 DOI: 10.1124/jpet.105.098467] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of the lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) to promote the release of the organic osmolyte taurine in response to hypoosmotic stress has been examined. Incubation of SH-SY5Y neuroblastoma cells under hypoosmotic conditions (230 mOsM) resulted in a time-dependent release of taurine that was markedly enhanced (3-7-fold) by the addition of micromolar concentrations of either S1P or LPA. At optimal concentrations, the effects of S1P and LPA on taurine efflux were additive and mediated via distinct receptors. Inclusion of 1,9-dideoxyfoskolin, 5-nitro-2-(3-phenylpropylamino benzoic acid, or 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]-butanoic acid blocked the ability of both lysophospholipids to enhance taurine release, indicating the mediation of a volume-sensitive organic osmolyte and anion channel. Both S1P and LPA elicited robust increases in intracellular calcium concentration that were attenuated by the removal of extracellular calcium, abolished by the depletion of intracellular calcium with thapsigargin, and were independent of phosphoinositide turnover. Taurine efflux mediated by S1P and LPA was unaffected by the removal of extracellular calcium but was attenuated by depletion of intracellular calcium (34-38%) and by inhibition of protein kinase C (PKC) with chelerythrine (38-72%). When intracellular calcium was depleted and PKC was inhibited, S1P- or LPA-stimulated taurine efflux was inhibited by 80%. Pretreatment of the cells with pertussis toxin, toxin B, or cytochalasin D had no effect on lysophospholipid-stimulated taurine efflux. The results indicate that both S1P and LPA receptors facilitate osmolyte release via a phospholipase C-independent mechanism that requires the availability of intracellular calcium and PKC activity.
Collapse
Affiliation(s)
- Anne M Heacock
- University of Michigan, Molecular and Behavioral Neuroscience Institute Laboratories at MSRB II, 1150 West Medical Center Drive, C560, MSRB II, Ann Arbor, MI 48109-0669, USA
| | | | | |
Collapse
|
23
|
Hemmings DG. Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:18-29. [PMID: 16570136 DOI: 10.1007/s00210-006-0046-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two related lysosphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediate diverse cellular responses through signals transduced by either activation of G-protein coupled receptors or possibly by acting intracellularly. Vascular responses to S1P and SPC measured both in vivo and in dissected vessels show predominantly vasoconstriction with some evidence for vasodilation. Although stimulation with S1P or SPC generally leads to similar vascular responses, the signalling pathways stimulated to produce these responses are often distinct. Nevertheless, mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+, which both increase [Ca2+]i, occur in response to S1P and SPC. Both mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+ occur in response to S1P and SPC. As well, both S1P and SPC induce Ca2+-sensitization in vascular smooth muscle which is mediated through Rho kinase activation. In the endothelium, S1P and SPC stimulate the production of the vasodilator, nitric oxide through activation of endothelial nitric oxide synthase. This activation occurs through phosphorylation by Akt and through binding of Ca2+-calmodulin upon increased [Ca2+]i. These lysosphingolipids also activate cyclooxygenase-2 which produces prostaglandins with both vasoconstrictor and vasodilator properties. A balance between the signals inducing vasodilation versus the signals inducing vasoconstriction will determine the vascular outcome. Thus, perturbations in S1P and SPC concentrations, relative expression of receptors or downstream signalling pathways may provide a mechanism for pathophysiological conditions such as hypertension. Given this background, recent studies examining a potential role for S1P and SPC in hypertension and vascular dysfunction in aging are discussed.
Collapse
Affiliation(s)
- Denise G Hemmings
- Department Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, 227 Heritage Medical Research Center, T6G 2S2, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408. [PMID: 16371601 DOI: 10.1152/physrev.00004.2005] [Citation(s) in RCA: 889] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca(2+)] rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. In this review, we discuss the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation. This complex choreography requires the concerted action of many different players; the central role is, of course, that of the calcium ion, with the main supporting characters being all the entities responsible for moving Ca(2+) between different compartments, while the cellular architecture provides a determining framework within which all the players have their exits and their entrances. In particular, we concentrate on the molecular mechanisms that lead to the generation of cytoplasmic Ca(2+) microdomains, focusing on their different subcellular location, mechanism of generation, and functional role.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
25
|
Abstract
Lysophospholipids (LPLs) are lipid-derived signaling molecules exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Originally identified as serum-associated growth factors, these mediators now are known to signal through a family of diverse G protein-coupled receptors (GPCRs). Virtually all cells that participate in the immune response express multiple receptors for LPLs. The development of antibody reagents that recognize the receptors for each LPL and the derivation of receptor-selective agonists and receptor-null mouse strains have provided insights into the widely diverse functions of LPLs in immune responses, particularly the role of S1P in lymphocyte trafficking. This review focuses on the biology of the LPLs as these molecules relate to functional regulation of immune cells in vitro and to the regulation of integrated immune responses in vivo.
Collapse
Affiliation(s)
- Debby A Lin
- Department of Medicine, Harvard Medical School, and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Riddoch FC, Rowbotham SE, Brown AM, Redfern CPF, Cheek TR. Release and sequestration of Ca2+ by a caffeine- and ryanodine-sensitive store in a sub-population of human SH-SY5Y neuroblastoma cells. Cell Calcium 2005; 38:111-20. [PMID: 16095688 DOI: 10.1016/j.ceca.2005.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/26/2022]
Abstract
We have used single cell fluorescence imaging techniques to examine the role that ryanodine receptors play in the stimulus-induced Ca(2+) responses of SH-SY5Y cells. The muscarinic agonist methacholine (1mM) resulted in a Ca(2+) signal in 95% of all cells. Caffeine (30 mM) however stimulated a Ca(2+) signal in only 1-7% of N-type (neuroblastic) cells within any given field. The caffeine response was independent of extracellular Ca(2+), regenerative in nature, and abolished in a use-dependent fashion by ryanodine. In caffeine-responsive cells, the magnitude of the methacholine-induced Ca(2+) signal was inhibited by 75.07 +/- 5.51% by pretreatment with caffeine and ryanodine, suggesting that the caffeine-sensitive store may act as a Ca(2+) source after muscarinic stimulation. When these data were combined with equivalent data from non-caffeine-responsive cells, the degree of apparent inhibition was significantly reduced. In contrast, after store depletion by caffeine, the Ca(2+) signal induced by 55 mM K(+) was potentiated 2.5-fold in the presence of ryanodine, suggesting that the store may act a Ca(2+) sink after depolarisation. We conclude that a caffeine- and ryanodine-sensitive store can act as a Ca(2+) source and sink in SH-SY5Y cells, and that effects of the store can become obscured if data from caffeine-insensitive cells are not excluded.
Collapse
Affiliation(s)
- Fiona C Riddoch
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
27
|
Xu YJ, Saini HK, Cheema SK, Dhalla NS. Mechanisms of lysophosphatidic acid-induced increase in intracellular calcium in vascular smooth muscle cells. Cell Calcium 2005; 38:569-79. [PMID: 16216324 DOI: 10.1016/j.ceca.2005.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/30/2005] [Accepted: 08/30/2005] [Indexed: 11/17/2022]
Abstract
Although lysophosphatidic acid (LPA) is known to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMCs), the mechanisms of [Ca2+]i mobilization by LPA are not fully understood. In the present study, the effect of LPA on [Ca2+]i mobilization in cultured A10 VSMCs was examined by Fura-2 fluorescence technique. The expression of LPA receptors was studied by immunostaining. LPA was observed to increase [Ca2+]i in a concentration-dependent manner; this increase was dependent on the concentration of extracellular Ca2+. Both sarcolemmal (SL) Na(+)-Ca2+ exchange inhibitors (amiloride, Ni2+ and KB-R7943) and Na(+)-H+ exchange inhibitor (MIA) as well as SL store-operated Ca2+ channel (SOC) antagonists (SK&F 96365, tyrphostin A9 and gadolinium), unlike SL Ca2+ channel antagonists (verapamil and diltiazem), inhibited the LPA-induced increase in [Ca2+]i. In addition, sarcoplasmic reticulum (SR) Ca2+ channel blocker (ryanodine), SR Ca2+ channel opener (caffeine), SR Ca2+ pump ATPase inhibitor (thapsigargin) and inositol 1,4,5-trisphosphate (InsP3) receptor antagonists (xestospongin and 2-aminoethoxydiphenyl borate) were found to inhibit the LPA-induced Ca2+ mobilization. Furthermore, phospholipase C (PLC) inhibitor (U 73122) and protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) attenuated the LPA-induced increase in [Ca2+]i. These results indicate that Ca2+ mobilization by LPA involves extracellular Ca2+ entry through SL Na(+)-Ca2+ exchanger, Na(+)-H+ exchanger and SL SOCs. In addition, ryanodine-sensitive and InsP(3)-sensitive intracellular Ca2+ pools may be associated with the LPA-induced increase in [Ca2+]i. Furthermore, the LPA-induced [Ca2+]i mobilization in VSMCs seems to be due to the activation of both PLC and PKC.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, R3021-351 Tache Avenue, Winnipeg, Man., Canada
| | | | | | | |
Collapse
|
28
|
Samways DSK, Henderson G. Opioid elevation of intracellular free calcium: possible mechanisms and physiological relevance. Cell Signal 2005; 18:151-61. [PMID: 16199136 DOI: 10.1016/j.cellsig.2005.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 08/19/2005] [Indexed: 01/02/2023]
Abstract
Opioid receptors are seven transmembrane domain Gi/G0 protein-coupled receptors, the activation of which stimulates a variety of intracellular signalling mechanisms including activation of inwardly rectifying potassium channels, and inhibition of both voltage-operated N-type Ca2+ channels and adenylyl cyclase activity. It is now apparent that like many other Gi/G0-coupled receptors, opioid receptor activation can significantly elevate intracellular free Ca2+ ([Ca2+]i), although the mechanism underlying this phenomenon is not well understood. In some cases opioid receptor activation alone appears to elevate [Ca2+]i, but in many cases it requires concomitant activation of Gq-coupled receptors, which themselves stimulate Ca2+ release from intracellular stores via the inositol phosphate pathway. Given the number of Ca2+-sensitive processes known to occur in cells, there are therefore a myriad of situations in which opioid receptor-mediated elevations of [Ca2+](i) may be important. Here, we review the literature documenting opioid receptor-mediated elevations of [Ca2+]i, discussing both the possible mechanisms underlying this phenomenon and its potential physiological relevance.
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Pharmacological and Physiological Science, Health Science Center, School of Medicine, Saint Louis University, MO, USA.
| | | |
Collapse
|
29
|
Feng YH, Ding Y, Ren S, Zhou L, Xu C, Karnik SS. Unconventional homologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals. Hypertension 2005; 46:419-25. [PMID: 15998700 PMCID: PMC1266297 DOI: 10.1161/01.hyp.0000172621.68061.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Internalization of a G-protein-coupled receptor (GPCR) is essential to the desensitization, endocytosis, and signal transduction of the receptor. It has been the general view that conventional homologous internalization of a GPCR requires activation of the G-protein(s) coupled to the receptor. However, whether and how GPCR-mediated G-protein-independent signals trigger receptor internalization remains unknown, although G-protein-independent internalization has been reported. Here we show that an angiotensin II (Ang II) type-1 (AT1) receptor mutant incapable of activating any G-protein still undergoes normal internalization. Substitution of Asp125 with Ala and Arg126 with Leu at the highly conserved DRY motif of the AT1 receptor disabled the ability of the receptor to activate G-proteins, as shown by various Ang II binding studies, GDP-GTP exchange, and inositol phosphate production assays. Surprisingly, the mutant internalized normally in the presence of Ang II and transactivated the epidermal growth factor receptor (EGFR). Similar to the wild-type receptor, overexpression of a dominant-negative K220R mutant GRK2 diminished the internalization of D125A-R126L but not the transactivation of EGFR. These data indicate that G-protein-independent specific signals may also trigger homologous internalizations of the AT1 receptor through beta-arrestin-dependent and -independent pathways, suggesting a possible mechanism for G-protein-independent activation of G-protein-coupled receptor kinases (GRKs). This may represent a general mechanism for triggering GPCR internalization.
Collapse
Affiliation(s)
- Ying-Hong Feng
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Zhao Y, Usatyuk P, Cummings R, Saatian B, He D, Watkins T, Morris A, Spannhake E, Brindley D, Natarajan V. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 2005; 385:493-502. [PMID: 15461590 PMCID: PMC1134721 DOI: 10.1042/bj20041160] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
LPA (lysophosphatidic acid), a potent bioactive phospholipid, elicits diverse cellular responses through activation of the G-protein-coupled receptors LPA1-LPA4. LPA-mediated signalling is partially regulated by LPPs (lipid phosphate phosphatases; LPP-1, -2 and -3) that belong to the phosphatase superfamily. This study addresses the role of LPPs in regulating LPA-mediated cell signalling and IL-8 (interleukin-8) secretion in HBEpCs (human bronchial epithelial cells). Reverse transcription-PCR and Western blotting revealed the presence and expression of LPP-1-3 in HBEpCs. Exogenous [3H]oleoyl LPA was hydrolysed to [3H]-mono-oleoylglycerol. Infection of HBEpCs with an adenoviral construct of human LPP-1 for 48 h enhanced the dephosphorylation of exogenous LPA by 2-3-fold compared with vector controls. Furthermore, overexpression of LPP-1 partially attenuated LPA-induced increases in the intracellular Ca2+ concentration, phosphorylation of IkappaB (inhibitory kappaB) and translocation of NF-kappaB (nuclear factor-kappaB) to the nucleus, and almost completely prevented IL-8 secretion. Infection of cells with an adenoviral construct of the mouse LPP-1 (R217K) mutant partially attenuated LPA-induced IL-8 secretion without altering LPA-induced changes in intracellular Ca2+ concentration, phosphorylation of IkappaB, NF-kappaB activation or IL-8 gene expression. Our results identify LPP-1 as a key regulator of LPA signalling and IL-8 secretion in HBEpCs. Thus LPPs could represent potential targets in regulating leucocyte infiltration and airway inflammation.
Collapse
Affiliation(s)
- Yutong Zhao
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
| | - Peter V. Usatyuk
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
| | - Rhett Cummings
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
| | - Bahman Saatian
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
| | - Donghong He
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
| | - Tonya Watkins
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
| | - Andrew Morris
- †Department of Cell Biology, University of North Carolina, Chapel Hill, NC, U.S.A
| | - Ernst Wm. Spannhake
- ‡Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, U.S.A
| | - David N. Brindley
- §Department of Biochemistry and Signal Transduction Research Group, University of Alberta, Edmonton, Canada
| | - Viswanathan Natarajan
- *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21222, U.S.A
- To whom correspondence should be addressed: Division of Pulmonary and Critical Care, Johns Hopkins University Medical School, Mason F. Lord Building, Center Tower, 675, 5200 Eastern Avenue, Baltimore, MD, U.S.A. (email )
| |
Collapse
|
31
|
Budnik LT, Brunswig-Spickenheier B. Differential effects of lysolipids on steroid synthesis in cells expressing endogenous LPA2 receptor. J Lipid Res 2005; 46:930-41. [PMID: 15716590 DOI: 10.1194/jlr.m400423-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incubation of ovarian luteal cells with the bioactive lipid mediator lysophosphatidic acid (LPA) for 180 min abolishes gonadotropin-induced steroid production with no attenuation of the cyclic AMP accumulation. Treatment with the lysolipid also diminishes [14C]steroid production in cells preloaded with either [14C]cholesterol or [14C]acetate. Neither the expression of steroidogenic acute regulatory (StAR) protein nor in vitro steroid synthesis is affected in isolated mitochondrial fractions. The LPA-induced attenuation of steroid production occurs only in the mid-cycle corpus luteum and is associated with a transient endogenous expression of mRNA for the lysophosphatidic acid A2 (LPA2) receptor (with no concomitant changes in the expression of LPA1 receptor). Expression of LPA2 is accompanied by LPA-induced sphingosine-1-phosphate (S1P) production. Because luteal cells, in the presence of the sphingosine kinase inhibitor dihydrosphingosine, can overcome the inhibitory effects of LPA on steroid synthesis, we suggest the possible requirement of intracellular S1P production. Interestingly, no LPA-induced inhibition of 8Br-cAMP-stimulated progesterone synthesis can be detected in Leydig tumor cell line MA10 cells expressing only LPA2 receptor. Surprisingly, however, exogenous S1P inhibits agonist-stimulated progesterone in both cell types by inhibiting cyclic AMP accumulation, suggesting different mechanisms of action.
Collapse
Affiliation(s)
- Lygia T Budnik
- Institute for Hormone and Fertility Research, Anatomy I, University Hospital Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | | |
Collapse
|
32
|
Blom T, Slotte JP, Pitson SM, Törnquist K. Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell Signal 2005; 17:827-36. [PMID: 15763425 DOI: 10.1016/j.cellsig.2004.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) regulates many cellular functions, such as migration, differentiation and growth. The effects of S1P are thought to be primarily mediated by G-protein coupled receptors, but an intracellular function as a calcium releasing second messenger has also been proposed. Here we show that in HEK-293 cells, exogenous S1P mobilises sequestered calcium by a mechanism primarily dependent on the phospholipase C (PLC)/inositol 1,4,5-trisphosphate (IP3) pathway, and secondarily on the subsequent synthesis of intracellular S1P. Stimulating HEK-293 cells exogenously with S1P increased the production of both inositol phosphates and intracellular S1P. The calcium response was inhibited in cells treated with 2-APB, caffeine or U73122, showing that the PLC/IP3 pathway for calcium release is activated in response to exogenous S1P. The calcium response was partially inhibited in cells treated with the sphingosine kinase inhibitor DMS and in cells expressing a catalytically inactive sphingosine kinase, showing that endogenously produced S1P is also involved. Importantly, 2-APB and U73122 inhibited the S1P-evoked production of intracellular S1P. S1P is therefore not likely a major calcium releasing second messenger in HEK-293 cells, but rather a secondary regulator of calcium mobilisation.
Collapse
Affiliation(s)
- Tomas Blom
- Department of Biology, Abo Akademi University, BioCity, Artillerigatan 6, 20520 Turku, Finland
| | | | | | | |
Collapse
|
33
|
Colombaioni L, Garcia-Gil M. Sphingolipid metabolites in neural signalling and function. ACTA ACUST UNITED AC 2004; 46:328-55. [PMID: 15571774 DOI: 10.1016/j.brainresrev.2004.07.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/20/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P) and complex sphingolipids (gangliosides), are recognized as molecules capable of regulating a variety of cellular processes. The role of sphingolipid metabolites has been studied mainly in non-neuronal tissues. These studies have underscored their importance as signals transducers, involved in control of proliferation, survival, differentiation and apoptosis. In this review, we will focus on studies performed over the last years in the nervous system, discussing the recent developments and the current perspectives in sphingolipid metabolism and functions.
Collapse
|
34
|
Abstract
BACKGROUND Phosphorylation of sphingosine by sphingosine kinase (SK) is the rate-limiting step in the cellular synthesis of sphingosine 1-phosphate (S1P). The monoganglioside GM1, which stimulates SK, is cardioprotective in part through increased generation of S1P that protects myocytes by diverse mechanisms. Because protein kinase C (PKC)epsilon activation is necessary for myocardial ischemic preconditioning (IPC) and PKC activators increase SK activity, we tested the hypothesis that SK may be a central mediator of IPC. METHODS AND RESULTS In adult murine hearts, IPC sufficient to reduce infarct size significantly increased cardiac SK activity, induced translocation of SK protein from the cytosol to membranes, and enhanced cardiac myocyte survival. IPC did not increase SK activity in PKCepsilon-null mice. The SK antagonist N,N-dimethylsphingosine inhibited PKCepsilon activation and directly abolished the protective effects of IPC and the enhanced SK activity induced by IPC. CONCLUSIONS These findings demonstrate that PKCepsilon is thus recruited by IPC and induces activation of SK that then mediates IPC-induced cardioprotection in murine heart.
Collapse
Affiliation(s)
- Zhu-Qiu Jin
- Cardiology Section, VA Medical Center and Department of Medicine, University of California, San Francisco, USA
| | | | | |
Collapse
|
35
|
Rao TS, Lariosa-Willingham KD, Lin FF, Palfreyman EL, Yu N, Chun J, Webb M. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res 2004; 990:182-94. [PMID: 14568343 DOI: 10.1016/s0006-8993(03)03527-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate; LPA) and sphingosine-1-phosphate (S1P) are bioactive phospholipids which respectively act as agonists for the G-protein-coupled lpA receptors (LPA1, LPA2, and LPA3) and s1p receptors (S1P1, S1P2, S1P3, S1P4, and S1P5), collectively referred to as lysophospholipid receptors (lpR). Since astrocytes are responsive to LPA and S1P, we examined mechanisms of lpR signaling in rat cortical secondary astrocytes. Rat cortical astrocyte mRNA expression by quantitative TaqMan polymerase chain reaction (PCR) analysis revealed the following order of relative expression of lpR mRNAs: s1p3>s1p1>lpa1>s1p2=lpa3>>s1p5. Activation of lpRs by LPA or S1P led to multiple pharmacological effects, including the influx of calcium, phosphoinositide (PI) hydrolysis, phosphorylation of extracellular receptor regulated kinase (ERK) and release of [3H]-arachidonic acid (AA). These signalling events downstream of lpR activation were inhibited to varying degrees by pertussis toxin (PTX) pretreatment or by the inhibition of sphingosine kinase (SK), a rate-limiting enzyme in the biosynthesis of S1P from sphingosine. These results suggest that astrocyte lpR signalling mechanisms likely involve both Gi- and Gq-coupled GPCRs and that receptor-mediated activation of SK leads to intracellular generation of S1P, which in turn amplifies the lpR signalling in a paracrine/autocrine manner.
Collapse
Affiliation(s)
- Tadimeti S Rao
- Merck Research Laboratories, 3535 General Atomics Court, Building 1, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Meyer Zu Heringdorf D. Lysophospholipid receptor-dependent and -independent calcium signaling. J Cell Biochem 2004; 92:937-48. [PMID: 15258917 DOI: 10.1002/jcb.20107] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes in cellular Ca(2+) concentrations form a ubiquitous signal regulating numerous processes such as fertilization, differentiation, proliferation, contraction, and secretion. The Ca(2+) signal, highly organized in space and time, is generated by the cellular Ca(2+) signaling toolkit. Lysophospholipids, such as sphingosine-1-phosphate (S1P), sphingosylphosphorylcholine (SPC), or lysophosphatidic acid (LPA) use this toolkit in a specific manner to initiate their cellular responses. Acting as agonists at G protein-coupled receptors, S1P, SPC, and LPA increase the intracellular free Ca(2+) concentration ([Ca(2+)](i)) by using the classical, phospholipase C (PLC)-dependent pathway as well as PLC-independent pathways such as sphingosine kinase (SphK)/S1P. The S1P(1) receptor, via protein kinase C, inhibits the [Ca(2+)](i) transients caused by other receptors. Both S1P and SPC also act intracellularly to regulate [Ca(2+)](i). Intracellular S1P mobilizes Ca(2+) in intact cells independently of G protein-coupled S1P receptors, and Ca(2+) signaling by many agonists requires SphK-mediated S1P production. As shown for the FcepsilonRI receptor, PLC and SphK may contribute specific components to the overall [Ca(2+)](i) transient. Of the many open questions, identification of the intracellular S1P target site(s) appears to be of particular importance.
Collapse
|
37
|
Samways DSK, Li WH, Conway SJ, Holmes AB, Bootman MD, Henderson G. Co-incident signalling between mu-opioid and M3 muscarinic receptors at the level of Ca2+ release from intracellular stores: lack of evidence for Ins(1,4,5)P3 receptor sensitization. Biochem J 2003; 375:713-20. [PMID: 12880387 PMCID: PMC1223709 DOI: 10.1042/bj20030508] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 07/24/2003] [Accepted: 07/25/2003] [Indexed: 11/17/2022]
Abstract
Activation of G(i)/G(o)-coupled opioid receptors increases [Ca2+]i (intracellular free-Ca2+ concentration), but only if there is concomitant G(q)-coupled receptor activation. This G(i)/G(o)-coupled receptor-mediated [Ca2+]i increase does not appear to result from further production of Ins P3 [Ins(1,4,5) P3] in SH-SY5Y cells. In the present study, fast-scanning confocal microscopy revealed that activation of mu-opioid receptors alone by 1 muM DAMGO ([L-Ala, NMe-Phe, Gly-ol]-enkephalin) did not stimulate the Ins P3-dependent elementary Ca2+-signalling events (Ca2+ puffs), whereas DAMGO did evoke Ca2+ puffs when applied during concomitant activation of M3 muscarinic receptors with 1 muM carbachol. We next determined whether mu-opioid receptor activation might increase [Ca2+]i by sensitizing the Ins P3 receptor to Ins P3. DAMGO did not potentiate the amplitude of the [Ca2+]i increase evoked by flash photolysis of the caged Ins P3 receptor agonist, caged 2,3-isopropylidene-Ins P3, whereas the Ins P3 receptor sensitizing agent, thimerosal (10 muM), did potentiate this response. DAMGO also did not prolong the rate of decay of the increase in [Ca2+]i evoked by flash photolysis of caged 2,3-isopropylidene-Ins P3. Furthermore, DAMGO did not increase [Ca2+]i in the presence of the cell-membrane-permeable Ins P3 receptor agonist, Ins P3 hexakis(butyryloxymethyl) ester. Therefore it appears that mu-opioid receptors do not increase [Ca2+]i through either Ins P3 receptor sensitization, enhancing the releasable pool of Ca2+ or inhibition of Ca2+ removal from the cytoplasm.
Collapse
MESH Headings
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channels/physiology
- Carbachol/pharmacology
- Cell Line, Tumor
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Cytoplasm/radiation effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Receptor, Muscarinic M3/physiology
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Signal Transduction
- Thimerosal/pharmacology
- Ultraviolet Rays
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
38
|
Meyer zu Heringdorf D, Liliom K, Schaefer M, Danneberg K, Jaggar JH, Tigyi G, Jakobs KH. Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+mobilization independently of G-protein-coupled receptors. FEBS Lett 2003; 554:443-9. [PMID: 14623109 DOI: 10.1016/s0014-5793(03)01219-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sphingosine-1-phosphate (S1P), the product of sphingosine kinase, activates several widely expressed G-protein-coupled receptors (GPCR). S1P might also play a role as second messenger, but this hypothesis has been challenged by recent findings. Here we demonstrate that intracellular S1P can mobilize Ca(2+) in intact cells independently of S1P-GPCR. Within seconds, S1P generated by the photolysis of caged S1P raised the intracellular free Ca(2+) concentration in HEK-293, SKNMC and HepG2 cells, in which the response to extracellularly applied S1P was either blocked or absent. Ca(2+) transients induced by photolysis of caged S1P were caused by Ca(2+) mobilization from thapsigargin-sensitive stores. These results provide direct evidence for a true intracellular action of S1P.
Collapse
|
39
|
Itagaki K, Hauser CJ. Sphingosine 1-phosphate, a diffusible calcium influx factor mediating store-operated calcium entry. J Biol Chem 2003; 278:27540-7. [PMID: 12746430 PMCID: PMC3206310 DOI: 10.1074/jbc.m301763200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Store-operated calcium entry (SOCE) is a fundamental mechanism of calcium signaling. The mechanisms linking store depletion to SOCE remain controversial, hypothetically involving both diffusible messengers and conformational coupling of stores to channels. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that can signal via cell surface G-protein-coupled receptors, but S1P can also act as a second messenger, mobilizing calcium directly via unknown mechanisms. We show here that S1P opens calcium entry channels in human neutrophils (PMNs) and HL60 cells without prior store depletion, independent of G-proteins and of phospholipase C. S1P-mediated entry has the typical divalent cation permeability profile and inhibitor profile of SOCE in PMNs, is fully inhibited by 1 microm Gd3+, and is independent of [Ca2+]i. Depletion of PMN calcium stores by thapsigargin induces S1P synthesis. Inhibition of S1P synthesis by dimethylsphingosine blocks thapsigargin-, ionomycin-, and platelet-activating factor-mediated SOCE despite normal store depletion. We propose that S1P is a "calcium influx factor," linking calcium store depletion to downstream SOCE.
Collapse
Affiliation(s)
| | - Carl J. Hauser
- To whom correspondence should be addressed: Dept. of Surgery, University of Medicine and Dentistry/New Jersey Medical School, MSB G-524, 185 South Orange Ave., Newark, NJ 07103. Tel.: 973-972-2894; Fax: 973-972-6803;
| |
Collapse
|
40
|
Villullas IR, Smith AJ, Heavens RP, Simpson PB. Characterisation of a sphingosine 1-phosphate-activated Ca2+ signalling pathway in human neuroblastoma cells. J Neurosci Res 2003; 73:215-26. [PMID: 12836164 DOI: 10.1002/jnr.10636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sphingosine 1-phosphate (S1P) has assumed great importance within neuroscience research because of putative links between S1P-sensitive Edg receptors and neuroregeneration, cell survival, and alterations in neurite outgrowth. In the present study, we examined the mechanisms by which the endogenous complement of S1P-sensitive human Edg receptors can elevate Ca(2+) in the human neuroblastoma cell line, SH-SY5Y. Reverse transcriptase-polymersase chain reaction (RT-PCR) confirmed the expression of mRNA for Edg 3, 5, and 8 subtypes of S1P-responsive Edg receptors in SH-SY5Y cells. Neither S1P nor the muscarinic agonist methacholine were able to cause a change in SH-SY5Y cell morphology, whereas retinoic acid caused a range of changes, including an increase in neurite outgrowth, under similar test conditions. Stimulation with S1P resulted in a slowly rising increase in cytosolic Ca(2+) levels. These responses were dependent upon inositol-1,4,5-trisphosphate receptors, thapsigargin-sensitive endoplasmic reticulum, and also intact functional mitochondria. S1P-evoked Ca(2+) responses were similar in mechanism to those of methacholine, which activated a much faster responding, larger amplitude Ca(2+) response. These studies indicate that in an endogenous human expression system, S1P appears to be an efficacious agonist of Edg receptors. Despite its slow time course of response, S1P appears to activate the same single Ca(2+) store in SH-SY5Y cells as is activated by methacholine and other G protein coupled receptors.
Collapse
Affiliation(s)
- Israel Ramos Villullas
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex, United Kingdom
| | | | | | | |
Collapse
|
41
|
zu Heringdorf DM, Vincent MEM, Lipinski M, Danneberg K, Stropp U, Wang DA, Tigyi G, Jakobs KH. Inhibition of Ca(2+) signalling by the sphingosine 1-phosphate receptor S1P(1). Cell Signal 2003; 15:677-87. [PMID: 12742228 DOI: 10.1016/s0898-6568(03)00011-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lysophospholipid, sphingosine 1-phosphate (S1P), regulates a multitude of cellular functions by activating specific G protein-coupled receptors (GPCRs) (S1P(1-5), plus three newly identified S1P receptors). The G(i)-coupled S1P(1) receptor inhibits adenylyl cyclase, stimulates mitogen-activated protein kinases (MAP kinases) and cell migration, and is required for blood vessel maturation. Here, we report that S1P(1) inhibits Ca(2+) signalling in a number of cell types. In HEK-293 cells, which endogenously express S1P(1-3), overexpression of S1P(1) reduced intracellular free Ca(2+) concentration ([Ca(2+)](i)) increases induced by various receptor agonists as well as thapsigargin. The inhibitory Ca(2+) signalling of S1P(1) was blocked by pertussis toxin (PTX) and the protein kinase C (PKC) inhibitor, Gö6976, and imitated by phorbol ester and overexpression of classical PKC isoforms. Activation of S1P(1) stably expressed in RH7777 cells, which endogenously do not express S1P receptors, also inhibited Ca(2+) signalling, without mediating Ca(2+) mobilization on its own. It is concluded that the widely expressed S1P receptor S1P(1) inhibits Ca(2+) signalling, most likely via G(i) proteins and classical PKC isoforms. Co-expression of S1P(1) with S1P(3), but not S1P(2), reversed the inhibitory effect of S1P(1), furthermore suggesting a specific interplay of S1P receptor subtypes usually found within a single cell type.
Collapse
|
42
|
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4:517-29. [PMID: 12838335 DOI: 10.1038/nrm1155] [Citation(s) in RCA: 4052] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
Collapse
Affiliation(s)
- Michael J Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
43
|
Mendel J, Heinecke K, Fyrst H, Saba JD. Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem 2003; 278:22341-9. [PMID: 12682045 DOI: 10.1074/jbc.m302857200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids are ubiquitous membrane constituents whose metabolites function as signaling molecules in eukaryotic cells. Sphingosine 1-phosphate, a key sphingolipid second messenger, regulates proliferation, motility, invasiveness, and programmed cell death. These effects of sphingosine 1-phosphate and similar phosphorylated sphingoid bases have been observed in organisms as diverse as yeast and humans. Intracellular levels of sphingosine 1-phosphate are tightly regulated by the actions of sphingosine kinase, which is responsible for its synthesis and sphingosine-1-phosphate phosphatase and sphingosine phosphate lyase, the two enzymes responsible for its catabolism. In this study, we describe the cloning of the Caenorhabditis elegans sphingosine phosphate lyase gene along with its functional expression in Saccharomyces cerevisiae. Promoter analysis indicates tissue-specific and developmental regulation of sphingosine phosphate lyase gene expression. Inhibition of C. elegans sphingosine phosphate lyase expression by RNA interference causes accumulation of phosphorylated and unphosphorylated long-chain bases and leads to poor feeding, delayed growth, reproductive abnormalities, and intestinal damage similar to the effects seen with exposure to Bacillus thuringiensis toxin. Our results show that sphingosine phosphate lyase is an essential gene in C. elegans and suggest that the sphingolipid degradative pathway plays a conserved role in regulating animal development.
Collapse
Affiliation(s)
- Jane Mendel
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | | | | | | |
Collapse
|
44
|
Young KW, Willets JM, Parkinson MJ, Bartlett P, Spiegel S, Nahorski SR, Challiss RAJ. Ca2+/calmodulin-dependent translocation of sphingosine kinase: role in plasma membrane relocation but not activation. Cell Calcium 2003; 33:119-28. [PMID: 12531188 DOI: 10.1016/s0143-4160(02)00205-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of sphingosine kinase (SPHK), thereby increasing cellular levels of sphingosine 1-phosphate (S1P), may be involved in a variety of intracellular responses including Ca(2+) signaling. This study uses mammalian SPHK1a, tagged with enhanced green fluorescent protein (eGFP), to examine whether translocation of this enzyme is linked with Ca(2+)-mobilizing responses. Real-time confocal imaging of SPHK1a-eGFP in human SH-SY5Y neuroblastoma cells visualized a relocation of the enzyme from the cytosol to the plasma membrane in response to Ca(2+)-mobilizing stimuli (muscarinic M(3)- or lysophosphatidic acid receptor activation, and thapsigargin-mediated store release). This redistribution was preceded by a transient increase in cytosolic SPHK1a-eGFP levels due to liberation of SPHK from localized higher intensity regions. Translocation was dependent on Ca(2+) mobilization from intracellular stores, and was prevented by pretreatment with the Ca(2+)/calmodulin inhibitor W-7, but not W-5 or KN-62. In functional studies, pretreatment with W-7 lowered basal and M(3)-receptor-mediated cellular S1P production. However, this pretreatment did not alter agonist-mediated Ca(2+) responses, and SPHK1a-eGFP activity itself appeared insensitive to Ca(2+)/calmodulin and W-7. These data suggest a role for Ca(2+)/calmodulin in controlling the subcellular distribution but not the activity of SPHK1a.
Collapse
Affiliation(s)
- Kenneth W Young
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Maceyka M, Payne SG, Milstien S, Spiegel S. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:193-201. [PMID: 12531554 DOI: 10.1016/s1388-1981(02)00341-4] [Citation(s) in RCA: 442] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The sphingolipid metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) play an important role in the regulation of cell proliferation, survival, and cell death. Cer and Sph usually inhibit proliferation and promote apoptosis, while the further metabolite S1P stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determines cell fate. The relevance of this "sphingolipid rheostat" and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that Sph kinase (SphK), the enzyme that phosphorylates Sph to form S1P, is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic Cer and Sph. Given the role of the sphingolipid rheostat in regulating growth and apoptosis, it is not surprising that sphingolipid metabolism is often found to be disregulated in cancer, a disease characterized by enhanced cell growth, diminished cell death, or both. Anticancer therapeutics targeting SphK are potentially clinically relevant. Indeed, inhibition of SphK has been shown to suppress gastric tumor growth [Cancer Res. 51 (1991) 1613] and conversely, overexpression of SphK increases tumorigenicity [Curr. Biol. 10 (2000) 1527]. Moreover, S1P has also been shown to regulate angiogenesis, or new blood vessel formation [Cell 99 (1999) 301], which is critical for tumor progression. Furthermore, there is intriguing new evidence that S1P can act in an autocrine and/or paracrine fashion [Science 291 (2001) 1800] to regulate blood vessel formation [J. Clin. Invest. 106 (2000) 951]. Thus, SphK may not only protect tumors from apoptosis, it may also increase their vascularization, further enhancing growth. The cytoprotective effects of SphK/S1P may also be important for clinical benefit, as S1P has been shown to protect oocytes from radiation-induced cell death in vivo [Nat. Med. 6 (2000) 1109]. Here we review the growing literature on the regulation of SphK and the role of SphK and its product, S1P, in apoptosis.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The endoplasmic reticulum (ER) is a multifunctional signaling organelle that controls a wide range of cellular processes such as the entry and release of Ca(2+), sterol biosynthesis, apoptosis and the release of arachidonic acid (AA). One of its primary functions is as a source of the Ca(2+) signals that are released through either inositol 1,4,5-trisphosphate (InsP(3)) or ryanodine receptors (RYRs). Since these receptors are Ca(2+)-sensitive, the ER functions as an excitable system capable of spreading signals throughout the cell through a process of Ca(2+)-induced Ca(2+) release (CICR). This regenerative capacity is particularly important in the control of muscle cells and neurons. Its role as an internal reservoir of Ca(2+) must be accommodated with its other major role in protein synthesis where a constant luminal level of Ca(2+) is essential for protein folding. The ER has a number of stress signaling pathways that activate various transcriptional cascades that regulate the luminal content of the Ca(2+)-dependent chaperones responsible for the folding and packaging of secretory proteins.Another emerging function of the ER is to regulate apoptosis by operating in tandem with mitochondria. Anti-apoptotic regulators of apoptosis such as Bcl-2 may act by reducing the ebb and flow of Ca(2+) through the ER/mitochondrial couple. Conversely, the presenilins that appear to increase the Ca(2+) content of the ER lumen make cells more susceptible to apoptosis.
Collapse
Affiliation(s)
- Michael J Berridge
- Laboratory of Molecular Signaling, The Babraham Institute, Cambridge CB2 4AT, Babraham, UK.
| |
Collapse
|
47
|
Simpson PB, Villullas IR, Schurov I, Kerby J, Millard R, Haldon C, Beer MS, McAllister G. Native and Recombinant Human Edg4 Receptor-Mediated Ca2+ Signalling. Assay Drug Dev Technol 2002; 1:31-40. [PMID: 15090154 DOI: 10.1089/154065802761001284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed an assay system suitable for assessment of compound action on the Edg4 subtype of the widely expressed lysophosphatidic acid (LPA)-responsive Edg receptor family. Edg4 was stably overexpressed in the rat hepatoma cell line Rh 7777, and a Ca(2+)-based FLIPR assay developed for measurement of functional responses. In order to investigate the mechanisms linking Edg4 activation to cytosolic Ca(2+) elevation, we have also studied LPA signalling in a human neuroblastoma cell line that endogenously expresses Edg4. LPA responses displayed similar kinetics and potency in the two cell lines. The Ca(2+) signal generated by activation of LPA-sensitive receptors in these cells is mediated primarily by endoplasmic reticulum. However, there is a substantial inhibition of the LPA response by FCCP, indicating that mitochondria also play a key role in the LPA response. Partial inhibition of the response by cyclosporin A could indicate an active Ca(2+) release role for mitochondria in the LPA response. The inositol 1,4,5-triphosphate receptor antagonist 2-aminoethyl diphenyl borate markedly inhibits, but does not abolish, the Ca(2+) response to LPA, suggesting further complexity to the signalling pathways activated by Edg receptors. In comparing Edg signalling in recombinant and native cells, there is a striking overall similarity in receptor expression pattern, agonist potency, and the effect of modulators on the Ca(2+) response. This indicates that the Edg4-overexpressing Rh7777 cell line is a very useful model system for studying receptor pharmacology and signalling mechanisms, and for investigating the Edg4 receptor's downstream effects.
Collapse
Affiliation(s)
- Peter B Simpson
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Sphingosine 1-phosphate (S1P) is a lipid signalling molecule with Ca(2+) mobilising properties. Importantly for a role as a Ca(2+) release messenger, intracellular levels of S1P can be regulated by a variety of extracellular stimuli, via the enzyme sphingosine kinase. However, neither the mechanism underlying S1P generation, nor its actions at the endoplasmic reticulum are clear. Thus, the role of S1P as an intracellular mediator of Ca(2+) release remains in the balance.
Collapse
Affiliation(s)
- K W Young
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, LE1 9HN, Leicester, UK.
| | | |
Collapse
|
49
|
Formigli L, Francini F, Meacci E, Vassalli M, Nosi D, Quercioli F, Tiribilli B, Bencini C, Piperio C, Bruni P, Orlandini SZ. Sphingosine 1-phosphate induces Ca2+ transients and cytoskeletal rearrangement in C2C12 myoblastic cells. Am J Physiol Cell Physiol 2002; 282:C1361-73. [PMID: 11997251 DOI: 10.1152/ajpcell.00378.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many cell systems, sphingosine 1-phosphate (SPP) increases cytosolic Ca2+ concentration ([Ca2+]i) by acting as intracellular mediator and extracellular ligand. We recently demonstrated (Meacci E, Cencetti F, Formigli L, Squecco R, Donati C, Tiribilli B, Quercioli F, Zecchi-Orlandini S, Francini F, and Bruni P. Biochem J 362: 349-357, 2002) involvement of endothelial differentiation gene (Edg) receptors (Rs) specific for SPP in agonist-mediated Ca2+ response of a mouse skeletal myoblastic (C2C12) cell line. Here, we investigated the Ca2+ sources of SPP-mediated Ca2+ transients in C2C12 cells and the possible correlation of ion response to cytoskeletal rearrangement. Confocal fluorescence imaging of C2C12 cells preloaded with Ca2+ dye fluo 3 revealed that SPP elicited a transient Ca2+ increase propagating as a wave throughout the cell. This response required extracellular and intracellular Ca2+ pool mobilization. Indeed, it was significantly reduced by removal of external Ca2+, pretreatment with nifedipine (blocker of L-type plasma membrane Ca2+ channels), and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-mediated Ca2+ pathway inhibitors. Involvement of EdgRs was tested with suramin (specific inhibitor of Edg-3). Fluorescence associated with Ins(1,4,5)P3Rs and L-type Ca2+ channels was evident in C2C12 cells. SPP also induced C2C12 cell contraction. This event, however, was unrelated to [Ca2+]i increase, because the two phenomena were temporally shifted. We propose that SPP may promote C2C12 cell contraction through Ca2+-independent mechanisms.
Collapse
MESH Headings
- Aniline Compounds
- Animals
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- DNA-Binding Proteins/antagonists & inhibitors
- Diglycerides/biosynthesis
- Extracellular Space/metabolism
- Fluorescent Dyes
- I-kappa B Proteins
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate/pharmacology
- Intracellular Fluid/metabolism
- Lysophospholipids
- Mice
- Microscopy, Confocal
- Muscle Contraction/drug effects
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- NF-KappaB Inhibitor alpha
- Potassium/pharmacology
- Receptors, Lysophospholipid
- Ryanodine Receptor Calcium Release Channel/drug effects
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- Suramin/pharmacology
- Xanthenes
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu Q, Natarajan V, Ziegelstein RC. Phospholipase D regulates calcium oscillation frequency and nuclear factor-kappaB activity in histamine- stimulated human endothelial cells. Biochem Biophys Res Commun 2002; 292:325-32. [PMID: 11906165 DOI: 10.1006/bbrc.2002.6675] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine stimulates [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC), the frequency of which regulates the activity of nuclear factor-kappaB (NF-kappaB). This study was performed to determine whether phospholipase D (PLD) is involved in this signaling pathway. At a concentration of 1 microM, which stimulates [Ca(2+)](i) oscillations in this cell type, histamine initiated a twofold increase in [(32)P]phosphatidybutanol (PBt), an index of PLD activity as early as 5 min after stimulation. During established [Ca(2+)](i) oscillations induced by 1 microM histamine, 0.3% n-butanol, which "functionally" redirects phosphatidic acid formed by PLD to PBt, decreased [Ca(2+)](i) oscillation frequency by approximately 50% and produced a similar reduction in NF-kappaB activity. In the presence of the inositol 1,4,5-trisphosphate receptor blocker xestospongin C, which itself decreases the frequency of histamine-stimulated [Ca(2+)](i) oscillations, n-butanol produced a further decrease in oscillation frequency that was not associated with an additional reduction in NF-kappaB activity. This study shows that activation of PLD by histamine regulates [Ca(2+)](i) oscillation frequency and NF-kappaB activity in HAEC.
Collapse
Affiliation(s)
- Qinghua Hu
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland 21224-2780, USA.
| | | | | |
Collapse
|