1
|
Li Y, He C, Ahamed Younis D, Ni C, Liu R, Sun Z, Lin H, Wang Y, Zhu P, Xiao Z, Sun B. Engineered promoter-free insulin-secreting cells provide closed-loop glycemic control. Life Sci 2025; 371:123587. [PMID: 40147530 DOI: 10.1016/j.lfs.2025.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Diabetes mellitus is currently a priority health issue worldwide, but existing therapies suffer from insufficient donors, inability to provide glucose-dependent endogenous insulin secretion, transplantation risks, and immune rejection. Especially, reported engineered cells are mostly promoter-induced glucose-independent insulin producing cells. Here we constructed a closed-loop of insulin secretion with glucose-dependent IRES to achieve glucose-sensitive endogenous insulin secretion. Those cells successfully reversed hyperglycemia in diabetic mice for at least 60 days after transplantation without any significant immune rejection, demonstrating that our constructed engineered cellular grafts have good biocompatibility. Our findings hold great promise in the field of diabetes treatment and provide a new, glucose-dependent genetic engineering approach to insulin production, which is expected to solve many of the current problems faced in the clinical treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Cong He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China.
| | - Doulathunnisa Ahamed Younis
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Chengming Ni
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu 210008, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do 445-743, Republic of Korea.
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu 210008, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yuxin Wang
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Pengyu Zhu
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Zhongdang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
2
|
Ibargüen-González L, Heller S, López-García D, Dietenberger H, Barth TF, Gallego P, Fernández-Cadenas I, Alzate-Piñol S, Crespí C, Mena-Guerrero JA, Cisneros-Barroso E, Ugalde AP, Bretones G, Steenblock C, Kleger A, DeDiego ML, Barceló C. Host factor PLAC8 is required for pancreas infection by SARS-CoV-2. COMMUNICATIONS MEDICINE 2025; 5:34. [PMID: 39900678 PMCID: PMC11790941 DOI: 10.1038/s43856-025-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Although COVID-19 initially caused great concern about respiratory symptoms, mounting evidence shows that also the pancreas is productively infected by SARS-CoV-2. However, the severity of pancreatic SARS-CoV-2 infection and its pathophysiology is still under debate. Here, we investigate the consequences of SARS-CoV-2 pancreatic infection and the role of the host factor Placenta-associated protein (PLAC8). METHODS We analyze plasma levels of pancreatic enzymes and inflammatory markers in a retrospective cohort study of 120 COVID-19 patients distributed in 3 severity-stratified groups. We study the expression of SARS-CoV-2 and PLAC8 in the pancreas of deceased COVID-19 patients as well as in non-infected donors. We perform pseudovirus infection experiments in PLAC8 knock-out PDAC and human beta cell-derived cell lines and validate results with SARS-CoV-2 virus. RESULTS We find that analysis of circulating pancreatic enzymes aid the stratification of patients according to COVID-19 severity and predicts outcomes. Interestingly, we find an association between PLAC8 expression and SARS-CoV-2 infection in postmortem analysis of COVID-19 patients both in the pancreas and in other bonafide SARS-CoV-2 target tissues. Functional experiments demonstrate the requirement of PLAC8 in SARS-CoV-2 pancreatic productive infection by pseudovirus and full SARS-CoV-2 infectious virus inoculum from Wuhan-1 and BA.1 strains. Finally, we observe an overlap between PLAC8 and SARS-CoV-2 immunoreactivities in the pancreas of deceased patients. CONCLUSIONS Our data indicate the human pancreas as a SARS-CoV-2 target with plausible signs of injury and demonstrate that the host factor PLAC8 is required for SARS-CoV-2 pancreatic infection, thus defining new target opportunities for COVID-19-associated pancreatic pathogenesis.
Collapse
Affiliation(s)
- Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Sandra Heller
- Institute of Molecular Oncology and Stem Cell Biology, Ulm, Germany
| | - Darío López-García
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Thomas Fe Barth
- Department of Pathology, Ulm University Hospital, Ulm, Germany
| | | | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Sayoa Alzate-Piñol
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Catalina Crespí
- Hospital Universitari Son Espases, Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Julieth A Mena-Guerrero
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Eugenia Cisneros-Barroso
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Internal Medicine Department, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Alejandro P Ugalde
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Spain.
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
- Faculty of Health Sciences at Manresa, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain.
| |
Collapse
|
3
|
Potdar P, Kharat A, Sanap A, Kheur S, Bhonde R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J Appl Toxicol 2025; 45:89-106. [PMID: 39662958 DOI: 10.1002/jat.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024]
Abstract
In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line. Insulinoma-derived cell lines show infinite growth in tissue culture but exhibit varying differences in their insulin responsiveness to glucose levels compared to normal β cells. Despite difficulties with β cell cultures, these cell lines have offered some useful insights in diabetes research concerning physiological functions and pathological investigations. In this review, we describe insulinoma cell lines used for drug screening, insulin secretion, cell viability, proliferation, and other relevant cellular functions. In addition, we have also incorporated recently developed human β cell lines. These cell lines have provided some helpful insights into physiological activities and pathology in diabetes research, despite challenges with β cell culturing. We propose that these cell lines could also be explored for screening Ayurvedic Rasayanas and homeopathy preparations for their cytotoxicity and insulin secretagogue activities to have evidence-based data on alternative and complementary medicines.
Collapse
Affiliation(s)
- Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
4
|
Vergez I, Nekoua MP, Arbrandt G, Westman J, Alidjinou EK, Hober D. Macrophages can transmit coxsackievirus B4 to pancreatic cells and can impair these cells. J Med Virol 2024; 96:e70009. [PMID: 39422382 DOI: 10.1002/jmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Macrophages are suspected to be involved in the pathogenesis of type 1 diabetes. The role of macrophages in the transmission of coxsackievirus B4 (CVB4) to pancreatic cells and in the alteration of these cells was investigated. Human monocytes isolated from peripheral blood were differentiated into macrophages with M-CSF (M-CSF macrophages) or GM-CSF (GM-CSF macrophages). M-CSF macrophages were inoculated with CVB4. M-CSF and GM-CSF macrophages were activated with lipopolysaccharide and interferon (IFN)-γ. Human pancreatic beta cells 1.1B4 were inoculated with CVB4 derived from M-CSF macrophages or were cocultured with CVB4-infected M-CSF macrophages. The antiviral activity of synthetic molecules in macrophage cultures was evaluated. Activated macrophages were cocultured with CVB4-persistently infected 1.1B4 cells, and the specific lysis of these cells was determined. Our study shows that CVB4 can infect M-CSF macrophages, leading to the release of interleukin-6 and tumor necrosis factor-α and later IFN-α. M-CSF macrophage-derived CVB4 can infect 1.1B4 cells, which were then altered; however, when these cells were cultured in medium containing agarose, cell layers were not altered. Fluoxetine and CUR-N373 can inhibit CVB4 replication in macrophage cultures. Supernatants of activated M-CSF and GM-CSF macrophage cultures induced lysis of CVB4-persistently infected 1.1B4 cells. The cytolytic activity of activated GM-CSF macrophages was higher towards CVB4-persistently infected 1.1B4 cells than mock-infected 1.1B4 cells. In conclusion, macrophages may play a role in CVB4 infection of pancreatic cells, and are capable of inducing lysis of infected pancreatic cells.
Collapse
Affiliation(s)
- Inès Vergez
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | | | | | | | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
5
|
Mansouri M, Fussenegger M. Posttranslational Remote Control Mediated by Physical Inducers for Rapid Protein Release in Engineered Mammalian Cells. Methods Mol Biol 2024; 2774:233-241. [PMID: 38441768 DOI: 10.1007/978-1-0716-3718-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Physical cues such as light, heat, or an electrical field can be utilized for traceless, on-demand activation of the expression of a desired therapeutic gene in appropriately engineered cells with excellent spatiotemporal resolution, good inducibility, and simple reversibility. A similar approach can be applied to build a depolarization-based protein secretion system that enables rapid release of a therapeutic protein pre-stored in intracellular vesicles in mammalian cells. Here, we present a protocol to create designer β-cells that exhibit light-controllable rapid release (within 15 min) of a pre-synthesized proinsulin-nanoluciferase construct from vesicular stores. The construct is cleaved extracellularly to afford secreted insulin as a therapeutic protein and nanoluciferase as a reporter molecule. Such posttranslational remote control offers a much faster response than expression-based systems.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Yöntem FD, Ayaz S, Bulut Ş, Aldoğan EH, Ahbab MA. Endoplasmic reticulum stress and pro-inflammatory responses induced by phthalate metabolites monoethylhexyl phthalate and monobutyl phthalate in 1.1B4 pancreatic beta cells. Toxicology 2024; 501:153695. [PMID: 38048874 DOI: 10.1016/j.tox.2023.153695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
In recent years, phthalates and their metabolites have been associated with metabolic diseases such as diabetes mellitus. To investigate the effects of phthalate metabolites exposure on insulin production and release, 1.1B4 pancreatic beta cells were treated with different concentrations (0.001-1000 µM) of monoethylhexyl phthalate (MEHP) and monobutyl phthalate (MBP). For such purpose, the 1.1B4 cells were evaluated for their viability, apoptosis rate, lysosomal membrane permeabilization (LMP), mitochondrial membrane potential (ΔΨm), oxidative stress, ER stress status, in addition to their secretory functions. MEHP, not MBP, exhibited a notable reduction in metabolic viability, particularly at higher concentrations (500 and 1000 µM) following 24-hour exposure. Similarly, both MEHP and MBP induced decreased metabolic viability at high concentrations after 48- and 72-hour exposure. Notably, neither MEHP nor MBP demonstrated a significant impact on apoptosis rates after 24-hour exposure, and MBP induced mild necrosis at 1000 µM concentration. Cell proliferation rates, indicated by PCNA expression, decreased with 10 and 1000 µM MEHP and 0.1 and 10 µM MBP exposures. LMP analysis revealed an increase in 1000 µM MBP group. Exposure to 0.001 µM of both MEHP and MBP significantly reduced cellular glutathione (GSH) levels. No significant change in intracellular reactive oxygen species (ROS) levels and ΔΨm was observed, but MBP-exposed cells exhibited elevated levels of lipid peroxidation. Functional assessments of pancreatic beta cells unveiled reduced insulin secretion at low glucose concentrations following exposure to both MEHP and MBP, with concurrent alterations in the expression levels of key proteins associated with beta cell function, including GLUT1, GCK, PDX1, and MafA. Moreover, MEHP and MBP exposures were associated with alterations in ER stress-related pathways, including JNK, GADD153, and NF-κB expression, as well as PPARα and PPARγ levels. In conclusion, this study provides comprehensive insights into the diverse impacts of MEHP and MBP on 1.1B4 pancreatic beta cells, emphasizing their potential role in modulating cell survival, metabolic function, and stress response pathways.
Collapse
Affiliation(s)
- Fulya Dal Yöntem
- Koç University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sinem Ayaz
- Istanbul University, Cerrahpasa, Institute of Graduate Studies, Department of Clinical Microbiology, Istanbul, Turkey; Haliç University, Faculty of Medicine, Department of Clinical Microbiology, Istanbul, Turkey
| | - Şeyma Bulut
- Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey; Bezmialem Vakıf University, Institute of Health Sciences, Department of Biotechnology, Istanbul, Turkey
| | | | - Müfide Aydoğan Ahbab
- University of Health Sciences Türkiye, Hamidiye Vocational School of Health Services, Istanbul, Turkey.
| |
Collapse
|
7
|
Nakayama M, Ueta E, Yoshida M, Shimizu Y, Tokuda A, Sone Y, Nomi Y, Otsuka Y. Analysis of an antioxidative defence system of hydrogen peroxide-treated pancreatic islet-derived 1.1B4 cells and siRNA targeting NR4A3-treated cells by microarray. Redox Rep 2023; 28:2247150. [PMID: 37581334 PMCID: PMC10435006 DOI: 10.1080/13510002.2023.2247150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Pancreatic islet β-cells weaken under oxidative stress. In this study, human pancreatic islet-derived 1.1B4 cells were exposed to H2O2 and analysed using a human microarray, which revealed that heme oxygenase 1 (HMOX1), glutamate-cysteine ligase, early growth response 1, nuclear receptor subfamily 4 group A member 3 (NR4A3) and jun B proto-oncogene were upregulated, whereas superoxide dismutase 1 and catalase were not. Expression of NR4A3 rapidly increased after H2O2 addition, and the 1.1B4 cells treated with siRNA targeting NR4A3 became sensitive to H2O2; further, HMOX1 expression was strongly inhibited, suggesting that NR4A3 is an oxidative stress-responsive transcription factor that functions through HMOX1 expression in pancreatic islet β-cells. Expression of cyclin E1 and cyclin-dependent kinase 1 was also inhibited by siRNAs targeting NR4A3.
Collapse
Affiliation(s)
- Motoko Nakayama
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
| | - Etsuko Ueta
- School of Health Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Mitsuru Yoshida
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
| | - Yuri Shimizu
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
- Department of Food Business, Nihon University, Kanagawa, Japan
| | - Atsuko Tokuda
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
| | - Yasuko Sone
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Gunma, Japan
| | - Yuri Nomi
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Y. Otsuka
- Department of Life Science, Graduate School, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
8
|
Xu L, Cheng F, Bu D, Li X. The Effects of Prolonged Basic Amino Acid Exposures on Mitochondrial Enzyme Gene Expressions, Metabolic Profiling and Insulin Secretions and Syntheses in Rat INS-1 β-Cells. Nutrients 2023; 15:4026. [PMID: 37764809 PMCID: PMC10538135 DOI: 10.3390/nu15184026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In order to investigate the chronic effects of basic amino acids (BAA) on β-cell metabolism and insulin secretion, INS-1 β-cells were randomly assigned to cultures in standard medium (Con), standard medium plus 10 mM L-Arginine (Arg), standard medium plus 10 mM L-Histidine (His) or standard medium plus 10 mM L-Lysine (Lys) for 24 h. Results showed that insulin secretion was decreased by the Arg treatment but was increased by the His treatment relative to the Con group (p < 0.05). Higher BAA concentrations reduced the high glucose-stimulated insulin secretions (p < 0.001), but only Lys treatment increased the intracellular insulin content than that in the Con group (p < 0.05). Compared with Arg and Lys, the His treatment increased the mitochondrial key enzyme gene expressions including Cs, mt-Atp6, mt-Nd4l and Ogdh, and caused a greater change in the metabolites profiling (p < 0.05). The most significant pathways affected by Arg, His and Lys were arginine and proline metabolism, aminoacyl-tRNA biosynthesis and pyrimidine metabolism, respectively. Regression analysis screened 7 genes and 9 metabolites associated with insulin releases during BAA stimulations (p < 0.05). Together, different BAAs exerted dissimilar effects on β-cell metabolism and insulin outputs.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengqi Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Dengpan Bu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiuli Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Reys LL, Silva SS, Soares da Costa D, Rodrigues LC, Reis RL, Silva TH. Building Fucoidan/Agarose-Based Hydrogels as a Platform for the Development of Therapeutic Approaches against Diabetes. Molecules 2023; 28:molecules28114523. [PMID: 37298999 DOI: 10.3390/molecules28114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Current management for diabetes has stimulated the development of versatile 3D-based hydrogels as in vitro platforms for insulin release and as support for the encapsulation of pancreatic cells and islets of Langerhans. This work aimed to create agarose/fucoidan hydrogels to encapsulate pancreatic cells as a potential biomaterial for diabetes therapeutics. The hydrogels were produced by combining fucoidan (Fu) and agarose (Aga), marine polysaccharides derived from the cell wall of brown and red seaweeds, respectively, and a thermal gelation process. The agarose/fucoidan (AgaFu) blended hydrogels were obtained by dissolving Aga in 3 or 5 wt % Fu aqueous solutions to obtain different proportions (4:10; 5:10, and 7:10 wt). The rheological tests on hydrogels revealed a non-Newtonian and viscoelastic behavior, while the characterization confirmed the presence of the two polymers in the structure of the hydrogels. In addition, the mechanical behavior showed that increasing Aga concentrations resulted in hydrogels with higher Young's modulus. Further, the ability of the developed materials to sustain the viability of human pancreatic cells was assessed by encapsulation of the 1.1B4HP cell line for up to 7 days. The biological assessment of the hydrogels revealed that cultured pancreatic beta cells tended to self-organize and form pseudo-islets during the period studied.
Collapse
Affiliation(s)
- Lara L Reys
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Maity D, Guha Ray P, Buchmann P, Mansouri M, Fussenegger M. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300890. [PMID: 36893359 DOI: 10.1002/adma.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Currently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.7 mW cm-2 , 0.9 V, 50 mm glucose) to drive opto- and electro-genetic regulation of vesicular insulin release from engineered beta cells. It is shown that this integration of blood-glucose monitoring with elimination of excessive blood glucose by combined electro-metabolic conversion and insulin-release-mediated cellular consumption enables the metabolic fuel cell to restore blood-glucose homeostasis in an automatic, self-sufficient, and closed-loop manner in an experimental model of type-1 diabetes.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
11
|
Frørup C, Gerwig R, Svane CAS, Mendes Lopes de Melo J, Henriksen K, Fløyel T, Pociot F, Kaur S, Størling J. Characterization of the functional and transcriptomic effects of pro-inflammatory cytokines on human EndoC-βH5 beta cells. Front Endocrinol (Lausanne) 2023; 14:1128523. [PMID: 37113489 PMCID: PMC10126300 DOI: 10.3389/fendo.2023.1128523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
Objective EndoC-βH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-βH5 cells. Methods The sensitivity profile of EndoC-βH5 cells to the toxic effects of interleukin-1β (IL-1β), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing. Results Cytokines increased caspase-3/7 activity and cytotoxicity in EndoC-βH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-βH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusion Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-βH5 cells. This information should be useful for future studies using this novel beta-cell model.
Collapse
Affiliation(s)
- Caroline Frørup
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Joana Mendes Lopes de Melo
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Henriksen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Petry F, Salzig D. The cultivation conditions affect the aggregation and functionality of β-cell lines alone and in coculture with mesenchymal stromal/stem cells. Eng Life Sci 2022; 22:769-783. [PMID: 36514533 PMCID: PMC9731603 DOI: 10.1002/elsc.202100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022] Open
Abstract
The manufacturing of viable and functional β-cell spheroids is required for diabetes cell therapy and drug testing. Mesenchymal stromal/stem cells (MSCs) are known to improve β-cell viability and functionality. We therefore investigated the aggregation behavior of three different β-cell lines (rat insulinoma-1 cell line [INS-1], mouse insulinoma-6 cell line [MIN6], and a cell line formed by the electrofusion of primary human pancreatic islets and PANC-1 cells [1.1B4]), two MSC types, and mixtures of β-cells and MSCs under different conditions. We screened several static systems to produce uniform β-cell and MSC spheroids, finding cell-repellent plates the most suitable. The three different β-cell lines differed in their aggregation behavior, spheroid size, and growth in the same static environment. We found no major differences in spheroid formation between primary MSCs and an immortalized MSC line, although both differed with regard to the aggregation behavior of the β-cell lines. All spheroids showed a reduced viability due to mass transfer limitations under static conditions. We therefore investigated three dynamic systems (shaking multi-well plates, spinner flasks, and shaking flasks). In shaking flasks, there were no β-cell-line-dependent differences in aggregation behavior, resulting in uniform and highly viable spheroids. We found that the aggregation behavior of the β-cell lines changed in a static coculture with MSCs. The β-cell/MSC coculture conditions must be refined to avoid a rapid segregation into distinct populations under dynamic conditions.
Collapse
Affiliation(s)
- Florian Petry
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| |
Collapse
|
13
|
Yayla M, Binnetoğlu D. Experimental Approaches to Diabetes Mellitus. Eurasian J Med 2022; 54:145-153. [PMID: 36655459 PMCID: PMC11163337 DOI: 10.5152/eurasianjmed.2022.22304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/27/2022] [Indexed: 01/19/2023] Open
Abstract
One of the most common health problems today, diabetes is a serious, chronic, and complex disease characterized by high blood glucose levels. Nowadays, experimental diabetes models are being developed to study existing diabetes in depth, to improve diabetes medications, or to develop new medications. The protocols developed to date to create an experimental diabetes model are finalized in different time intervals and depending on various factors. With these models, which can be designed in vivo and in vitro, a picture similar to type 1 and type 2 diabetes can be created. In this review, we aimed to present the methodology, advantages, and disadvantages of all currently used experimental diabetes models in the light of current literature.
Collapse
Affiliation(s)
- Muhammed Yayla
- Department of Pharmacology, Kafkas University Faculty of Medicine, Kars, Turkey
| | - Damla Binnetoğlu
- Department of Pharmacology, Kafkas University Faculty of Medicine, Kars, Turkey
| |
Collapse
|
14
|
Mansouri M, Ray PG, Franko N, Xue S, Fussenegger M. Design of programmable post-translational switch control platform for on-demand protein secretion in mammalian cells. Nucleic Acids Res 2022; 51:e1. [PMID: 36268868 PMCID: PMC9841418 DOI: 10.1093/nar/gkac916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/11/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
The development of novel strategies to program cellular behaviors is a central goal in synthetic biology, and post-translational control mediated by engineered protein circuits is a particularly attractive approach to achieve rapid protein secretion on demand. We have developed a programmable protease-mediated post-translational switch (POSH) control platform composed of a chimeric protein unit that consists of a protein of interest fused via a transmembrane domain to a cleavable ER-retention signal, together with two cytosolic inducer-sensitive split protease components. The protease components combine in the presence of the specific inducer to generate active protease, which cleaves the ER-retention signal, releasing the transmembrane-domain-linked protein for trafficking to the trans-Golgi region. A furin site placed downstream of the protein ensures cleavage and subsequent secretion of the desired protein. We show that stimuli ranging from plant-derived, clinically compatible chemicals to remotely controllable inducers such as light and electrostimulation can program protein secretion in various POSH-engineered designer mammalian cells. As proof-of-concept, an all-in-one POSH control plasmid encoding insulin and abscisic acid-activatable split protease units was hydrodynamically transfected into the liver of type-1 diabetic mice. Induction with abscisic acid attenuated glycemic excursions in glucose-tolerance tests. Increased blood levels of insulin were maintained for 12 days.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
15
|
Grieco GE, Brusco N, Fignani D, Nigi L, Formichi C, Licata G, Marselli L, Marchetti P, Salvini L, Tinti L, Po A, Ferretti E, Sebastiani G, Dotta F. Reduced miR-184-3p expression protects pancreatic β-cells from lipotoxic and proinflammatory apoptosis in type 2 diabetes via CRTC1 upregulation. Cell Death Dis 2022; 8:340. [PMID: 35906204 PMCID: PMC9338237 DOI: 10.1038/s41420-022-01142-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022]
Abstract
The loss of functional β-cell mass in type 2 diabetes (T2D) is associated with molecular events that include β-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several β-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated. Here, we show reduced miR-184-3p levels in human T2D pancreatic islets, whereas its direct target CREB regulated transcription coactivator 1 (CRTC1) was increased and protects β-cells from lipotoxicity- and inflammation-induced apoptosis. Downregulation of miR-184-3p in β-cells leads to upregulation of CRTC1 at both the mRNA and protein levels. Remarkably, the protective effect of miR-184-3p is dependent on CRTC1, as its silencing in human β-cells abrogates the protective mechanism mediated by inhibition of miR-184-3p. Furthermore, in accordance with miR-184-3p downregulation, we also found that the β-cell-specific transcription factor NKX6.1, DNA-binding sites of which are predicted in the promoter sequence of human and mouse MIR184 gene, is reduced in human pancreatic T2D islets. Using chromatin immunoprecipitation analysis and mRNA silencing experiments, we demonstrated that NKX6.1 directly controls both human and murine miR-184 expression. In summary, we provide evidence that the decrease in NKX6.1 expression is accompanied by a significant reduction in miR-184-3p expression and that reduction of miR-184-3p protects β-cells from apoptosis through a CRTC1-dependent mechanism.
Collapse
Affiliation(s)
- Giuseppina E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | | | - Laura Tinti
- TLS-Toscana Life Sciences Foundation, Siena, Italy
| | - Agnese Po
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
16
|
Azizi Z, Abbaszadeh R, Sahebnasagh R, Norouzy A, Motevaseli E, Maedler K. Bone marrow mesenchymal stromal cells for diabetes therapy: touch, fuse, and fix? Stem Cell Res Ther 2022; 13:348. [PMID: 35883121 PMCID: PMC9327419 DOI: 10.1186/s13287-022-03028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-inflammatory and pro-survival properties. Naturally, they do not express human leukocyte antigen class II surface antigens and have immunosuppressive capabilities. Together with their relatively easy accessibility and expansion, they are an attractive tool for organ support in transplantation and regenerative therapy. Autologous BM-MSC transplantation alone or together with transplanted islets improves β-cell function, graft survival, and glycemic control in diabetes. Albeit MSCs’ capacity to transdifferentiate into β-cell is limited, their protective effects are mediated mainly by paracrine mechanisms through BM-MSCs circulating through the body. Direct cell–cell contact and spontaneous fusion of BM-MSCs with injured cells, although at a very low rate, are further mechanisms of their supportive effect and for tissue regeneration. Diabetes is a disease of long-term chronic inflammation and cell therapy requires stable, highly functional cells. Several tools and protocols have been developed by mimicking natural fusion events to induce and accelerate fusion in vitro to promote β-cell-specific gene expression in fused cells. BM-MSC-islet fusion before transplantation may be a strategy for long-term islet survival and improved function. This review discusses the cell-protective and anti-inflammatory characteristics of BM-MSCs to boost highly functional insulin-producing cells in vitro and in vivo, and the efficacy of their fusion with β-cells as a path to promote β-cell regeneration.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran.
| | - Roya Abbaszadeh
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Amir Norouzy
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen,, Leobener Straße 5, NW2, 28359, Bremen, Germany.
| |
Collapse
|
17
|
Marzec ME, Rząca C, Moskal P, Stępień EŁ. Study of the influence of hyperglycemia on the abundance of amino acids, fatty acids, and selected lipids in extracellular vesicles using TOF-SIMS. Biochem Biophys Res Commun 2022; 622:30-36. [PMID: 35843091 DOI: 10.1016/j.bbrc.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) with the Bi3+ liquid metal ion gun was used to investigate the content of lipids and amino acids (AAs) in extracellular vesicles (EVs). We induced metabolic changes in human pancreatic β-cells by stimulation with high glucose concentrations (35 mM) and tested the hypothesis of hyperglycemia (HG) has a detrimental effect on lipids and AAs in released EV subpopulations: ectosomes and exosomes. As a result of HG treatment, selected fatty acids (FAs) such as arachidonic, myristic and palmitic acids, changed their abundance in ectosomes and exosomes. Also, intensities of the characteristic peaks for cholesterol (m/z 95.09; 147.07; 161.11; 369.45) along with the molecular ion m/z 386.37 [C27H46O+] under HG conditions, both for ectosomes and exosomes, have changed significantly. Comparative analysis of HG EVs and normoglycemic (NG) ones showed statistically significant differences in the signal intensities of four AAs: valine (m/z 72.08 and 83.05), isoleucine (m/z 86.10), phenylalanine (m/z 120.08 and 132.05) and tyrosine (m/z 107.05 and 136.09). We confirmed that ToF-SIMS is a useful technique to study selected AAs and lipid profiles in various EV subpopulations. Our study is the first demonstration of changes in FAs and AAs in exosomes and ectosomes derived from β-cells under the influence of HG.
Collapse
Affiliation(s)
- Magdalena E Marzec
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11 St, 30-348, Krakow, Poland; Center for Theranostics, Jagiellonian University, Kopernika 40 St, 31-501, Krakow, Poland
| | - Carina Rząca
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11 St, 30-348, Krakow, Poland; Center for Theranostics, Jagiellonian University, Kopernika 40 St, 31-501, Krakow, Poland
| | - Paweł Moskal
- Center for Theranostics, Jagiellonian University, Kopernika 40 St, 31-501, Krakow, Poland; Department of Experimental Particle Physics and Applications, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11 St, 30-348, Krakow, Poland
| | - Ewa Ł Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11 St, 30-348, Krakow, Poland; Center for Theranostics, Jagiellonian University, Kopernika 40 St, 31-501, Krakow, Poland.
| |
Collapse
|
18
|
Moon S, Jung HS. Endoplasmic Reticulum Stress and Dysregulated Autophagy in Human Pancreatic Beta Cells. Diabetes Metab J 2022; 46:533-542. [PMID: 35929171 PMCID: PMC9353561 DOI: 10.4093/dmj.2022.0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/28/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic beta cell homeostasis is crucial for the synthesis and secretion of insulin; disruption of homeostasis causes diabetes, and is a treatment target. Adaptation to endoplasmic reticulum (ER) stress through the unfolded protein response (UPR) and adequate regulation of autophagy, which are closely linked, play essential roles in this homeostasis. In diabetes, the UPR and autophagy are dysregulated, which leads to beta cell failure and death. Various studies have explored methods to preserve pancreatic beta cell function and mass by relieving ER stress and regulating autophagic activity. To promote clinical translation of these research results to potential therapeutics for diabetes, we summarize the current knowledge on ER stress and autophagy in human insulin-secreting cells.
Collapse
Affiliation(s)
- Seoil Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hye Seung Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
19
|
Ryaboshapkina M, Saitoski K, Hamza GM, Jarnuczak AF, Pechberty S, Berthault C, Sengupta K, Underwood CR, Andersson S, Scharfmann R. Characterization of the Secretome, Transcriptome, and Proteome of Human β Cell Line EndoC-βH1. Mol Cell Proteomics 2022; 21:100229. [PMID: 35378291 PMCID: PMC9062487 DOI: 10.1016/j.mcpro.2022.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human β cell secretome, and recent studies question translatability of rodent β cell secretory profiles. Here, we verify representativeness of EndoC-βH1, one of the most widely used human β cell lines, as a translational human β cell model based on omics and characterize the EndoC-βH1 secretome. We profiled EndoC-βH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-βH1 cells were compared to human β cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-βH1 cells and primary adult human β cells was ∼90% for global omics profiles as well as for β cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-βH1 cells compared to adult β cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-βH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known β cell hormones INS, IAPP, and IGF2. Further, EndoC-βH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-βH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Kevin Saitoski
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Ghaith M Hamza
- Discovery Sciences, AstraZeneca, Boston, Massachusetts, USA; Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Andrew F Jarnuczak
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Séverine Pechberty
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Claire Berthault
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Kaushik Sengupta
- Alliance Management, Business Development, Licensing and Strategy, Biopharmaceuticals R&D, Astra Zeneca, Gothenburg, Sweden
| | - Christina Rye Underwood
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Raphael Scharfmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| |
Collapse
|
20
|
Large-Scale Production of Size-Adjusted β-Cell Spheroids in a Fully Controlled Stirred-Tank Reactor. Processes (Basel) 2022. [DOI: 10.3390/pr10050861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For β-cell replacement therapies, one challenge is the manufacturing of enough β-cells (Edmonton protocol for islet transplantation requires 0.5–1 × 106 islet equivalents). To maintain their functionality, β-cells should be manufactured as 3D constructs, known as spheroids. In this study, we investigated whether β-cell spheroid manufacturing can be addressed by a stirred-tank bioreactor (STR) process. STRs are fully controlled bioreactor systems, which allow the establishment of robust, larger-scale manufacturing processes. Using the INS-1 β-cell line as a model for process development, we investigated the dynamic agglomeration of β-cells to determine minimal seeding densities, spheroid strength, and the influence of turbulent shear stress. We established a correlation to exploit shear forces within the turbulent flow regime, in order to generate spheroids of a defined size, and to predict the spheroid size in an STR by using the determined spheroid strength. Finally, we transferred the dynamic agglomeration process from shaking flasks to a fully controlled and monitored STR, and tested the influence of three different stirrer types on spheroid formation. We achieved the shear stress-guided production of up to 22 × 106 ± 2 × 106 viable and functional β-cell spheroids per liter of culture medium, which is sufficient for β-cell therapy applications.
Collapse
|
21
|
Mansouri M, Fussenegger M. Electrogenetics: Bridging synthetic biology and electronics to remotely control the behavior of mammalian designer cells. Curr Opin Chem Biol 2022; 68:102151. [PMID: 35483127 DOI: 10.1016/j.cbpa.2022.102151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/03/2022]
Abstract
Electrogenetics, the combination of electronics and genetics, is an emerging field of mammalian synthetic biology in which electrostimulation is used to remotely program user-designed genetic elements within designer cells to generate desired outputs. Here, we describe recent advances in electro-induced therapeutic gene expression and therapeutic protein secretion in engineered mammalian cells. We also review available tools and strategies to engineer electro-sensitive therapeutic designer cells that are able to sense electrical pulses and produce appropriate clinically relevant outputs in response. We highlight current limitations facing mammalian electrogenetics and suggest potential future directions for research.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland.
| |
Collapse
|
22
|
Park K, Lim H, Kim J, Hwang Y, Lee YS, Bae SH, Kim H, Kim H, Kang SW, Kim JY, Lee MS. Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic β-cells to metabolic stress. Nat Commun 2022; 13:1300. [PMID: 35288580 PMCID: PMC8921223 DOI: 10.1038/s41467-022-28874-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractAlthough autophagy is critical for pancreatic β-cell function, the role and mechanism of mitophagy in β-cells are unclear. We studied the role of lysosomal Ca2+ in TFEB activation by mitochondrial or metabolic stress and that of TFEB-mediated mitophagy in β-cell function. Mitochondrial or metabolic stress induced mitophagy through lysosomal Ca2+ release, increased cytosolic Ca2+ and TFEB activation. Lysosomal Ca2+ replenishment by ER- > lysosome Ca2+ refilling was essential for mitophagy. β-cell-specific Tfeb knockout (TfebΔβ-cell) abrogated high-fat diet (HFD)-induced mitophagy, accompanied by increased ROS and reduced mitochondrial cytochrome c oxidase activity or O2 consumption. TfebΔβ-cell mice showed aggravation of HFD-induced glucose intolerance and impaired insulin release. Metabolic or mitochondrial stress induced TFEB-dependent expression of mitophagy receptors including Ndp52 and Optn, contributing to the increased mitophagy. These results suggest crucial roles of lysosomal Ca2+ release coupled with ER- > lysosome Ca2+ refilling and TFEB activation in mitophagy and maintenance of pancreatic β-cell function during metabolic stress.
Collapse
|
23
|
Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, Lorenz K, Moessinger C, Eriksson O, Velikyan I, Pierrou S, Johansson L, Dietert G, Dietz-Baum Y, Kissner T, Nowotny I, Einig C, Jan C, Rharbaoui F, Gassenhuber J, Prochnow HP, Agueusop I, Porksen N, Smith WB, Nitsche A, Konkar A. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab 2022; 34:59-74.e10. [PMID: 34932984 DOI: 10.1016/j.cmet.2021.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
Collapse
Affiliation(s)
- Martin Bossart
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany.
| | - Michael Wagner
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Andreas Evers
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | | | - Katrin Lorenz
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden; Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | - Irene Nowotny
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | - Christelle Jan
- Clinical Sciences & Operations, Sanofi, Chilly-Mazarin, France
| | - Faiza Rharbaoui
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | | | | | | | - William B Smith
- NOCCR Alliance for Multispecialty Research (AMR), Knoxville, TN, USA
| | | | | |
Collapse
|
24
|
Hauke S, Rada J, Tihanyi G, Schilling D, Schultz C. ATP is an essential autocrine factor for pancreatic β-cell signaling and insulin secretion. Physiol Rep 2022; 10:e15159. [PMID: 35001557 PMCID: PMC8743876 DOI: 10.14814/phy2.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023] Open
Abstract
ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate β-cell activity within islets of Langerhans. Here, we show that β-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary β-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for β-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jona Rada
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gergely Tihanyi
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danny Schilling
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
25
|
Conlon JM, O'Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - A review. Peptides 2022; 147:170706. [PMID: 34861327 DOI: 10.1016/j.peptides.2021.170706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022]
Abstract
The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal β-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with β-cell proliferation, protection of β-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in β-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in β-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Finbarr P M O'Harte
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
26
|
Cathepsin C Regulates Cytokine-Induced Apoptosis in β-Cell Model Systems. Genes (Basel) 2021; 12:genes12111694. [PMID: 34828301 PMCID: PMC8622156 DOI: 10.3390/genes12111694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence suggests that several of the lysosomal cathepsin proteases are genetically associated with type 1 diabetes (T1D) and participate in immune-mediated destruction of the pancreatic β cells. We previously reported that the T1D candidate gene cathepsin H is downregulated by pro-inflammatory cytokines in human pancreatic islets and regulates β-cell function, apoptosis, and disease progression in children with new-onset T1D. In the present study, the objective was to investigate the expression patterns of all 15 known cathepsins in β-cell model systems and examine their role in the regulation of cytokine-induced apoptosis. Real-time qPCR screening of the cathepsins in human islets, 1.1B4 and INS-1E β-cell models identified several cathepsins that were expressed and regulated by pro-inflammatory cytokines. Using small interfering RNAs to knock down (KD) the cytokine-regulated cathepsins, we identified an anti-apoptotic function of cathepsin C as KD increased cytokine-induced apoptosis. KD of cathepsin C correlated with increased phosphorylation of JNK and p38 mitogen-activated protein kinases, and elevated chemokine CXCL10/IP-10 expression. This study suggests that cathepsin C is a modulator of β-cell survival, and that immune modulation of cathepsin expression in islets may contribute to immune-mediated β-cell destruction in T1D.
Collapse
|
27
|
Mohan S, Flatt PR, Irwin N, Moffett RC. Weight-reducing, lipid-lowering and antidiabetic activities of a novel arginine vasopressin analogue acting at the V1a and V1b receptors in high-fat-fed mice. Diabetes Obes Metab 2021; 23:2215-2225. [PMID: 34105240 DOI: 10.1111/dom.14462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022]
Abstract
AIM To assess the beneficial metabolic effects of the nonapeptide hormone, arginine vasopressin (AVP), on metabolism. MATERIALS AND METHODS We exchanged amino acids at position 3 and 8 of AVP, namely phenylalanine and arginine, with those of oxytocin, to generate novel analogues with altered receptor selectivity. Secondary modification by N-terminal acetylation was used to impart stability to circulating endopeptidases. Analogues were screened for degradation, bioactivity in rodent/human clonal beta cells and primary murine islets, together with evaluation of receptor activation profile. RESULTS Analogue Ac3IV, which lacked effects at the V2 receptors responsible for modulation of fluid balance, was selected as the lead compound for assessment of antidiabetic efficacy in high-fat-fed mice. Twice-daily administration of Ac3IV, or the gold standard control exendin-4, for 22 days, reduced energy intake as well as body weight and fat content. Both interventions decreased circulating glucose levels, enhanced insulin sensitivity, and substantially improved glucose tolerance and related insulin secretion in response to an intraperitoneal or oral glucose challenge. The peptides decreased total- and increased HDL-cholesterol, but only Ac3IV decreased LDL-cholesterol, triglyceride and non-fasting glucagon concentrations. Elevations of islet and beta-cell areas were partially reversed, accompanied by suppressed islet cell proliferation, decreased beta-cell apoptosis and, in the case of exendin-4, also decreased alpha-cell apoptosis. CONCLUSION AVP-based therapies that exclusively target V1a and V1b receptors may have significant therapeutic potential for the treatment of obesity and related diabetes, and merit further clinical exploration.
Collapse
Affiliation(s)
- Shruti Mohan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | | |
Collapse
|
28
|
Mansouri M, Xue S, Hussherr MD, Strittmatter T, Camenisch G, Fussenegger M. Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101939. [PMID: 34227232 DOI: 10.1002/smll.202101939] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Emerging digital assessment of biomarkers by linking health-related data obtained from wearable electronic devices and embedded health and fitness sensors in smartphones is opening up the possibility of creating a continuous remote-monitoring platform for disease management. It is considered that the built-in flashlight of smartphones may be utilized to remotely program genetically engineered designer cells for on-demand delivery of protein-based therapeutics. Here, the authors present smartphone-induced insulin release in β-cell line (iβ-cell) technology for traceless light-triggered rapid insulin secretion, employing the light-activatable receptor melanopsin to induce calcium influx and membrane depolarization upon illumination. This iβ-cell-based system enables repeated, reversible secretion of insulin within 15 min in response to light stimulation, with a high induction fold both in vitro and in vivo. It is shown that programmable percutaneous remote control of implanted microencapsulated iβ-cells with a smartphone's flashlight rapidly reverses hyperglycemia in a mouse model of type-1 diabetes.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Marie-Didiée Hussherr
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Gieri Camenisch
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
29
|
Chaffey JR, Young J, Leslie KA, Partridge K, Akhbari P, Dhayal S, Hill JL, Wedgwood KCA, Burnett E, Russell MA, Richardson SJ, Morgan NG. Investigation of the utility of the 1.1B4 cell as a model human beta cell line for study of persistent enteroviral infection. Sci Rep 2021; 11:15624. [PMID: 34341375 PMCID: PMC8329048 DOI: 10.1038/s41598-021-94878-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
The generation of a human pancreatic beta cell line which reproduces the responses seen in primary beta cells, but is amenable to propagation in culture, has long been an important goal in diabetes research. This is particularly true for studies focussing on the role of enteroviral infection as a potential cause of beta-cell autoimmunity in type 1 diabetes. In the present work we made use of a clonal beta cell line (1.1B4) available from the European Collection of Authenticated Cell Cultures, which had been generated by the fusion of primary human beta-cells with a pancreatic ductal carcinoma cell, PANC-1. Our goal was to study the factors allowing the development and persistence of a chronic enteroviral infection in human beta-cells. Since PANC-1 cells have been reported to support persistent enteroviral infection, the hybrid 1.1B4 cells appeared to offer an ideal vehicle for our studies. In support of this, infection of the cells with a Coxsackie virus isolated originally from the pancreas of a child with type 1 diabetes, CVB4.E2, at a low multiplicity of infection, resulted in the development of a state of persistent infection. Investigation of the molecular mechanisms suggested that this response was facilitated by a number of unexpected outcomes including an apparent failure of the cells to up-regulate certain anti-viral response gene products in response to interferons. However, more detailed exploration revealed that this lack of response was restricted to molecular targets that were either activated by, or detected with, human-selective reagents. By contrast, and to our surprise, the cells were much more responsive to rodent-selective reagents. Using multiple approaches, we then established that populations of 1.1B4 cells are not homogeneous but that they contain a mixture of rodent and human cells. This was true both of our own cell stocks and those held by the European Collection of Authenticated Cell Cultures. In view of this unexpected finding, we developed a strategy to harvest, isolate and expand single cell clones from the heterogeneous population, which allowed us to establish colonies of 1.1B4 cells that were uniquely human (h1.1.B4). However, extensive analysis of the gene expression profiles, immunoreactive insulin content, regulated secretory pathways and the electrophysiological properties of these cells demonstrated that they did not retain the principal characteristics expected of human beta cells. Our data suggest that stocks of 1.1B4 cells should be evaluated carefully prior to their use as a model human beta-cell since they may not retain the phenotype expected of human beta-cells.
Collapse
Affiliation(s)
- Jessica R Chaffey
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Jay Young
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Kaiyven A Leslie
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Katie Partridge
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Pouria Akhbari
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Shalinee Dhayal
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Jessica L Hill
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | | | - Edward Burnett
- Culture Collections, National Infection Service, European Collection of Authenticated Cell Cultures, Public Health England (PHE), Salisbury, SP4 0JG, UK
| | - Mark A Russell
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK.
| | - Sarah J Richardson
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK.
| | - Noel G Morgan
- Islet Biology Group, Exeter Centre for Excellence in Diabetes (EXCEED), Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK.
| |
Collapse
|
30
|
Šrámek J, Němcová V, Kovář J. Calcium channel blockers do not protect against saturated fatty acid-induced ER stress and apoptosis in human pancreatic β-cells. Nutr Metab (Lond) 2021; 18:74. [PMID: 34274001 PMCID: PMC8285784 DOI: 10.1186/s12986-021-00597-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
It was evidenced that saturated fatty acids (FAs) have a detrimental effect on pancreatic β-cells function and survival, leading to endoplasmic reticulum (ER) calcium release, ER stress, and apoptosis. In the present study, we have tested the effect of three calcium influx inhibitors, i.e., diazoxide, nifedipine, and verapamil, on the apoptosis-inducing effect of saturated stearic acid (SA) in the human pancreatic β-cell lines NES2Y and 1.1B4. We have demonstrated that the application of all three calcium influx inhibitors tested has no inhibitory effect on SA-induced ER stress and apoptosis in both tested cell lines. Moreover, these inhibitors have pro-apoptotic potential per se at higher concentrations. Interestingly, these findings are in contradiction with those obtained with rodent cell lines and islets. Thus our data obtained with human β-cell lines suggest that the prospective usage of calcium channel blockers for prevention and therapy of type 2 diabetes mellitus, developed with the contribution of the saturated FA-induced apoptosis of β-cells, seems rather unlikely.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology and Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Vlasta Němcová
- Department of Biochemistry, Cell and Molecular Biology and Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology and Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
31
|
Ehrlich R, Hendler-Neumark A, Wulf V, Amir D, Bisker G. Optical Nanosensors for Real-Time Feedback on Insulin Secretion by β-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101660. [PMID: 34197026 DOI: 10.1002/smll.202101660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Quantification of insulin is essential for diabetes research in general, and for the study of pancreatic β-cell function in particular. Herein, fluorescent single-walled carbon nanotubes (SWCNT) are used for the recognition and real-time quantification of insulin. Two approaches for rendering the SWCNT sensors for insulin are compared, using surface functionalization with either a natural insulin aptamer with known affinity to insulin, or a synthetic lipid-poly(ethylene glycol) (PEG) (C16 -PEG(2000Da)-Ceramide), both of which show a modulation of the emitted fluorescence in response to insulin. Although the PEGylated-lipid has no prior affinity to insulin, the response of C16 -PEG(2000Da)-Ceramide-SWCNTs to insulin is more stable and reproducible compared to the insulin aptamer-SWCNTs. The SWCNT sensors successfully detect insulin secreted by β-cells within the complex environment of the conditioned media. The insulin is quantified by comparing the SWCNTs fluorescence response to a standard calibration curve, and the results are found to be in agreement with an enzyme-linked immunosorbent assay. This novel analytical tool for real time quantification of insulin secreted by β-cells provides new opportunities for rapid assessment of β-cell function, with the ability to push forward many aspects of diabetes research.
Collapse
Affiliation(s)
- Roni Ehrlich
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dean Amir
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
32
|
Protection against Glucolipotoxicity by High Density Lipoprotein in Human PANC-1 Hybrid 1.1B4 Pancreatic Beta Cells: The Role of microRNA. BIOLOGY 2021; 10:biology10030218. [PMID: 33805674 PMCID: PMC8000094 DOI: 10.3390/biology10030218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
High-density lipoproteins provide protection against the damaging effects of glucolipotoxicity in beta cells, a factor which sustains insulin secretion and staves off onset of type 2 diabetes mellitus. This study examines epigenetic changes in small non-coding microRNA sequences induced by high density lipoproteins in a human hybrid beta cell model, and tests the impact of delivery of a single sequence in protecting against glucolipotoxicity. Human PANC-1.1B4 cells were used to establish Bmax and Kd for [3H]cholesterol efflux to high density lipoprotein, and minimum concentrations required to protect cell viability and reduce apoptosis to 30mM glucose and 0.25 mM palmitic acid. Microchip array identified the microRNA signature associated with high density lipoprotein treatment, and one sequence, hsa-miR-21-5p, modulated via delivery of a mimic and inhibitor. The results confirm that low concentrations of high-density lipoprotein can protect against glucolipotoxicity, and report the global microRNA profile associated with this lipoprotein; delivery of miR-21-5p mimic altered gene targets, similar to high density lipoprotein, but could not provide sufficient protection against glucolipotoxicity. We conclude that the complex profile of microRNA changes due to HDL treatment may be difficult to replicate using a single microRNA, findings which may inform current drug strategies focused on this approach.
Collapse
|
33
|
Diaz-Ganete A, Quiroga-de-Castro A, Mateos RM, Medina F, Segundo C, Lechuga-Sancho AM. Toxicity Induced by Cytokines, Glucose, and Lipids Increase Apoptosis and Hamper Insulin Secretion in the 1.1E7 Beta Cell-Line. Int J Mol Sci 2021; 22:ijms22052559. [PMID: 33806355 PMCID: PMC7961802 DOI: 10.3390/ijms22052559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Basic research on types 1 and 2 diabetes mellitus require early stage studies using beta cells or cell lines, ideally of human origin and with preserved insulin secretion in response to glucose. The 1.1E7 cells are a hybrid cell line resulting from the electrofusion of dispersed human islets and PANC-1 cells, capable of secreting insulin in response to glucose, but their survival and function under toxic conditions remains untested. This characterization is the purpose of the present study. We treated these cells with a cytokine mix, high glucose, palmitate, and the latter two combined. Under these conditions, we measured cell viability and apoptosis (MTT, Caspase Glo and TUNEL assays, as well as caspase-8 and -9 levels by Western blotting), endoplasmic reticulum stress markers (EIF2AK3, HSPA4, EIF2a, and HSPA5) by real-time PCR, and insulin secretion with a glucose challenge. All of these stimuli (i) induce apoptosis and ER stress markers expression, (ii) reduce mRNA amounts of 2–5 components of genes involved in the insulin secretory pathway, and (iii) abrogate the insulin release capability of 1.1E7 cells in response to glucose. The most pronounced effects were observed with cytokines and with palmitate and high glucose combined. This characterization may well serve as the starting point for those choosing this cell line for future basic research on certain aspects of diabetes.
Collapse
Affiliation(s)
- Antonia Diaz-Ganete
- Inflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.D.-G.); (R.M.M.); (F.M.)
| | - Aranzazu Quiroga-de-Castro
- Area of Pediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, 11002 Cádiz, Spain;
| | - Rosa M. Mateos
- Inflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.D.-G.); (R.M.M.); (F.M.)
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11519 Cádiz, Spain
| | - Francisco Medina
- Inflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.D.-G.); (R.M.M.); (F.M.)
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
| | - Carmen Segundo
- Inflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.D.-G.); (R.M.M.); (F.M.)
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
- Correspondence: (C.S.); (A.M.L.-S.)
| | - Alfonso M. Lechuga-Sancho
- Inflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (A.D.-G.); (R.M.M.); (F.M.)
- Area of Pediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, 11002 Cádiz, Spain;
- Pediatric Endocrinology, Department of Pediatrics, Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Correspondence: (C.S.); (A.M.L.-S.)
| |
Collapse
|
34
|
Fløyel T, Meyerovich K, Prause MC, Kaur S, Frørup C, Mortensen HB, Nielsen LB, Pociot F, Cardozo AK, Størling J. SKAP2, a Candidate Gene for Type 1 Diabetes, Regulates β-Cell Apoptosis and Glycemic Control in Newly Diagnosed Patients. Diabetes 2021; 70:464-476. [PMID: 33203694 PMCID: PMC7881866 DOI: 10.2337/db20-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023]
Abstract
The single nucleotide polymorphism rs7804356 located in the Src kinase-associated phosphoprotein 2 (SKAP2) gene is associated with type 1 diabetes (T1D), suggesting SKAP2 as a causal candidate gene. The objective of the study was to investigate if SKAP2 has a functional role in the β-cells in relation to T1D. In a cohort of children with newly diagnosed T1D, rs7804356 predicted glycemic control and residual β-cell function during the 1st year after diagnosis. In INS-1E cells and rat and human islets, proinflammatory cytokines reduced the content of SKAP2. Functional studies revealed that knockdown of SKAP2 aggravated cytokine-induced apoptosis in INS-1E cells and primary rat β-cells, suggesting an antiapoptotic function of SKAP2. In support of this, overexpression of SKAP2 afforded protection against cytokine-induced apoptosis, which correlated with reduced nuclear content of S536-phosphorylated nuclear factor-κB (NF-κB) subunit p65, lower nitric oxide production, and diminished CHOP expression indicative of decreased endoplasmic reticulum stress. Knockdown of CHOP partially counteracted the increase in cytokine-induced apoptosis caused by SKAP2 knockdown. In conclusion, our results suggest that SKAP2 controls β-cell sensitivity to cytokines possibly by affecting the NF-κB-inducible nitric oxide synthase-endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Tina Fløyel
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kira Meyerovich
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Michala C Prause
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Henrik B Mortensen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Kim J, Park K, Kim MJ, Lim H, Kim KH, Kim SW, Lee ES, Kim HH, Kim SJ, Hur KY, Kim JH, Ahn JH, Yoon KH, Kim JW, Lee MS. An autophagy enhancer ameliorates diabetes of human IAPP-transgenic mice through clearance of amyloidogenic oligomer. Nat Commun 2021; 12:183. [PMID: 33420039 PMCID: PMC7794419 DOI: 10.1038/s41467-020-20454-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
We have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation. Islet amyloid polypeptide (IAPP) deposition is associated with islet cell loss in diabetes. Here the authors show that a small molecule autophagy enhancer reduces IAPP accumulation in vitro, and also improves glucose tolerance in hIAPP+ mice fed high-fat diet, accompanied by reduced hIAPP accumulation, in vivo.
Collapse
Affiliation(s)
- Jinyoung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kihyoun Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyejin Lim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kook Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun-Woo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Seo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Joo Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.,Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea. .,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Fløyel T, Mirza AH, Kaur S, Frørup C, Yarani R, Størling J, Pociot F. The Rac2 GTPase contributes to cathepsin H-mediated protection against cytokine-induced apoptosis in insulin-secreting cells. Mol Cell Endocrinol 2020; 518:110993. [PMID: 32814070 DOI: 10.1016/j.mce.2020.110993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
The type 1 diabetes (T1D) risk locus on chromosome 15q25.1 harbors the candidate gene CTSH (cathepsin H). We previously demonstrated that CTSH regulates β-cell function in vitro and in vivo. CTSH overexpression protected insulin-secreting INS-1 cells against cytokine-induced apoptosis. The purpose of the present study was to identify the genes through which CTSH mediates its protective effects. Microarray analysis identified 63 annotated genes differentially expressed between CTSH-overexpressing INS-1 cells and control cells treated with interleukin-1β and interferon-γ for up to 16h. Permutation test identified 10 significant genes across all time-points: Elmod1, Fam49a, Gas7, Gna15, Msrb3, Nox1, Ptgs1, Rac2, Scn7a and Ttn. Pathway analysis identified the "Inflammation mediated by chemokine and cytokine signaling pathway" with Gna15, Ptgs1 and Rac2 as significant. Knockdown of Rac2 abolished the protective effect of CTSH overexpression on cytokine-induced apoptosis, suggesting that the small GTPase and T1D candidate gene Rac2 contributes to the anti-apoptotic effect of CTSH.
Collapse
Affiliation(s)
- Tina Fløyel
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Aashiq Hussain Mirza
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, Box 125, New York, NY, 10065, USA.
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
37
|
Lafferty RA, Tanday N, Flatt PR, Irwin N. Generation and characterisation of C-terminally stabilised PYY molecules with potential in vivo NPYR2 activity. Metabolism 2020; 111:154339. [PMID: 32777442 DOI: 10.1016/j.metabol.2020.154339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Activation of neuropeptide Y2 receptors (NPYR2) by the N-terminally truncated, dipeptidyl peptidase-4 (DPP-4) generated, Peptide YY (PYY) metabolite, namely PYY(3-36), results in satiating actions. However, PYY(3-36) is also subject to C-terminal enzymatic cleavage, which annuls anorectic effects. METHODS Substitution of l-Arg35 with d-Arg35 in the DPP-4 stable sea lamprey PYY(1-36) peptide imparts full C-terminal stability. In the current study, we have taken this molecule and introduced DPP-4 susceptibility by Iso3 substitution. RESULTS As expected, [Iso3]sea lamprey PYY(1-36) and [Iso3](d-Arg35)sea lamprey PYY(1-36) were N-terminally degraded to respective PYY(3-36) metabolites in plasma. Only [Iso3](d-Arg35)sea lamprey PYY(1-36) was C-terminally stable. Both peptides possessed similar insulinostatic and anti-apoptotic biological actions to native PYY(1-36) in beta-cells. Unlike native PYY(1-36) and [Iso3](d-Arg35)sea lamprey PYY(1-36), [Iso3]sea lamprey PYY(1-36) displayed some proliferative actions in Npyr1 knockout beta-cells. In addition, [Iso3]sea lamprey PYY(1-36) induced more rapid NPYR2-dependent appetite suppressive effects in mice than its C-terminally stable counterpart. Twice daily administration of either peptide to high fat fed (HFF) mice resulted in significant body weight reduction and improvements in circulating triglyceride levels. [Iso3]sea lamprey PYY(1-36) treatment also prevented elevations in glucagon. Both peptides, and especially [Iso3]sea lamprey PYY(1-36), improved glucose tolerance. The treatment interventions also partially reversed the deleterious effects of sustained high fat feeding on pancreatic islet morphology. CONCLUSION The present study confirms that sustained NPYR2 receptor activation by [Iso3](d-Arg35)sea lamprey induced significant weight lowering actions. However, identifiable benefits of this peptide over [Iso3]sea lamprey PYY(1-36), which was not protected against C-terminal degradation, were not pronounced.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
38
|
Rattanaporn P, Tongsima S, Mandrup-Poulsen T, Svasti S, Tanyong D. Combination of ferric ammonium citrate with cytokines involved in apoptosis and insulin secretion of human pancreatic beta cells related to diabetes in thalassemia. PeerJ 2020; 8:e9298. [PMID: 32587797 PMCID: PMC7304432 DOI: 10.7717/peerj.9298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background Diabetes mellitus (DM) is a common complication found in β-thalassemia patients. The mechanism of DM in β-thalassemia patients is still unclear, but it could be from an iron overload and increase of some cytokines, such as interleukin1-β (IL-1β) and tumor necrosis factor-α (TNF-α). The objective of this study was to study the effect of interaction between ferric ammonium citrate (FAC) and cytokines, IL-1β and TNF-α, on 1.1B4 human pancreatic β-cell line. Methods The effect of the combination of FAC and cytokines on cell viability was studied by MTT assay. Insulin secretion was assessed by the enzyme-linked immunosorbent assay (ELISA). The reactive oxygen species (ROS) and cell apoptosis in normal and high glucose condition were determined by flow cytometer. In addition, gene expression of apoptosis, antioxidant; glutathione peroxidase 1 (GPX1) and superoxide dismutase 2 (SOD2), and insulin secretory function were studied by real-time polymerase chain reaction (Real-time PCR). Results The findings revealed that FAC exposure resulted in the decrease of cell viability and insulin-release, and the induction of ROS and apoptosis in pancreatic cells. Interestingly, a combination of FAC and cytokines had an additive effect on SOD2 antioxidants' genes expression and endoplasmic reticulum (ER) stress. In addition, it reduced the insulin secretion genes expression; insulin (INS), glucose kinase (GCK), protein convertase 1 (PSCK1), and protein convertase 2 (PSCK2). Moreover, the highest ROS and the lowest insulin secretion were found in FAC combined with IL-1β and TNF-α in the high-glucose condition of human pancreatic beta cell, which could be involved in the mechanism of DM development in β-thalassemia patients.
Collapse
Affiliation(s)
- Patchara Rattanaporn
- Department of Clinical Microscopic, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.,Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand.,National Center for Genetics Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopic, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
39
|
Krawczyk K, Xue S, Buchmann P, Charpin-El-Hamri G, Saxena P, Hussherr MD, Shao J, Ye H, Xie M, Fussenegger M. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 2020; 368:993-1001. [DOI: 10.1126/science.aau7187] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Sophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter–driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel CaV1.2 and the inwardly rectifying potassium channel Kir2.1 to the desired output through endogenous calcium signaling. Focusing on type 1 diabetes, we engineered electrosensitive human β cells (Electroβ cells). Wireless electrical stimulation of Electroβ cells inside a custom-built bioelectronic device provided real-time control of vesicular insulin release; insulin levels peaked within 10 minutes. When subcutaneously implanted, this electrotriggered vesicular release system restored normoglycemia in type 1 diabetic mice.
Collapse
Affiliation(s)
- Krzysztof Krawczyk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El-Hamri
- Département Génie Biologique, Institut Universitaire de Technologie Lyon 1, F-69622 Villeurbanne Cedex, France
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Marie-Didiée Hussherr
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Jiawei Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
- Key Laboratory of Growth Regulation and Transformation Research of Zheijang Province, School of Life Sciences, Westlake University, Hangzhou, People’s Republic of China
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Key Laboratory of Growth Regulation and Transformation Research of Zheijang Province, School of Life Sciences, Westlake University, Hangzhou, People’s Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
40
|
|
41
|
Lafferty RA, Tanday N, McCloskey A, Bompada P, De Marinis Y, Flatt PR, Irwin N. Peptide YY (1-36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic β-cell function, growth and survival. Diabetes Obes Metab 2020; 22:404-416. [PMID: 31692207 DOI: 10.1111/dom.13908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
AIM To investigate the antidiabetic efficacy of enzymatically stable Peptide YY (PYY) peptides from phylogenetically ancient fish. MATERIALS AND METHODS N-terminally stabilized, PYY (1-36) sequences from Amia calva (bowfin), Oncorhynchus mykiss (trout), Petromyzon marinus (sea lamprey) and Scaphirhynchus albus (sturgeon), were synthesized, and both biological actions and antidiabetic therapeutic efficacy were assessed. RESULTS All fish PYY (1-36) peptides were resistant to dipeptidyl peptidase-4 (DPP-4) degradation and inhibited glucose- and alanine-induced (P < 0.05 to P < 0.001) insulin secretion. In addition, PYY (1-36) peptides imparted significant (P < 0.05 to P < 0.001) β-cell proliferative and anti-apoptotic benefits. Proliferative effects were almost entirely absent in β cells with CRISPR-Cas9-induced knockout of Npyr1. In contrast to human PYY (1-36), the piscine-derived peptides lacked appetite-suppressive actions. Twice-daily administration of sea lamprey PYY (1-36), the superior bioactive peptide, for 21 days significantly (P < 0.05 to P < 0.001) decreased fluid intake, non-fasting glucose and glucagon in streptozotocin (STZ)-induced diabetic mice. In addition, glucose tolerance, insulin sensitivity, pancreatic insulin and glucagon content were significantly improved. Metabolic benefits were linked to positive changes in pancreatic islet morphology as a result of augmented (P < 0.001) proliferation and decreased apoptosis of β cells. Sturgeon PYY (1-36) exerted similar but less impressive effects in STZ mice. CONCLUSION These observations reveal, for the first time, that PYY (1-36) peptide sequences from phylogenetically ancient fish replicate the pancreatic β-cell benefits of human PYY (1-36) and have clear potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Andrew McCloskey
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Pradeep Bompada
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yang De Marinis
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| |
Collapse
|
42
|
Development and characterisation of a peptidergic N-and C-terminally stabilised mammalian NPY1R agonist which protects against diabetes induction. Biochim Biophys Acta Gen Subj 2020; 1864:129543. [PMID: 32007578 DOI: 10.1016/j.bbagen.2020.129543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND PYY (1-36) peptides from phylogenetically ancient fish, such as sea lamprey, have previously been shown to function as specific neuropeptide Y1 receptor (NPYR1) agonists. Although, sea lamprey PYY (1-36) is N-terminally stable, we reveal in this study that the peptide is subject to endopeptidase mediated C-terminal dipeptide degradation. In an attempt to prevent this, (d-Arg35)-sea lamprey PYY (1-36) was developed. METHODS In vitro bioassays assessed enzymatic stability, insulinostatic activity as well as beta-cell anti-apoptotic actions of (d-Arg35)-sea lamprey PYY (1-36). Follow-up studies examined the impact of twice daily administration of sea lamprey PYY (1-36) or (d-Arg35)-sea lamprey PYY (1-36) in multiple low dose STZ-induced diabetic mice. RESULTS (d-Arg35)-sea lamprey PYY (1-36) was fully resistant to plasma enzymatic degradation. The peptide possessed similar significant insulinostatic, as well as positive anti-apoptotic biological actions, as the parent peptide. Sea lamprey PYY (1-36) and (d-Arg35)-sea lamprey PYY (1-36) delayed diabetes progression in STZ mice. Both treatment interventions induced a significant decrease in body weight, food and fluid intake as well as glucose and glucagon concentrations. In addition, glucose tolerance, plasma and pancreatic insulin were partially normalised. (d-Arg35)-sea lamprey PYY (1-36) was significantly more effective than sea lamprey PYY (1-36) in terms of enhancing glucose-stimulate insulin release. Both treatments improved pancreatic islet morphology, linked to decreased apoptosis of beta-cells. CONCLUSION We present (d-Arg35)-sea lamprey PYY (1-36) as the first-in-class N- and C-terminally stable PYY (1-36) peptide analogue. GENERAL SIGNIFICANCE Enzymatically stable, long-acting PYY (1-36) peptides highlight the therapeutic benefits of sustained activation of NPYR1's in diabetes.
Collapse
|
43
|
Nekoua MP, Bertin A, Sane F, Alidjinou EK, Lobert D, Trauet J, Hober C, Engelmann I, Moutairou K, Yessoufou A, Hober D. Pancreatic beta cells persistently infected with coxsackievirus B4 are targets of NK cell-mediated cytolytic activity. Cell Mol Life Sci 2020; 77:179-194. [PMID: 31172216 PMCID: PMC11104831 DOI: 10.1007/s00018-019-03168-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
It has been suggested that the persistence of coxsackieviruses-B (CV-B) in pancreatic beta cells plays a role in the pathogenesis of type 1 diabetes (T1D). Yet, immunological effectors, especially natural killer (NK) cells, are supposed to clear virus-infected cells. Therefore, an evaluation of the response of NK cells to pancreatic beta cells persistently infected with CV-B4 was conducted. A persistent CV-B4 infection was established in 1.1B4 pancreatic beta cells. Infectious particles were found in supernatants throughout the culture period. The proportion of cells containing viral protein VP1 was low (< 5%), although a large proportion of cells harbored viral RNA (around 50%), whilst cell viability was preserved. HLA class I cell surface expression was downregulated in persistently infected cultures, but HLA class I mRNA levels were unchanged in comparison with mock-infected cells. The cytolytic activities of IL-2-activated non-adherent peripheral blood mononuclear cells (PBMCs) and of NK cells were higher towards persistently infected cells than towards mock-infected cells, as assessed by an LDH release assay. Impaired cytolytic activity of IL-2-activated non-adherent PBMCs from patients with T1D towards infected beta cells was observed. In conclusion, pancreatic beta cells persistently infected with CV-B4 can be lysed by NK cells, implying that impaired cytolytic activity of these effector cells may play a role in the persistence of CV-B in the host and thus in the viral pathogenesis of T1D.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526, Cotonou, Benin
| | - Antoine Bertin
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Famara Sane
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Enagnon Kazali Alidjinou
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Delphine Lobert
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Jacques Trauet
- Université de Lille, INSERM U995, LIRIC-Lille, CHU de Lille, Institut d'Immunologie, 59000, Lille, France
| | - Christine Hober
- Polyclinique, Service de Médecine Programmée, 62000, Henin-Beaumont, France
| | - Ilka Engelmann
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France
| | - Kabirou Moutairou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526, Cotonou, Benin
| | - Akadiri Yessoufou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526, Cotonou, Benin
| | - Didier Hober
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, 59000, Lille, France.
- Laboratoire de Virologie EA3610, Centre Paul Boulanger, Hôpital A Calmette, CHRU, Boulevard du Professeur Jules Leclercq, 59037, Lille Cedex, France.
| |
Collapse
|
44
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
45
|
Lagundžin D, Hu WF, Law HCH, Krieger KL, Qiao F, Clement EJ, Drincic AT, Nedić O, Naldrett MJ, Alvarez S, Woods NT. Delineating the role of FANCA in glucose-stimulated insulin secretion in β cells through its protein interactome. PLoS One 2019; 14:e0220568. [PMID: 31461451 PMCID: PMC6713327 DOI: 10.1371/journal.pone.0220568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperinsulinemia affects 72% of Fanconi anemia (FA) patients and an additional 25% experience lowered glucose tolerance or frank diabetes. The underlying molecular mechanisms contributing to the dysfunction of FA pancreas β cells is unknown. Therefore, we sought to evaluate the functional role of FANCA, the most commonly mutated gene in FA, in glucose-stimulated insulin secretion (GSIS). This study reveals that FANCA or FANCB knockdown impairs GSIS in human pancreas β cell line EndoC-βH3. To identify potential pathways by which FANCA might regulate GSIS, we employed a proteomics approach to identify FANCA protein interactions in EndoC-βH3 differentially regulated in response to elevated glucose levels. Glucose-dependent changes in the FANCA interaction network were observed, including increased association with other FA family proteins, suggesting an activation of the DNA damage response in response to elevated glucose levels. Reactive oxygen species increase in response to glucose stimulation and are necessary for GSIS in EndoC-βH3 cells. Glucose-induced activation of the DNA damage response was also observed as an increase in the DNA damage foci marker γ-H2AX and dependent upon the presence of reactive oxygen species. These results illuminate the role of FANCA in GSIS and its protein interactions regulated by glucose stimulation that may explain the prevalence of β cell-specific endocrinopathies in FA patients.
Collapse
Affiliation(s)
- Dragana Lagundžin
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Wen-Feng Hu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Henry C. H. Law
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kimiko L. Krieger
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Emalie J. Clement
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Andjela T. Drincic
- Department of Internal Medicine: Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Banatska, Belgrade, Serbia
| | - Michael J. Naldrett
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska–Lincoln, Nebraska, United States of America
| | - Sophie Alvarez
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska–Lincoln, Nebraska, United States of America
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lafferty RA, Gault VA, Flatt PR, Irwin N. Effects of 2 Novel PYY(1-36) Analogues, (P 3L 31P 34)PYY(1-36) and PYY(1-36)(Lys 12PAL), on Pancreatic Beta-Cell Function, Growth, and Survival. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419855626. [PMID: 31244528 PMCID: PMC6580715 DOI: 10.1177/1179551419855626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Recent studies have identified a beneficial role for peptide tyrosine tyrosine
(PYY) on pancreatic beta-cell function and survival. These effects are linked to
the activation of neuropeptide Y1 receptors (NPYR1s) by PYY(1-36). However,
PYY(1-36) is subject to rapid degradation by dipeptidyl peptidase-4 (DPP-4),
resulting is the loss of NPYR1 activity. Therefore, the aim of this study was to
develop 2 enzymatically stable PYY(1-36) analogues, namely,
(P3L31P34)PYY(1-36) and
PYY(1-36)(Lys12PAL), with further structural modifications to
enhance NPYR1 specificity. As expected,
(P3L31P34)PYY(1-36) was fully resistant to
DPP-4-mediated degradation in vitro, whereas PYY(1-36) and
PYY(1-36)(Lys12PAL) were both liable to DPP-4 breakdown.
PYY(1-36) and (P3L31P34)PYY(1-36) induced
significant reductions in glucose-stimulated insulin secretion (GSIS) from BRIN
BD11 cells, but only PYY(1-36) diminished alanine-stimulated insulin secretion.
In contrast, PYY(1-36)(Lys12PAL) had no impact on GSIS or
alanine-induced insulin release. All 3 PYY peptides significantly enhanced
proliferation in BRIN BD11 and 1.1B4 beta-cell lines, albeit only at the highest
concentration examined, 10-6 M, for
(P3L31P34)PYY(1-36) and
PYY(1-36)(Lys12PAL) in BRIN BD11 cells. Regarding the protection
of beta-cells against cytokine-induced apoptosis, PYY(1-36) induced clear
protective effects. Both (P3L31P34)PYY(1-36)
and PYY(1-36)(Lys12PAL) offered some protection against apoptosis in
BRIN BD11 cells, but were significantly less efficacious than PYY(1-36).
Similarly, in 1.1B4 cells, both PYY analogues (10-6 M) protected
against cytokine-induced apoptosis, but
(P3L31P34)PYY(1-36) was significantly less
effective than PYY(1-36). All 3 PYY peptides had no impact on refeeding in
overnight fasted mice. These data underline the beta-cell benefits of PYY(1-36)
and highlight the challenges of synthesising stable, bioactive, NPYR1-specific,
PYY(1-36) analogues.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK.,Diabetes Research Group, University of Ulster, Coleraine, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
47
|
Gregory LC, Ferreira CB, Young-Baird SK, Williams HJ, Harakalova M, van Haaften G, Rahman SA, Gaston-Massuet C, Kelberman D, GOSgene, Qasim W, Camper SA, Dever TE, Shah P, Robinson ICAF, Dattani MT. Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 2019; 42:470-480. [PMID: 30878599 PMCID: PMC6492072 DOI: 10.1016/j.ebiom.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022] Open
Abstract
Background The heterotrimeric GTP-binding protein eIF2 forms a ternary complex with initiator methionyl-tRNA and recruits it to the 40S ribosomal subunit for start codon selection and thereby initiates protein synthesis. Mutations in EIF2S3, encoding the eIF2γ subunit, are associated with severe intellectual disability and microcephaly, usually as part of MEHMO syndrome. Methods Exome sequencing of the X chromosome was performed on three related males with normal head circumferences and mild learning difficulties, hypopituitarism (GH and TSH deficiencies), and an unusual form of glucose dysregulation. In situ hybridisation on human embryonic tissue, EIF2S3-knockdown studies in a human pancreatic cell line, and yeast assays on the mutated corresponding eIF2γ protein, were performed in this study. Findings We report a novel hemizygous EIF2S3 variant, p.Pro432Ser, in the three boys (heterozygous in their mothers). EIF2S3 expression was detectable in the developing pituitary gland and pancreatic islets of Langerhans. Cells lacking EIF2S3 had increased caspase activity/cell death. Impaired protein synthesis and relaxed start codon selection stringency was observed in mutated yeast. Interpretation Our data suggest that the p.Pro432Ser mutation impairs eIF2γ function leading to a relatively mild novel phenotype compared with previous EIF2S3 mutations. Our studies support a critical role for EIF2S3 in human hypothalamo-pituitary development and function, and glucose regulation, expanding the range of phenotypes associated with EIF2S3 mutations beyond classical MEHMO syndrome. Untreated hypoglycaemia in previous cases may have contributed to their more severe neurological impairment and seizures in association with impaired EIF2S3. Fund GOSH, MRF, BRC, MRC/Wellcome Trust and NIGMS funded this study.
Collapse
Affiliation(s)
- Louise C Gregory
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Carolina B Ferreira
- Infection, Immunology Inflammation & Physiological Medicine, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MA 20892, United States
| | - Hywel J Williams
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Magdalena Harakalova
- Department of Genetics, University Medical Center Utrecht, 3584, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, 3584, the Netherlands
| | - Sofia A Rahman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & The London Medical School, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Daniel Kelberman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - GOSgene
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, Children NHS Foundation Trust and UCL, London WC1N 1EH, United Kingdom
| | - Waseem Qasim
- Infection, Immunology Inflammation & Physiological Medicine, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Pratik Shah
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | - Mehul T Dattani
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom.
| |
Collapse
|
48
|
Mohan S, Moffett RC, Thomas KG, Irwin N, Flatt PR. Vasopressin receptors in islets enhance glucose tolerance, pancreatic beta-cell secretory function, proliferation and survival. Biochimie 2019; 158:191-198. [DOI: 10.1016/j.biochi.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
|
49
|
Ke Q, Li C, Wu M, Ge L, Yao C, Yao C, Mi Y. Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production. Bioelectrochemistry 2019; 127:171-179. [PMID: 30831355 DOI: 10.1016/j.bioelechem.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
The excessive cell death rate caused by electrofusion with unipolar pulses (UPs) has been a bottleneck to increasing cell fusion efficiency in monoclonal antibody technology. Several studies have confirmed that compared with UPs, bipolar pulses (BPs) with microsecond pulse widths can increase electropermeabilization while reducing cell death. Given these characteristics, BPs were used to increase cell fusion efficiency in this study. Cell staining and hybridoma culture experiments were performed using SP2/0 mouse myeloma cells and lymphocytes. Based on the equal energy principle, UPs and BPs were delivered to electrodes at a distance of 3.81 mm, with electric field intensities ranging from 2 kV/cm to 3 kV/cm and pulse duration of 40 μs for the UPs and 20-20 μs for the BPs. The results of cell staining experiments showed that cell fusion efficiency was 3-fold greater with BPs than with UPs. Similarly, the results of the hybridoma culture experiments showed that the hybridoma yields were 0.26‰ and 0.23‰ (2.5 kV/cm and 3 kV/cm, respectively) in the UP groups and increased to 0.46‰ and 0.35‰ in the BP groups. Taken together, the results show that the efficiency of heterologous cell fusion can be greatly increased if BPs are used instead of the commonly applied UPs. This study may provide a promising method for monoclonal antibody technology.
Collapse
Affiliation(s)
- Qiang Ke
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chengxiang Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Cheng Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
50
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-like peptides-1 from phylogenetically ancient fish show potent anti-diabetic activities by acting as dual GLP1R and GCGR agonists. Mol Cell Endocrinol 2019; 480:54-64. [PMID: 30312651 DOI: 10.1016/j.mce.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptides-1 (GLP-1)from phylogenetically ancient fish (lamprey, dogfish, ratfish, paddlefish and bowfin) and from a teleost, the rainbow trout produced concentration-dependent stimulations of insulin release from clonal β-cells and isolated mouse islets. Lamprey and paddlefish GLP-1 were the most potent and effective. Incubation of BRIN-BD11 cells with GLP-1 receptor (GLP1R) antagonist, exendin-4 (9-39) attenuated insulinotropic activity of all peptides whereas glucagon receptor (GCGR) antagonist [des-His1,Pro4,Glu9] glucagon amide significantly decreased the activities of lamprey and paddlefish GLP-1 only. The GIP receptor antagonist GIP (6-30) Cex-K40 [Pal] attenuated the activity of bowfin GLP-1. All peptides (1 μM) produced significant increases in cAMP concentration in CHL cells transfected with GLP1R but only lamprey and paddlefish GLP-1 stimulated cAMP production in HEK293 cells transfected with GCGR. Intraperitoneal administration of lamprey and paddlefish GLP-1 (25 nmol/kg body weight) in mice produced significant decreases in blood glucose and increased insulin concentrations comparable to the effects of human GLP-1. Lamprey and paddlefish GLP-1 display potent insulinotropic activity in vitro and glucose-lowering activity in vivo that is mediated through GLP1R and GCGR so that these peptides may constitute templates for design of new antidiabetic drugs.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|