1
|
Yin MX, Catimel B, Gregory M, Condron M, Kapp E, Holmes AB, Burgess AW. Synthesis of an inositol hexakisphosphate (IP6) affinity probe to study the interactome from a colon cancer cell line. Integr Biol (Camb) 2016; 8:309-18. [PMID: 26840369 DOI: 10.1039/c5ib00264h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol hexakisphosphate (InsP6 or IP6) is an important signalling molecule in vesicular trafficking, neurotransmission, immune responses, regulation of protein kinases and phosphatases, activation of ion channels, antioxidant functions and anticancer activities. An IP6 probe was synthesised from myo-inositol via a derivatised analogue, which was immobilised through a terminal amino group onto Dynabeads. Systematic analysis of the IP6 interactome has been performed using the IP6 affinity probe using cytosolic extracts from the LIM1215 colonic carcinoma cell line. LC/MS/MS analysis identified 77 proteins or protein complexes that bind to IP6 specifically, including AP-2 complex proteins and β-arrestins as well as a number of novel potential IP6 interacting proteins. Bioinformatic enrichment analysis of the IP6 interactome reinforced the concept that IP6 regulates a number of biological processes including cell cycle and division, signal transduction, intracellular protein transport, vesicle-mediated transport and RNA splicing.
Collapse
Affiliation(s)
- Meng-Xin Yin
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Olivia Newton-John Cancer & Wellness Centre, Studley Road, Heidelberg, Victoria 3084, Australia
| | - Mark Gregory
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Melanie Condron
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Eugene Kapp
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew B Holmes
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Antony W Burgess
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia and Department of Surgery, RMH, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Casein kinase iγ2 impairs fibroblasts actin stress fibers formation and delays cell cycle progression in g1. Int J Cell Biol 2012; 2012:684684. [PMID: 22496693 PMCID: PMC3312262 DOI: 10.1155/2012/684684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022] Open
Abstract
Actin cytoskeleton remodeling is under the regulation of multiple proteins with various activities. Here, we demonstrate that the γ2 isoform of Casein Kinase I (CKIγ2) is part of a novel molecular path regulating the formation of actin stress fibers. We show that overexpression of CKIγ2 in fibroblasts alters cell morphology by impairing actin stress fibers formation. We demonstrate that this is concomitant with increased phosphorylation of the CDK inhibitor p27Kip and lower levels of activated RhoA, and is dependent on CKIγ2 catalytic activity. Moreover, we report that roscovitine, a potent inhibitor of cyclin-dependent kinases, including Cdk5, decreases p27Kip protein levels and restores actin stress fibers formation in CKIγ2 overexpressing cells, suggesting the existence of a CKIγ2-Cdk5-p27Kip-RhoA pathway in regulating actin remodeling. On the other hand, we also show that in a manner independent of its catalytic activity, CKIγ2 delays cell cycle progression through G1. Collectively our findings reveal that CKIγ2 is a novel player in the control of actin cytoskeleton dynamics and cell proliferation.
Collapse
|
3
|
Borrmann C, Stricker R, Reiser G. Retinoic acid-induced upregulation of the metalloendopeptidase nardilysin is accelerated by co-expression of the brain-specific protein p42(IP4) (centaurin α 1; ADAP1) in neuroblastoma cells. Neurochem Int 2011; 59:936-44. [PMID: 21801775 DOI: 10.1016/j.neuint.2011.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/02/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
The mainly neuronally expressed protein p42(IP4) (centaurin α1; ADAP1), which interacts with the metalloendopeptidase nardilysin (NRD) was found to be localized in neuritic plaques in Alzheimer disease (AD) brains. NRD was shown to enhance the cleavage of the amyloid precursor protein (APP) by α-secretases, thereby increasing the release of neuroprotective sAPPα. We here investigated in vitro the biochemical interaction of p42(IP4) and NRD and studied the physiological interaction in SH-SY5Y cells. NRD is a member of the M16 family of metalloendopeptidases. Some members of this M16 family act bi-functionally, as protease and as non-enzymatic scaffold protein. Here, we show that p42(IP4) enhances the enzymatic activity of NRD 3-4 times. However, p42(IP4) is not a substrate for NRD. Furthermore, we report that differentiation of SH-SY5Y cells by stimulation with 10μM retinoic acid (RA) results in upregulation of NRD protein levels, with a 6-fold rise after 15 days. NRD is expressed in the neurites of RA-stimulated SH-SY5Y cells, and localized in vesicular structures. Since p42(IP4) is not expressed in untreated SH-SY5Y cells, we could use this cell system as a model to find out, whether there is a functional interaction. Interestingly, SH-SY5Y cells, which we stably transfected with GFP-tagged-p42(IP4) showed an enhanced NRD protein expression already at an earlier time point after RA stimulation.
Collapse
Affiliation(s)
- Claudia Borrmann
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
4
|
Sun W, Vanhooke JL, Sondek J, Zhang Q. High-Throughput Fluorescence Polarization Assay for the Enzymatic Activity of GTPase-Activating Protein of ADP-Ribosylation Factor (ARFGAP). ACTA ACUST UNITED AC 2011; 16:717-23. [DOI: 10.1177/1087057111408420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GTPase-activating proteins of ADP-ribosylation factors (ARFGAPs) play key cellular roles in vesicle production and trafficking, adhesion, migration, and development. Dysfunctional regulation of ARFGAPs has been implicated in various diseases, including cancer, Alzheimer disease, and autism. Unfortunately, there are few mechanistic details describing how ARFGAPs contribute to disease states. In this regard, it would be extremely helpful to have a set of small molecules that selectively and directly modulate specific ARFGAPs as probes to dissect ARFGAP-regulated cell signaling under various conditions. Currently, such probes are lacking, and their identification is hampered by the lack of a suitable high-throughput assay to monitor ARFGAP activity. Here, the authors describe and validate a robust high-throughput assay using fluorescence polarization to monitor the ability of diverse ARFGAPs to enhance the capacity of ARF1 to hydrolyze guanosine triphosphate.
Collapse
Affiliation(s)
- Wei Sun
- Division of Medicinal Chemistry & Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janeen L. Vanhooke
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Sondek
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qisheng Zhang
- Division of Medicinal Chemistry & Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Ikeda K, Zhapparova O, Brodsky I, Semenova I, Tirnauer JS, Zaliapin I, Rodionov V. CK1 activates minus-end-directed transport of membrane organelles along microtubules. Mol Biol Cell 2011; 22:1321-9. [PMID: 21307338 PMCID: PMC3078062 DOI: 10.1091/mbc.e10-09-0741] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study shows that the signal transduction pathway responsible for the initiation of minus-end–directed movement of membrane-bounded pigment granules in melanophores involves sequential activation of protein phosphatase 2A and casein kinase 1 and that this activation correlates with increased phosphorylation of the dynein intermediate chain. Microtubule (MT)-based organelle transport is driven by MT motor proteins that move cargoes toward MT minus-ends clustered in the cell center (dyneins) or plus-ends extended to the periphery (kinesins). Cells are able to rapidly switch the direction of transport in response to external cues, but the signaling events that control switching remain poorly understood. Here, we examined the signaling mechanism responsible for the rapid activation of dynein-dependent MT minus-end–directed pigment granule movement in Xenopus melanophores (pigment aggregation). We found that, along with the previously identified protein phosphatase 2A (PP2A), pigment aggregation signaling also involved casein kinase 1ε (CK1ε), that both enzymes were bound to pigment granules, and that their activities were increased during pigment aggregation. Furthermore we found that CK1ε functioned downstream of PP2A in the pigment aggregation signaling pathway. Finally, we discovered that stimulation of pigment aggregation increased phosphorylation of dynein intermediate chain (DIC) and that this increase was partially suppressed by CK1ε inhibition. We propose that signal transduction during pigment aggregation involves successive activation of PP2A and CK1ε and CK1ε-dependent phosphorylation of DIC, which stimulates dynein motor activity and increases minus-end–directed runs of pigment granules.
Collapse
Affiliation(s)
- Kazuho Ikeda
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Clokie S, Falconer H, Mackie S, Dubois T, Aitken A. The interaction between casein kinase Ialpha and 14-3-3 is phosphorylation dependent. FEBS J 2009; 276:6971-84. [PMID: 19860830 DOI: 10.1111/j.1742-4658.2009.07405.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously shown that casein kinase (CK) Ialpha from mammalian brain phosphorylates 14-3-3 zeta and tau isoforms on residue 233. In the present study, we show that CKIalpha associates with 14-3-3 both in vitro and in vivo. The interaction between CKIalpha and 14-3-3 is dependent on CKIalpha phosphorylation, unlike centaurin-alpha1 (also known as ADAP1), which binds to unphosphorylated CKIalpha on the same region. CKIalpha preferentially interacts with mammalian eta and gamma 14-3-3 isoforms, and peptides that bind to the 14-3-3 binding pocket prevent this interaction. The region containing Ser218 in this CKIalpha binding site was mutated and the interaction between CKIalpha and 14-3-3 was reduced. We subsequently identified a second phosphorylation-dependent 14-3-3 binding site within CKIalpha containing Ser242 that may be the principal site of interaction. We also show that both fission and budding yeast CKI kinase homologues phosphorylate mammalian and budding yeast (BMH1 and BMH2) 14-3-3 at the equivalent site.
Collapse
Affiliation(s)
- Samuel Clokie
- Institute of Structural Biology, Edinburgh University, UK
| | | | | | | | | |
Collapse
|
7
|
Galvita A, Grachev D, Azarashvili T, Baburina Y, Krestinina O, Stricker R, Reiser G. The brain-specific protein, p42(IP4) (ADAP 1) is localized in mitochondria and involved in regulation of mitochondrial Ca2+. J Neurochem 2009; 109:1701-13. [PMID: 19383085 DOI: 10.1111/j.1471-4159.2009.06089.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In brain, p42(IP4) (centaurin-alpha1; recently named ADAP 1, which signifies ADP ribosylation factor GTPase activating protein with dual PH domains 1, within the large family of Arf-GTPase activating proteins) is mainly expressed in neurons. p42(IP4) operates as a dual receptor recognising two second messengers, the soluble inositol(1,3,4,5)tetrakisphosphate and the lipid phosphatidylinositol(3,4,5)trisphosphate. We show here for the first time that p42(IP4) is localized in mitochondria, isolated from rat brain and from cells transfected with p42(IP4). In rat brain mitochondria we additionally found interaction of p42(IP4) with 2', 3'-cyclic nucleotide 3'-phosphodiesterase and alpha-tubulin by pull-down binding assay and by immunoprecipitation. In mitochondria from Chinese hamster ovary cells, p42(IP4) is predominantly associated with the intermembrane space and the inner membrane. This localization of p42(IP4) indicates that p42(IP4) might have a still unknown mitochondrial function. We studied whether p42(IP4) is involved in Ca(2+)-induced permeability transition pore opening, which is important in mitochondrial events leading to programmed cell death. We used mouse neuroblastoma cells as a model for the functional studies of p42(IP4) in mitochondria. In mitochondria isolated from p42(IP4)-transfected mouse neuroblastoma cells, over-expression of p42(IP4) significantly decreased Ca(2+) capacity and lag time for Ca(2+) retention. Thus, we suggest that p42(IP4) is involved in the regulation of Ca(2+) transport in mitochondria. We propose that p42(IP4) promotes Ca(2+)-induced permeability transition pore opening and thus destabilizes mitochondria.
Collapse
Affiliation(s)
- Anastasia Galvita
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang H, Ma J, Ruan L, Xu X. Cloning of a centaurin-alpha1 like gene MjCent involved in WSSV infection from shrimp Marsupeneaus japonicus. FISH & SHELLFISH IMMUNOLOGY 2009; 26:279-284. [PMID: 19073266 DOI: 10.1016/j.fsi.2008.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 05/27/2023]
Abstract
Centaurin-alpha1 specifically binds phosphatidylinositol 3,4,5-trisphosphate (PI (3,4,5)P3) and is a GTPase-activating protein (GAP) of ADP-ribosylation factor (ARF6). It actively engages in phosphatidylinositol 3-kinase (PI3-K) mediated cell signal transduction. Here, for the first time, we have identified a virus related centaurin-alpha1 homologue named MjCent from the shrimp, Marsupeneaus japonicus, an economically important crustacean in the aquaculture industry. MjCent has one conserved ArfGAP and two Pleckstrin homology domains (PH domains). As shown by RT-PCR and immunofluorescence, MjCent appeared in every tissue examined and was localized mainly in the cell cytoplasm. Further investigation with real-time quantitative PCR showed that MjCent was significantly up-regulated during white spot syndrome virus (WSSV) infection, but notably decreased in virus-resistant shrimps. This suggests a close relationship between MjCent and WSSV invasion and host defense of the shrimp, M. japonicus.
Collapse
Affiliation(s)
- Huifen Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | | | | | | |
Collapse
|
9
|
Haase A, Nordmann C, Sedehizade F, Borrmann C, Reiser G. RanBPM, a novel interaction partner of the brain-specific protein p42IP4/centaurin α-1. J Neurochem 2008; 105:2237-48. [DOI: 10.1111/j.1471-4159.2008.05308.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kannanayakal TJ, Mendell JR, Kuret J. Casein kinase 1 alpha associates with the tau-bearing lesions of inclusion body myositis. Neurosci Lett 2007; 431:141-5. [PMID: 18191026 DOI: 10.1016/j.neulet.2007.11.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/02/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
Inclusion body myositis and Alzheimer's disease are age-related disorders characterized in part by the appearance of intracellular lesions composed of filamentous aggregates of the microtubule-associated protein tau. Abnormal tau phosphorylation accompanies tau aggregation and may be an upstream pathological event in both diseases. Enzymes implicated in tau hyperphosphorylation in Alzheimer's disease include members of the casein kinase 1 family of phosphotransferases, a group of structurally related protein kinases that frequently function in tandem with the ubiquitin modification system. To determine whether casein kinase 1 isoforms associate with degenerating muscle fibers of inclusion body myositis, muscle biopsy sections isolated from sporadic disease cases were subjected to double-label fluorescence immunohistochemistry using selective anti-casein kinase 1 and anti-phospho-tau antibodies. Results showed that the alpha isoform of casein kinase 1, but not the delta or epsilon isoforms, stained degenerating muscle fibers in all eight inclusion body myositis cases examined. Staining was almost exclusively localized to phospho-tau-bearing inclusions. These findings, which extend the molecular similarities between inclusion body myositis muscle and Alzheimer's disease brain, implicate casein kinase 1 alpha as one of the phosphotransferases potentially involved in tau hyperphosphorylation.
Collapse
Affiliation(s)
- Theresa J Kannanayakal
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, United States
| | | | | |
Collapse
|
11
|
Moore CD, Thacker EE, Larimore J, Gaston D, Underwood A, Kearns B, Patterson SI, Jackson T, Chapleau C, Pozzo-Miller L, Theibert A. The neuronal Arf GAP centaurin alpha1 modulates dendritic differentiation. J Cell Sci 2007; 120:2683-93. [PMID: 17635995 PMCID: PMC2810648 DOI: 10.1242/jcs.006346] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Centaurin alpha1 is an Arf GTPase-activating protein (GAP) that is highly expressed in the nervous system. In the current study, we show that endogenous centaurin alpha1 protein is localized in the synaptosome fraction, with peak expression in early postnatal development. In cultured dissociated hippocampal neurons, centaurin alpha1 localizes to dendrites, dendritic spines and the postsynaptic region. siRNA-mediated knockdown of centaurin alpha1 levels or overexpression of a GAP-inactive mutant of centaurin alpha1 leads to inhibition of dendritic branching, dendritic filopodia and spine-like protrusions in dissociated hippocampal neurons. Overexpression of wild-type centaurin alpha1 in cultured hippocampal neurons in early development enhances dendritic branching, and increases dendritic filopodia and lamellipodia. Both filopodia and lamellipodia have been implicated in dendritic branching and spine formation. Following synaptogenesis in cultured neurons, wild-type centaurin alpha1 expression increases dendritic filopodia and spine-like protrusions. Expression of a GAP-inactive mutant diminishes spine density in CA1 pyramidal neurons within cultured organotypic hippocampal slice cultures. These data support the conclusion that centaurin alpha1 functions through GAP-dependent Arf regulation of dendritic branching and spines that underlie normal dendritic differentiation and development.
Collapse
Affiliation(s)
- Carlene D. Moore
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin E. Thacker
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Larimore
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David Gaston
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison Underwood
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Kearns
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sean I. Patterson
- IHEM-CONICET, Departmento de Morfo-Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Trevor Jackson
- Departments of Physiology and Dermatology, School of Clinical and Laboratory Sciences, Medical School, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Chris Chapleau
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anne Theibert
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Author for correspondence ()
| |
Collapse
|
12
|
Venkateswarlu K, Brandom KG, Yun H. PI-3-kinase-dependent membrane recruitment of centaurin-alpha2 is essential for its effect on ARF6-mediated actin cytoskeleton reorganisation. J Cell Sci 2007; 120:792-801. [PMID: 17284522 DOI: 10.1242/jcs.03373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPase activating proteins (GAPs) of the centaurin family regulate the actin cytoskeleton and vesicle trafficking through inactivation of the ADP-ribosylation factor (ARF) family of small GTP-binding proteins. We report the functional characterisation of centaurin-alpha(2), which is structurally related to the centaurin-alpha(1) ARF6 GAP. centaurin-alpha(2) contains an N-terminal GAP domain followed by two pleckstrin homology (PH) domains (N-PH and C-PH). In vitro, GFP-centaurin-alpha(2) specifically binds the phosphatidylinositol (PI) 3-kinase lipid products, PI 3,4-P(2) and PI 3,4,5-P(3) (PIP(3)), through its C-terminal PH domain. In agreement with this observation, GFP-centaurin-alpha(2) was recruited to the plasma membrane from the cytosol in EGF-stimulated cells in a PI-3-kinase-dependent manner. Moreover, the C-PH domain is sufficient and necessary for membrane recruitment of centaurin-alpha(2). centaurin-alpha(2) shows sustained kinetics of PI-3-kinase-mediated membrane recruitment in EGF-stimulated cells, owing to its binding to PI 3,4-P(2). centaurin-alpha(2) prevents ARF6 translocation to, and cortical actin formation at, the plasma membrane, which are phenotypic indications for ARF6 activation in EGF-stimulated cells. Moreover, the constitutively active mutant of ARF6 reverses the effect of centaurin-alpha(2) on cortical actin formation. The membrane targeted centaurin-alpha(2) is constitutively active. Together, these studies indicate that centaurin-alpha(2) is recruited in a sustained manner to the plasma membrane through binding to PI 3,4-P(2) and thereby regulates actin reorganisation via ARF6.
Collapse
|
13
|
Stricker R, Chow KM, Walther D, Hanck T, Hersh LB, Reiser G. Interaction of the brain-specific protein p42IP4/centaurin-alpha1 with the peptidase nardilysin is regulated by the cognate ligands of p42IP4, PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4, with stereospecificity. J Neurochem 2006; 98:343-54. [PMID: 16805830 DOI: 10.1111/j.1471-4159.2006.03869.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The brain-specific protein p42IP4, also called centaurin-alpha1, specifically binds phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Here, we investigate the interaction of p42IP4/centaurin-alpha1 with nardilysin (NRDc), a member of the M16 family of zinc metalloendopeptidases. Members of this peptidase family exhibit enzymatic activity and also act as receptors for other proteins. We found that p42IP4/centaurin-alpha1 binds specifically to NRDc from rat brain. We further detected that centaurin-alpha2, a protein that is highly homologous to p42IP4/centaurin-alpha1 and expressed ubiquitously, also binds to NRDc. In vivo interaction was demonstrated by co-immunoprecipitation of p42IP4/centaurin-alpha1 with NRDc from rat brain. The acidic domain of NRDc (NRDc-AD), which does not participate in catalysis, is sufficient for the protein interaction with p42IP4. Interestingly, preincubation of p42IP4 with its cognate ligands D-Ins(1,3,4,5)P4 and the lipid diC8PtdIns(3,4,5)P3 negatively modulates the interaction between the two proteins. D-Ins(1,3,4,5)P4 and diC8PtdIns(3,4,5)P3 suppress the interaction with virtually identical concentration dependencies. This inhibition is highly ligand specific. The enantiomer L-Ins(1,3,4,5)P4 is not effective. Similarly, the phosphoinositides diC8PtdIns(3,4)P2, diC8PtdIns(3,5)P2 and diC8PtdIns(4,5)P2 all have no influence on the interaction. Further experiments revealed that endogenous p42IP4 from rat brain binds to glutathione-S-transferase (GST)-NRDc-AD. The proteins dissociate from each other when incubated with D-Ins(1,3,4,5)P4, but not with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In summary, we demonstrate that p42IP4 binds to NRDc via the NRDc-AD, and that this interaction is controlled by the cognate cellular ligands of p42IP4/centaurin-alpha1. Thus, specific ligands of p42IP4 can modulate the recruitment of proteins, which are docked to p42IP4, to specific cellular compartments.
Collapse
Affiliation(s)
- Rolf Stricker
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Yin H, Laguna KA, Li G, Kuret J. Dysbindin structural homologue CK1BP is an isoform-selective binding partner of human casein kinase-1. Biochemistry 2006; 45:5297-308. [PMID: 16618118 DOI: 10.1021/bi052354e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Casein kinase-1 is a family of ubiquitous eukaryotic protein kinases that frequently function in tandem with the ubiquitin modification system to modulate protein turnover and trafficking. In Alzheimer's disease, these enzymes colocalize with ubiquitinated lesions, including neurofibrillary tangles and granulovacuolar degeneration bodies, suggesting they also play a role in disease pathogenesis. To identify binding partners that potentially regulate or recruit these enzymes toward disease lesions, a Sos-recruitment yeast two-hybrid screen was performed with human Ckidelta (the casein kinase-1 isoform most closely linked to granulovacuolar degeneration bodies) and a human brain cDNA library. All interacting clones contained a single open reading frame termed casein kinase-1 binding protein (CK1BP). On the basis of sequence alignments, CK1BP was a structural homologue of the acidic domain of dysbindin, a component of the dystrophin-associated protein complex and the biogenesis of lysosome-related organelles complex-1. CK1BP interacted with full-length Ckidelta, the isolated Ckidelta catalytic domain, Ckigamma2, -gamma3, and -epsilon in the yeast two-hybrid system, and bound Ckidelta and -epsilon in pulldown assays but did not interact with Ckialpha. Interaction with the Ckidelta catalytic domain led to concentration-dependent inhibition of protein kinase activity in the presence of protein substrates tau and alpha-synuclein. Although intact dysbindin did not bind any CK1 isoform, deletion of its coiled-coil domain yielded a protein fragment that behaved much like CK1BP in two-hybrid screens. These data suggest that the acidic domain of dysbindin and its paralogs in humans may function to recruit casein kinase-1 isoforms to protein complexes involved in multiple biological functions.
Collapse
Affiliation(s)
- Haishan Yin
- Center for Molecular Neurobiology and Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
15
|
Bustos V, Marin O, Meggio F, Cesaro L, Allende C, Allende J, Pinna L. Generation of protein kinase Ck1alpha mutants which discriminate between canonical and non-canonical substrates. Biochem J 2006; 391:417-24. [PMID: 15975091 PMCID: PMC1276941 DOI: 10.1042/bj20050717] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinase CK1 denotes a family of pleiotropic serine/threonine protein kinases implicated in a variety of cellular functions. Typically, CK1 acts as a 'phosphate-directed' kinase whose targeting is primed by a single phosphorylated side chain at position n-3 or n-4 relative to serine/threonine, but increasing evidence is accumulating that CK1 can also engage some of its substrates at sites that do not conform to this canonical consensus. In the present paper, we show that CK1a phosphorylates with the same efficiency phosphopeptides primed by a phosphoserine residue at either n-3 [pS(-3)] or n-4 [pS(-4)] positions. The phosphorylation efficiency of the pS(-4) peptide, and to a lesser extent that of the pS(-3) peptide, is impaired by the triple mutation of the lysine residues in the K229KQK232 stretch to alanine residues, promoting 40-fold and 6-fold increases of Km respectively. In both cases, the individual mutation of Lys232 is as detrimental as the triple mutation. A kinetic alanine-scan analysis with a series of substituted peptide substrates in which the priming phosphoserine residue was effectively replaced by a cluster of four aspartate residues was also consistent with a crucial role of Lys232 in the recognition of the acidic determinant at position n-4. In sharp contrast, the phosphorylation of b-catenin and of a peptide including the non-canonical b-catenin site (Ser45) lacking acidic/phosphorylated determinants upstream is not significantly affected by mutations in the KKQK stretch. These data provide a molecular insight into the structural features that underlie the site specificity of CK1a and disclose the possibility of developing strategies for the preferential targeting of subsets of CK1 substrates.
Collapse
Affiliation(s)
- Victor H. Bustos
- *Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago 7, Chile
| | - Oriano Marin
- †Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
- ‡Istituto Veneto di Medicina Molecolare, via Orus 2, 35129 Padova, Italy
| | - Flavio Meggio
- †Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
- ‡Istituto Veneto di Medicina Molecolare, via Orus 2, 35129 Padova, Italy
| | - Luca Cesaro
- †Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
- ‡Istituto Veneto di Medicina Molecolare, via Orus 2, 35129 Padova, Italy
| | - Catherine C. Allende
- *Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago 7, Chile
| | - Jorge E. Allende
- *Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago 7, Chile
| | - Lorenzo A. Pinna
- †Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
- ‡Istituto Veneto di Medicina Molecolare, via Orus 2, 35129 Padova, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Centaurin-alpha1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem Soc Trans 2005; 33:1279-81. [PMID: 16246098 DOI: 10.1042/bst0331279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ARF (ADP-ribosylation factor) family of small GTPases regulate intracellular membrane trafficking by cycling between an inactive GDP- and an active GTP-bound form. Among the six known mammalian ARFs (ARF1-ARF6), ARF6 is the least conserved and plays critical roles in membrane trafficking and cytoskeletal dynamics near the cell surface. Since ARFs have undetectable levels of intrinsic GTP binding and hydrolysis, they are totally dependent on extrinsic GEFs (guanine nucleotide-exchange factors) for GTP binding and GAPs (GTPase-activating proteins) for GTP hydrolysis. We have recently isolated a novel KIF (kinesin) motor protein (KIF13B) that binds to centaurin-alpha1, an ARF6GAP that binds to the second messenger PIP3 [PtdIns(3,4,5)P3]. KIFs transport intracellular vesicles and recognize their cargo by binding to proteins (receptors) localized on the surface of the cargo vesicles. Identification of centaurin-alpha1 as a KIF13B interactor suggests that KIF13B may transport ARF6 and/or PIP3 using centaurin-alpha1 as its receptor. This paper reviews the studies carried out to assess the interaction and regulation of centaurin-alpha1 by KIF13B.
Collapse
|
17
|
Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang WJ, Peter ME. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 2005; 19:321-32. [PMID: 16061179 DOI: 10.1016/j.molcel.2005.06.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 05/03/2005] [Accepted: 06/24/2005] [Indexed: 01/20/2023]
Abstract
FADD is essential for death receptor (DR)-induced apoptosis. However, it is also critical for cell cycle progression and proliferation, activities that are regulated by phosphorylation of its C-terminal Ser194, which has also been implicated in sensitizing cancer cells to chemotherapeutic drugs and in regulating FADD's intracellular localization. We now demonstrate that casein kinase Ialpha (CKIalpha) phosphorylates FADD at Ser194 both in vitro and in vivo. FADD-CKIalpha association regulates the subcellular localization of FADD, and phosphorylated FADD was found to colocalize with CKIalpha on the spindle poles in metaphase. Inhibition of CKIalpha diminished FADD phosphorylation, prevented the ability of Taxol to arrest cells in mitosis, and blocked mitogen-induced proliferation of mouse splenocytes. In contrast, a low level of cycling splenocytes from mice expressing FADD with a mutated phosphorylation site was insensitive to CKI inhibition. These data suggest that phosphorylation of FADD by CKI is a crucial event during mitosis.
Collapse
Affiliation(s)
- Elizabeth C Alappat
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sedehizade F, von Klot C, Hanck T, Reiser G. p42IP4/Centaurin α1, a Brain-specific PtdIns(3,4,5)P3/Ins(1,3,4,5)P4-binding Protein: Membrane Trafficking Induced by Epidermal Growth Factor is Inhibited by Stimulation of Phospholipase C-coupled Thrombin Receptor. Neurochem Res 2005; 30:1319-30. [PMID: 16341594 DOI: 10.1007/s11064-005-8804-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
The brain-specific 42-kDa protein, p42(IP4), contains a N-terminal zinc finger (ZF) motif and a tandem of two pleckstrin homology (PH) domains. p42(IP4) binds in vitro the second messengers phosphatidylinositol(3,4,5)trisphosphate (PtdIns(3,4,5)P3) and inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). We observed by confocal microscopy in live HEK 293 cells the GFP-p42(IP4), a chimera of human p42(IP4) and green fluorescence protein (GFP). There, we studied the influence of thrombin, which raises Ins(1,3,4,5)P4, on membrane translocation of GFP-p42(IP4), induced by epidermal growth factor (EGF). Thrombin in the presence of LiCl inhibited the EGF-induced membrane recruitment of GFP-p42(IP4). In the absence of LiCl, thrombin weakened the EGF-mediated membrane recruitment of GFP-p42(IP4). Furthermore, the participation of p42(IP4) protein domains on the EGF-mediated membrane translocation was analyzed. We used several p42(IP4) variants, in which one of the domains was deleted. Alternatively, single p42(IP4) domain-GFP fusion proteins were generated. Only the p42(IP4) variant lacking the ZF domain showed a very weak membrane translocation in response to EGF stimulation, but all the other p42(IP4) variants did not translocate. Thus, we conclude that the combination of both PH domains with ZF is required for membrane translocation of p42(IP4).
Collapse
Affiliation(s)
- Fariba Sedehizade
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
We isolated two novel 14-3-3 binding proteins using 14-3-3 zeta as bait in a yeast two-hybrid screen of a human brain cDNA library. One of these encoded the C-terminus of a neural specific armadillo-repeat protein, delta-catenin (neural plakophilin-related arm-repeat protein or neurojungin). delta-Catenin from brain lysates was retained on a 14-3-3 affinity column. Mutation of serine 1072 in the human protein and serine 1094 in the equivalent site in the mouse homologue (in a consensus binding motif for 14-3-3) abolished 14-3-3 binding to delta-catenin in vitro and in transfected cells. delta-catenin binds to presenilin-1, encoded by the gene most commonly mutated in familial Alzheimer's disease. The other clone was identified as the insulin receptor tyrosine kinase substrate protein of 53 kDa (IRSp53). Human IRSp53 interacts with the gene product implicated in dentatorubral-pallidoluysian atrophy, an autosomal recessive disorder associated with glutamine repeat expansion of atrophin-1.
Collapse
Affiliation(s)
- Shaun Mackie
- University of Edinburgh, School of Biomedical and Clinical Laboratory Sciences, Edinburgh, Scotland, UK
| | | |
Collapse
|
20
|
Venkateswarlu K, Hanada T, Chishti AH. Centaurin-α1 interacts directly with kinesin motor protein KIF13B. J Cell Sci 2005; 118:2471-84. [PMID: 15923660 DOI: 10.1242/jcs.02369] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Centaurin-α1 is a phosphatidylinositol 3,4,5-trisphosphate binding protein as well as a GTPase activating protein (GAP) for the ADP-ribosylation factor (ARF) family of small GTPases. To further understand its cellular function, we screened a rat brain cDNA library using centaurin-α1 as bait to identify centaurin-α1 interacting proteins. The yeast two-hybrid screen identified a novel kinesin motor protein as a centaurin-α1 binding partner. The motor protein, termed KIF13B, encoded by a single ∼9.5-kb transcript, is widely expressed with high levels observed in brain and kidney. Yeast two-hybrid and GST pull-down assays showed that the interaction between centaurin-α1 and KIF13B is direct and mediated by the GAP domain of centaurin-α1 and the stalk domain of KIF13B. Centaurin-α1 and KIF13B form a complex in vivo and the KIF13B interaction appears to be specific to centaurin-α1 as other members of the ARF GAP family did not show any binding activity. We also show that KIF13B and centaurin-α1 colocalize at the leading edges of the cell periphery whereas a deletion mutant of centaurin-α1 that lacks the KIF13B binding site, failed to colocalize with KIF13B in vivo. Finally, we demonstrate that KIF13B binding suppresses the ARF6 GAP activity of centaurin-α1 in intact cells. Together, our data suggest a mechanism where direct binding between centaurin-α1 and KIF13B could concentrate centaurin-α1 at the leading edges of cells, thus modulating ARF6 function.
Collapse
Affiliation(s)
- Kanamarlapudi Venkateswarlu
- Department of Pharmacology, School of Medical Sciences, The University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | | | | |
Collapse
|
21
|
Balañá ME, Niedergang F, Subtil A, Alcover A, Chavrier P, Dautry-Varsat A. ARF6 GTPase controls bacterial invasion by actin remodelling. J Cell Sci 2005; 118:2201-10. [PMID: 15897187 DOI: 10.1242/jcs.02351] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia penetrates the host epithelial cell by inducing cytoskeleton and membrane rearrangements reminiscent of phagocytosis. Here we report that Chlamydia induces a sharp and transient activation of the endogenous small GTP-binding protein ARF6, which is required for efficient uptake. We also show that a downstream effector of ARF6, phosphatidylinositol 4-phosphate 5-kinase and its product, phosphatidylinositol 4,5-bisphosphate were instrumental for bacterial entry. By contrast, ARF6 activation of phospholipase D was not required for Chlamydia uptake. ARF6 activation was necessary for extensive actin reorganization at the invasion sites. Remarkably, these signalling players gathered with F-actin in a highly organized three-dimensional concentric calyx-like protrusion around invasive bacteria. These results indicate that ARF6, which controls membrane delivery during phagocytosis of red blood cells in macrophages, has a different role in the entry of this small bacterium, controlling cytoskeletal reorganization.
Collapse
Affiliation(s)
- María Eugenia Balañá
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, CNRS URA 2582, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
22
|
Kattapuram T, Yang S, Maki JL, Stone JR. Protein kinase CK1alpha regulates mRNA binding by heterogeneous nuclear ribonucleoprotein C in response to physiologic levels of hydrogen peroxide. J Biol Chem 2005; 280:15340-7. [PMID: 15687492 DOI: 10.1074/jbc.m500214200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At low concentrations, hydrogen peroxide (H(2)O(2)) is a positive endogenous regulator of mammalian cell proliferation and survival; however, the signal transduction pathways involved in these processes are poorly understood. In primary human endothelial cells, low concentrations of H(2)O(2) stimulated the rapid phosphorylation of the acidic C-terminal domain (ACD) of heterogeneous nuclear ribonucleoprotein C (hnRNP-C), a nuclear restricted pre-mRNA-binding protein, at Ser(240) and at Ser(225)-Ser(228). A kinase activity was identified in mouse liver that phosphorylates the ACD of hnRNP-C at Ser(240) and at two sites at Ser(225)-Ser(228). The kinase was purified and identified by tandem mass spectrometry as protein kinase CK1alpha (formerly casein kinase 1alpha). Protein kinase CK1alpha immunoprecipitated from primary human endothelial cell nuclei also phosphorylated the ACD of hnRNP-C at these positions. Pretreatment of endothelial cells with the protein kinase CK1-specific inhibitor IC261 prevented the H(2)O(2)-stimulated phosphorylation of hnRNP-C. Utilizing phosphoserine-mimicking Ser-to-Glu point mutations, the effects of phosphorylation on hnRNP-C function were investigated by quantitative equilibrium fluorescence RNA binding analyses. Wild-type hnRNP-C1 and hnRNP-C1 modified at the basal sites of phosphorylation (S247E and S286E) both avidly bound RNA with similar binding constants. In contrast, hnRNP-C1 that was also modified at the CK1alpha phosphorylation sites exhibited a 14-500-fold decrease in binding affinity, demonstrating that CK1alpha-mediated phosphorylation modulates the mRNA binding ability of hnRNP-C.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Casein Kinase Ialpha/metabolism
- Casein Kinase Ialpha/physiology
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Chromatography, Ion Exchange
- Electrophoresis, Gel, Two-Dimensional
- Endothelium, Vascular/cytology
- Escherichia coli/metabolism
- Evolution, Molecular
- Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
- Humans
- Hydrogen Peroxide/pharmacology
- Immunoprecipitation
- Indoles/pharmacology
- Kinetics
- Liver/metabolism
- Mice
- Molecular Sequence Data
- Phloroglucinol/analogs & derivatives
- Phloroglucinol/pharmacology
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Serine/chemistry
- Spectrometry, Fluorescence
Collapse
Affiliation(s)
- Taj Kattapuram
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
23
|
Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17:675-89. [PMID: 15722192 DOI: 10.1016/j.cellsig.2004.12.011] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 12/11/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine residues by cellular protein kinases plays an important role in the regulation of various cellular processes. The serine/threonine specific casein kinase 1 and 2 protein kinase families--(CK1 and CK2)--were among the first protein kinases that had been described. In recent years our knowledge of the regulation and function of mammalian CK1 kinase family members has rapidly increased. Extracellular stimuli, the subcellular localization of CK1 isoforms, their interaction with various cellular structures and proteins, as well as autophosphorylation and proteolytic cleavage of their C-terminal regulatory domains influence CK1 kinase activity. Mammalian CK1 isoforms phosphorylate many different substrates among them key regulatory proteins involved in the control of cell differentiation, proliferation, chromosome segregation and circadian rhythms. Deregulation and/or the incidence of mutations in the coding sequence of CK1 isoforms have been linked to neurodegenerative diseases and cancer. This review will summarize our current knowledge about the function and regulation of mammalian CK1 isoforms.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Sobrado P, Jedlicki A, Bustos VH, Allende CC, Allende JE. Basic region of residues 228-231 of protein kinase CK1? is involved in its interaction with axin: Binding to axin does not affect the kinase activity. J Cell Biochem 2005; 94:217-24. [PMID: 15565646 DOI: 10.1002/jcb.20350] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein kinase CK1, also known as casein kinase 1, participates in the phosphorylation of beta-catenin, which regulates the functioning of the Wnt signaling cascade involved in embryogenesis and carcinogenesis. beta-catenin phosphorylation occurs in a multiprotein complex assembled on the scaffold protein axin. The interaction of CK1alpha from Danio rerio with mouse-axin has been studied using a pull-down assay that uses fragments of axin fused to glutathione S transferase, which is bound to glutathione sepharose beads. The results indicate that the three lysines present in the basic region of residues 228-231 of CK1alpha are necessary for the binding of CK1 to axin. Lysine 231 is particularly important in this interaction. In order to define the relevance of the axin-CK1alpha interaction, the effect of the presence of axin on the phosphorylating activity of CK1alpha was tested. It is also evident that the region of axin downstream of residues 503-562 is required for CK1alpha interaction. The binding of CK1alpha to axin fragment 292-681 does not facilitate the phosphorylation of beta-catenin despite the fact that this axin fragment can also bind beta-catenin. Binding of CK1alpha to axin is not required for the phosphorylation of axin itself and, likewise, axin does not affect the kinetic parameters of the CK1alpha towards casein or a specific peptide substrate.
Collapse
Affiliation(s)
- Pablo Sobrado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | | | | | | | | |
Collapse
|
25
|
Mishra SK, Yang Z, Mazumdar A, Talukder AH, Larose L, Kumar R. Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene 2004; 23:4422-9. [PMID: 15077195 DOI: 10.1038/sj.onc.1207569] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/12/2004] [Accepted: 01/27/2004] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that metastasis-associated protein-1 short form (MTA1s) - metastatic tumor antigen 1 short form sequesters estrogen receptor-alpha (ER-alpha) in the cytoplasm of breast cancer cells. Using a yeast two-hybrid screening to clone MTA1s-interacting proteins, we identified casein kinase I-gamma 2 (CKI-gamma2, a ubiquitously expressed cytoplasmic kinase) as an MTA1s-binding protein. We show that MTA1s interacts with CKI-gamma2 both in vitro and in vivo and colocalizes in the cytoplasm. In addition, we found that CKI-gamma2 can phosphorylate MTA1s, but not ER, in an antiestrogen-dependent manner and that estrogen stimulates CKI-gamma2 activity that could be effectively blocked by a specific inhibitor of CKI. CKI-gamma2 could further potentiate the ER corepressive function of MTA1s. Kinase dead CK1-gamma2 could not repress estrogen-induced ER transactivation functions. Results from mutagenesis studies suggest that substitution of the serine residue at 321 to alanine, which is a possible CKI-gamma2 phopshorylation site in MTA1s, results in a significant reduction in the ability of MTA1s to repress ER transactivation. These findings identified MTA1s as a target of CKI-gamma2, and provided new evidence to suggest that CKI-gamma2 phosphorylates and modulates the functions of MTA1s, and that these extranuclear effects of estrogen might have important implications in regulating the functions of MTA1s in human mammary epithelial and cancer cells.
Collapse
Affiliation(s)
- Sandip K Mishra
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zemlickova E, Johannes FJ, Aitken A, Dubois T. Association of CPI-17 with protein kinase C and casein kinase I. Biochem Biophys Res Commun 2004; 316:39-47. [PMID: 15003508 DOI: 10.1016/j.bbrc.2004.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Indexed: 11/15/2022]
Abstract
The protein kinase C-potentiated inhibitor protein of 17kDa, called CPI-17, specifically inhibits myosin light chain phosphatase (MLCP). Phosphorylation of Thr-38 in vivo highly potentiates the ability of CPI-17 to inhibit MLCP. Thr-38 has been shown to be phosphorylated in vitro by a number of protein kinases including protein kinase C (PKC), Rho-associated coiled-coil kinase (ROCK), and protein kinase N (PKN). In this study we have focused on the association of protein kinases with CPI-17. Using affinity chromatography and Western blot analysis, we found interaction with all PKC isotypes and casein kinase I isoforms, CKIalpha and CKI. By contrast, ROCK and PKN did not associate with CPI-17, suggesting that PKC may be the relevant kinase that phosphorylates Thr-38 in vivo. CPI-17 interacted with the cysteine-rich domain of PKC and was phosphorylated by all PKC isotypes. We previously found that CPI-17 co-purified with casein kinase I in brain suggesting they are part of a complex and we now show that CPI-17 associates with the kinase domain of CKI isoforms.
Collapse
Affiliation(s)
- Eva Zemlickova
- University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
27
|
Reiser G, Bernstein HG. Altered expression of protein p42IP4/centaurin-alpha 1 in Alzheimer's disease brains and possible interaction of p42IP4 with nucleolin. Neuroreport 2004; 15:147-8. [PMID: 15106847 DOI: 10.1097/00001756-200401190-00028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protein p42IP4 (centaurin-alpha1) is a brain-specific InsP4/PtdIns3 (PIP)-binding protein, whish is localized in neurons of the human brain. In Alzheimer's disease (AD) the intraneuronal expression of the protein was shown to be elevated. In addition, p42IP4 immunostaining decorated neuritic plaques. Attempting to explain the putative role of the protein in AD, we have concentrated on its well-known interactions with casein kinase I, which is known to be prominently involved in AD pathophysiology. Meanwhile, specific interaction of p42IP4 with nucleolin, another player in AD pathology, has been revealed. Based on these data, we propose alternative concepts of how p42IP4 might act in AD pathomechanisms.
Collapse
Affiliation(s)
- Georg Reiser
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Germany.
| | | |
Collapse
|
28
|
Thacker E, Kearns B, Chapman C, Hammond J, Howell A, Theibert A. The Arf6 GAP centaurin α-1 is a neuronal actin-binding protein which also functions via GAP-independent activity to regulate the actin cytoskeleton. Eur J Cell Biol 2004; 83:541-54. [PMID: 15679100 DOI: 10.1078/0171-9335-00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centaurin alpha-1 is a high-affinity PtdIns(3,4,5)P3-binding protein enriched in brain. Sequence analysis indicates centaurin alpha-1 contains two pleckstrin homology domains, ankyrin repeats and an Arf GAP homology domain, placing it in the AZAP family of phosphoinositide-regulated Arf GAPs. Other members of this family are involved in actin cytoskeletal and focal adhesion organization. Recently, it was reported that centaurin alpha-1 expression diminishes cortical actin and decreases Arf6GTP levels consistent with it functioning as an Arf6 GAP in vivo. In the current report, we show that centaurin alpha-1 binds Arfs in vitro and colocalizes with Arf6 and Arf5 in vivo, further supporting an interaction with Arfs. Centaurin alpha-1 expression produces dramatic effects on the actin cytoskeleton, decreasing stress fibers, diminishing cortical actin, and enhancing membrane ruffles and filopodia. Expression of centaurin alpha-1 also enhances cell spreading and disrupts focal adhesion protein localization. The effects of centaurin alpha-1 on stress fibers and cell spreading are reminiscent of those of Arf6GTP. Consistent with this, we show that many of the centaurin alpha-1-induced effects on the actin cytoskeleton and actin-dependent activities do not require GAP activity. Thus, centaurin alpha-1 likely functions via both GAP-dependent and GAP-independent mechanisms to regulate the actin cytoskeleton. Furthermore, we demonstrate that in vitro, centaurin alpha-1 binds F-actin directly, with actin binding activity localized to the PtdIns(3,4,5)P3-binding PH domain. Our data suggest that centaurin alpha-1 may be a component of the neuronal PI 3-kinase cascade that leads to regulation of the neuronal actin cytoskeleton.
Collapse
Affiliation(s)
- Erin Thacker
- Department of Neurobiology and Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hanck T, Stricker R, Sedehizade F, Reiser G. Identification of gene structure and subcellular localization of human centaurin α2, and p42IP4, a family of two highly homologueous, Ins 1,3,4,5-P4-/PtdIns 3,4,5-P3-binding, adapter proteins. J Neurochem 2003; 88:326-36. [PMID: 14690521 DOI: 10.1046/j.1471-4159.2003.02143.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins which recognize the two messengers phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3), a membrane lipid, and inositol 1,3,4,5-tetrakisphosphate (InsP4), a water-soluble ligand, play important roles by integrating external stimuli, which lead to differentiation, cell death or survival. p42IP4, a PtdInsP3/InsP4-binding protein, is predominantly expressed in brain. The recently described centaurin alpha2 of similar molecular mass which is 58% identical and 75% homologous to the human p42IP4 orthologue, is expressed rather ubiquitously in many tissues. Here, elucidating the gene structure for both proteins, we found the human gene for centaurin alpha2 located on chromosome 17, position 17q11.2, near to the NF1 locus, and human p42IP4 on chromosome 7, position 7p22.3. The two isoforms, which both have 11 exons and conserved exon/intron transitions, seem to result from gene duplication. Furthermore, we studied binding of the two second messengers, PtdInsP3 and InsP4, and subcellular localization of the two proteins. Using recombinant baculovirus we expressed centaurin alpha2 and p42IP4 in Sf9 cells and purified the proteins to homogeneity. Recombinant centaurin alpha2 bound both InsP4 and PtdInsP3 equally well in vitro. Furthermore, fusion proteins of centaurin alpha2 and p42IP4, respectively, with the green fluorescent protein (GFP) were expressed in HEK 293 cells to visualize subcellular distribution. In contrast to p42IP4, which was distributed throughout the cell, centaurin alpha2 was concentrated at the plasma membrane already in unstimulated cells. The protein centaurin alpha2 was released from the membrane upon addition of wortmannin, which inhibits PI3-kinase. p42IP4, however, translocated to plasma membrane upon growth factor stimulation. Thus, in spite of the high homology between centaurin alpha2 and p42IP4 and comparable affinities for InsP4 and PtdInsP3, both proteins showed clear differences in subcellular distribution. We suggest a model, which is based on the difference in phosphoinositide binding stoichiometry of the two proteins, to account for the difference in subcellular localization.
Collapse
Affiliation(s)
- Theodor Hanck
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | | | | | | |
Collapse
|
30
|
Abstract
Since the ligand for the death factor CD95 (CD95L) was identified almost a decade ago, it has been established that this molecule (CD95L, FasL, Apo-1L, CD178, TNFSF6, APT1LG1) has multiple immunoregulatory and pathophysiologically relevant functions. CD95L does not only act as a death factor when externalized with secretory lysosomes on cytotoxic T and NK cells or when expressed on CD4(+) T cells in the course of activation-induced cell death, it is also a key molecule for the establishment of immune privilege or tumor cell survival and may serve as a costimulatory molecule during T cell activation. Moreover, alterations of expression or shedding of different forms of CD95L are associated with many diseases including various malignancies, HIV infection, autoimmune disorders (systemic lupus erythematodes, rheumatoid arthritis), acute myocardial infarction, traumatic injury and many others. In most cases, however, the physiological link between altered CD95L expression and pathophysiology is unknown. Given the potency of the molecule to regulate death and survival of many different cell types, the control of CD95L production, transport, storage, shedding and release is of tremendous biological and clinical interest. This commentary aims at briefly summarizing the current knowledge, hypotheses and controversies about CD95L as a multifunctional ligand and receptor. It touches upon the complex networks of intracellular dynamics of protein transport and trafficking and the potential bidirectional signal transduction capacity of CD95L with a focus on molecular interactions that have been worked out over the past years.
Collapse
Affiliation(s)
- Andreas Linkermann
- Institute for Immunology, Medical Center Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | |
Collapse
|
31
|
Stricker R, Vandekerckhove J, Krishna MU, Falck JR, Hanck T, Reiser G. Oligomerization controls in tissue-specific manner ligand binding of native, affinity-purified p42IP4/centaurin α1 and cytohesins—proteins with high affinity for the messengers d-inositol 1,3,4,5-tetrakisphosphate/phosphatidylinositol 3,4,5-trisphosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1651:102-15. [PMID: 14499594 DOI: 10.1016/s1570-9639(03)00241-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several distinct receptor proteins for the second messengers Ins(1,3,4,5)P(4) and PtdIns(3,4,5)P(3) are already known, such as the brain-specific p42(IP4), which we have previously cloned from different species, and cytohesins. However, it is still unclear whether proteins interacting with phosphoinositide and inositolpolyphosphate second messengers are regulated differently in different tissues. Here, we investigated these native proteins for comparison also from rat lung cytosol and purified them by PtdIns(3,4,5)P(3) affinity chromatography. Proteins selectively binding Ins(1,3,4,5)P(4) with high affinity also showed high affinity and specificity towards PtdIns(3,4,5)P(3). In lung cytosol, two prominent protein bands were found in the eluate from a PtdIns(3,4,5)P(3) affinity column. We identified these proteins by mass spectrometry as the cytohesin family of Arf guanosine nucleotide exchange factors (cytohesin 1, ARNO, GRP-1) and as Bruton's tyrosine kinase. Western blot analysis indicated that p42(IP4) was present in lung only at very low concentrations. Applying the affinity purification scheme established for rat lung cytosol to cytosol from rat brain, however, yielded only p42(IP4). We identified cytohesins in rat brain by Western blotting and PCR, but cytohesins surprisingly did not bind to the PtdIns(3,4,5)P(3)-affinity column. Gel filtration experiments of brain cytosol revealed that brain cytohesins are bound to large molecular weight complexes (150 to more than 500 kDa). Thus, we hypothesize that this finding explains why brain cytohesins apparently do not bind the inositolphosphate ligand. In lung cytosol, on the other hand, cytohesins occur as dimers. Gel filtration also showed that p42(IP4) in brain cytosol occurs as a monomer. Thus, oligomerization (homomeric or heteromeric) of InsP(4)/PtdInsP(3) binding proteins can modulate their function in a tissue-dependent manner because it can modify their ability to interact with the ligands.
Collapse
Affiliation(s)
- Rolf Stricker
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Zemlickova E, Dubois T, Kerai P, Clokie S, Cronshaw AD, Wakefield RID, Johannes FJ, Aitken A. Centaurin-alpha(1) associates with and is phosphorylated by isoforms of protein kinase C. Biochem Biophys Res Commun 2003; 307:459-65. [PMID: 12893243 DOI: 10.1016/s0006-291x(03)01187-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Centaurin-alpha(1) is a member of the family of ADP-ribosylation factors (ARF) GTPase activating proteins (GAPs), although ARF GAP activity has not yet been demonstrated. The human homologue, centaurin-alpha(1) functionally complements the ARF GAP activity of Gcs1 in yeast. Although Gcs1 is involved in the formation of actin filaments in vivo, the function of centaurin remains elusive. We have identified a number of novel centaurin-alpha(1) binding partners; including CKIalpha and nucleolin. In this report, we have focused on the interaction of centaurin-alpha(1) with PKC. All groups of PKC associate directly through their cysteine rich domains. Centaurin-alpha(1) is also a substrate for all PKC classes and we have identified the two sites of phosphorylation. This is the first report of a kinase that phosphorylates centaurin-alpha(1).
Collapse
Affiliation(s)
- Eva Zemlickova
- University of Edinburgh, School of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Niedergang F, Colucci-Guyon E, Dubois T, Raposo G, Chavrier P. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J Cell Biol 2003; 161:1143-50. [PMID: 12810696 PMCID: PMC2172982 DOI: 10.1083/jcb.200210069] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Engulfment of particles by phagocytes is induced by their interaction with specific receptors on the cell surface, which leads to actin polymerization and the extension of membrane protrusions to form a closed phagosome. Membrane delivery from internal pools is considered to play an important role in pseudopod extension during phagocytosis. Here, we report that endogenous ADP ribosylation factor 6 (ARF6), a small GTP-binding protein, undergoes a sharp and transient activation in macrophages when phagocytosis was initiated via receptors for the Fc portion of immunoglobulins (FcRs). A dominant-negative mutant of ARF6 (T27N mutation) dramatically affected FcR-mediated phagocytosis. Expression of ARF6-T27N lead to a reduction in the focal delivery of vesicle-associated membrane protein 3+ endosomal recycling membranes at phagocytosis sites, whereas actin polymerization was unimpaired. This resulted in an early blockade in pseudopod extension and accumulation of intracellular vesicles, as observed by electron microscopy. We conclude that ARF6 is a major regulator of membrane recycling during phagocytosis.
Collapse
Affiliation(s)
- Florence Niedergang
- Membrane and Cytoskeleton Dynamics Laboratory, UMR144 CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
34
|
Aggensteiner M, Reiser G. Expression of the brain-specific membrane adapter protein p42IP4/centaurin alpha, a Ins(1,3,4,5)P4/PtdIns(3,4,5)P3 binding protein, in developing rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:77-87. [PMID: 12694946 DOI: 10.1016/s0165-3806(03)00033-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inositolphosphates and phosphatidylinositides are important second messengers. Previously p42(IP4), a protein with high affinity for both Ins(1,3,4,5)P(4) and PtdIns(3,4,5)P(3) has been characterized in our laboratory. In the present study mRNA levels of p42(IP4) were quantified during development (ages: 7, 14, 21 days and adult) by means of ribonuclease protection assay in various rat brain regions (cerebellum, cortex, striatum, thalamus, hypothalamus, olfactory bulb, hippocampus and tectum (superior and inferior colliculus)). A high level of p42(IP4) mRNA was detected in the cortex (ca. 1 pg specific RNA per microg of total RNA) which stayed highly independent of the age of the animals. In hippocampus and in the thalamus, p42(IP4) mRNA levels were comparable to those in the cortex in the first and second week postnatally, but decreased to lower levels in the adult brain. In striatum, the mRNA increased, albeit less intensely than in hippocampus and thalamus, until day 21 postnatally, and then decreased in the adult rat brain. Cerebellar p42(IP4) mRNA showed a slow increase within the first 3 weeks postnatally, and remained rather high in the adult brain. The protein expression of p42(IP4), tested within the same samples by Western blot staining, was consistent with mRNA values. For comparison, glutamic acid decarboxylase (isoforms GAD65/GAD67), an enzyme, for which some regional brain specific distribution is already known, was also examined. The mRNA levels of GAD and its developmental regulation clearly differed from that of p42(IP4). In summary, p42(IP4) expressed in several neuronal cell types, did not seem to be restricted to specific developmental stages, but the high absolute expression levels at all developmental stages indicated that p42(IP4) is a protein fundamental for neuronal functioning.
Collapse
Affiliation(s)
- Michael Aggensteiner
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
35
|
Dubois T, Howell S, Zemlickova E, Learmonth M, Cronshaw A, Aitken A. Novel in vitro and in vivo phosphorylation sites on protein phosphatase 1 inhibitor CPI-17. Biochem Biophys Res Commun 2003; 302:186-92. [PMID: 12604330 DOI: 10.1016/s0006-291x(03)00130-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CPI-17 is a protein phosphatase 1 (PP1) inhibitor that has been shown to act on the myosin light chain phosphatase. CPI-17 is phosphorylated on Thr-38 in vivo, thus enhancing its ability to inhibit PP1. Thr-38 has been shown to be the target of several protein kinases in vitro. Originally, the expression of CPI-17 was proposed to be smooth muscle specific. However, it has recently been found in platelets and we show in this report that it is endogenously phosphorylated in brain on Ser-128 in a domain unique to CPI-17. Ser-128 is within a consensus phosphorylation site for protein kinase A (PKA) and calcium calmodulin kinase II. However, these two kinases do not phosphorylate Ser-128 in vitro but phosphorylate Ser-130 and Thr-38, respectively. The kinase responsible for Ser-128 phosphorylation remains to be identified. CPI-17 has strong sequence similarity with PHI-1 (which is also a phosphatase inhibitor) and LimK-2 kinase. The novel in vivo and in vitro phosphorylation sites (serines 128 and 130) are in a region/domain unique to CPI-17, suggesting a specific interaction domain that is regulated by phosphorylation.
Collapse
Affiliation(s)
- Thierry Dubois
- Division of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
36
|
Burzio V, Antonelli M, Allende CC, Allende JE. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1alpha from zebrafish (Danio rerio). J Cell Biochem 2003; 86:805-14. [PMID: 12210746 DOI: 10.1002/jcb.10263] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein kinase CK1 (previously known as casein kinase I) conforms to a subgroup of the great protein kinase family found in eukaryotic organisms. The CK1 subgroup of vertebrates contains seven members known as alpha, beta, gamma1, gamma2, gamma3, delta, and epsilon. The CK1alpha gene can generate four variants (CK1alpha, CK1alphaS, CK1alphaL, and CK1alphaLS) through alternate splicing, characterized by the presence or absence of two additional coding sequences. Exon "L" encodes a 28-amino acid stretch that is inserted after lysine 152, in the center of the catalytic domain. The "S" insert encodes 12 amino acid residues and is located close to the carboxyl terminus of the protein. This work reports some biochemical and cellular properties of the four CK1alpha variants found to be expressed in zebrafish (Danio rerio). The results obtained indicate that the presence of the "L" insert affects several biochemical properties of CK1alpha: (a) it increases the apparent Km for ATP twofold, from approximately 30 to approximately 60 microM; (b) it decreases the sensitivity to the CKI-7 inhibitor, raising the I50 values from 113 to approximately 230 microM; (c) it greatly decreases the heat stability of the enzyme at 40 degrees C. In addition, the insertion of the "L" fragment exerts very important effects on some cellular properties of the enzyme. CK1alphaL concentrates in the cell nucleus, excluding nucleoli, while the CK1alpha variant is predominantly cytoplasmic, although some presence is observed in the nucleus. This finding supports the thesis that the basic-rich region found in the "L" insert acts as a nuclear localization signal. The "L" insert-containing variant was also found to be more rapidly degraded (half-life of 100 min) than the CK1alpha variant (half-life of 400 min) in transfected Cos-7 cells.
Collapse
Affiliation(s)
- Veronica Burzio
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago 7, Chile
| | | | | | | |
Collapse
|
37
|
Dubois T, Zemlickova E, Howell S, Aitken A. Centaurin-alpha 1 associates in vitro and in vivo with nucleolin. Biochem Biophys Res Commun 2003; 301:502-8. [PMID: 12565890 DOI: 10.1016/s0006-291x(02)03010-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Centaurin-alpha(1) was originally described as a binding partner for phosphoinositides. In spite of the presence of a putative ADP-ribosylation factor (ARF) GTPase-activating protein (GAP) domain, no ARF-GAP activity has been attributed to centaurin-alpha(1) so far. Thus the function of this protein remains to be determined. In order to better understand its intracellular role, we aimed to identify centaurin-alpha(1) partners. Using affinity chromatography followed by mass spectrometry analysis, we identified several potential centaurin-alpha(1) protein partners. Nucleolin, a nucleolar protein involved in ribosome biosynthesis, was the main centaurin-alpha(1) interacting protein. The interaction between centaurin-alpha(1) and nucleolin was confirmed by Western blot analysis and GST pull down assays. Moreover, we have shown that ectopically expressed centaurin-alpha(1) associates in vivo with endogenous nucleolin in human embryonic kidney 293 cells. In addition, the association between nucleolin and centaurin-alpha(1) was disrupted by RNAse treatment, indicating that RNA integrity was necessary for their binding. This suggested that centaurin-alpha(1) was part of a ribonucleoprotein complex.
Collapse
Affiliation(s)
- Thierry Dubois
- Division of Biomedical and Clinical Laboratory Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | |
Collapse
|
38
|
Reiser G, Bernstein HG. Neurons and plaques of Alzheimer's disease patients highly express the neuronal membrane docking protein p42IP4/centaurin alpha. Neuroreport 2002; 13:2417-9. [PMID: 12499840 DOI: 10.1097/00001756-200212200-00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The protein p42(IP4) (also called centaurin alpha), identified as a brain-specific InsP4/PtdInsP3 (PIP3)-binding protein, has been shown to be localized in human brain, specifically expressed in neurons. Several casein kinases have been found to be involved in Alzheimer's disease (AD) pathology. Since casein kinase I was reported to possess a binding domain for p42(IP4), we here investigated the expression and localization of p42(IP4) in AD brains. In cortical neurons of AD brains intracellular immunostaining for p42(IP4) exceeded the level seen in these neurons of normal brain. Statistically, significantly more p42(IP4)-immunoreactive neurons were found in temporal and angular cortex of AD patients as compared to control brain. Mostly impressively, neuritic plaques displayed a very prominent signal. Thus, we suggest that the up-regulated p42(IP4) in AD neurons may serve as a docking protein to recruit signaling molecules such as different subtypes of casein kinase I to the plasma membrane. This is the first indication for a functional interaction of these protein in possible neuronal damage. Therefore proteins such as p42(IP4), central players in signaling, may be appropriate targets for preventing neurodegenerative processes.
Collapse
Affiliation(s)
- Georg Reiser
- Klinik für Psychiatrie, Psychotherapie und Psychosomatische Medizin, Medizinische Fakultät, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
39
|
Graeser R, Gannon J, Poon RYC, Dubois T, Aitken A, Hunt T. Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. J Cell Sci 2002; 115:3479-90. [PMID: 12154078 DOI: 10.1242/jcs.115.17.3479] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCTAIRE-1 is a CDK-related protein kinase found in terminally differentiated cells in brain and testis, and in many immortalised and transformed cell lines. Bacterially expressed PCTAIRE is completely inactive as a protein kinase, but is a very good substrate for protein kinase A (PKA),which phosphorylates a total of four sites in the N-terminus of PCTAIRE-1. Phosphorylation of one of these sites, Ser119, generates a 14-3-3 binding site, which is functional in vitro as well as in vivo. Mutation of another PKA site, Ser153, to an alanine residue generated an activated kinase in transfected mammalian cells. This activity was comparable to that of CDK5 activated by a bacterially expressed, truncated version of p35nck,p21. Gel filtration analysis of a brain extract suggested that monomeric PCTAIRE-1 was the active species, implying that PCTAIRE-1 may not be a true CDK, in that it does not require a partner (cyclin-like) subunit for kinase activity. Finally, we found that various forms of PCTAIRE-1 transfected into neuroblastoma cell lines could either promote or inhibit neurite outgrowth,suggesting a potential role for the PCTAIRE-1 gene product in the control of neurite outgrowth.
Collapse
Affiliation(s)
- Ralph Graeser
- ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Dubois T, Howell S, Zemlickova E, Aitken A. Identification of casein kinase Ialpha interacting protein partners. FEBS Lett 2002; 517:167-71. [PMID: 12062430 DOI: 10.1016/s0014-5793(02)02614-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Casein kinase Ialpha (CKIalpha) belongs to a family of serine/threonine protein kinases involved in membrane trafficking, RNA processing, mitotic spindle formation and cell cycle progression. In this report, we identified several CKIalpha interacting proteins including RCC1, high mobility group proteins 1 and 2 (HMG1, HMG2), Erf, centaurin-alpha1, synaptotagmin IX and CPI-17 that were isolated from brain as CKIalpha co-purifying proteins. Actin, importin-alpha(1), importin-beta, PP2Ac, centaurin-alpha1, and HMG1 were identified by affinity chromatography using a peptide column comprising residues 214-233 of CKIalpha. We have previously shown that centaurin-alpha1 represents a CKIalpha partner both in vitro and in vivo. The nuclear protein regulator of chromosome condensation 1 (RCC1) is a guanosine nucleotide exchange factor for Ran which is involved in nuclear transport and mitotic spindle formation. Here we show that CKIalpha and RCC1 interact in brain and in cultured cells. However, the interaction does not involve residues 217-233 of CKIalpha which are proposed from X-ray structures to represent an anchoring site for CKI partners. Formation of the RCC1/CKIalpha complex is consistent with the association of the kinase with mitotic spindles. In conclusion, we have identified a number of novel CKIalpha protein partners and their relations to CKI are discussed.
Collapse
Affiliation(s)
- Thierry Dubois
- The University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh, UK.
| | | | | | | |
Collapse
|
41
|
Whitley P, Gibbard AM, Koumanov F, Oldfield S, Kilgour EE, Prestwich GD, Holman GD. Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle. Eur J Cell Biol 2002; 81:222-30. [PMID: 12018390 DOI: 10.1078/0171-9335-00242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe here the cloning, expression and characterisation of centaurin-alpha2 from a rat adipocyte cDNA library. The centaurin-alpha2 cDNA contains an open reading frame, which codes for a protein of 376 amino acids with predicted mass of 43.5 kDa. Centaurin-alpha2 shares 51-59% identity with centaurin-alpha1 proteins and has the same domain organisation, consisting of a predicted N-terminal ArfGAP domain followed by two successive pleckstrin homology domains. Despite the sequence similarity, there are a number of notable differences between the previously characterised centaurin-alpha1 proteins and the newly described centaurin-alpha2: (i) in vitro lipid binding experiments with centaurin-alpha2 do not reveal the same selectivity for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate that has been shown for centaurin-alpha; (ii) unlike centaurin-alpha1 which is expressed mainly in the brain, centaurin-alpha2 has a broad tissue distribution, being particularly abundant in fat, heart and skeletal muscle; (iii) in contrast to centaurin-alpha1 which is found in both membrane and cytosolic fractions, endogenous centaurin-alpha2 is exclusively present in the dense membrane fractions of cell extracts, suggesting a constitutive membrane association. Insulin stimulation, which stimulates phosphatidylinositol 3,4,5-trisphosphate production, does not alter the subcellular distribution of centaurin-alpha2 between adipocyte membrane fractions. This observation is consistent with the lack of specificity of centaurin-alpha2 for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- Paul Whitley
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Dubois T, Kerai P, Learmonth M, Cronshaw A, Aitken A. Identification of syntaxin-1A sites of phosphorylation by casein kinase I and casein kinase II. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:909-14. [PMID: 11846792 DOI: 10.1046/j.0014-2956.2001.02725.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Casein kinases I (CKI) are serine/threonine protein kinases widely expressed in a range of eukaryotes including yeast, mammals and plants. They have been shown to play a role in diverse physiological events including membrane trafficking. CKI alpha is associated with synaptic vesicles and phosphorylates some synaptic vesicle associated proteins including SV2. In this report, we show that syntaxin-1A is phosphorylated in vitro by CKI on Thr21. Casein kinase II (CKII) has been shown previously to phosphorylate syntaxin-1A in vitro and we have identified Ser14 as the CKII phosphorylation site, which is known to be phosphorylated in vivo. As syntaxin-1A plays a key role in the regulation of neurotransmitter release by forming part of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, we propose that CKI may play a role in synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Thierry Dubois
- The University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, UK.
| | | | | | | | | |
Collapse
|
43
|
Marin O, Burzio V, Boschetti M, Meggio F, Allende CC, Allende JE, Pinna LA. Structural features underlying the multisite phosphorylation of the A domain of the NF-AT4 transcription factor by protein kinase CK1. Biochemistry 2002; 41:618-27. [PMID: 11781102 DOI: 10.1021/bi0112309] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phosphorylation and dephosphorylation of the NF-AT family of transcription factors play a key role in the activation of T lymphocytes and in the control of the immune response. The mechanistic aspects of NF-AT4 phosphorylation by protein kinase CK1 have been studied in this work with the aid of a series of 27 peptides, reproducing with suitable modifications the regions of NF-AT4 that have been reported to be phosphorylated by this protein kinase. The largest parent peptide, representing the three regions A, Z, and L spanning amino acids 173-218, is readily phosphorylated by CK1 at seryl residues belonging to the A2 segment, none of which fulfill the canonical consensus sequence for CK1. An acidic cluster of amino acids in the linker region between domains A and Z is essential for high-efficiency phosphorylation of the A2 domain, as shown by the increase in K(m) caused by a deletion of the linker region or a substitution of the acidic residues with glycines. Individual substitutions with alanine of each of the five serines in the A2 domain (S-177, S-180, S-181, S-184, and S-186) reduce the phosphorylation rate, the most detrimental effect being caused by Ser177 substitution which results in a 10-fold drop in V(max). On the contrary, the replacement of Ser177 with phosphoserine triggers a hierarchical effect with a dramatic improvement in phosphorylation efficiency, which no longer depends on the linker region for optimal efficiency. These data are consistent with a two-phase phosphorylation mechanism of NF-AT4 by CK1, initiated by the linker region which provides a functional docking site for CK1 and allows the unorthodox phosphorylation of Ser177; once achieved, this phosphoserine residue primes the phosphorylation of other downstream seryl residues, according to a hierarchical mechanism typically exploited by CK1.
Collapse
Affiliation(s)
- Oriano Marin
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del CNR, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|