1
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
2
|
Freemantle JB, Shah D, Lynch DM, Ciulli A, Hundal HS, Hardie DG. The pro-drug C13 activates AMPK by two distinct mechanisms. Biochem J 2024; 481:1203-1219. [PMID: 39222030 PMCID: PMC11555695 DOI: 10.1042/bcj20240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is expressed in almost all eukaryotic cells. In the canonical activation mechanism, it is activated by increases in AMP:ATP and ADP:ATP ratios that signify declining cellular energy status. Once activated, AMPK phosphorylates numerous targets that promote catabolic pathways generating ATP, while inhibiting anabolic and other processes that consume ATP, thus acting to restore energy homeostasis. Pharmacological agents that activate AMPK have been useful in identifying downstream targets and have potential as drugs for treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. One such agent is C13, a pro-drug with a phosphonate bis(isobutyryloxymethyl) ester moiety, with the isobutyryloxymethyl groups increasing membrane permeability. Following cellular uptake, C13 is cleaved to release C2, an AMP analogue and potent AMPK activator that is specific for complexes containing the α1 (but not the α2) catalytic subunit isoform. This has previously been assumed to be the sole mechanism by which C13 activates AMPK, with potential roles for the isobutyryloxymethyl groups being ignored. We now report that, following cleavage from C13, these protective groups are metabolized to formaldehyde, an agent that inhibits mitochondrial function and increases cellular AMP:ATP ratios, thus providing additional AMPK activation by the canonical mechanism.
Collapse
Affiliation(s)
- Jordana B. Freemantle
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Dinesh Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Dylan M. Lynch
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Harinder S. Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
3
|
Aslam M, Li L, Nürnberger S, Niemann B, Rohrbach S. CTRP13-Mediated Effects on Endothelial Cell Function and Their Potential Role in Obesity. Cells 2024; 13:1291. [PMID: 39120321 PMCID: PMC11311976 DOI: 10.3390/cells13151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Obesity, a major component of cardiometabolic syndrome, contributes to the imbalance between pro- and anti-atherosclerotic factors via dysregulation of adipocytokine secretion. Among these adipocytokines, the C1q/TNF-related proteins (CTRPs) play a role in the modulation of atherosclerosis development and progression. Here, we investigated the vascular effects of CTRP13. RESULTS CTRP13 is not only expressed in adipose tissue but also in vessels/endothelial cells (ECs) of mice, rats, and humans. Obese individuals (mice, rats, and humans) showed higher vascular CTRP13 expression. Human Umbilical Vein Endothelial Cells (HUVECs), cultured in the presence of serum from obese mice, mimicked this obesity-associated effect on CTRP13 protein expression. Similarly, high glucose conditions and TNF-alpha, but not insulin, resulted in a strong increase in CTRP13 in these cells. Recombinant CTRP13 induced a reduction in EC proliferation via AMPK. In addition, CTRP13 reduced cell cycle progression and increased p53 phosphorylation and p21 protein expression, but reduced Rb phosphorylation, with the effects largely depending on alpha-2 AMPK as suggested by adenoviral overexpression of dominant-negative (DN) or wild-type (WT) alpha 1/alpha 2 AMPK. CONCLUSION The present study demonstrates that CTRP13 expression is induced in ECs under diabetic conditions and that CTRP13 possesses significant vaso-modulatory properties which may have an impact on vascular disease progression in patients.
Collapse
Affiliation(s)
- Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University Giessen, 35390 Giessen, Germany;
| | - Ling Li
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany; (L.L.); (S.N.)
| | - Sina Nürnberger
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany; (L.L.); (S.N.)
| | - Bernd Niemann
- Department of Cardiovascular Surgery Giessen, University-Hospital Giessen and Marburg, Justus Liebig University Giessen, 35390 Giessen, Germany;
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany; (L.L.); (S.N.)
| |
Collapse
|
4
|
El-Shamarka MEA, Aboulthana WM, Omar NI, Mahfouz MM. Evaluation of the biological efficiency of Terminalia chebula fruit extract against neurochemical changes induced in brain of diabetic rats: an epigenetic study. Inflammopharmacology 2024; 32:1439-1460. [PMID: 38329710 PMCID: PMC11006788 DOI: 10.1007/s10787-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), β-amyloid (Aβ) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.
Collapse
Affiliation(s)
- Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nagwa Ibrahim Omar
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Marwa M Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shibīn Al-Kawm, Egypt
| |
Collapse
|
5
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Vieira de Sousa Neto I, Mondal SA, Doidge SM, Davidyan A, Szczygiel MM, Peelor FF, Rigsby S, Broomfield ME, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-Estradiol alleviates high-fat diet-induced inflammatory and metabolic dysfunction in skeletal muscle of male and female mice. Am J Physiol Endocrinol Metab 2024; 326:E226-E244. [PMID: 38197793 PMCID: PMC11193529 DOI: 10.1152/ajpendo.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17β-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease. Therefore, this study aimed to determine whether 17α-E2 treatment has positive, tissue-specific effects on skeletal muscle during a high-fat feeding. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during a high-fat diet (HFD) with changes in the mitochondrial proteome to support lipid oxidation and subsequent reductions in diacylglycerol (DAG) and ceramide content. To test this hypothesis, we used a multiomics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. Unexpectedly, we found that 17α-E2 had marked, but different, beneficial effects within each sex. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAG), and inflammatory cytokine levels, and altered the abundance of most of the proteins related to lipolysis and β-oxidation. Similar to male mice, 17α-E2 treatment reduced fat mass while protecting muscle mass in female mice but had little muscle inflammatory cytokine levels. Although female mice were resistant to HFD-induced changes in DAGs, 17α-E2 treatment induced the upregulation of six DAG species. In female mice, 17α-E2 treatment changed the relative abundance of proteins involved in lipolysis, β-oxidation, as well as structural and contractile proteins but to a smaller extent than male mice. These data demonstrate the metabolic benefits of 17α-E2 in skeletal muscle of male and female mice and contribute to the growing literature of the use of 17α-E2 for multi tissue health span benefits.NEW & NOTEWORTHY Using a multiomics approach, we show that 17α-E2 alleviates HFD-induced metabolic detriments in skeletal muscle by altering bioactive lipid intermediates, inflammatory cytokines, and the abundance of proteins related to lipolysis and muscle contraction. The positive effects of 17α-E2 in skeletal muscle occur in both sexes but differ in their outcome.
Collapse
Affiliation(s)
- Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Ivo Vieira de Sousa Neto
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Samim A Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Arik Davidyan
- Department of Biological Sciences, California State University, Sacramento, California, United States
| | - Marcelina M Szczygiel
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Matle E Broomfield
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Charles I Lacy
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
6
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Mondal SA, Diodge SM, Davidyan A, Szczygiel MM, Peelor FR, Rigsby S, Broomfield M, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-estradiol Alleviates High-Fat Diet-Induced Inflammatory and Metabolic Dysfunction in Skeletal Muscle of Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542870. [PMID: 37398463 PMCID: PMC10312580 DOI: 10.1101/2023.05.30.542870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Skeletal muscle has a central role in maintaining metabolic homeostasis. 17α-estradiol (17α-E2), a naturally-occurring non-feminizing diastereomer of 17β-estradiol that demonstrates efficacy for improving metabolic outcomes in male, but not female, mice. Despite several lines of evidence showing that 17α-E2 treatment improves metabolic parameters in middle-aged obese and old male mice through effects in brain, liver, and white adipose tissue little is known about how 17α-E2 alters skeletal muscle metabolism, and what role this may play in mitigating metabolic declines. Therefore, this study aimed to determine if 17α-E2 treatment improves metabolic outcomes in skeletal muscle from obese male and female mice following chronic high fat diet (HFD) administration. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during HFD. To test this hypothesis, we used a multi-omics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAGs) and ceramides, inflammatory cytokine levels, and reduced the abundance of most of the proteins related to lipolysis and beta-oxidation. In contrast to males, 17α-E2 treatment in female mice had little effect on the DAGs and ceramides content, muscle inflammatory cytokine levels, or changes to the relative abundance of proteins involved in beta-oxidation. These data support to the growing evidence that 17α-E2 treatment could be beneficial for overall metabolic health in male mammals.
Collapse
|
7
|
Zubiaga L, Briand O, Auger F, Touche V, Hubert T, Thevenet J, Marciniak C, Quenon A, Bonner C, Peschard S, Raverdy V, Daoudi M, Kerr-Conte J, Pasquetti G, Koepsell H, Zdzieblo D, Mühlemann M, Thorens B, Delzenne ND, Bindels LB, Deprez B, Vantyghem MC, Laferrère B, Staels B, Huglo D, Lestavel S, Pattou F. Oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of sodium-glucose co-transporter 1 in enterocytes. iScience 2023; 26:106057. [PMID: 36942050 PMCID: PMC10024157 DOI: 10.1016/j.isci.2023.106057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of action remain elusive. Recent data point to the gut as MET's primary target. Here, we explored the effect of MET on the gut glucose transport machinery. Using human enterocytes (Caco-2/TC7 cells) in vitro, we showed that MET transiently reduced the apical density of sodium-glucose transporter 1 (SGLT1) and decreased the absorption of glucose, without changes in the mRNA levels of the transporter. Administered 1 h before a glucose challenge in rats (Wistar, GK), C57BL6 mice and mice pigs, oral MET reduced the post-prandial glucose response (PGR). This effect was abrogated in SGLT1-KO mice. MET also reduced the luminal clearance of 2-(18F)-fluoro-2-deoxy-D-glucose after oral administration in rats. In conclusion, oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of SGLT1 in enterocytes, which may contribute to the clinical effects of the drug.
Collapse
Affiliation(s)
- Lorea Zubiaga
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Olivier Briand
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Florent Auger
- University of Lille, Preclinical Imaging Core Facility, 59000 Lille, France
| | - Veronique Touche
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Thomas Hubert
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Julien Thevenet
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Camille Marciniak
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Audrey Quenon
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Caroline Bonner
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
- Institut Pasteur de Lille, 59000 Lille, France
| | - Simon Peschard
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Violeta Raverdy
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Mehdi Daoudi
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Gianni Pasquetti
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Daniela Zdzieblo
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Markus Mühlemann
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Bernard Thorens
- University of Lausanne, Center for Integrative Genomics, Lausanne, Switzerland
| | - Nathalie D. Delzenne
- Université catholique de Louvain, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Laure B. Bindels
- Université catholique de Louvain, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Benoit Deprez
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1177, 59000 Lille, France
| | - Marie C. Vantyghem
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
| | - Blandine Laferrère
- Department of Medicine, New York Nutrition Obesity Research Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Bart Staels
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Damien Huglo
- University of Lille, Preclinical Imaging Core Facility, 59000 Lille, France
| | - Sophie Lestavel
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - François Pattou
- University of Lille, Centre Hospitalier Universitaire de Lille, European Genomic Institute for Diabetes, Inserm UMR-1190, 59000 Lille, France
- Corresponding author
| |
Collapse
|
8
|
Liu Q, Zhu C, Ma Y, Wang Y, Zheng L, Jin T, He S, Yang F, Dong W. Metformin improves fish sperm quality by regulating glucose uptake capacity during in vitro storage. J Anim Sci 2023; 101:skad152. [PMID: 37191447 PMCID: PMC10237230 DOI: 10.1093/jas/skad152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
A suitable additive for fish sperm storage in vitro is necessary for artificial reproduction. In this study, we evaluated the effects of different concentrations (100, 200, 400, and 800 µmol/L) of metformin (Met) on Schizothorax prenanti and Onychostoma macrolepis sperm under storage in vitro for 72 h. Compared with the control group, 400 µmol/L Met was more effective at improving the quality and fertilization capacity of S. prenanti sperm by increasing the adenosine triphosphate (ATP) content within the sperm. Further study found that Met stabilized the ATP level by enhancing the glucose uptake in S. prenanti sperm, and this effect might be associated with the activation of AMP-activated protein kinase (AMPK) in sperm. In this study, we also found that glucose could be absorbed by the sperm of S. prenanti, which was mainly accumulated in the midpiece of S. prenanti sperm, where mitochondria were located. In addition, Compound C significantly inhibited the beneficial effects of Met on the quality and glucose uptake capacity of S. prenanti sperm by inhibiting AMPK phosphorylation. These results revealed that AMPK played an important role in vitro sperm storage, and Met maintained ATP content and increased the storage time of S. prenanti sperm in vitro for 72 h, possibly due to Met enhanced glucose uptake capacity of sperm by activating AMPK. Similarly, the beneficial effects of Met on S. prenanti sperm were also found in O. macrolepis sperm, suggesting that Met may hold great promise for the practice of storing fish in vitro.
Collapse
Affiliation(s)
- Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutr 2023; 64:5852-5877. [PMID: 36591787 DOI: 10.1080/10408398.2022.2159317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) is a global health issue in the twenty-first century, and there are numerous challenges in preventing and alleviating its chronic complications. The herb Epimedium has beneficial therapeutic effects on various human diseases, including DM. Its major flavonoid component, icariin, has significant anti-DM activity and may help improve pancreatic β-cell dysfunction and insulin resistance. Furthermore, preclinical evidence has shown that icariin and its in vivo bioactive form, icariside II, have preventive and therapeutic effects on several diabetic complications, including diabetic cardiomyopathy, diabetic vascular endothelial disorder, diabetic nephropathy, and diabetic erectile dysfunction. In this review, we present the general and toxicological information concerning icariin and icariside II and review the anti-DM effects of icariin from a molecular perspective. Additionally, we discuss the potential benefits of icariin and icariside II on the important pathological mechanisms of various diabetic complications. Despite positive preclinical evidence, additional investigations are needed before relevant clinical studies can be conducted. Therefore, we conclude with suggestions for future research. Hopefully, this review will provide a comprehensive molecular perspective for future research and product development related to icariin and icariside II in treating DM and diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Metformin as a Potential Antitumor Agent. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
Some recent findings suggest that metformin, an oral antidiabetic drug, may have antitumor properties. Studies have shown that metformin can alter cell metabolism, both tumor and immune cells, which can greatly influence disease outcome. In this review, we discuss the potential mechanisms in which metformin can directly induce apoptosis of tumor cells as well as mechanisms in which metformin can elicit or enhance antitumor immune response.
Collapse
|
11
|
Sharma A, Krick B, Li Y, Summers SA, Playdon MC, Welt C. The Use of Ceramides to Predict Metabolic Response to Metformin in Women With PCOS. J Endocr Soc 2022; 6:bvac131. [PMID: 36249411 PMCID: PMC9557973 DOI: 10.1210/jendso/bvac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Context Polycystic ovarian syndrome (PCOS) is a complex disorder in which metabolic abnormalities are associated with reproductive dysfunction. Women with PCOS have increased ceramide concentrations. Previous studies demonstrated that treating metabolic abnormalities of PCOS with metformin improved glucose effectiveness after 12 weeks. Objective We evaluated whether, in women with PCOS, lower baseline ceramide, diacylglycerol (DAG), and triacylglycerol (TAG) concentrations were associated with improved metabolic response to metformin. Methods Women (n = 29), aged 29 ± 5 years and diagnosed with PCOS by the NIH criteria underwent an intravenous glucose tolerance test (IVGTT) before and after 12-week treatment with metformin (1500 mg per day). Metabolic responders were defined by improved glucose effectiveness, specifically, the ability of glucose to stimulate uptake and suppress production, after metformin treatment. Results Twelve weeks of metformin resulted in weight loss (-1.7 ± 2.6 kg, P < 0.01) and a reduction in BMI (-0.6 ± 0.9 kg/m2, P < 0.01) with no change in HbA1c. The concentrations of Cer(d18:1/22:0), Cer(d18:1/24:0), total ceramides, total Cer(d16:0), total Cer(d18:2), DAG, dihydrosphingomyelin (DHSM), and TAG decreased after metformin treatment (P < 0.05). Baseline total Cer(d16:0) concentration <204.1 pmol/mL was 82% sensitive (AUC 0.72, P = 0.03) and total DHSM concentration <32237 pmol/mL was 100% specific (AUC 0.73, P = 0.03) in predicting improved metabolic response to metformin, as measured by IVGTT. Conclusion Lower total Cer(16:0) and DHSM concentrations are associated with a beneficial metabolic response to metformin in women with PCOS. Based on the known association between higher ceramide levels and type 2 diabetes, the data suggest that metformin improves metabolic parameters in women with mild metabolic derangements.
Collapse
Affiliation(s)
- Anu Sharma
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Benjamin Krick
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ying Li
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mary C Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Corrine Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
13
|
Kang BB, Chiang BH. A novel phenolic formulation for treating hepatic and peripheral insulin resistance by regulating GLUT4-mediated glucose uptake. J Tradit Complement Med 2022; 12:195-205. [PMID: 35528476 PMCID: PMC9072824 DOI: 10.1016/j.jtcme.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022] Open
|
14
|
Petrocelli JJ, Mahmassani ZS, Fix DK, Montgomery JA, Reidy PT, McKenzie AI, de Hart NM, Ferrara PJ, Kelley JJ, Eshima H, Funai K, Drummond MJ. Metformin and leucine increase satellite cells and collagen remodeling during disuse and recovery in aged muscle. FASEB J 2021; 35:e21862. [PMID: 34416035 DOI: 10.1096/fj.202100883r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.
Collapse
Affiliation(s)
- Jonathan J Petrocelli
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Dennis K Fix
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, USA
| | - Alec I McKenzie
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Naomi M de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Kelley
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. ENDOCRINES 2021; 2:266-283. [PMID: 35392577 PMCID: PMC8986094 DOI: 10.3390/endocrines2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Irisin is a myokine that primarily targets adipose tissue, where it increases energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissue. As our knowledge has deepened in recent years, muscle has been found to be a major target organ for irisin as well. Several studies have attempted to characterize the role of irisin in muscle to improve glucose metabolism through mechanisms such as reducing insulin resistance. Although they are very intriguing reports, some contradictory results make it difficult to grasp the whole picture of the action of irisin on muscle. In this review, we attempted to organize the current knowledge of the role of irisin in muscle glucose metabolism. We discussed the direct effects of irisin on glucose metabolism in three types of muscle, that is, skeletal muscle, smooth muscle, and the myocardium. We also describe irisin’s effects on mitochondria and its interactions with other hormones. Furthermore, to consider the relationship between the irisin-induced improvement of glucose metabolism in muscle and systemic disorders of glucose metabolism, we reviewed the results from animal interventional studies and human clinical studies.
Collapse
|
16
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
17
|
Henaux L, Pereira KD, Thibodeau J, Pilon G, Gill T, Marette A, Bazinet L. Glucoregulatory and Anti-Inflammatory Activities of Peptide Fractions Separated by Electrodialysis with Ultrafiltration Membranes from Salmon Protein Hydrolysate and Identification of Four Novel Glucoregulatory Peptides. MEMBRANES 2021; 11:membranes11070528. [PMID: 34357178 PMCID: PMC8305187 DOI: 10.3390/membranes11070528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Natural bioactive peptides are suitable candidates for preventing the development of Type 2 diabetes (T2D), by reducing the various risk factors. The aim of this study was to concentrate glucoregulatory and anti-inflammatory peptides, from salmon by-products, by electrodialysis with ultrafiltration membrane (EDUF), and to identify peptides responsible for these bioactivities. Two EDUF configurations (1 and 2) were used to concentrate anionic and cationic peptides, respectively. After EDUF separation, two fractions demonstrated interesting properties: the initial fraction of the EDUF configuration 1 and the final fraction of the EDUF configuration 2 both showed biological activities to (1) increase glucose uptake in L6 muscle cells in insulin condition at 1 ng/mL (by 12% and 21%, respectively), (2) decrease hepatic glucose production in hepatic cells at 1 ng/mL in basal (17% and 16%, respectively), and insulin (25% and 34%, respectively) conditions, and (3) decrease LPS-induced inflammation in macrophages at 1 g/mL (45% and 30%, respectively). More impressive, the initial fraction of the EDUF configuration 1 (45% reduction) showed the same effect as the phenformin at 10 μM (40%), a drug used to treat T2D. Thirteen peptides were identified, chemically synthesized, and tested in-vitro for these three bioactivities. Thus, four new bioactive peptides were identified: IPVE increased glucose uptake by muscle cells, IVDI and IEGTL decreased hepatic glucose production (HGP) of insulin, whereas VAPEEHPTL decreased HGP under both basal condition and in the presence of insulin. To the best of our knowledge, this is the first time that (1) bioactive peptide fractions generated after separation by EDUF were demonstrated to be bioactive on three different criteria; all involved in the T2D, and (2) potential sequences involved in the improvement of glucose uptake and/or in the regulation of HGP were identified from a salmon protein hydrolysate.
Collapse
Affiliation(s)
- Loïc Henaux
- Department of Food Sciences and Laboratory of Food Processing and Electromembrane Processes (LTAPEM), Université Laval, Quebec City, QC G1V 0A6, Canada; (L.H.); (J.T.)
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
| | - Karina Danielle Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil;
- Institute of Biosciences, State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Jacinthe Thibodeau
- Department of Food Sciences and Laboratory of Food Processing and Electromembrane Processes (LTAPEM), Université Laval, Quebec City, QC G1V 0A6, Canada; (L.H.); (J.T.)
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
- Department of Medicine, Faculty of Medicine, Quebec Heart and Lung Institute Cardiology Group, Université Laval, 2725 Chemin Ste-Foy, Quebec City, QC G1V 4G5, Canada
| | - Tom Gill
- Department of Process Engineering and Applied Science, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
- Department of Medicine, Faculty of Medicine, Quebec Heart and Lung Institute Cardiology Group, Université Laval, 2725 Chemin Ste-Foy, Quebec City, QC G1V 4G5, Canada
| | - Laurent Bazinet
- Department of Food Sciences and Laboratory of Food Processing and Electromembrane Processes (LTAPEM), Université Laval, Quebec City, QC G1V 0A6, Canada; (L.H.); (J.T.)
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 407445)
| |
Collapse
|
18
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
19
|
Erukainure OL, Salau VF, Xiao X, Matsabisa MG, Koorbanally NA, Islam MS. Bioactive compounds of African star apple (Chrysophyllum albidum G. Don) and its modulatory effect on metabolic activities linked to type 2 diabetes in isolated rat psoas muscle. J Food Biochem 2020; 45:e13576. [PMID: 33270256 DOI: 10.1111/jfbc.13576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
The infusion of Chrysophyllum albidum was investigated for its antidiabetic mechanism by studying its ability to promote glucose uptake and utilization as well as its modulatory effect on metabolic activities linked to type 2 diabetes in isolated psoas muscle. Isolated psoas muscle was incubated with different concentrations of the infusion in the presence of glucose at 37°C for 2 hr. The infusion improved muscle glucose uptake, with concomitant elevated muscular levels of glutathione, superoxide dismutase, catalase, and ectonucleotidase activities, while depleting malondialdehyde, nitric oxide, adenosine triphosphatase, acetylcholinesterase, glycogen phosphorylase, glucose 6-phosphatase, fructose-1,6-biphosphatase, and lipase activities. It also maintained muscular morphology, while increasing magnesium, calcium, and iron levels. The infusion inhibited α-glucosidase and α-amylase activities in vitro. LC-MS analysis of the infusion revealed the presence of phenolics. These results indicate that C. albidum may mediate antidiabetic activities by stimulating muscle glucose uptake and modulation of key metabolisms linked to diabetes. PRACTICAL APPLICATIONS: The African star apple is among the underutilized fruits consumed for nutritional and medicinal purposes in Western Africa. The fruits are usually wasted during its season leading to postharvest loss owing to poor utilization. The present study gives credence to its use in treating diabetes and its complications. Thus, the fruits can be utilized in the development of cheap and affordable nutraceuticals for the management of diabetes which has been reported for its high-cost treatment. Utilization of the fruits will also reduce its postharvest loss and improve its economic values.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicines, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xin Xiao
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicines, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Pharmacology, School of Clinical Medicines, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
20
|
Zhou Y, Liu C, Yu Y, Yin M, Sun J, Huang J, Chen N, Wang H, Fan C, Song H. An Organelle-Specific Nanozyme for Diabetes Care in Genetically or Diet-Induced Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003708. [PMID: 33015921 DOI: 10.1002/adma.202003708] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/23/2020] [Indexed: 05/25/2023]
Abstract
The development of nanozymes has made active impact in diagnosis and therapeutics. However, understanding of the full effects of these nanozymes on biochemical pathways and metabolic homeostasis remains elusive. Here, it is found that iron oxide nanoparticles (Fe3 O4 NPs), a type of well-established nanozyme, can locally regulate the energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) via their peroxidase-like activity in the acidic lysosomal compartment, thereby promoting glucose metabolism and insulin response. Fe3 O4 NPs induce AMPK activation and enhance glucose uptake in a variety of metabolically active cells as well as in insulin resistant cell models. Dietary Fe3 O4 NPs display therapeutic effects on hyperglycemia and hyperinsulinemia in Drosophila models of diabetes induced by genetic manipulation or high-sugar diet. More importantly, intraperitoneal administration of Fe3 O4 NPs stimulates AMPK activities in metabolic tissues, reduces blood glucose levels, and improves glucose tolerance and insulin sensitivity in diabetic ob/ob mice. The study reveals intrinsic organelle-specific properties of Fe3 O4 NPs in AMPK activation, glycemic control, and insulin-resistance improvement, suggesting their potential efficacy in diabetes care.
Collapse
Affiliation(s)
- Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun Yu
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Yin
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jinli Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Huang
- Department of Neurology, Xuhui District Central Hospital, Shanghai, 200032, China
| | - Nan Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
21
|
Reitz KM, Seymour CW, Vates J, Quintana M, Viele K, Detry M, Morowitz M, Morris A, Methe B, Kennedy J, Zuckerbraun B, Girard TD, Marroquin OC, Esper S, Holder-Murray J, Newman AB, Berry S, Angus DC, Neal M. Strategies to Promote ResiliencY (SPRY): a randomised embedded multifactorial adaptative platform (REMAP) clinical trial protocol to study interventions to improve recovery after surgery in high-risk patients. BMJ Open 2020; 10:e037690. [PMID: 32994242 PMCID: PMC7526307 DOI: 10.1136/bmjopen-2020-037690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION As the population ages, there is interest in strategies to promote resiliency, especially for frail patients at risk of its complications. The physiological stress of surgery in high-risk individuals has been proposed both as an important cause of accelerated age-related decline in health and as a model testing the effectiveness of strategies to improve resiliency to age-related health decline. We describe a randomised, embedded, multifactorial, adaptative platform (REMAP) trial to investigate multiple perioperative interventions, the first of which is metformin and selected for its anti-inflammatory and anti-ageing properties beyond its traditional blood glucose control features. METHODS AND ANALYSIS Within a multihospital, single healthcare system, the Core Protocol for Strategies to Promote ResiliencY (SPRY) will be embedded within both the electronic health record (EHR) and the healthcare culture generating a continuously self-learning healthcare system. Embedding reduces the administrative burden of a traditional trial while accessing and rapidly analysing routine patient care EHR data. SPRY-Metformin is a placebo-controlled trial and is the first SPRY domain evaluating the effectiveness of three metformin dosages across three preoperative durations within a heterogeneous set of major surgical procedures. The primary outcome is 90-day hospital-free days. Bayesian posterior probabilities guide interim decision-making with predefined rules to determine stopping for futility or superior dosing selection. Using response adaptative randomisation, a maximum of 2500 patients allows 77%-92% power, detecting >15% primary outcome improvement. Secondary outcomes include mortality, readmission and postoperative complications. A subset of patients will be selected for substudies evaluating the microbiome, cognition, postoperative delirium and strength. ETHICS AND DISSEMINATION The Core Protocol of SPRY REMAP and associated SPRY-Metformin Domain-Specific Appendix have been ethically approved by the Institutional Review Board and are publicly registered. Results will be publicly available to healthcare providers, patients and trial participants following achieving predetermined platform conclusions. TRIAL REGISTRATION NUMBER NCT03861767.
Collapse
Affiliation(s)
| | | | - Jennifer Vates
- Department of Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | | | - Kert Viele
- Berry Consultants Statistical Innovation, Austin, Texas, USA
| | - Michelle Detry
- Berry Consultants Statistical Innovation, Austin, Texas, USA
| | - Michael Morowitz
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Department of Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Barbara Methe
- Department of Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Jason Kennedy
- Department of Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Brian Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy D Girard
- Department of Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Oscar C Marroquin
- Clinical Analytics, UPMC Health System, Pittsburgh, Pennsylvania, USA
| | - Stephen Esper
- Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott Berry
- Berry Consultants Statistical Innovation, Austin, Texas, USA
| | - Derek C Angus
- Department of Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Matthew Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Kondash ME, Ananthakumar A, Khodabukus A, Bursac N, Truskey GA. Glucose Uptake and Insulin Response in Tissue-engineered Human Skeletal Muscle. Tissue Eng Regen Med 2020; 17:801-813. [PMID: 32200516 DOI: 10.1007/s13770-020-00242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tissue-engineered muscles ("myobundles") offer a promising platform for developing a human in vitro model of healthy and diseased muscle for drug development and testing. Compared to traditional monolayer cultures, myobundles better model the three-dimensional structure of native skeletal muscle and are amenable to diverse functional measures to monitor the muscle health and drug response. Characterizing the metabolic function of human myobundles is of particular interest to enable their utilization in mechanistic studies of human metabolic diseases, identification of related drug targets, and systematic studies of drug safety and efficacy. METHODS To this end, we studied glucose uptake and insulin responsiveness in human tissue-engineered skeletal muscle myobundles in the basal state and in response to drug treatments. RESULTS In the human skeletal muscle myobundle system, insulin stimulates a 50% increase in 2-deoxyglucose (2-DG) uptake with a compiled EC50 of 0.27 ± 0.03 nM. Treatment of myobundles with 400 µM metformin increased basal 2-DG uptake 1.7-fold and caused a significant drop in twitch and tetanus contractile force along with decreased fatigue resistance. Treatment with the histone deacetylase inhibitor 4-phenylbutyrate (4-PBA) increased the magnitude of insulin response from a 1.2-fold increase in glucose uptake in the untreated state to a 1.4-fold increase after 4-PBA treatment. 4-PBA treated myobundles also exhibited increased fatigue resistance and increased twitch half-relaxation time. CONCLUSION Although tissue-engineered human myobundles exhibit a modest increase in glucose uptake in response to insulin, they recapitulate key features of in vivo insulin sensitivity and exhibit relevant drug-mediated perturbations in contractile function and glucose metabolism.
Collapse
Affiliation(s)
- Megan E Kondash
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
23
|
Triggle CR, Ding H, Marei I, Anderson TJ, Hollenberg MD. Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Can J Physiol Pharmacol 2020; 98:415-430. [PMID: 32150686 DOI: 10.1139/cjpp-2019-0677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 66 years, our knowledge of the role of the endothelium in the regulation of cardiovascular function and dysfunction has advanced from the assumption that it is a single layer of cells that serves as a barrier between the blood stream and vascular smooth muscle to an understanding of its role as an essential endocrine-like organ. In terms of historical contributions, we pay particular credit to (1) the Canadian scientist Dr. Rudolf Altschul who, based on pathological changes in the appearance of the endothelium, advanced the argument in 1954 that "one is only as old as one's endothelium" and (2) the American scientist Dr. Robert Furchgott, a 1998 Nobel Prize winner in Physiology or Medicine, who identified the importance of the endothelium in the regulation of blood flow. This review provides a brief history of how our knowledge of endothelial function has advanced and now recognize that the endothelium produces a plethora of signaling molecules possessing paracrine, autocrine, and, arguably, systemic hormone functions. In addition, the endothelium is a therapeutic target for the anti-diabetic drugs metformin, glucagon-like peptide I (GLP-1) receptor agonists, and inhibitors of the sodium-glucose cotransporter 2 (SGLT2) that offset the vascular disease associated with diabetes.
Collapse
Affiliation(s)
- Chris R Triggle
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Hong Ding
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Isra Marei
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Morley D Hollenberg
- Inflammation Research Network, Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.,Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Cabrera-Cruz H, Oróstica L, Plaza-Parrochia F, Torres-Pinto I, Romero C, Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab 2020; 318:E237-E248. [PMID: 31874063 DOI: 10.1152/ajpendo.00162.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder characterized by hyperandrogenism and ovulatory dysfunction but also obesity and hyperinsulinemia. These characteristics induce an insulin-resistant state in tissues such as the endometrium, affecting its reproductive functions. Myo-inositol (MYO) is an insulin-sensitizing compound used in PCOS patients; however, its insulin-sensitizing mechanism is unclear. To understand the relationship of MYO with insulin action in endometrial cells, sodium/myo-inositol transporter 1 (SMIT-1) (MYO-transporter), and MYO effects on protein levels related to the insulin pathway were evaluated. SMIT-1 was assessed in endometrial tissue from women with normal weight, obesity, insulin resistance, and PCOS; additionally, using an in vitro model of human endometrial cells exposed to an environment resembling hyperinsulinemic-obese-PCOS, MYO effect was evaluated on p-AMPK and GLUT-4 levels and glucose uptake by Western blot, immunocytochemistry, and confocal microscopy, respectively. SMIT-1 was detected in endometrial tissue from all groups and decreased in PCOS and obesity (P < 0.05 vs. normal weight). In the in vitro model, PCOS conditions decreased p-AMPK levels, while they were restored with MYO (P < 0.05). The diminished GLUT-4 protein levels promoted by PCOS environment were restored by MYO through SMIT-1 and p-AMPK-dependent mechanism (P < 0.05). Also, MYO restored glucose uptake in cells under PCOS condition through a p-AMPK-dependent mechanism. Finally, these results were similar to those obtained with metformin treatment in the same in vitro conditions. Consequently, MYO could be a potential insulin sensitizer through its positive effects on insulin-resistant tissues as PCOS-endometrium, acting through SMIT-1, provoking AMPK activation and elevated GLUT-4 levels and, consequently, increase glucose uptake by human endometrial cells. Therefore, MYO may be used as an effective treatment option in insulin-resistant PCOS women.
Collapse
Affiliation(s)
- Heidy Cabrera-Cruz
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Bioanalysis and Immunology, Faculty of Sciences, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Lorena Oróstica
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Ignacio Torres-Pinto
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Obstetrics and Gynecology, Clinical Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Obstetrics and Gynecology, Clinical Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
25
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
26
|
Abdelmoez AM, Sardón Puig L, Smith JAB, Gabriel BM, Savikj M, Dollet L, Chibalin AV, Krook A, Zierath JR, Pillon NJ. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol 2019; 318:C615-C626. [PMID: 31825657 PMCID: PMC7099524 DOI: 10.1152/ajpcell.00540.2019] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level. Publicly available data sets were used to profile mRNA levels in myotubes and skeletal muscle tissues. L6, C2C12, and HSMC myotubes were assessed for proliferation, glucose uptake, glycogen synthesis, mitochondrial activity, and substrate oxidation, as well as the response to in vitro contraction. Transcriptomic profiling revealed that mRNA of genes coding for actin and myosin was enriched in C2C12, whereas L6 myotubes had the highest levels of genes encoding glucose transporters and the five complexes of the mitochondrial electron transport chain. Consistently, insulin-stimulated glucose uptake and oxidative capacity were greatest in L6 myotubes. Insulin-induced glycogen synthesis was highest in HSMCs, but C2C12 myotubes had higher baseline glucose oxidation. All models responded to electrical pulse stimulation-induced glucose uptake and gene expression but in a slightly different manner. Our analysis reveals a great degree of heterogeneity in the transcriptomic and metabolic profiles of L6, C2C12, or primary human myotubes. Based on these distinct signatures, we provide recommendations for the appropriate use of these models depending on scientific hypotheses and biological relevance.
Collapse
Affiliation(s)
- Ahmed M Abdelmoez
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sardón Puig
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brendan M Gabriel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Dreh, a long noncoding RNA repressed by metformin, regulates glucose transport in C2C12 skeletal muscle cells. Life Sci 2019; 236:116906. [PMID: 31614147 DOI: 10.1016/j.lfs.2019.116906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS The anti-hyperglycemic action of metformin on skeletal muscles is presently unclear. Long noncoding RNAs (lncRNAs) are implicated in multiple cellular functions. This study aims to explore the role of lncRNAs in the glucometabolic action of metformin on skeletal muscle cells. MAIN METHODS Metformin accumulation was assessed using [14C]-metformin. A lncRNA array was used to investigate metformin-regulated lncRNAs in C2C12 skeletal muscle cells. Knockdown studies were applied to evaluate the function of lncRNA Dreh. A colorimetric assay was used for the measurement of medium glucose concentration; glucose transport was assessed using [3H]-2-deoxyglucose; real-time PCR was used for RNA expression analysis, and western blotting was used to assess protein expression in myotubes. A Dreh overexpression plasmid was transfected into the cells. KEY FINDINGS Metformin accumulated in C2C12 myotubes. Metformin reduced medium glucose concentration and repressed lncRNA Dreh expression in the myotubes. Knockdown of Dreh in the myotubes resulted in reduced glucose concentration in the culture medium, increased glucose transport, and increased levels of GLUT4 protein in the plasma membrane. Overexpression of Dreh attenuated the glucose-lowering effect of metformin in myotubes. SIGNIFICANCE The glucoregulatory actions of metformin are mediated in part by a lncRNA, Dreh, in the skeletal muscle cells. Dreh is a novel regulator for glucose transport and could be a therapeutic target for diabetes.
Collapse
|
28
|
Fu L, Xie C. A lucid review of Helicobacter pylori-induced DNA damage in gastric cancer. Helicobacter 2019; 24:e12631. [PMID: 31295756 DOI: 10.1111/hel.12631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (H pylori) is the main risk factor for gastric cancer (GC). In recent years, many studies have addressed the effects of H pylori itself and of H pylori-induced chronic inflammation on DNA damage. Unrepaired or inappropriately repaired DNA damage is one possible carcinogenic mechanism. We may conclude that H pylori-induced DNA damage is one of the carcinogenic mechanisms of GC. In this review, we summarize the interactions between H pylori and DNA damage and the effects of H pylori-induced DNA damage on GC. Then, focusing on oxidative stress, we introduce the application of antioxidants in GC. At the end of this review, we discuss the outlook for further research on H pylori-induced DNA damage.
Collapse
Affiliation(s)
- Li Fu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Sotoudeh R, Hadjzadeh MAR, Gholamnezhad Z, Aghaei A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2019; 9:454-464. [PMID: 31516859 PMCID: PMC6727431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Effects of Commiphora mukul and Commiphora myrrha ethanolic extracts and Terminalia chebula hydro-ethanolic extract combination were evaluated in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Male Wistar rats (n=48) were randomly assigned into: control; diabetic; diabetic+metformin (300 mg/kg); diabetic+dose 1 of herbal combination (438 mg/kg of C. mukul+214 mg/kg of C. myrrha+857 mg/kg of T. chebula); diabetic+dose 2 (642 mg/kg of C. mukul+214 mg/kg of C. myrrha+642 mg/kg of T. chebula); and diabetic+dose 3 (857 mg/kg of C. mukul+438 mg/kg of C. myrrha+1714 mg/kg t of T. chebula). All treatments were given orally by gavage. Diabetes was induced by STZ (60 mg/kg, i.p.). At the end of study (day 28), blood glucose, insulin and lipid profile; as well as hepatic malondialdehyde (MDA) and thiol content, and superoxide dismutase (SOD) and catalase (CAT) activities were determined. RESULTS In diabetic rats, plasma glucose, triglycerides (TG), total cholesterol (TC), and LDL-C, as well as hepatic MDA levels were elevated but plasma HDL-C and insulin, and hepatic thiol content and SOD and CAT activities were reduced compared to control (p<0.01-p<0.001). In diabetic+dose 3, plasma TC, TG, and LDL-C and hepatic MDA level decreased (p<0.001), while plasma HDL-C and insulin, and hepatic thiol content, and SOD and CAT activities increased compared to diabetic (p<0.01-p<0.001). Treatment with dose 1 and 2 improved such abnormalities in diabetic rats except for insulin level (p<0.05-p<0.001). The herbal combination effects were comparable to those of metformin. Metformin did not significantly change serum insulin and HDL-C levels, and hepatic SOD activity; however, serum levels of TC, TG, and LDL-C, as well as hepatic MDA levels, thiol content and CAT activity were improved compared to diabetic (p<0.05-p<0.001). CONCLUSION These results indicate that this herbal combination acts as an anti-diabetic, antioxidant and hypolipidemic agent and it may be suggested as a beneficial remedy for diabetic patients.
Collapse
Affiliation(s)
- Reyhaneh Sotoudeh
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mousa-Al-Reza Hadjzadeh
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Azita Aghaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Rajaei E, Haybar H, Mowla K, Zayeri ZD. Metformin one in a Million Efficient Medicines for Rheumatoid Arthritis Complications: Inflammation, Osteoblastogenesis, Cardiovascular Disease, Malignancies. Curr Rheumatol Rev 2019; 15:116-122. [PMID: 30019648 DOI: 10.2174/1573397114666180717145745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Rheumatoid arthritis is a widespread autoimmune disease and inflammation and bone destruction are two main issues in rheumatoid arthritis. OBJECTIVE To discussing metformin effects on rheumatoid arthritis complications. METHODS We conducted a narrative literature search including clinical trials, experimental studies on laboratory animals and cell lines. Our search covered Medline, PubMed and Google Scholar databases from 1999 until 2018. We used the terms" Metformin; Rheumatoid arthritis; Cardiovascular disease; Cancer; Osteoblastogenesis. DISCUSSION Inflammatory pro-cytokines such as Interlukin-6 play important roles in T. helper 17 cell lineage differentiation. Interlukin-6 and Tumor Necrosis Factor-α activate Janus kinase receptors signal through signaling transducer and activator of transcription signaling pathway which plays important role in inflammation, bone destruction and cancer in rheumatoid arthritis patients. Interlukin-6 and Tumor Necrosis Factor-α synergistically activate signaling transducer and activator of transcription and Nuclear Factor-kβ pathways and both cytokines increase the chance of cancer development in rheumatoid arthritis patients. Metformin is AMPK activators that can suppress mTOR, STAT3 and HIF-1 so AMPK activation plays important role in suppressing inflammation and osteoclastogenesis and decreasing cancer. CONCLUSION Metformin effect on AMPK and mTOR pathways gives the capability to change Treg/Th17 balance and decrease Th17 differentiation and inflammation, osteoclastogenesis and cancers in RA patients. Metformin can be useful in protecting bones especially in first stages of RA and it can decrease inflammation, CVD and cancer in RA patients so Metformin beside DAMARs can be useful in increasing RA patients' life quality with less harm and cost.
Collapse
Affiliation(s)
- Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Department of Cardiology, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Karim Mowla
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Lin X, Parker L, McLennan E, Hayes A, McConell G, Brennan-Speranza TC, Levinger I. Undercarboxylated Osteocalcin Improves Insulin-Stimulated Glucose Uptake in Muscles of Corticosterone-Treated Mice. J Bone Miner Res 2019; 34:1517-1530. [PMID: 30908701 DOI: 10.1002/jbmr.3731] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/05/2023]
Abstract
Short-term administration of glucocorticoids (GCs) impairs muscle insulin sensitivity at least in part via the reduction of undercarboxylated osteocalcin (ucOC). However, whether ucOC treatment reverses the GC-induced muscle insulin resistance remains unclear. To test the hypothesis that ucOC directly ameliorates impaired insulin-stimulated glucose uptake (ISGU) induced by short-term GC administration in mice muscle and to identify the molecular mechanisms, mice were implanted with placebo or corticosterone (CS) slow-release pellets. Two days post-surgery, insulin-tolerance tests (ITTs) were performed. On day 3, serum was collected and extensor digitorum longus (EDL) and soleus muscles were isolated and treated ex vivo with vehicle, ucOC (30 ng/mL), insulin (60 µU/mL), or both. Circulating hormone levels, muscle glucose uptake, and muscle signaling proteins were assessed. CS administration reduced both serum osteocalcin and ucOC levels, whole-body insulin sensitivity, and muscle ISGU in EDL. Ex vivo ucOC treatment restored ISGU in CS-affected muscle, without increasing non-insulin-stimulated glucose uptake. In CS-affected EDL muscle, ucOC enhanced insulin action on phosphorylated (p-)protein kinase B (Akt)Ser473 and the p-extracellular signal-regulated kinase isoform 2 (ERK2)Thr202/Tyr204 /total (t)ERK2 ratio, which correlated with ISGU. In CS-affected soleus muscle, ucOC enhanced insulin action on p-mammalian target of rapamycin (mTOR)Ser2481 , the p-mTORSer2481 /tmTOR ratio, p-Akt substrate of 160kD (AS160)Thr642 , and p-protein kinase C (PKC) (pan)Thr410 , which correlated with ISGU. Furthermore, p-PKC (pan)Thr410 correlated with p-AktSer473 and p-AS160Thr642 . ucOC exerts direct insulin-sensitizing effects on CS-affected mouse muscle, likely through an enhancement in activity of key proteins involved in both insulin and ucOC signaling pathways. Furthermore, these effects are muscle type-dependent. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuzhu Lin
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Lewan Parker
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Emma McLennan
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Alan Hayes
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Glenn McConell
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Tara C Brennan-Speranza
- Department of Physiology and Bosch Institute for Medical Research, University of Sydney, Australia
| | - Itamar Levinger
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
33
|
Hölscher C. Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Front Aging Neurosci 2019; 11:88. [PMID: 31068799 PMCID: PMC6491455 DOI: 10.3389/fnagi.2019.00088] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer’s disease (AD). The underlying mechanism that links up the two conditions seems to be the de-sensitization of insulin signaling. In patients with AD, insulin signaling was found to be de-sensitized in the brain, even if they did not have diabetes. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function and replacement, autophagy, oxidative stress management, synaptic plasticity, and cognitive function. Insulin desensitization, therefore, can enhance the risk of developing neurological disorders in later life. Other risk factors, such as high blood pressure or brain injury, also enhance the likelihood of developing AD. All these risk factors have one thing in common – they induce a chronic inflammation response in the brain. Pro-inflammatory cytokines block growth factor signaling and enhance oxidative stress. The underlying molecular processes for this are described in the review. Treatments to re-sensitize insulin signaling in the brain are also described, such as nasal insulin tests in AD patients, or treatments with re-sensitizing hormones, such as leptin, ghrelin, glucagon-like peptide 1 (GLP-1),and glucose-dependent insulinotropic polypeptide (GIP). The first clinical trials show promising results and are a proof of concept that utilizing such treatments is valid.
Collapse
Affiliation(s)
- Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
34
|
Chitooligosaccharide Biguanide Repairs Islet β‐Cell Dysfunction by Activating the IRS‐2/PI3K/Akt Signaling Pathway in Type 2 Diabetic Rats. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, Dash SN, Berg M, Naams JB, Hautala LC, Nisen H, Mirtti T, Groop PH, Wähälä K, Tienari J, Lehtonen S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J 2019; 33:2858-2869. [PMID: 30321069 PMCID: PMC6338644 DOI: 10.1096/fj.201800529rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Metformin, the first-line drug to treat type 2 diabetes (T2D), inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. However, the direct target and the underlying mechanisms by which metformin increases glucose uptake in peripheral tissues remain uncharacterized. Lipid phosphatase Src homology 2 domain-containing inositol-5-phosphatase 2 (SHIP2) is upregulated in diabetic rodent models and suppresses insulin signaling by reducing Akt activation, leading to insulin resistance and diminished glucose uptake. Here, we demonstrate that metformin directly binds to and reduces the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. Metformin inhibits SHIP2 in cultured cells and in skeletal muscle and kidney of db/db mice. In SHIP2-overexpressing myotubes, metformin ameliorates reduced glucose uptake by slowing down glucose transporter 4 endocytosis. SHIP2 overexpression reduces Akt activity and enhances podocyte apoptosis, and both are restored to normal levels by metformin. SHIP2 activity is elevated in glomeruli of patients with T2D receiving nonmetformin medication, but not in patients receiving metformin, compared with people without diabetes. Furthermore, podocyte loss in kidneys of metformin-treated T2D patients is reduced compared with patients receiving nonmetformin medication. Our data unravel a novel molecular mechanism by which metformin enhances glucose uptake and acts renoprotectively by reducing SHIP2 activity.-Polianskyte-Prause, Z., Tolvanen, T. A., Lindfors, S., Dumont, V., Van, M., Wang, H., Dash, S. N., Berg, M., Naams, J.-B., Hautala, L. C., Nisen, H., Mirtti, T., Groop, P.-H., Wähälä, K., Tienari, J., Lehtonen, S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Kidney Diseases/prevention & control
- Male
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Podocytes/cytology
- Podocytes/drug effects
- Podocytes/metabolism
- Rats
Collapse
Affiliation(s)
| | | | - Sonja Lindfors
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Vincent Dumont
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mervi Van
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hong Wang
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mika Berg
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Laura C. Hautala
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Kristiina Wähälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Hyvinkää, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Prenatal metformin exposure or organic cation transporter 3 knock-out curbs social interaction preference in male mice. Pharmacol Res 2018; 140:21-32. [PMID: 30423430 DOI: 10.1016/j.phrs.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/21/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
Abstract
Poorly managed gestational diabetes can lead to severe complications for mother and child including fetal overgrowth, neonatal hypoglycemia and increased autism risk. Use of metformin to control it is relatively new and promising. Yet safety concerns regarding gestational metformin use remain, as its long-term effects in offspring are unclear. In light of beneficial findings with metformin for adult mouse social behavior, we hypothesized gestational metformin treatment might also promote offspring sociability. To test this, metformin was administered to non-diabetic, lean C57BL/6 J female mice at mating, with treatment discontinued at birth or wean. Male offspring exposed to metformin through birth lost social interaction preference relative to controls by time in chambers, but not by sniffing measures. Further, prenatal metformin exposure appeared to enhance social novelty preference only in females. However due to unbalanced litters and lack of statistical power, firm establishment of any sex-dependency of metformin's effects on sociability was not possible. Since organic cation transporter 3 (OCT3) transports metformin and is dense in placenta, social preferences of OCT3 knock-out males were measured. Relative to wild-type, OCT3 knock-outs had reduced interaction preference. Our data indicate gestational metformin exposure under non-diabetic conditions, or lack of OCT3, can impair social behavior in male C57BL6/J mice. Since OCT3 transports serotonin and tryptophan, impaired placental OCT3 function is one common mechanism that could persistently impact central serotonin systems and social behavior. Yet no gross alterations in serotonergic function were evident by measure of serotonin transporter density in OCT3, or serotonin turnover in metformin-exposed offspring brains. Mechanisms underlying the behavioral outcomes, and if with gestational diabetes the same would occur, remain unclear. Metformin's impacts on placental transporters and serotonin metabolism or AMPK activity in fetal brain need further investigation to clarify benefits and risks to offspring sociability from use of metformin to treat gestational diabetes.
Collapse
|
37
|
Lipina C, Walsh SK, Mitchell SE, Speakman JR, Wainwright CL, Hundal HS. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J 2018; 33:1299-1312. [PMID: 30148676 PMCID: PMC6355063 DOI: 10.1096/fj.201800171r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Emerging evidence indicates that G-protein coupled receptor 55 (GPR55), a nonclassic receptor of the endocannabinoid system that is activated by L-α-lysophosphatidylinositol and various cannabinoid ligands, may regulate endocrine function and energy metabolism. We examined how GPR55 deficiency and modulation affects insulin signaling in skeletal muscle, adipose tissue, and liver alongside expression analysis of proteins implicated in insulin action and energy metabolism. We show that GPR55-null mice display decreased insulin sensitivity in these tissues, as evidenced by reduced phosphorylation of PKB/Akt and its downstream targets, concomitant with increased adiposity and reduced physical activity relative to wild-type counterparts. Impaired tissue insulin sensitivity coincided with reduced insulin receptor substrate-1 abundance in skeletal muscle, whereas in liver and epididymal fat it was associated with increased expression of the 3-phosphoinoistide lipid phosphatase, phosphatase and tensin homolog. In contrast, GPR55 activation enhanced insulin signaling in cultured skeletal muscle cells, adipocytes, and hepatocytes; this response was negated by receptor antagonists and GPR55 gene silencing in L6 myotubes. Sustained GPR55 antagonism in 3T3-L1 adipocytes enhanced expression of proteins implicated in lipogenesis and promoted triglyceride accumulation. Our findings identify GPR55 as a positive regulator of insulin action and adipogenesis and as a potential therapeutic target for countering obesity-induced metabolic dysfunction and insulin resistance.-Lipina, C., Walsh, S. K., Mitchell, S. E., Speakman, J. R., Wainwright, C. L., Hundal, H. S. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cherry L Wainwright
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
38
|
Xiao Y, Xu M, Alimujiang M, Bao Y, Wei L, Yin J. Bidirectional regulation of adenosine 5'-monophosphate-activated protein kinase activity by berberine and metformin in response to changes in ambient glucose concentration. J Cell Biochem 2018; 119:9910-9920. [PMID: 30129983 PMCID: PMC6282525 DOI: 10.1002/jcb.27312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/26/2018] [Indexed: 12/13/2022]
Abstract
Both berberine and metformin are well‐known antihyperglycemic agents for diabetes treatment. Adenosine monophosphate (AMP)‐activated protein kinase (AMPK) activation is often considered as the most important molecular mechanism although the mechanism has been challenged recently. Up to now, when the ambient glucose level changes dynamically, the interaction between AMPK activity and the glucose‐lowering effects of the agents remains largely unknown. To address this issue, HepG2 hepatocytes and C2C12 myotubes were preincubated at normal (5.6 mM), moderate (15 mM), or high (30 mM) glucose concentrations followed by moderate‐glucose incubation plus berberine or metformin treatment. Preincubation at high glucose concentration followed by moderate‐glucose incubation activated the AMPK pathway, but the activation was abolished with berberine or metformin treatment. In contrast, alteration from normal glucose to moderate glucose concentration in the medium suppressed AMPK activity, which was activated by berberine or metformin. Both metformin and berberine decreased the intercellular adenosine triphosphate content, enhanced glucose consumption, and lactate release under all three preincubation glucose concentrations regardless of AMPK activity. In conclusion, AMPK activated by glucose reduction is inhibited by berberine or metformin. The elevation of glucose level led to suppressed AMPK activity, which was activated with the addition of agents. The potent glucose‐lowering effects with minimal hypoglycemia of berberine and metformin may be partially due to their bidirectional regulation of the AMPK signaling pathway. Berberine and metformin promote glucose metabolism via stimulation of glycolysis, which may not be related to AMPK activity.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| |
Collapse
|
39
|
Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother 2018; 106:1227-1235. [PMID: 30119191 DOI: 10.1016/j.biopha.2018.07.085] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes (T2D) is the most common type of diabetes mellitus and is mainly characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Metformin is a first-line antihyperglycemic agent that works mainly by regulating hepatic glucose production and peripheral insulin sensitivity. Metformin has been clinically applied for more than half a century, although the underlying pharmacological mechanisms remain elusive. This current review mainly focused on the development history of metformin and related preclinical studies on structural modification, pharmacological mechanisms for treatment of T2D, toxicology, pharmacokinetics, and pharmaceutics. The pharmacological function of metformin in lowering hyperglycemia suggests that multi-targeting could be an effective strategy for the discovery of new anti-diabetic drugs. A number of discoveries have revealed the pharmacologic mechanisms of metformin; however, precise mechanisms remain unclear. Deeper investigations on the biological features of metformin are expected to provide more rational applications and indications of this evergreen anti-T2D agent, which will in turn help to better understand the complicated pathogenesis of T2D.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Shanghai Institute of Material Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xin Xu
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mengfan Du
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tong Zhao
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jiaying Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
40
|
Symonds ME, Aldiss P, Dellschaft N, Law J, Fainberg HP, Pope M, Sacks H, Budge H. Brown adipose tissue development and function and its impact on reproduction. J Endocrinol 2018; 238:R53-R62. [PMID: 29789429 DOI: 10.1530/joe-18-0084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/22/2018] [Indexed: 01/25/2023]
Abstract
Although brown adipose tissue (BAT) is one of the smallest organs in the body, it has the potential to have a substantial impact on both heat production as well as fat and carbohydrate metabolism. This is most apparent at birth, which is characterised with the rapid appearance and activation of the BAT specific mitochondrial uncoupling protein (UCP)1 in many large mammals. The amount of brown fat then gradually declines with age, an adaptation that can be modulated by the thermal environment. Given the increased incidence of maternal obesity and its potential transmission to the mother's offspring, increasing BAT activity in the mother could be one mechanism to prevent this cycle. To date, however, all rodent studies investigating maternal obesity have been conducted at standard laboratory temperature (21°C), which represents an appreciable cold challenge. This could also explain why offspring weight is rarely increased, suggesting that future studies would benefit from being conducted at thermoneutrality (~28°C). It is also becoming apparent that each fat depot has a unique transcriptome and show different developmental pattern, which is not readily apparent macroscopically. These differences could contribute to the retention of UCP1 within the supraclavicular fat depot, the most active depot in adult humans, increasing heat production following a meal. Despite the rapid increase in publications on BAT over the past decade, the extent to which modifications in diet and/or environment can be utilised to promote its activity in the mother and/or her offspring remains to be established.
Collapse
Affiliation(s)
- Michael E Symonds
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Digestive Disease Centre and Biomedical Research CentreSchool of Medicine, University of Nottingham, Nottingham, UK
| | - Peter Aldiss
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Neele Dellschaft
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - James Law
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hernan P Fainberg
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark Pope
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Harold Sacks
- VA Endocrinology and Diabetes DivisionVA Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Helen Budge
- Early Life Research UnitDivision of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
41
|
Bao X, Zhao L, Guan H, Li F. Inhibition of LCMR1 and ATG12 by demethylation-activated miR-570-3p is involved in the anti-metastasis effects of metformin on human osteosarcoma. Cell Death Dis 2018; 9:611. [PMID: 29795113 PMCID: PMC5966512 DOI: 10.1038/s41419-018-0620-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023]
Abstract
Epidemiological studies have demonstrated that metformin could mitigate the progression of several tumors. Although it has been proved that metformin could cause demethylation of DNA and lead to up-regulation of some encoding genes and non-coding RNAs, there is little data about the effects of metformin on metastasis, and the interaction between metastasis and autophagy in human osteosarcoma cells. Here, we found miR-570-3p was significantly down-regulated in human metastatic osteosarcoma tissues but not in non-metastatic osteosarcoma tissues. Metformin attenuates the metastasis and autophagy in osteosarcoma. Interestingly, this autophagy favors osteosarcoma cells invasion. Moreover, reduction of metformin-induced inhibition of autophagy could reverse the invasion suppression in osteosarcoma. Mechanistically, metformin increases miR-570-3p by the demethylation of DNA, and the upregulation of miR-570-3p repressed the translation of its target, LCMR1 and ATG12. Our results, for the first time, presents evidence that the miR-570-3p-mediated suppression of LCMR1 and ATG12 is involved in the metformin-induced inhibition of metastasis in osteosarcoma cells.
Collapse
Affiliation(s)
- Xing Bao
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, People's Republic of China
| | - Libo Zhao
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, People's Republic of China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, People's Republic of China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
42
|
Cho RL, Lin WN, Wang CY, Yang CC, Hsiao LD, Lin CC, Yang CM. Heme oxygenase-1 induction by rosiglitazone via PKCα/AMPKα/p38 MAPKα/SIRT1/PPARγ pathway suppresses lipopolysaccharide-mediated pulmonary inflammation. Biochem Pharmacol 2018; 148:222-237. [PMID: 29309760 DOI: 10.1016/j.bcp.2017.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
HO-1 (heme oxygenase-1), an antioxidant enzyme, induced by rosiglitazone (PPAR ligands) can be a potential treatment of inflammation. However, the mechanisms of rosiglitazone-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. In this study, we found that upregulation of HO-1 in vitro or in vivo by rosiglitazone attenuated VCAM-1 gene expression and monocyte adhesion to HPAEpiCs challenged with lipopolysaccharide (LPS). The inhibitory effects of rosiglitazone on LPS-mediated responses were reversed by transfection with HO-1 siRNA. LPS-induced VCAM-1 expression was mediated through NF-κB activation which was attenuated by rosiglitazone via suppressing p65 activation and translocation into the nucleus. Moreover, pretreatment with the inhibitor of PKCs (H7), PKCα (Gö6976), AMPKα (Compound C), p38 MAPKα (p38i VIII), SIRT1 (Sirtinol), or PPARγ (T0070907) and transfection with siRNA of PKCα, AMPKα, p38 MAPKα, SIRT1, or PPARγ abolished the rosiglitazone-induced HO-1 expression in HPAEpiCs. Further studies indicated that rosiglitazone stimulated SIRT1 deacetylase leading to PGC1α translocation from the cytosol into the nucleus, promoting fragmentation of NCoR and phosphorylation of PPARγ. Subsequently, PPARγ was activated by phosphorylation of PKCα, AMPKα, p38 MAPKα, and SIRT1, which turned on transcription of HO-1 gene by binding to PPAR response element (PPRE) and enhancing PPARγ promoter activity. These results suggested that rosiglitazone-induced HO-1 expression is mediated through PKCα/AMPKα/p38 MAPKα/SIRT1-dependent deacetylation of Ac-PGC1α and fragmentation of NCoR/PPARγ activation in HPAEpiCs. Up-regulation of HO-1 protected against the inflammatory responses triggered by LPS, at least in part, through attenuation of NF-κB.
Collapse
Affiliation(s)
- Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| |
Collapse
|
43
|
Marinangeli C, Kluza J, Marchetti P, Buée L, Vingtdeux V. Study of AMPK-Regulated Metabolic Fluxes in Neurons Using the Seahorse XFe Analyzer. Methods Mol Biol 2018; 1732:289-305. [PMID: 29480483 DOI: 10.1007/978-1-4939-7598-3_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AMP-activated protein kinase (AMPK) is the intracellular master energy sensor and metabolic regulator. AMPK is involved in cell energy homeostasis through the regulation of glycolytic flux and mitochondrial biogenesis. Interestingly, metabolic dysfunctions and AMPK deregulations are observed in many neurodegenerative diseases, including Alzheimer's. While these deregulations could play a key role in the development of these diseases, the study of metabolic fluxes has remained quite challenging and time-consuming. In this chapter, we describe the Seahorse XFe respirometry assay as a fundamental experimental tool to investigate the role of AMPK in controlling and modulating cell metabolic fluxes in living and intact differentiated primary neurons. The Seahorse XFe respirometry assay allows the real-time monitoring of glycolytic flux and mitochondrial respiration from different kind of cells, tissues, and isolated mitochondria. Here, we specify a protocol optimized for primary neuronal cells using several energy substrates such as glucose, pyruvate, lactate, glutamine, and ketone bodies. Nevertheless, this protocol can easily be adapted to monitor metabolic fluxes from other types of cells, tissues, or isolated mitochondria by taking into account the notes proposed for each key step of this assay.
Collapse
Affiliation(s)
- Claudia Marinangeli
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Jérome Kluza
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Philippe Marchetti
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT, Lille, France.
| |
Collapse
|
44
|
Vlavcheski F, Naimi M, Murphy B, Hudlicky T, Tsiani E. Rosmarinic Acid, a Rosemary Extract Polyphenol, Increases Skeletal Muscle Cell Glucose Uptake and Activates AMPK. Molecules 2017; 22:E1669. [PMID: 28991159 PMCID: PMC6151814 DOI: 10.3390/molecules22101669] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle is a major insulin-target tissue and plays an important role in glucose homeostasis. Impaired insulin action in muscles leads to insulin resistance and type 2 diabetes mellitus. 5' AMP-activated kinase (AMPK) is an energy sensor, its activation increases glucose uptake in skeletal muscle and AMPK activators have been viewed as a targeted approach in combating insulin resistance. We previously reported AMPK activation and increased muscle glucose uptake by rosemary extract (RE). In the present study, we examined the effects and the mechanism of action of rosmarinic acid (RA), a major RE constituent, in L6 rat muscle cells. RA (5.0 µM) increased glucose uptake (186 ± 4.17% of control, p < 0.001) to levels comparable to maximum insulin (204 ± 10.73% of control, p < 0.001) and metformin (202 ± 14.37% of control, p < 0.001). Akt phosphorylation was not affected by RA, while AMPK phosphorylation was increased. The RA-stimulated glucose uptake was inhibited by the AMPK inhibitor compound C and was not affected by wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). The current study shows an effect of RA to increase muscle glucose uptake and AMPK phosphorylation. RA deserves further study as it shows potential to be used as an agent to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Madina Naimi
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Brennan Murphy
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Tomas Hudlicky
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
45
|
Guo Z, Zhao M, Howard EW, Zhao Q, Parris AB, Ma Z, Yang X. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway. Oncotarget 2017; 8:60342-60357. [PMID: 28947975 PMCID: PMC5601143 DOI: 10.18632/oncotarget.19466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25-75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro. Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhiying Guo
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Ming Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Qingxia Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| |
Collapse
|
46
|
Pulito C, Mori F, Sacconi A, Goeman F, Ferraiuolo M, Pasanisi P, Campagnoli C, Berrino F, Fanciulli M, Ford RJ, Levrero M, Pediconi N, Ciuffreda L, Milella M, Steinberg GR, Cioce M, Muti P, Strano S, Blandino G. Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discov 2017; 3:17022. [PMID: 28698800 PMCID: PMC5501975 DOI: 10.1038/celldisc.2017.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin is a commonly prescribed type II diabetes medication that exhibits promising anticancer effects. Recently, these effects were found to be associated, at least in part, with a modulation of microRNA expression. However, the mechanisms by which single modulated microRNAs mediate the anticancer effects of metformin are not entirely clear and knowledge of such a process could be vital to maximize the potential therapeutic benefits of this safe and well-tolerated therapy. Our analysis here revealed that the expression of miR-21-5p was downregulated in multiple breast cancer cell lines treated with pharmacologically relevant doses of metformin. Interestingly, the inhibition of miR-21-5p following metformin treatment was also observed in mouse breast cancer xenografts and in sera from 96 breast cancer patients. This modulation occurred at the levels of both pri-miR-21 and pre-miR-21, suggesting transcriptional modulation. Antagomir-mediated ablation of miR-21-5p phenocopied the effects of metformin on both the clonogenicity and migration of the treated cells, while ectopic expression of miR-21-5p had the opposite effect. Mechanistically, this reduction in miR-21-5p enhanced the expression of critical upstream activators of the AMP-activated protein kinase, calcium-binding protein 39-like and Sestrin-1, leading to AMP-activated protein kinase activation and inhibition of mammalian target of rapamycin signaling. Importantly, these effects of metformin were synergistic with those of everolimus, a clinically relevant mammalian target of rapamycin inhibitor, and were independent of the phosphatase and tensin homolog status. This highlights the potential relevance of metformin in combinatorial settings for the treatment of breast cancer.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Frauke Goeman
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Maria Ferraiuolo
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Patrizia Pasanisi
- Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Carlo Campagnoli
- Unit of Endocrinological Gynecology, Ospedale Sant’Anna di Torino, Turin, Italy
| | - Franco Berrino
- Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | | | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Massimo Levrero
- Epigénétique et Épigénomique des Carcinomes Hépathocellulaires Viro-Induits du Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Natalia Pediconi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ludovica Ciuffreda
- Division of Medical Oncology A, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
The signalling mechanisms of a novel mitochondrial complex I inhibitor prevent lipid accumulation and attenuate TNF-α-induced insulin resistance in vitro. Eur J Pharmacol 2017; 800:1-8. [DOI: 10.1016/j.ejphar.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023]
|
48
|
Nyane NA, Tlaila TB, Malefane TG, Ndwandwe DE, Owira PMO. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur J Pharmacol 2017; 803:103-111. [PMID: 28322845 DOI: 10.1016/j.ejphar.2017.03.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
Abstract
Metformin is a widely used drug for the treatment of type 2 diabetes (T2D). Its blood glucose-lowering effects are initially due to inhibition of hepatic glucose production and increased peripheral glucose utilization. Metformin has also been shown to have several beneficial effects on cardiovascular risk factors and it is the only oral antihyperglycaemic agent thus far associated with decreased macrovascular complications in patients with diabetes. Adenosine Monophosphate Activated-Protein Kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Recent evidence shows that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profiles, blood pressure and insulin-resistance making it a novel therapeutic target in the treatment of T2D. Naringenin a flavonoid found in high concentrations as its glycone naringin in citrus fruits, has been reported to have antioxidant, antiatherogenic, anti- dyslipidemic and anti-diabetic effects. It has been shown that naringenin exerts its anti-diabetic effects by inhibition of gluconeogenesis through upregulations of AMPK hence metformin-like effects. Naringin has further been shown to have non-glycemic affects like metformin that mitigate inflammation and cell proliferation. This review evaluates the potential of naringenin as anti-diabetic, anti-dyslipidemic anti-inflammatory and antineoplastic agent similar to metformin and proposes its further development for therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Ntsoaki Annah Nyane
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Thabiso Bethwel Tlaila
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Tanki Gabriel Malefane
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Dudu Edith Ndwandwe
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter Mark Oroma Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
49
|
Wang R, Fang H, Fang Q. Downregulation of FKBP14 by RNA interference inhibits the proliferation, adhesion and invasion of gastric cancer cells. Oncol Lett 2017; 13:2811-2816. [PMID: 28454471 DOI: 10.3892/ol.2017.5781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
FK506 binding protein (FBBP) 14 belongs to the family of FKBPs. Altered expression of FKBPs are observed in several malignancies. The present study aimed to explore the expression and biological function of FKBP14 in gastric cancer. FKBP14 expression levels in 40 gastric cancer samples and matched control samples were evaluated using quantitative polymerase chain reaction. Cell proliferation was evaluated using Cell Counting kit-8 assay. A cell adhesion and a Transwell assay were performed to detect cell adhesion and invasion. Protein expression was determined using western blot analysis. It was found that FKBP14 expression in gastric cancer tissues was elevated compared with normal tissues. Silencing of FKBP14 expression in the gastric cancer MKN-45 and AGS cell lines, which have a higher expression level of FKBP14 compared with four other gastric cancer cell lines, significantly inhibited cellular proliferation, adhesion and invasion. In addition, the protein levels of proliferating cell nuclear antigen, matrix metalloproteinase 2 and the epithelial-mesenchymal-transition (EMT) markers β-catenin, Snail1 and Twist were repressed in gastric cancer cells with FKBP14 silenced. In conclusion, FKBP14 may act as an oncogene by suppressing cellular proliferation, adhesion and invasion and EMT in gastric carcinogenesis. FKBP14 may be a diagnosis marker and potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Laboratory, People's Hospital of Pudong New Area of Shanghai, Shanghai 201299, P.R. China
| | - Hua Fang
- Department of Laboratory, People's Hospital of Pudong New Area of Shanghai, Shanghai 201299, P.R. China
| | - Qin Fang
- Department of Hyperbaric Oxygen, People's Hospital of Pudong New Area of Shanghai, Shanghai 201299, P.R. China
| |
Collapse
|
50
|
Aldiss P, Dellschaft N, Sacks H, Budge H, Symonds ME. Beyond obesity – thermogenic adipocytes and cardiometabolic health. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0007/hmbci-2017-0007.xml. [DOI: 10.1515/hmbci-2017-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
AbstractThe global prevalence of obesity and related cardiometabolic disease continues to increase through the 21st century. Whilst multi-factorial, obesity is ultimately caused by chronic caloric excess. However, despite numerous interventions focussing on reducing caloric intake these either fail or only elicit short-term changes in body mass. There is now a focus on increasing energy expenditure instead which has stemmed from the recent ‘re-discovery’ of cold-activated brown adipose tissue (BAT) in adult humans and inducible ‘beige’ adipocytes. Through the unique mitochondrial uncoupling protein 1 (UCP1), these thermogenic adipocytes are capable of combusting large amounts of chemical energy as heat and in animal models can prevent obesity and cardiometabolic disease. At present, human data does not point to a role for thermogenic adipocytes in regulating body weight or fat mass but points to a pivotal role in regulating metabolic health by improving insulin resistance as well as glucose and lipid homeostasis. This review will therefore focus on the metabolic benefits of BAT activation and the mechanisms and signalling pathways by which these could occur including improvements in insulin signalling in peripheral tissues, systemic lipid and cholesterol metabolism and cardiac and vascular function.
Collapse
|