1
|
Inada S, Chiba Y, Tian T, Sato H, Wang X, Yoshizaki K, Oka S, Yamada A, Fukumoto S. Expression patterns of keratin family members during tooth development and the role of keratin 17 in cytodifferentiation of stratum intermedium and stellate reticulum. J Cell Physiol 2024; 239:1-13. [PMID: 39014890 DOI: 10.1002/jcp.31387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Keratins are typical intermediate filament proteins of the epithelium that exhibit highly specific expression patterns related to the epithelial type and stage of cellular differentiation. They are important for cytoplasmic stability and epithelial integrity and are involved in various intracellular signaling pathways. Several keratins are associated with enamel formation. However, information on their expression patterns during tooth development remains lacking. In this study, we analyzed the spatiotemporal expression of keratin family members during tooth development using single-cell RNA-sequencing (scRNA-seq) and microarray analysis. scRNA-seq datasets from postnatal Day 1 mouse molars revealed that several keratins are highly expressed in the dental epithelium, indicating the involvement of keratin family members in cellular functions. Among various keratins, keratin 5 (Krt5), keratin 14 (Krt14), and keratin 17 (Krt17) are highly expressed in the tooth germ; KRT17 is specifically expressed in the stratum intermedium (SI) and stellate reticulum (SR). Depletion of Krt17 did not affect cell proliferation in the dental epithelial cell line SF2 but suppressed their differentiation ability. These results suggest that Krt17 is essential for SI cell differentiation. Furthermore, scRNA-seq results indicated that Krt5, Krt14, and Krt17 exhibited distinct expression patterns in ameloblast, SI, and SR cells. Our findings contribute to the elucidation of novel mechanisms underlying tooth development.
Collapse
Affiliation(s)
- Saori Inada
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuta Chiba
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tian Tian
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Hiroshi Sato
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Keigo Yoshizaki
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sae Oka
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
2
|
Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone 2023; 166:116595. [PMID: 36272714 DOI: 10.1016/j.bone.2022.116595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Truncation mutations in family with sequence similarity, member H (FAM83H) gene are considered the main cause of autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI); however, its pathogenic mechanism in amelogenesis remains poorly characterized. This study aimed to investigate the effects of truncated FAM83H on developmental defects in enamel. CRISPR/Cas9 technology was used to develop a novel Fam83h c.1186C > T (p.Q396*) knock-in mouse strain, homologous to the human FAM83H c.1192C > T mutation in ADHCAI. The Fam83hQ396⁎/Q396⁎ mice showed poor growth, a sparse and scruffy coat, scaly skin and early mortality compared to control mice. Moreover, the forelimbs of homozygous mice were swollen, exhibiting a significant inflammatory response. Incisors of Fam83hQ396⁎/Q396⁎ mice appeared chalky white, shorter, and less sharp than those of control mice, and energy dispersive X-ray spectroscopy (EDS) analysis and Prussian blue staining helped identify decreased iron and increased calcium (Ca) and phosphorus (P) levels, with an unchanged Ca/P ratio. The expression of iron transportation proteins, transferrin receptor (TFRC) and solute carrier family 40 member 1 (SLC40A1), was decreased in Fam83h-mutated ameloblasts. Micro-computed tomography revealed enamel defects in Fam83hQ396⁎/Q396⁎ mice. Fam83hQ396⁎/Q396⁎ enamel showed decreased Vickers hardness and distorted enamel rod structure and ameloblast arrangement. mRNA sequencing showed that the cell adhesion pathway was most notably clustered in LS8-Fam83h-mutated cells. Immunofluorescence analysis further revealed decreased protein expression of desmoglein 3, a component of desmosomes, in Fam83h-mutated ameloblasts. The FAM83H-casein kinase 1α (CK1α)-keratin 14 (K14)-amelogenin (AMELX) interaction was detected in ameloblasts. And K14 and AMELX were disintegrated from the tetramer in Fam83h-mutated ameloblasts in vitro and in vivo. In secretory stage ameloblasts of Fam83hQ396⁎/Q396⁎ mice, AMELX secretion exhibited obvious retention in the cytoplasm. In conclusion, truncated FAM83H exerted dominant-negative effects on gross development, amelogenesis, and enamel biomineralization by disturbing iron transportation, influencing the transportation and secretion of AMELX, and interfering with cell-cell adhesion in ameloblasts.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wushuang Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shiyu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Yang X, Yamazaki H, Yamakoshi Y, Duverger O, Morasso MI, Beniash E. Trafficking and secretion of keratin 75 by ameloblasts in vivo. J Biol Chem 2019; 294:18475-18487. [PMID: 31628189 PMCID: PMC6885611 DOI: 10.1074/jbc.ra119.010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER-Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER-Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hajime Yamazaki
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Olivier Duverger
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
4
|
Shi G, Zhou Y, Guo J, Yang Z, Lu Y, Song Y, Jia J. Immunohistochemical Localization of Fam83h During Fluorosis-induced Mouse Molar Development. J Histochem Cytochem 2018; 66:663-671. [PMID: 29676651 DOI: 10.1369/0022155418772289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The clinical and pathological features of fluorosis are similar to amelogenesis imperfecta (AI) caused by FAM83H mutations, suggesting that excess fluoride could have effects on the expression of Fam83h. Our previous study found that Fam83h was downregulated by fluorosis induction in ameloblasts; the purpose of this study was to underline the importance of understanding the relationship between fluoride administration and Fam83h expression in vivo. A total of 80 healthy female adult Kunming mice were randomly divided into control group or F group that induced the clinical features of fluorosis. Immunohistochemical staining on sections of the embryo mandible regions was performed at different developmental stages. Mouse primary ameloblast-like cells of the two groups at E13.5, E15.5, and E18.5 were cultured and examined for the expression of Fam83h. The expression of Fam83h in the F group was significantly lower than that in the control group; however, Fam83h was observed clearly in the whole enamel organ in the control group. Our findings shed new light on the potential effects of Fam83h in fluorosis using a mouse model and revealed that high fluoride decreased the expression of Fam83h. This may be one of the reasons for the occurrence of fluorosis.
Collapse
Affiliation(s)
- Guanghui Shi
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yanyan Zhou
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jing Guo
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Zhongrui Yang
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yang Lu
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Jia
- The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
5
|
Wang L, Zhu Y, Wang D. High-Dose Fluoride Induces Apoptosis and Inhibits Ameloblastin Secretion in Primary Rat Ameloblast. Biol Trace Elem Res 2016; 174:402-409. [PMID: 27193486 DOI: 10.1007/s12011-016-0738-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
The objectives of this study are to establish the in vitro culture system for rat primary ameloblast and to investigate the effects of fluoride on cell viability, apoptosis, and ameloblastin (AMBN) secretion of primary rat ameloblast in vitro. Ameloblast was isolated from the tooth germ of the maxillomandibular molar and cultured in vitro. Cells were treated with NaF at 0.4, 0.8, 1.6, 3.2, and 6.4 mM for 24, 48, and 72 h, respectively. Cell viability was measured by MTT assay and apoptosis was tested by flow cytometry. The activation of Fas ligand (FasL)/Fas pathway was detected using immunoblotting for FasL, Fas, cleaved caspase-8, cleaved caspase-3, and cleaved PARP. Secretion of AMBN in culture medium was measured using ELISA. Primary rat ameloblast was successfully isolated and cultured. The effects of low-dose fluoride on cell viability were bi-phasic, while high-dose fluoride resulted in decreased cell viability uniformly. Fluoride induced ameloblast apoptosis via activation of FasL/Fas signaling pathway and diminished secretion of AMBN by ameloblast. Fluoride could decrease ameloblast viability, induce ameloblast apoptosis via activating FasL/Fas signaling pathway, and reduce AMBN secretion.
Collapse
Affiliation(s)
- Lin Wang
- Department of Stomatology, Xi'an Medical University, No. 1, XinWang Road, WeiYang District, Xi'an, 710021, China.
| | - Yong Zhu
- Department of Stomatology, Xi'an Medical University, No. 1, XinWang Road, WeiYang District, Xi'an, 710021, China
| | - Danyang Wang
- Department of Stomatology, Xi'an Medical University, No. 1, XinWang Road, WeiYang District, Xi'an, 710021, China
| |
Collapse
|
6
|
FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep 2016; 6:26557. [PMID: 27222304 PMCID: PMC4879633 DOI: 10.1038/srep26557] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.
Collapse
|
7
|
Yang KC, Kitamura Y, Wu CC, Chang HH, Ling TY, Kuo TF. Tooth Germ-Like Construct Transplantation for Whole-Tooth Regeneration: An In Vivo Study in the Miniature Pig. Artif Organs 2015; 40:E39-50. [DOI: 10.1111/aor.12630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kai-Chiang Yang
- School of Dental Technology; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| | - Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery; Matsumoto Dental University; Nagano Japan
| | - Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City Taiwan
| | - Hao-Hueng Chang
- Department of Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
| | - Thai-Yen Ling
- Institute of Pharmacology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Tzong-Fu Kuo
- Graduate Institute of Veterinary Medicine; School of Veterinary Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
8
|
Kero D, Kalibovic Govorko D, Vukojevic K, Cubela M, Soljic V, Saraga-Babic M. Expression of cytokeratin 8, vimentin, syndecan-1 and Ki-67 during human tooth development. J Mol Histol 2014; 45:627-40. [PMID: 25120060 DOI: 10.1007/s10735-014-9592-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Spatio-temporal immunolocalizations of cytokeratin 8 (CK8), vimentin, syndecan-1 and Ki-67 were analyzed in ten human incisors and canine tooth germs between the 7th and 20th developmental weeks. CK8 expression was mild to moderate in the epithelial tooth parts, while it shifted from absent or mild in its mesenchymal parts, but few cells, sparsely distributed throughout the tooth germ, strongly expressed CK8. As development progressed, CK8 expression increased to strong in preameloblasts, while expression of vimentin increased to moderate in the epithelial and mesenchymal tooth parts, particularly in the dental papilla and sac. Co-expression of CK8 and vimentin was observed in some parts of the tooth germ, and was increasing in the differentiating preameloblasts and preodontoblasts. Syndecan-1 showed characteristic shift of expression from epithelial to mesenchymal tooth parts, being particularly strong in dental papilla, sac and cervical loops, while co-expression of Ki-67/syndecan-1 was strong in the dental papilla. Our study demonstrated spatio-temporal expression and restricted co-expression of the investigated markers, indicating participation of CK8 and vimentin in cell proliferation and migration, and differentiation of preodontoblasts and preameloblasts. Our data also suggest involvement of syndecan-1 in morphogenesis of the developing tooth crown and cervical loops, and together with CK8 and vimentin in differentiation of preameloblasts and preodontoblasts.
Collapse
Affiliation(s)
- D Kero
- School of Dental Medicine, University of Split, Soltanska 2, 21000, Split, Croatia
| | | | | | | | | | | |
Collapse
|
9
|
New insights into the functions of enamel matrices in calcified tissues. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2014.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Yasukawa M, Ishida K, Yuge Y, Hanaoka M, Minami Y, Ogawa M, Sasaki T, Saito M, Tsuji T. Dpysl4 is involved in tooth germ morphogenesis through growth regulation, polarization and differentiation of dental epithelial cells. Int J Biol Sci 2013; 9:382-90. [PMID: 23630450 PMCID: PMC3638293 DOI: 10.7150/ijbs.5510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/05/2022] Open
Abstract
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.
Collapse
Affiliation(s)
- Masato Yasukawa
- Department of Biological Science and Technology, Graduate school of Industrial Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kimura A, Yoshizawa K, Sasaki T, Uehara N, Kinoshita Y, Miki H, Yuri T, Uchida T, Tsubura A. N-methyl-N-nitrosourea-induced changes in epithelial rests of Malassez and the development of odontomas in rats. Exp Ther Med 2012; 4:15-20. [PMID: 23060916 DOI: 10.3892/etm.2012.559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/04/2012] [Indexed: 01/13/2023] Open
Abstract
Morphological changes in the epithelial rests of Malassez (ERM) and the development of odontogenic tumors in the molars of female Lewis rats treated at 4 weeks of age with a single intraperitoneal injection of 50 mg/kg of N-methyl-N-nitrosourea (MNU) were examined at 12, 18 and 30 weeks of age. Following MNU exposure, the total number and average area of ERM in the cervical and furcational regions of the first, second and third molars of the mandible and maxilla were compared with age-matched control animals. The number of ERM at each time point was significantly greater in the MNU-treated group compared to the control group, but there was no time-dependent increase in the number of ERM in either group. The area of ERM was significantly larger in the MNU-treated group compared to the control group at each time point, and it increased in a time-dependent manner in the MNU-treated group. No increases in the number or area of ERM were observed in the control group. At 30 weeks of age, 23% of the MNU-treated rats had developed odontomas (complex type) in the molar region as well as in the incisor region. Immunohistochemically, the expression of tyrosine receptor kinase A (TrkA) and cytokeratin 14 (CK14) decreased, whereas p63 expression remained high during ERM enlargement. In tumors, ameloblast-like cells were positive for amelogenin, TrkA and CK14 but negative for p63, whereas odontoblast-like cells were negative for all antigens examined. In conclusion, a single intraperitoneal injection of MNU caused the development of odontomas in the molar region; these tumors were possibly derived from ERM.
Collapse
Affiliation(s)
- Ayako Kimura
- Department of Pathology II, Kansai Medical University, Morguchi, Osaka 570-8506
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ida-Yonemochi H, Satokata I, Ohshima H, Sato T, Yokoyama M, Yamada Y, Saku T. Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice. Matrix Biol 2011; 30:379-88. [PMID: 21933708 DOI: 10.1016/j.matbio.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/29/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022]
Abstract
Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Ferro F, Spelat R, Falini G, Gallelli A, D'Aurizio F, Puppato E, Pandolfi M, Beltrami AP, Cesselli D, Beltrami CA, Ambesi-Impiombato FS, Curcio F. Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2299-310. [PMID: 21514442 PMCID: PMC3081158 DOI: 10.1016/j.ajpath.2011.01.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 01/09/2023]
Abstract
Tooth morphogenesis requires sequential and reciprocal interactions between the cranial neural crest-derived mesenchymal cells and the stomadial epithelium, which regulate tooth morphogenesis and differentiation. We show how mesenchyme-derived single stem cell populations can be induced to transdifferentiate in vitro in a structure similar to a dental bud. The presence of stem cells in the adipose tissue has been previously reported. We incubated primary cultures of human adipose tissue-derived stem cells in a dental-inducing medium and cultured the aggregates in three-dimensional conditions. Four weeks later, cells formed a three-dimensional organized structure similar to a dental bud. Expression of dental tissue-related markers was tested assaying lineage-specific mRNA and proteins by RT-PCR, immunoblot, IHC, and physical-chemical analysis. In the induction medium, cells were positive for ameloblastic and odontoblastic markers as both mRNAs and proteins. Also, cells expressed epithelial, mesenchymal, and basement membrane markers with a positional relationship similar to the physiologic dental morphogenesis. Physical-chemical analysis revealed 200-nm and 50-nm oriented hydroxyapatite crystals as displayed in vivo by enamel and dentin, respectively. In conclusion, we show that adipose tissue-derived stem cells in vitro can transdifferentiate to produce a specific three-dimensional organization and phenotype resembling a dental bud even in the absence of structural matrix or scaffold to guide the developmental process.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Renza Spelat
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Giuseppe Falini
- Department of Chemistry “G. Ciamican,” Alma Mater Studiorum University of Bologna, via Selmi, Bologna, Italy
| | | | | | - Elisa Puppato
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | - Maura Pandolfi
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | | | - Daniela Cesselli
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | | | | | - Francesco Curcio
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| |
Collapse
|
14
|
Haruyama N, Hatakeyama J, Moriyama K, Kulkarni AB. Amelogenins: Multi-Functional Enamel Matrix Proteins and Their Binding Partners. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Špoutil F, Vlček V, Horáček I. Enamel microarchitecture of a tribosphenic molar. J Morphol 2010; 271:1204-18. [DOI: 10.1002/jmor.10867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Barron MJ, Brookes SJ, Kirkham J, Shore RC, Hunt C, Mironov A, Kingswell NJ, Maycock J, Shuttleworth CA, Dixon MJ. A mutation in the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta. Hum Mol Genet 2010; 19:1230-47. [PMID: 20067920 PMCID: PMC2838535 DOI: 10.1093/hmg/ddq001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Amelogenesis imperfecta (AI) describes a broad group of clinically and genetically heterogeneous inherited defects of dental enamel bio-mineralization. Despite identification of a number of genetic mutations underlying AI, the precise causal mechanisms have yet to be determined. Using a multi-disciplinary approach, we describe here a mis-sense mutation in the mouse Amelx gene resulting in a Y --> H substitution in the tri-tyrosyl domain of the enamel extracellular matrix protein amelogenin. The enamel in affected animals phenocopies human X-linked AI where similar mutations have been reported. Animals affected by the mutation have severe defects of enamel bio-mineralization associated with absence of full-length amelogenin protein in the developing enamel matrix, loss of ameloblast phenotype, increased ameloblast apoptosis and formation of multi-cellular masses. We present evidence to demonstrate that affected ameloblasts express but fail to secrete full-length amelogenin leading to engorgement of the endoplasmic reticulum/Golgi apparatus. Immunohistochemical analysis revealed accumulations of both amelogenin and ameloblastin in affected cells. Co-transfection of Ambn and mutant Amelx in a eukaryotic cell line also revealed intracellular abnormalities and increased cytotoxicity compared with cells singly transfected with wild-type Amelx, mutant Amelx or Ambn or co-transfected with both wild-type Amelx and Ambn. We hypothesize that intracellular protein-protein interactions mediated via the amelogenin tri-tyrosyl motif are a key mechanistic factor underpinning the molecular pathogenesis in this example of AI. This study therefore successfully links phenotype with underlying genetic lesion in a relevant murine model for human AI.
Collapse
Affiliation(s)
- Martin J Barron
- Faculty of Life Sciences and School of Dentistry, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shinmura Y, Tsuchiya S, Hata KI, Honda MJ. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol 2008; 217:728-38. [PMID: 18663726 DOI: 10.1002/jcp.21546] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. After completion of crown formation, HERS are converted from cervical loop cells, which have the potential to generate enamel for tooth crown formation. Cervical loop cells have the potential to differentiate into ameloblasts. Generally, no new ameloblasts can be generated from HERS, however this study demonstrated that subcultured ERM can differentiate into ameloblast-like cells and generate enamel-like tissues in combination with dental pulp cells at the crown formation stage. Porcine ERM were obtained from periodontal ligament tissue by explant culture and were subcultured with non-serum medium. Thereafter, subcultured ERM were expanded on 3T3-J2 feeder cell layers until the tenth passage. The in vitro mRNA expression pattern of the subcultured ERM after four passages was found to be different from that of enamel organ epithelial cells and oral gingival epithelial cells after the fourth passage using the same expansion technique. When subcultured ERM were combined with subcultured dental pulp cells, ERM expressed cytokeratin14 and amelogenin proteins in vitro. In addition, subcultured ERM combined with primary dental pulp cells seeded onto scaffolds showed enamel-like tissues at 8 weeks post-transplantation. Moreover, positive staining for amelogenin was observed in the enamel-like tissues, indicating the presence of well-developed ameloblasts in the implants. These results suggest that ERM can differentiate into ameloblast-like cells.
Collapse
Affiliation(s)
- Yuka Shinmura
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Ravindranath RMH, Devarajan A, Uchida T. Spatiotemporal expression of ameloblastin isoforms during murine tooth development. J Biol Chem 2007; 282:36370-6. [PMID: 17921454 DOI: 10.1074/jbc.m704731200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ameloblasts synthesize and secrete the enamel matrix proteins (amelogenin, ameloblastin, and enamelin). This investigation examined the profiles of ameloblastin in the ameloblasts and in the enamel matrix during different postnatal (PN) days (days 0-9) of development of mouse molar, using an antibody specific for C-terminal sequence of ameloblastin (Ct; GNKVHQPQVHNAWRF). Ameloblastin is found in three different molecular sizes (37, 55, and 66 kDa) in both ameloblasts and enamel matrix during PN development. In the ameloblasts, the sequence of expression of these fractions varied. The 37-kDa fraction was observed (even before the appearances of mRNA of the proteases, enamelysin and kallikrein-4) on days 0 and 1, persisted until day 3, and was not found thereafter. Other isoforms (55 and 66 kDa) distinctly appeared in ameloblasts after day 1, reached a peak on day 5, and remained thereafter. The Ct-positive granules appeared beaded in the ameloblasts on day 3. In the extracellular matrix, a 37-kDa (but not 66- or 55-kDa) fraction was detected on days 0 and 1 and remained in the matrix throughout the PN days. The larger isoforms (55 and 66 kDa) appeared in the enamel matrix from day 3 onward. On days 0-3, but not later, the 37-kDa isoform co-localizes with amelogenin in Tomes' process and formative enamel, as revealed by laser scan confocal microscopy. Autoradiography confirmed accumulation of 3H-labeled amelogenin trityrosyl motif peptide in the region of Tomes' process and formative enamel from day 0 to 3. These observations suggest that the 37-kDa isoform interacts with amelogenin during early tooth development.
Collapse
Affiliation(s)
- Rajeswari M H Ravindranath
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
19
|
Shimonishi M, Hatakeyama J, Sasano Y, Takahashi N, Uchida T, Kikuchi M, Komatsu M. In vitro differentiation of epithelial cells cultured from human periodontal ligament. J Periodontal Res 2007; 42:456-65. [PMID: 17760824 DOI: 10.1111/j.1600-0765.2007.00969.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Alkaline phosphatase and noncollagenous bone proteins are produced prior to cementum formation. While it has been suggested that epithelial rests of Malassez are involved in cementum formation, little is known about the relationship between epithelial rests of Malassez and cementum formation. The purpose of the present study was to determine whether the epithelial rests of Malassez cells cultured from human periodontal ligament can produce alkaline phosphatase and noncollagenous bone proteins, such as osteopontin, osteocalcin and bone sialoprotein. MATERIAL AND METHODS An outgrowth of putative epithelial rests of Malassez cells was produced from periodontal ligament explant, and second passage cultures were used in the experiments. Human gingival epithelial cells and periodontal ligament fibroblasts were used as controls. The expression levels of amelogenin were analyzed by immunostaining and in situ hybridization. Furthermore, the expression levels of alkaline phosphatase and noncollagenous bone proteins were assessed by immunostaining and reverse transcription-polymerase chain reaction. RESULTS Amelogenin, alkaline phosphatase and osteopontin proteins and their corresponding mRNAs were detected at high levels in putative epithelial rests of Malassez cells. Osteocalcin and bone sialoprotein were not expressed in putative epithelial rests of Malassez cells. Alkaline phosphatase and noncollagenous bone proteins were seen in periodontal ligament fibroblasts, but not in gingival epithelial cells. CONCLUSION Our results suggest that putative epithelial rests of Malassez cells cultured alone do not transform into maturing cells to form the cementum, but may play a potential role in the mineralization process.
Collapse
Affiliation(s)
- M Shimonishi
- Division of Comprehensive Dentistry, Tohoku University Dental Hospital, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ravindranath RMH, Devarajan A, Bringas P. Enamel formation in vitro in mouse molar explants exposed to amelogenin polypeptides ATMP and LRAP on enamel development. Arch Oral Biol 2007; 52:1161-71. [PMID: 17679105 DOI: 10.1016/j.archoralbio.2007.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/16/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The enamel matrix contains amelogenin, leucine-rich amelogenin-polypeptide (LRAP), resulting from alternative splicing of the primary amelogenin-RNA transcript and tyrosine-rich amelogenin-polypeptide (TRAP), a proteolytic product of amelogenin. Presence of amelogenin-trityrosyl-motif peptide (ATMP) distinguishes TRAP from LRAP. The roles of these polypeptides in the formation of enamel remain to be elucidated. METHODS The mouse in vitro molar tooth-organ developed from bud stage (E16) was exposed to LRAP, ATMP, and mutated ATMP (T-ATMP, third proline replaced by threonine). The histology and morphometry of the explants on day-12 in culture was examined using Mallory's stain. Guanidine-HCl soluble protein concentrations of explants were compared. RESULTS The enamel width and protein solubility indicate that the explant on day-12 is comparable to postnatal molar on day-3 in vivo. The enamel of both untreated explants as well as that in vivo is fuchinophilic (acid fuchsin, AF+). ATMP reduced the ameloblast-height, accumulated AF+ spherules at the apical end of ameloblasts, and disrupted enamel-dentin bonding. T-ATMP abrogated deposition of AF+ material on the aniline blue positive (AB+) enamel matrix. LRAP reduced ameloblast-height, increased the enamel-width without disruption (at 17.25 nmol) and increased the density of AF+ dentinal tubules. AF+ substance from the tubules is released onto the surface of the dentin. The Guanidine-HCl-soluble protein is elevated in ATMP-treated explants but decreased in LRAP-treated explants. CONCLUSION Exogenous ATMP, T-ATMP and LRAP have divergent effects on developing enamel. Exogenous ATMP, but not LRAP, abrogates enamel-dentin bonding at 17.25 nmol. LRAP may play a role in the differentiation of ameloblasts, growth of enamel and formation of dentinal tubules.
Collapse
Affiliation(s)
- Rajeswari M H Ravindranath
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
21
|
Sire JY, Davit-Béal T, Delgado S, Gu X. The Origin and Evolution of Enamel Mineralization Genes. Cells Tissues Organs 2007; 186:25-48. [PMID: 17627117 DOI: 10.1159/000102679] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Enamel and enameloid were identified in early jawless vertebrates, about 500 million years ago (MYA). This suggests that enamel matrix proteins (EMPs) have at least the same age. We review the current data on the origin, evolution and relationships of enamel mineralization genes. METHODS AND RESULTS Three EMPs are secreted by ameloblasts during enamel formation: amelogenin (AMEL), ameloblastin (AMBN) and enamelin (ENAM). Recently, two new genes, amelotin (AMTN) and odontogenic ameloblast associated (ODAM), were found to be expressed by ameloblasts during maturation, increasing the group of ameloblast-secreted proteins to five members. The evolutionary analysis of these five genes indicates that they are related: AMEL is derived from AMBN, AMTN and ODAM are sister genes, and all are derived from ENAM. Using molecular dating, we showed that AMBN/AMEL duplication occurred >600 MYA. The large sequence dataset available for mammals and reptiles was used to study AMEL evolution. In the N- and C-terminal regions, numerous residues were unchanged during >200 million years, suggesting that they are important for the proper function of the protein. CONCLUSION The evolutionary analysis of AMEL led to propose a dataset that will be useful to validate AMEL mutations leading to X- linked AI.
Collapse
Affiliation(s)
- Jean-Yves Sire
- UMR 7138, Université Pierre et Marie Curie-Paris 6, Paris, France.
| | | | | | | |
Collapse
|
22
|
Usami Y, Ito A, Ohnuma K, Fuku T, Komori T, Yokozaki H. Tumor suppressor in lung cancer-1 as a novel ameloblast adhesion molecule and its downregulation in ameloblastoma. Pathol Int 2007; 57:68-75. [PMID: 17300670 DOI: 10.1111/j.1440-1827.2006.02064.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tumor suppressor in lung cancer-1 (TSLC1) is an intercellular adhesion molecule of the immunoglobulin superfamily. There is little information regarding the developmental expression profiles. In an attempt to clarify the distribution of TSLC1 proteins in mouse embryos tissue by immunohistochemistry, it was found that the TSLC1-specific signals were detected in the tooth germ as early as bud stage. The signals of TSLC1 were in the enamel epithelium at the cap stage, and became restricted to ameloblasts during the transition to and throughout the bell stage. In contrast, the signals for E-cadherin, which is important in odontogenesis, were distributed in all the components of the ectoderm-derived germ at any stage. In addition, E-cadherin preferred to locate on the basal membrane of ameloblasts, whereas TSLC1 preferred the lateral. And in further contrast, all the ameloblastomas examined were positive for E-cadherin (18/18) whereas all but one was negative for TSLC1 (1/18). These results indicate that TSLC1 is a novel interameloblast adhesion molecule that may be downregulated during ameloblastic tumorigenesis.
Collapse
Affiliation(s)
- Yu Usami
- Department of Biomedical Informatics, Division of Surgical Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Hatakeyama J, Philp D, Hatakeyama Y, Haruyama N, Shum L, Aragon MA, Yuan Z, Gibson CW, Sreenath T, Kleinman HK, Kulkarni AB. Amelogenin-mediated regulation of osteoclastogenesis, and periodontal cell proliferation and migration. J Dent Res 2006; 85:144-9. [PMID: 16434732 DOI: 10.1177/154405910608500206] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously reported that amelogenin isoforms M180 and leucine-rich amelogenin peptide (LRAP) are expressed in the periodontal region, and that their absence is associated with increased cementum defects in amelogenin-knockout (KO) mice. The aim of the present study was to characterize the functions of these isoforms in osteoclastogenesis and in the proliferation and migration of cementoblast/periodontal ligament cells. The co-cultures of wild-type (WT) osteoclast progenitor and KO cementoblast/periodontal ligament cells displayed more tartrate-resistant acid phosphatase (TRAP)-positive cells than the co-cultures of WT cells. The addition of LRAP to both co-cultures significantly reduced RANKL expression and the TRAP-positive cells. Proliferation and migration rates of the KO cementoblast/periodontal ligament cells were lower than those of WT cells and increased with the addition of either LRAP or P172 (a porcine homolog of mouse M180). Thus, we demonstrate the regulation of osteoclastogenesis by LRAP, and the proliferation and migration of cementoblast/periodontal ligament cells by LRAP and P172.
Collapse
Affiliation(s)
- J Hatakeyama
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL. Protein–Protein Interactions of the Developing Enamel Matrix. Curr Top Dev Biol 2006; 74:57-115. [PMID: 16860665 DOI: 10.1016/s0070-2153(06)74003-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extracellular matrix proteins control the formation of the inorganic component of hard tissues including bone, dentin, and enamel. The structural proteins expressed primarily in the enamel matrix are amelogenin, ameloblastin, enamelin, and amelotin. Other proteins, like biglycan, are also present in the enamel matrix as well as in other mineralizing and nonmineralizing tissues of mammals. In addition, the presence of sulfated enamel proteins, and "tuft" proteins has been examined and discussed in relation to enamel formation. The structural proteins of the enamel matrix must have specific protein-protein interactions to produce a matrix capable of directing the highly ordered structure of the enamel crystallites. Protein-protein interactions are also likely to occur between the secreted enamel proteins and the plasma membrane of the enamel producing cells, the ameloblasts. Such protein-protein interactions are hypothesized to influence the secretion of enamel proteins, establish short-term order of the forming matrix, and to mediate feedback signals to the transcriptional machinery of these cells. Membrane-bound proteins identified in ameloblasts, and which interact with the structural enamel proteins, include Cd63 (cluster of differentiation 63 antigen), annexin A2 (Anxa2), and lysosomal-associated glycoprotein 1 (Lamp1). These and related data help explain the molecular and cellular mechanisms responsible for the removal of the organic enamel matrix during the events of enamel mineralization, and how the enamel matrix influences its own fate through signaling initiated at the cell surface. The knowledge gained from enamel developmental studies may lead to better dental and nondental materials, or materials inspired by Nature. These data will be critical to scientists, engineers, and dentists in their pursuits to regenerate an entire tooth. For tooth regeneration to become a reality, the protein-protein interactions involving the key dental proteins must be identified and understood. The scope of this review is to discuss the current understanding of protein-protein interactions of the developing enamel matrix, and relate this knowledge to enamel biomineralization.
Collapse
Affiliation(s)
- John D Bartlett
- The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Delgado S, Girondot M, Sire JY. Molecular evolution of amelogenin in mammals. J Mol Evol 2005; 60:12-30. [PMID: 15696365 DOI: 10.1007/s00239-003-0070-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 07/21/2004] [Indexed: 10/25/2022]
Abstract
An evolutionary analysis of mammalian amelogenin, the major protein of forming enamel, was conducted by comparison of 26 sequences (including 14 new ones) representative of the main mammalian lineages. Amelogenin shows highly conserved residues in the hydrophilic N- and C-terminal regions. The central hydrophobic region (most of exon 6) is more variable, but it has conserved a high amount of proline and glutamine located in triplets, PXQ, indicating that these residues play an important role. This region evolves more rapidly, and is less constrained, than the other well-conserved regions, which are subjected to strong constraints. The comparison of the substitution rates in relation to the CpG richness confirmed that the highly conserved regions are subjected to strong selective pressures. The amino acids located at important sites and the residues known to lead to amelogenesis imperfecta when substituted were present in all sequences examined. Evolutionary analysis of the variable region of exon 6 points to a particular zone, rich in either amino acid insertion or deletion. We consider this region a hot spot of mutation for the mammalian amelogenin. In this region, numerous triplet repeats (PXQ) have been inserted recently and independently in five lineages, while most of the hydrophobic exon 6 region probably had its origin in several rounds of triplet insertions, early in vertebrate evolution. The putative ancestral DNA sequence of the mammalian amelogenin was calculated using a maximum likelihood approach. The putative ancestral protein was composed of 177 residues. It already contained all important amino acid positions known to date, its hydrophobic variable region was rich in proline and glutamine, and it contained triplet repeats PXQ as in the modern sequences.
Collapse
Affiliation(s)
- Sidney Delgado
- FRE2696, Equipe Evolution & Développement du Squelette, Université Paris 6, Paris, France
| | | | | |
Collapse
|
26
|
Ravindranath RMH, Basilrose RM. Localization of sulfated sialic acids in the dentinal tubules during tooth formation in mice. Acta Histochem 2005; 107:43-56. [PMID: 15866285 DOI: 10.1016/j.acthis.2004.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/25/2004] [Accepted: 11/11/2004] [Indexed: 11/27/2022]
Abstract
Lectin-like properties of the major enamel protein amelogenin suggest that it binds to glycoconjugates in dentinal tubules released at the dentin-enamel junction (DEJ) during enamel formation. Therefore, a detailed mapping of glycosylation in dentinal tubules during tooth formation was undertaken using histochemistry and lectin-binding assays. The tubular content exhibited sialidase-susceptible gamma-metachromasia with Toluidine Blue (pH 2.5) and staining with Alcian Blue (pH 1.0). The presence of sulfate groups was confirmed by benzidine reactions (Bracco-Curti's and tetrazonium assays). Alpha2,3-, alpha2,6- and alpha2,8-sialidases entirely abolished staining with the benzidine reactions. The presence of sialic acids in dentinal tubules was confirmed with the Bial's reaction and sialidase-susceptible binding of Limax flavus lectin suggesting that sialic acids are the major sulfated sugars in the glycoconjguates. Immunostaining with the monoclonal antibody 5-D-4 before and after treatment with chondroitin-4- and chondroitin-6-sulfatase confirmed the presence of keratan sulfate (KS), a sialylated proteoglycan, in dentinal tubules. We suggest that sulfated sialic acids are part of the KSs. The sulfated glycoconjugates are also found in dentin and the DEJ but not in predentin suggesting that amelogenin binds to the sialoconjugate during enamel formation.
Collapse
Affiliation(s)
- Rajeswari M H Ravindranath
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
27
|
Ravindranath HH, Chen LS, Zeichner-David M, Ishima R, Ravindranath RMH. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem Biophys Res Commun 2004; 323:1075-83. [PMID: 15381109 DOI: 10.1016/j.bbrc.2004.08.207] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Enamel matrix consists of amelogenin and non-amelogenins. Though amelogenin is not involved in nucleation of minerals, the enamel mineralization is impaired when amelogenin or other matrix protein (ameloblastin/enamelin) genes are mutated. We hypothesize that amelogenin may promote enamel mineralization by interacting with the calcium-binding matrix proteins. Specific binding of amelogenin to N-acetylglucosamine (GlcNAc), GlcNAc-mimicking peptides (GMps), and their carrier proteins and the identification of amelogenin-trityrosyl-motif-peptide (ATMP) as a GlcNAc/GMp-binding domain in amelogenin favor the hypothesis. This study tested the interaction of amelogenin with ameloblastin, a carrier of GMp sequence at intermittent sites. Neither GlcNAc nor sialic acids were identified in the recombinant-ameloblastin. Amelogenin bound to recombinant-ameloblastin in both Western blots and in ELISA. More specifically, [(3)H]ATMP bound to both recombinant and native ameloblastins. Dosimetry and Scatchard analyses showed the specific interaction between ATMP and ameloblastin, suggesting that amelogenin may interact with ameloblastin to form a heteromolecular assembly.
Collapse
Affiliation(s)
- Hanumanth H Ravindranath
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
28
|
Park JC, Kim YB, Yoon JH, Kim HJ, Kim SM, Kanai Y, Endou H, Kim DK. Preferential expression of L-type amino acid transporter 1 in ameloblasts during rat tooth development. Anat Histol Embryol 2004; 33:119-24. [PMID: 15027953 DOI: 10.1111/j.1439-0264.2003.00524.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Certain amino acid transport systems play an important role in supplying organic nutrients to each cell and for cell proliferation during tooth development. However, the mechanisms responsible for such actions are unclear. This study demonstrated for the first time that LAT1 and 4F2hc are expressed during tooth development in prenatal and postnatal rats, and that the transporters show cell-specific expression in ameloblasts, which are the epithelium-derived dental cells. LAT1 and 4F2hc expression was not observed in other dental cells of the developing teeth such as odontoblasts and cementoblasts. Overall, these results suggest that LAT1 and 4F2hc might play an important role in enamel formation.
Collapse
Affiliation(s)
- J-C Park
- Oral Biology Research Institute, College of Dentistry, Chosun University, 375 Seo-Suk Dong, Dong-ku, Gwang-ju, 501-759, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen E, Yuan ZA, Wright JT, Hong SP, Li Y, Collier PM, Hall B, D'Angelo M, Decker S, Piddington R, Abrams WR, Kulkarni AB, Gibson CW. The small bovine amelogenin LRAP fails to rescue the amelogenin null phenotype. Calcif Tissue Int 2003; 73:487-95. [PMID: 12958690 DOI: 10.1007/s00223-002-0036-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2002] [Accepted: 03/17/2003] [Indexed: 11/25/2022]
Abstract
Amelogenins are the most abundant secreted proteins in developing dental enamel. These evolutionarily-conserved proteins have important roles in enamel mineral formation, as mutations within the amelogenin gene coding region lead to defects in enamel thickness or mineral structure. Because of extensive alternative splicing of the primary RNA transcript and proteolytic processing of the secreted proteins, it has been difficult to assign functions to individual amelogenins. To address the function of one of the amelogenins, we have created a transgenic mouse that expresses bovine leucine-rich amelogenin peptide (LRAP) in the enamel-secreting ameloblast cells of the dental organ. Our strategy was to breed this transgenic mouse with the recently generated amelogenin knockout mouse, which makes none of the amelogenin proteins and has a severe hypoplastic and disorganized enamel phenotype. It was found that LRAP does not rescue the enamel defect in amelogenin null mice, and enamel remains hypoplastic and disorganized in the presence of this small amelogenin. In addition, LRAP overexpression in the transgenic mouse (wildtype background) leads to pitting in the enamel surface, which may result from excess protein production or altered protein processing due to minor differences between the amino acid compositions of murine and bovine LRAP. Since introduction of bovine LRAP into the amelogenin null mouse does not restore normal enamel structure, it is concluded that other amelogenin proteins are essential for normal appearance and function.
Collapse
Affiliation(s)
- E Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, 240 S. 40th St., Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ravindranath RMH, Basilrose RM, Ravindranath NH, Vaitheesvaran B. Amelogenin interacts with cytokeratin-5 in ameloblasts during enamel growth. J Biol Chem 2003; 278:20293-302. [PMID: 12657653 DOI: 10.1074/jbc.m211184200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enamel protein amelogenin binds to GlcNAc (Ravindranath, R. M. H., Moradian-Oldak, R., and Fincham, A.G. (1999) J. Biol. Chem. 274, 2464-2471) and to the GlcNAc-mimicking peptide (GMp) (Ravindranath, R. M. H., Tam, W., Nguyen, P., and Fincham, A. G. (2000) J. Biol. Chem. 275, 39654-39661). The GMp motif in the N-terminal region of the cytokeratin 14 of ameloblasts binds to trityrosyl motif peptide (ATMP) of amelogenin (Ravindranath, R. M. H., Tam, W., Bringas, P., Santos, V., and Fincham, A. G. (2001) J. Biol. Chem. 276, 36586 - 36597). K14 (Type I) pairs with K5 (Type II) in basal epithelial cells; GlcNAc-acylated K5 is identified in ameloblasts. Dosimetric analysis showed the binding affinity of amelogenin to K5 and to GlcNAc-acylated-positive control, ovalbumin. The specific binding of [3H]ATMP with K5 or ovalbumin was confirmed by Scatchard analysis. [3H]ATMP failed to bind to K5 after removal of GlcNAc. Blocking K5 with ATMP abrogates the K5-amelogenin interaction. K5 failed to bind to ATMP when the third proline was substituted with threonine, as in some cases of human X-linked amelogenesis imperfecta or when tyrosyl residues were substituted with phenylalanine. Confocal laser scan microscopic observations on ameloblasts during postnatal (PN) growth of the teeth showed that the K5-amelogenin complex migrated from the cytoplasm to the periphery (on PN day 1) and accumulated at the apical region on day 3. Secretion of amelogenin commences from day 1. K5, similar to K14, may play a role of chaperone during secretion of amelogenin. Upon secretion of amelogenin, K5 pairs with K14. Pairing of K5 and K14 commences on day 3 and ends on day 9. The pairing of K5 and K14 marks the end of secretion of amelogenin.
Collapse
Affiliation(s)
- Rajeswari M H Ravindranath
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles 90033-1004, USA.
| | | | | | | |
Collapse
|
31
|
Santos M, Bravo A, López C, Paramio JM, Jorcano JL. Severe abnormalities in the oral mucosa induced by suprabasal expression of epidermal keratin K10 in transgenic mice. J Biol Chem 2002; 277:35371-7. [PMID: 12119299 DOI: 10.1074/jbc.m205143200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that keratin K10 plays an important role in mediating cell signaling processes, since the ectopic expression of this keratin induces cell cycle arrest in proliferating cells in vitro and in vivo. However, apart from its well known function of providing epithelial cells with resilience to mechanical trauma, little is known about its possible roles in nondividing cells. To investigate what these might be, transgenic mice were generated in which the expression of K10 was driven by bovine K6beta gene control elements (bK6(beta)hK10). The transgenic mice displayed severe abnormalities in the tongue and palate but not in other K6-expressing cells such as those of the esophagus, nails, and hair follicles. The lesions in the tongue and palate included the cytolysis of epithelial suprabasal cells associated with an acute inflammatory response and lymphocyte infiltration. The alterations in the oral mucosa caused the death of transgenic pups soon after birth, probably because suckling was impaired. These anomalies, together with others found in the teeth, are reminiscent of the lesions observed in some patients with pachyonychia congenita, an inherited epithelial fragility associated with mutations in keratins K6 and K16. Although no epithelial fragility was observed in the bK6(beta)hK10 oral epithelia of the experimental mice, necrotic processes were seen. Collectively, these data show that the carefully regulated tissue- and differentiation-specific patterns displayed by the keratin genes have dramatic consequences on the biological behavior of epithelial cells and that changes in the specific composition of the keratin intermediate filament cytoskeleton can affect their physiology, in particular those of the oral mucosa.
Collapse
Affiliation(s)
- Mirentxu Santos
- Project on Cell and Molecular Biology and Gene Therapy, CIEMAT Av. Complutense 22, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|