1
|
Cai Z, Isaji T, Liang C, Fukuda T, Zhang D, Gu J. Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway. Biochim Biophys Acta Gen Subj 2025; 1869:130753. [PMID: 39725242 DOI: 10.1016/j.bbagen.2024.130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Multidrug resistance (MDR) poses a significant obstacle to developing chemotherapeutic treatments. In previous studies using a traditional model of adriamycin resistance (ADR) with K562 cells, we demonstrated that N-acetylglucosaminyltransferase III (GnT-III) expression negatively regulates chemoresistance. Additionally, we observed that fucosylation levels were increased in the ADR cells. METHOD Fucosylation levels were determined using lectin blot, western blot, and flow cytometry. Gene expression levels were analyzed via qPCR. We generated a FUT4 knockout (KO) ADR cell line using CRISPR/Cas9 technology. Cytotoxicity and drug efflux assays were conducted to evaluate chemotherapy tolerance. RESULTS The expression levels of FUT4 and its products, the LeX antigens, were significantly upregulated in the ADR cells compared to the parental K562 cells. The FUT4 KO reduced the elevated levels of P-glycoprotein (P-gp) found in ADR cells and exhibited increased sensitivity to chemotherapeutic drugs. Furthermore, restoring FUT4 expression in the KO cells effectively reversed P-gp expression, drug efflux, and chemoresistance. Given the critical role of the NF-κB pathway in P-gp expression, we investigated NF-κB signaling and found that the phosphorylation levels of p65 were significantly increased in the ADR cells but were downregulated in the FUT4 KO cells. Furthermore, the restoration of FUT4 rescued the phosphorylation levels of p65. CONCLUSIONS FUT4 specifically upregulates P-gp expression related to chemoresistance through the NF-κB signaling pathway. GENERAL SIGNIFICANCE This study highlights the importance of FUT4 in chemoresistance and suggests it may serve as a promising target for combating MDR.
Collapse
Affiliation(s)
- Zixuan Cai
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
2
|
Cindrić A, Vučković F, Murray A, Klarić TS, Alić I, Krištić J, Nižetić D, Lauc G. Total cell N-glycosylation is altered during differentiation of induced pluripotent stem cells to neural stem cells and is disturbed by trisomy 21. BBA ADVANCES 2024; 7:100137. [PMID: 39845703 PMCID: PMC11751427 DOI: 10.1016/j.bbadva.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Down syndrome (DS), a genetic condition caused by trisomy 21 (T21), manifests various neurological symptoms, including intellectual disability, early neurodegeneration, and early-onset dementia. N-glycosylation is a protein modification that plays a critical role in numerous neurobiological processes and whose dysregulation is associated with a range of neurological disorders. However, whether N-glycosylation of neural glycoproteins is affected in DS has not been studied. To better understand how T21 affects N-glycosylation during neural differentiation, we utilized an isogenic in vitro induced pluripotent stem cell (iPSC) model of T21 in which both T21 and euploid disomic karyotype (D21) clones were obtained from a single individual with mosaic DS. We comprehensively characterized and compared the total N-glycomes of iPSCs and their neural stem cell (NSC) derivatives. N-glycomics analysis of whole cell lysates was performed using liquid chromatography coupled with tandem mass spectrometry to determine N-glycan structures. Our results show that neural differentiation of iPSCs to NSCs is characterized by an increase in the abundance of complex N-glycans at the expense of minimally processed mannosidic N-glycans. Moreover, we found differences in N-glycosylation patterns between D21 and T21 cells. Notably, the abundance of pseudohybrid N-glycans was significantly higher in T21 cells which also exhibited a significantly lower abundance of a specific hybrid monoantennary fucosylated N-glycan (H6N3F1). Overall, our data define the total N-glycome of both D21 and T21 iPSCs and NSCs and show that T21 already impacts N-glycosylation patterns in the stem cell state in a manner consistent with aberrantly premature neural differentiation of T21 cells.
Collapse
Affiliation(s)
- Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Frano Vučković
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Aoife Murray
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | | | - Ivan Alić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Dean Nižetić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Saito T, Yagi H, Kuo CW, Khoo KH, Kato K. An embeddable molecular code for Lewis X modification through interaction with fucosyltransferase 9. Commun Biol 2022; 5:676. [PMID: 35831428 PMCID: PMC9279290 DOI: 10.1038/s42003-022-03616-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a “Lewis X code”, which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering. A 29-amino acid sequence in the N-terminal domain of LAMP-1 promotes its Lewis X glycosylation and is embeddable to other proteins for Lewis X glycoengineering.
Collapse
Affiliation(s)
- Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Kay-Hooi Khoo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
5
|
Abdullah A, Hayashi Y, Morimura N, Kumar A, Ikenaka K, Togayachi A, Narimatsu H, Hitoshi S. Fut9 Deficiency Causes Abnormal Neural Development in the Mouse Cerebral Cortex and Retina. Neurochem Res 2022; 47:2793-2804. [PMID: 35753011 DOI: 10.1007/s11064-022-03651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
α1,3-Fucosyltransferase 9 (Fut9) is responsible for the synthesis of Lewis X [LeX, Galβ1-4(Fucα1-3)GlcNAc] carbohydrate epitope, a marker for pluripotent or multipotent tissue-specific stem cells. Although Fut9-deficient mice show anxiety-related behaviors, structural and cellular abnormalities in the brain remain to be investigated. In this study, using in situ hybridization and immunohistochemical techniques in combination, we clarified the spatiotemporal expression of Fut9, together with LeX, in the brain and retina. We found that Fut9-expressing cells are positive for Ctip2, a marker of neurons residing in layer V/VI, and TLE4, a marker of corticothalamic projection neurons (CThPNs) in layer VI, of the cortex. A birthdating analysis using 5-ethynyl-2'-deoxyuridine at embryonic day (E)11.5, 5-bromo-2'-deoxyuridine at E12.5, and in utero electroporation of a GFP expression plasmid at E14.5 revealed a reduction in the percentage of neurons produced at E11.5 in layer VI/subplate of the cortex and in the ganglion cell layer of the retina in P0 Fut9-/- mice. Furthermore, this reduction in layer VI/subplate neurons persisted into adulthood, leading to a reduction in the number of Ctip2strong/Satb2- excitatory neurons in layer V/VI of the adult Fut9-/- cortex. These results suggest that Fut9 plays significant roles in the differentiation, migration, and maturation of neural precursor cells in the cortex and retina.
Collapse
Affiliation(s)
- Asmaa Abdullah
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Yoshitaka Hayashi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan.
| | - Naoko Morimura
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Akhilesh Kumar
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, 444-8787, Japan
| | - Kazuhiro Ikenaka
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, 444-8787, Japan
| | - Akira Togayachi
- Research Centre for Medical Glycoscience, Glycogene Function Team, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Hisashi Narimatsu
- Research Centre for Medical Glycoscience, Glycogene Function Team, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan.
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, 444-8787, Japan.
| |
Collapse
|
6
|
Liao CC, Chiu CJ, Yang YH, Chiang BL. Neonatal lung-derived SSEA-1 + cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 2022; 25:104262. [PMID: 35521516 PMCID: PMC9062680 DOI: 10.1016/j.isci.2022.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications. Pulmonary SSEA-1+ cells are abundant in neonatal and scarce in adult stages The stem/progenitor activity of pulmonary SSEA-1+ cells is enhanced in neonatal stage Neonatal pulmonary SSEA-1+ cells developed into airway- and alveolar-like organoids FGF7 regulates alveolar epithelium development of neonatal pulmonary SSEA-1+ cells
Collapse
Affiliation(s)
- Chien-Chia Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
7
|
OUP accepted manuscript. Glycobiology 2022; 32:616-628. [DOI: 10.1093/glycob/cwac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/14/2022] Open
|
8
|
OUP accepted manuscript. Glycobiology 2022; 32:646-650. [DOI: 10.1093/glycob/cwac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Indexed: 11/14/2022] Open
|
9
|
Chen Z, Yu Q, Yu Q, Johnson J, Shipman R, Zhong X, Huang J, Asthana S, Carlsson C, Okonkwo O, Li L. In-depth Site-specific Analysis of N-glycoproteome in Human Cerebrospinal Fluid and Glycosylation Landscape Changes in Alzheimer's Disease. Mol Cell Proteomics 2021; 20:100081. [PMID: 33862227 PMCID: PMC8724636 DOI: 10.1016/j.mcpro.2021.100081] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/22/2023] Open
Abstract
As the body fluid that directly interchanges with the extracellular fluid of the central nervous system (CNS), cerebrospinal fluid (CSF) serves as a rich source for CNS-related disease biomarker discovery. Extensive proteome profiling has been conducted for CSF, but studies aimed at unraveling site-specific CSF N-glycoproteome are lacking. Initial efforts into site-specific N-glycoproteomics study in CSF yield limited coverage, hindering further experimental design of glycosylation-based disease biomarker discovery in CSF. In the present study, we have developed an N-glycoproteomic approach that combines enhanced N-glycopeptide sequential enrichment by hydrophilic interaction chromatography (HILIC) and boronic acid enrichment with electron transfer and higher-energy collision dissociation (EThcD) for large-scale intact N-glycopeptide analysis. The application of the developed approach to the analyses of human CSF samples enabled identifications of a total of 2893 intact N-glycopeptides from 511 N-glycosites and 285 N-glycoproteins. To our knowledge, this is the largest site-specific N-glycoproteome dataset reported for CSF to date. Such dataset provides molecular basis for a better understanding of the structure-function relationships of glycoproteins and their roles in CNS-related physiological and pathological processes. As accumulating evidence suggests that defects in glycosylation are involved in Alzheimer's disease (AD) pathogenesis, in the present study, a comparative in-depth N-glycoproteomic analysis was conducted for CSF samples from healthy control and AD patients, which yielded a comparable N-glycoproteome coverage but a distinct expression pattern for different categories of glycoforms, such as decreased fucosylation in AD CSF samples. Altered glycosylation patterns were detected for a number of N-glycoproteins including alpha-1-antichymotrypsin, ephrin-A3 and carnosinase CN1 etc., which serve as potentially interesting targets for further glycosylation-based AD study and may eventually lead to molecular elucidation of the role of glycosylation in AD progression.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Shipman
- Department of Applied Science, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Cynthia Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ozioma Okonkwo
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
10
|
α1,3-Fucosyltransferase-IX, an enzyme of pulmonary endogenous lung stem cell marker SSEA-1, alleviates experimental bronchopulmonary dysplasia. Pediatr Res 2021; 89:1126-1135. [PMID: 32303051 DOI: 10.1038/s41390-020-0891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Endogenous pulmonary stem cells (PSCs) play an important role in lung development and repair; however, little is known about their role in bronchopulmonary dysplasia (BPD). We hypothesize that an endogenous PSC marker stage-specific embryonic antigen-1 (SSEA-1) and its enzyme, α1,3-fucosyltransferase IX (FUT9) play an important role in decreasing inflammation and restoring lung structure in experimental BPD. METHODS We studied the expression of SSEA-1, and its enzyme FUT9, in wild-type (WT) C57BL/6 mice, in room air and hyperoxia. Effects of intraperitoneal administration of recombinant human FUT9 (rhFUT9) on lung airway and parenchymal inflammation, alveolarization, and apoptosis were evaluated. RESULTS On hyperoxia exposure, SSEA-1 significantly decreased at postnatal day 14 in hyperoxia-exposed BPD mice, accompanied by a decrease in FUT9. BPD and respiratory distress syndrome (RDS) in human lungs showed decreased expression of SSEA-1 as compared to their term controls. Importantly, intraperitoneal administration of FUT9 in the neonatal BPD mouse model resulted in significant decrease in pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leakage, alveolar simplification, and cell death in the hyperoxia-exposed BPD mice. CONCLUSIONS An important role of endogenous PSC marker SSEA-1 and its enzyme FUT9 is demonstrated, indicating early systemic intervention with FUT9 as a potential therapeutic option for BPD. IMPACT Administration of rhFUT9, an enzyme of endogenous stem cell marker SSEA-1, reduces pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leak and cell death in the BPD mouse model. SSEA-1 is reported for the first time in experimental BPD models, and in human RDS and BPD. rhFUT9 treatment ameliorates hyperoxia-induced lung injury in a developmentally appropriate BPD mouse model. Our results have translational potential as a therapeutic modality for BPD in the developing lung.
Collapse
|
11
|
Sytnyk V, Leshchyns'ka I, Schachner M. Neural glycomics: the sweet side of nervous system functions. Cell Mol Life Sci 2021; 78:93-116. [PMID: 32613283 PMCID: PMC11071817 DOI: 10.1007/s00018-020-03578-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
12
|
Klarić TS, Salopek M, Micek V, Gornik Kljaić O, Lauc G. Post-natal developmental changes in the composition of the rat neocortical N-glycome. Glycobiology 2020; 31:636-648. [PMID: 33242084 DOI: 10.1093/glycob/cwaa108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Asparagine-linked glycosylation (N-glycosylation) plays a key role in many neurodevelopmental processes, including neural cell adhesion, neurite outgrowth and axon targeting. However, little is known about the dynamics of N-glycosylation during brain development and, in particular, how the N-glycome of the developing neocortex differs from that of the adult. The aim of this study, therefore, was to perform a thorough characterization of N-glycosylation in both the adult and neonatal rat neocortex in order to gain insights into the types of changes occurring in the N-glycome during neurodevelopment. To this end, we used hydrophilic interaction ultraperformance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry to compare the adult neocortical N-glycome with that of 24- and 48-h neonates. We report that the abundance of complex N-glycans is significantly lower in adults compared with neonates. Furthermore, the proportion of charged complex N-glycans is also greatly reduced. This decrease in the abundance of complex N-glycans is offset by a corresponding increase in the proportion of truncated and, to a lesser extent, hybrid N-glycans. Lastly, we report that although the proportion of oligomannose N-glycans remains constant at around 24%, the distribution of high-mannose subtypes shifts from predominantly large subtypes in neonates to smaller subtypes in the adult. In summary, our findings indicate that N-glycan synthesis in the rat neocortex is fundamentally different in neonates compared with adults with a general shift occurring from large, sialylated N-glycans towards smaller, neutral structures as neonates develop into adults, coupled with a parallel shift towards smaller oligomannose structures.
Collapse
Affiliation(s)
- Thomas S Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Matija Salopek
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vedran Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Olga Gornik Kljaić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
13
|
Cooper N, Li YT, Möller A, Schulz-Weidner N, Sachs UJ, Wagner F, Hackstein H, Wienzek-Lischka S, Grüneberg M, Wild MK, Bein G, Marquardt T. Incidental diagnosis of leukocyte adhesion deficiency type II following ABO typing. Clin Immunol 2020; 221:108599. [PMID: 32992000 DOI: 10.1016/j.clim.2020.108599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Individuals with the Bombay phenotype (Oh) in the ABO blood group system do not express the H, A, and B antigens but have no clinical symptoms. Bombay phenotype with clinical symptoms has been described in leukocyte adhesion deficiency type II (LAD II), a fucosylation disorder caused by mutations in SLC35C1. Only few LAD II patients have been described so far. Here we describe an additional patient, a 22-year old male, born to unrelated parents, presenting with inflammatory skin disease, periodontitis, growth, and mental retardation, admitted to the department of dentistry for treatment under general anesthesia. Pre-operative routine investigations revealed the presence of the Bombay phenotype (Oh). Genomic sequencing identified two novel triplet deletions of the SLC35C1 gene. Functional investigations confirmed the diagnosis of LAD II. Therapy with oral fucose led to the disappearance of the chronic skin infections and improvements in behavior and attention span.
Collapse
Affiliation(s)
- Nina Cooper
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | - Yu-Tung Li
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Anette Möller
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Ulrich J Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | - Franz Wagner
- Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | - Sandra Wienzek-Lischka
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Martin K Wild
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany.
| | | |
Collapse
|
14
|
Liu YM, Shahed-Al-Mahmud M, Chen X, Chen TH, Liao KS, Lo JM, Wu YM, Ho MC, Wu CY, Wong CH, Jan JT, Ma C. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Rep 2020; 32:108016. [PMID: 32755598 PMCID: PMC7380208 DOI: 10.1016/j.celrep.2020.108016] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19. FRIL is a plant lectin with potent anti-influenza and anti-SARS-CoV-2 activity FRIL preferentially binds to complex-type N-glycans on viral glycoproteins FRIL inhibits influenza virus entry by sequestering virions in late endosomes Intranasal administration of FRIL protects against lethal H1N1 challenge in mice
Collapse
Affiliation(s)
- Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang Ming University, Taipei 112, Taiwan
| | | | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ting-Hua Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jennifer M Lo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Min Wu
- Institute of Biological Chemistry and Cryo-EM Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry and Cryo-EM Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
15
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
16
|
Paucimannosidic glycoepitopes inhibit tumorigenic processes in glioblastoma multiforme. Oncotarget 2019; 10:4449-4465. [PMID: 31320997 PMCID: PMC6633888 DOI: 10.18632/oncotarget.27056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme is an aggressive cancer type with poor patient outcomes. Interestingly, we reported previously a novel association between the little studied paucimannosidic N-linked glycoepitope and glioblastoma. Paucimannose has only recently been detected in vertebrates where it exhibits a very restricted tumor-specific expression. Herein, we demonstrate for the first time a very high protein paucimannosylation in human grade IV glioblastoma and U-87MG and U-138MG glioblastoma cells. Furthermore, we revealed the involvement of paucimannosidic epitopes in tumorigenic processes including cell proliferation, migration, invasion and adhesion. Finally, we identified AHNAK which is discussed as a tumor suppressor as the first paucimannose-carrying protein in glioblastoma and show the involvement of AHNAK in the observed paucimannose-dependent effects. This study is the first to provide evidence of a protective role of paucimannosylation in glioblastoma, a relationship that with further in vivo support may have far reaching benefits for patients suffering from this often fatal disease.
Collapse
|
17
|
Chew S, Zeng Y, Khoo D, Hong Yu MY, Ahmed S, Chiam KH. Enrichment and Identification of Neural Stem Cells in Neurospheres Using Rigidity-Tunable Gels. Tissue Eng Part A 2019; 25:427-436. [DOI: 10.1089/ten.tea.2018.0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sweelin Chew
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Yukai Zeng
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - David Khoo
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | | | - Sohail Ahmed
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | | |
Collapse
|
18
|
Kelly A, O'Malley A, Redha M, O'Keeffe GW, Barry DS. The distribution of the proteoglycan FORSE-1 in the developing mouse central nervous system. J Anat 2018; 234:216-226. [PMID: 30474148 DOI: 10.1111/joa.12907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 01/30/2023] Open
Abstract
Glycosylation is a major post-translational modification in which a carbohydrate known as a glycan is enzymatically attached to target proteins which regulate protein folding and stability. Glycans are strongly expressed in the developing nervous system where they play multiple roles during development. The importance of these glycan epitopes in neural development is highlighted by a group of conditions known as congenital disorders of glycosylation which lead to psychomotor difficulties, mental retardation, lissencephaly, microencephaly and epilepsy. One of these glycan epitopes, known as Lewis X, is recognised by the FORSE-1 antibody and is regionally expressed in the developing nervous system. In this study, we report the regional and temporal expression patterns of FORSE-1 immunolabelling during the periods of neurogenesis, gliogenesis and axonogenesis in developing mouse nervous system. We demonstrate the localisation of FORSE-1 on subsets of neuroepithelial cells and radial glial cells, and in compartments corresponding to axon tract formation. These spatial, temporal and regional expression patterns are suggestive of roles in the determination of different cell lineages and in the patterning of white matter during development, and help provide insights into the neuroanatomical regions affected by congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Albert Kelly
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling O'Malley
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammad Redha
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Denis S Barry
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
20
|
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia 2018; 20:813-825. [PMID: 30015157 PMCID: PMC6037882 DOI: 10.1016/j.neo.2018.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several universal markers have been identified for CSCs characterization; however, a specific marker has not yet been identified for different cancer types. Specific glycosylation variation plays a major role in the progression and metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
21
|
Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, Sackstein R. Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. J Biol Chem 2018; 293:7300-7314. [PMID: 29593094 PMCID: PMC5950021 DOI: 10.1074/jbc.ra117.000775] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
In humans, six α(1,3)-fucosyltransferases (α(1,3)-FTs: FT3/FT4/FT5/FT6/FT7/FT9) reportedly fucosylate terminal lactosaminyl glycans yielding Lewis-X (LeX; CD15) and/or sialyl Lewis-X (sLeX; CD15s), structures that play key functions in cell migration, development, and immunity. Prior studies analyzing α(1,3)-FT specificities utilized either purified and/or recombinant enzymes to modify synthetic substrates under nonphysiological reaction conditions or molecular biology approaches wherein α(1,3)-FTs were expressed in mammalian cell lines, notably excluding investigations using primary human cells. Accordingly, although significant insights into α(1,3)-FT catalytic properties have been obtained, uncertainty persists regarding their human LeX/sLeX biosynthetic range across various glycoconjugates. Here, we undertook a comprehensive evaluation of the lactosaminyl product specificities of intracellularly expressed α(1,3)-FTs using a clinically relevant primary human cell type, mesenchymal stem cells. Cells were transfected with modified mRNA encoding each human α(1,3)-FT, and the resultant α(1,3)-fucosylated lactosaminyl glycoconjugates were analyzed using a combination of flow cytometry and MS. The data show that biosynthesis of sLeX is driven by FTs-3, -5, -6, and -7, with FT6 and FT7 having highest potency. FT4 and FT9 dominantly biosynthesize LeX, and, among all FTs, FT6 holds a unique capacity in creating sLeX and LeX determinants across protein and lipid glycoconjugates. Surprisingly, FT4 does not generate sLeX on glycolipids, and neither FT4, FT6, nor FT9 synthesizes the internally fucosylated sialyllactosamine VIM-2 (CD65s). These results unveil the relevant human lactosaminyl glycans created by human α(1,3)-FTs, providing novel insights on how these isoenzymes stereoselectively shape biosynthesis of vital glycoconjugates, thereby biochemically programming human cell migration and tuning human immunologic and developmental processes.
Collapse
Affiliation(s)
- Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Brad Dykstra
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jungmin Lee
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - David J Ashline
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Vernon N Reinhold
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
22
|
Tu M, Zhu P, Hu S, Wang W, Su Z, Guan J, Sun C, Zheng W. Notch1 Signaling Activation Contributes to Adult Hippocampal Neurogenesis Following Traumatic Brain Injury. Med Sci Monit 2017; 23:5480-5487. [PMID: 29150595 PMCID: PMC5703017 DOI: 10.12659/msm.907160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Neural stem cells are reported to exist in the hippocampus of adult mammals and are important sources of neurons for repair. The Notch1 signaling pathway is considered as one of the important regulators of neural stem cells, but its role in adult brains is unclear. We aimed to describe the role of Notch1 signaling in the adult rat hippocampus after traumatic brain injury. Material/Methods The model rats were randomly divided into 4 groups as follows: sham, sham-TBI, sham-Ad-TBI, and NICD-Ad-TBI. We used adenovirus-mediated gene transfection to upregulate endogenous NICD in vivo. Firstly, a TBI rat model was constructed with lateral fluid percussion. Then, the hippocampus was collected to detect the expression of Notch1 markers and stem cell markers (DCX) by Western blot analysis, immunohistochemistry, and immunofluorescence. The prognosis after TBI treatment was evaluated by the Morris Water Maze test. Results First, we found the expression of NICD in vivo was significantly increased by adenovirus-mediated gene transfection as assessed by Notch1 immunofluorescence and Western blot analysis. Second, enhancing NICD stimulated the regeneration of neural stem cells in the DG of the adult rat brain following traumatic brain injury, as evaluated by DCX and NeuN double-staining. Furthermore, Notch1 signaling activation can promote behavioral improvement after traumatic brain injury, including spatial learning and memory capacity. Conclusions Our findings suggest that targeted regulation of Notch1 signaling may have a useful effect on stem cell transformation. Notch1 signaling may have a potential brain-protection effect, which may result from neurogenesis.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Penglei Zhu
- Department of Neurosurgery, Wenzhou People 's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Shaobo Hu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Wei Wang
- Department of Emergency, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jiaqing Guan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
23
|
Lewis X-Carrying Neoglycolipids Evoke Selective Apoptosis in Neural Stem Cells. Neurochem Res 2017; 43:212-218. [PMID: 29019053 DOI: 10.1007/s11064-017-2415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
N-glycans carrying the Lewis X trisaccharide [Galβ1-4 (Fucα1-3) GlcNAc] are expressed by neural stem cells (NSCs) exclusively before differentiation, and they actively contribute to the maintenance of stemness of these cells. To address the functional roles of the Lewis X-mediated molecular interactions in NSCs, we created a series of synthetic neoglycolipids that contained a Lewis X-carrying glycan connected to an acyl chain through an amide bond. The neoglycolipids formed aqueous micelles displaying functional Lewis X glycotopes. Surprisingly, the neoglycolipid micelles evoked selective apoptosis in undifferentiated NSCs, whereas their differentiated cells remained unaffected. The apoptotic activity depended on the structural integrity of the Lewis X glycotopes and also on the length of the acyl chain, with an optimum length of C18. We propose hypothetical functional mechanisms of the neoglycolipid, which involves selective NSC targeting with Lewis X glycan and apoptotic signaling by the intracellular release of fatty acids. This serendipitous finding may offer a new strategy for controlling neural cell fates using artificial glycoclusters.
Collapse
|
24
|
In Vivo Selection of a Computationally Designed SCHEMA AAV Library Yields a Novel Variant for Infection of Adult Neural Stem Cells in the SVZ. Mol Ther 2017; 26:304-319. [PMID: 28988711 DOI: 10.1016/j.ymthe.2017.09.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/17/2023] Open
Abstract
Directed evolution continues to expand the capabilities of complex biomolecules for a range of applications, such as adeno-associated virus vectors for gene therapy; however, advances in library design and selection strategies are key to develop variants that overcome barriers to clinical translation. To address this need, we applied structure-guided SCHEMA recombination of the multimeric adeno-associated virus (AAV) capsid to generate a highly diversified chimeric library with minimal structural disruption. A stringent in vivo Cre-dependent selection strategy was implemented to identify variants that transduce adult neural stem cells (NSCs) in the subventricular zone. A novel variant, SCH9, infected 60% of NSCs and mediated 24-fold higher GFP expression and a 12-fold greater transduction volume than AAV9. SCH9 utilizes both galactose and heparan sulfate as cell surface receptors and exhibits increased resistance to neutralizing antibodies. These results establish the SCHEMA library as a valuable tool for directed evolution and SCH9 as an effective gene delivery vector to investigate subventricular NSCs.
Collapse
|
25
|
Lin W, Modiano JF, Ito D. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells. J Vet Sci 2017; 18:101-104. [PMID: 27456773 PMCID: PMC5366293 DOI: 10.4142/jvs.2017.18.1.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/19/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1− and SSEA-1+ cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines.
Collapse
Affiliation(s)
- Weiming Lin
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Medicine, College of Life Sciences, Longyan University, Longyan 364012, China
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daisuke Ito
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
27
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
28
|
Yan G, Yamaguchi T, Suzuki T, Yanaka S, Sato S, Fujita M, Kato K. Hyper-Assembly of Self-Assembled Glycoclusters Mediated by Specific Carbohydrate-Carbohydrate Interactions. Chem Asian J 2017; 12:968-972. [DOI: 10.1002/asia.201700202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/13/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Gengwei Yan
- School of Physical Science; SOKENDAI (The Graduate University for Advanced Studies); 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- School of Materials Science; Japan Advanced Institute of Science and Technology; 1-1 Asahidai Nomi 923-1292 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- School of Materials Science; Japan Advanced Institute of Science and Technology; 1-1 Asahidai Nomi 923-1292 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Tatsuya Suzuki
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Saeko Yanaka
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Sota Sato
- Advanced Institute for Materials Research; Tohoku University; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- JST; ERATO; Isobe Degenerate π-Integration Project; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Koichi Kato
- School of Physical Science; SOKENDAI (The Graduate University for Advanced Studies); 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| |
Collapse
|
29
|
Yagi H. Development and Application of Glycosylation-Profiling Techniques for Functional Glycomics in the Nervous System. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1614.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
30
|
Yagi H. Development and Application of Glycosylation-Profiling Techniques for Functional Glycomics in the Nervous System. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1614.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
31
|
Yagi H, Kato K. Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J 2016; 34:757-763. [PMID: 27350557 DOI: 10.1007/s10719-016-9707-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Neural stem cells (NSCs) possess a high proliferative potential and capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. NSCs have gained a considerable attention because of their potential application in treatment strategies on the basis of transplantation for neurodegenerative disorders and nerve injuries. Although several signaling pathways have been reportedly involved in the fate determination process of NSCs, the molecular mechanisms underlying the maintenance of neural cell stemness and differentiation process remain largely unknown. Glycoconjugates expressed in the NSC niche in the brain offer markers of NSCs; moreover, they serve as cell regulators, which are actively involved in the modulation of signal transduction. The glycans function on NCS surfaces by recruiting growth factor receptors to specific microdomains as components of glycolipids, thereby mediating the ligand-receptor interactions both indirectly and directly as components of proteoglycans and interacting with specific lectin-type receptors as components of ligand glycoproteins. In this review, we outline current knowledge of the possible functional mechanisms of glycoconjugates to determine cell fates, which are associated with their expression pattern and structural characteristic features.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
32
|
Wilson KM, Thomas-Oates JE, Genever PG, Ungar D. Glycan Profiling Shows Unvaried N-Glycomes in MSC Clones with Distinct Differentiation Potentials. Front Cell Dev Biol 2016; 4:52. [PMID: 27303666 PMCID: PMC4885867 DOI: 10.3389/fcell.2016.00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023] Open
Abstract
Different cell types have different N-glycomes in mammals. This means that cellular differentiation is accompanied by changes in the N-glycan profile. Yet when the N-glycomes of cell types with differing fates diverge is unclear. We have investigated the N-glycan profiles of two different clonal populations of mesenchymal stromal cells (MSCs). One clone (Y101), when differentiated into osteoblasts, showed a marked shift in the glycan profile toward a higher abundance of complex N-glycans and more core fucosylation. Yet chemical inhibition of complex glycan formation during osteogenic differentiation did not prevent the formation of functional osteoblasts. However, the N-glycan profile of another MSC clone (Y202), which cannot differentiate into osteoblasts, was not significantly different from that of the clone that can. Interestingly, incubation of Y202 cells in osteogenic medium caused a similar reduction of oligomannose glycan content in this non-differentiating cell line. Our analysis implies that the N-glycome changes seen upon differentiation do not have direct functional links to the differentiation process. Thus N-glycans may instead be important for self-renewal rather than for cell fate determination.
Collapse
Affiliation(s)
| | - Jane E Thomas-Oates
- Department of Chemistry and Centre of Excellence in Mass Spectrometry, University of York York, UK
| | | | - Daniel Ungar
- Department of Biology, University of York York, UK
| |
Collapse
|
33
|
Nakajima-Koyama M, Lee J, Ohta S, Yamamoto T, Nishida E. Induction of Pluripotency in Astrocytes through a Neural Stem Cell-like State. J Biol Chem 2015; 290:31173-88. [PMID: 26553868 DOI: 10.1074/jbc.m115.683466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/20/2023] Open
Abstract
It remains controversial whether the routes from somatic cells to induced pluripotent stem cells (iPSCs) are related to the reverse order of normal developmental processes. Specifically, it remains unaddressed whether or not the differentiated cells become iPSCs through their original tissue stem cell-like state. Previous studies analyzing the reprogramming process mostly used fibroblasts; however, the stem cell characteristics of fibroblasts made it difficult to address this. Here, we generated iPSCs from mouse astrocytes, a type of glial cells, by three (OCT3/4, KLF4, and SOX2), two (OCT3/4 and KLF4), or four (OCT3/4, KLF4, and SOX2 plus c-MYC) factors. Sox1, a neural stem cell (NSC)-specific transcription factor, is transiently up-regulated during reprogramming, and Sox1-positive cells become iPSCs. The up-regulation of Sox1 is essential for OCT3/4- and KLF4-induced reprogramming. Genome-wide analysis revealed that the gene expression profile of Sox1-expressing intermediate-state cells resembles that of NSCs. Furthermore, the intermediate-state cells are able to generate neurospheres, which can differentiate into both neurons and glial cells. Remarkably, during fibroblast reprogramming, neither Sox1 up-regulation nor an increase in neurogenic potential occurs. Our results thus demonstrate that astrocytes are reprogrammed through an NSC-like state.
Collapse
Affiliation(s)
- May Nakajima-Koyama
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joonseong Lee
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - Sho Ohta
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, the Department of Reprogramming Science, Center for iPS Cell Research and Application, and
| | - Takuya Yamamoto
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan the Department of Reprogramming Science, Center for iPS Cell Research and Application, and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8507, and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
34
|
Koon NA, Itokazu Y, Yu RK. Ganglioside-Dependent Neural Stem Cell Proliferation in Alzheimer's Disease Model Mice. ASN Neuro 2015; 7:1759091415618916. [PMID: 26699276 PMCID: PMC4710121 DOI: 10.1177/1759091415618916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aggregation and formation of amyloid plaques by amyloid β-peptides (Aβs) is believed to be one of the pathological hallmarks of Alzheimer's disease (AD). Intriguingly, Aβs have also been shown to possess proliferative effects on neural stem cells (NSCs). Many essential cellular processes in NSCs, such as fate determination and proliferation, are heavily influenced by cell surface glycoconjugates, including gangliosides. It has recently been shown that Aβ1-42 alters several key glycosyltransferases and glycosidases. To further define the effects of Aβs and to clarify the potential mechanisms of action of those peptides on NSCs, NSCs were cultured from embryonic brains of the double-transgenic mouse model of AD [B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J] coexpressing mutants of amyloid precursor protein (APPswe) and presenilin1 (PSEN1dE9). We found that Aβs not only promoted cell proliferation but also altered expression of several key glycogenes for glycoconjugate metabolism, such as sialyltransferases II and III (ST-II & -III) in AD NSCs. In addition, we found upregulation of epidermal growth factor receptor and Notch1 intracellular domain. Moreover, the increased expression of ST-II and -III coincided with the elevated levels of c-series gangliosides (A2B5+ antigens) in AD NSCs. Further, we revealed that epidermal growth factor signaling and gangliosides are necessary components on Aβ-stimulated NSC proliferation. Our present study has thus provided a novel mechanism for the upregulation of c-series ganglioside expression and increases in several NSC markers to account for the proliferative effect of Aβs on NSCs in AD mouse brain. These observations support the potential beneficial effects of Aβs and gangliosides in promoting neurogenesis in AD brain.
Collapse
Affiliation(s)
- Noah A. Koon
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
35
|
Yagi H, Nakamura M, Yokoyama J, Zhang Y, Yamaguchi T, Kondo S, Kobayashi J, Kato T, Park EY, Nakazawa S, Hashii N, Kawasaki N, Kato K. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule. JOURNAL OF BIOMOLECULAR NMR 2015; 62:157-167. [PMID: 25902760 DOI: 10.1007/s10858-015-9930-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing (15)N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a (15)N-enrichment ratio of approximately 80%. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yagi H, Fukuzawa N, Tasaka Y, Matsuo K, Zhang Y, Yamaguchi T, Kondo S, Nakazawa S, Hashii N, Kawasaki N, Matsumura T, Kato K. NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. PLANT CELL REPORTS 2015; 34:959-68. [PMID: 25689888 DOI: 10.1007/s00299-015-1757-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE We successfully developed a method for metabolic isotope labeling of recombinant proteins produced in transgenic tobacco. This enabled assessment of structural integrity of plant-derived therapeutic antibodies by NMR analysis. A variety of expression vehicles have been developed for the production of promising biologics, including plants, fungi, bacteria, insects, and mammals. Glycoprotein biologics often experience altered folding and post-translational modifications that are typified by variant glycosylation patterns. These differences can dramatically affect their efficacy, as exemplified by therapeutic antibodies. However, it is generally difficult to validate the structural integrity of biologics produced using different expression vehicles. To address this issue, we have developed and applied a stable-isotope-assisted nuclear magnetic resonance (NMR) spectroscopy method for the conformational characterization of recombinant antibodies produced in plants. Nicotiana benthamiana used as a vehicle for the production of recombinant immunoglobulin G (IgG) was grown in a (15)N-enriched plant growth medium. The Fc fragment derived from the (15)N-labeled antibody thus prepared was subjected to heteronuclear two-dimensional (2D) NMR measurements. This approach enabled assessment of the structural integrity of the plant-derived therapeutic antibodies by comparing their NMR spectral properties with those of an authentic IgG-Fc derived from mammalian cells.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dahmen AC, Fergen MT, Laurini C, Schmitz B, Loke I, Thaysen-Andersen M, Diestel S. Paucimannosidic glycoepitopes are functionally involved in proliferation of neural progenitor cells in the subventricular zone. Glycobiology 2015; 25:869-80. [DOI: 10.1093/glycob/cwv027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/24/2015] [Indexed: 12/23/2022] Open
|
38
|
Zou W, Chen QX, Sun XW, Chi QB, Kuang HY, Yu XP, Dai XH. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage. Neural Regen Res 2015; 10:457-62. [PMID: 25878596 PMCID: PMC4396110 DOI: 10.4103/1673-5374.153696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 12/28/2022] Open
Abstract
Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20) and Qubin (GB7) acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL) infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.
Collapse
Affiliation(s)
- Wei Zou
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Qiu-Xin Chen
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Qing-Bin Chi
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Hong-Yu Kuang
- Department of Endocrinology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
39
|
Thaysen-Andersen M, Venkatakrishnan V, Loke I, Laurini C, Diestel S, Parker BL, Packer NH. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J Biol Chem 2015; 290:8789-802. [PMID: 25645918 DOI: 10.1074/jbc.m114.631622] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose(1-3)fucose(0-1)N-acetylglucosamine(2)Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia,
| | - Vignesh Venkatakrishnan
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Ian Loke
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Christine Laurini
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Simone Diestel
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Benjamin L Parker
- the Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales-2010, Australia
| | - Nicolle H Packer
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| |
Collapse
|
40
|
Yaji S, Manya H, Nakagawa N, Takematsu H, Endo T, Kannagi R, Yoshihara T, Asano M, Oka S. Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPβ. Glycobiology 2014; 25:376-85. [PMID: 25361541 DOI: 10.1093/glycob/cwu118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycosylation is a major protein modification. Although proteins are glycosylated/further modulated by several glycosyltransferases during trafficking from the endoplasmic reticulum to the Golgi apparatus, a certain glycan epitope has only been detected on a limited number of proteins. Of these glycan epitopes, Lewis X is highly expressed in the early stage of a developing brain and plays important roles in cell-cell interaction. The Lewis X epitope is comprised of a trisaccharide (Galβ1-4 (Fucα1-3) GlcNAc), and a key enzyme for the expression of this epitope is α1,3-fucosyltransferase 9. However, the scaffolding glycan structure responsible for the formation of the Lewis X epitope as well as its major carrier protein has not been fully characterized in the nervous system. Here we showed that the Lewis X epitope was mainly expressed on phosphacan/receptor protein tyrosine phosphatase β (RPTPβ) in the developing mouse brain. Expression of the Lewis X epitope was markedly reduced in β1,4-galactosyltransferase 2 (β4GalT2) gene-deficient mice, which indicated that β4GalT2 is a major galactosyltransferase required for the Lewis X epitope. We also showed that the Lewis X epitope almost disappeared due to the knockout of protein O-mannose β1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for the synthesis of O-mannosylated glycans, which indicated that the O-mannosylated glycan is responsible for presenting the Lewis X epitope. Since O-mannosylated glycans on phosphacan/RPTPβ could also present human natural killer-1, another glycan epitope specifically expressed in the nervous system, our results revealed the importance of O-mannosylated glycan chains in the presentation of functional glycan epitopes in the brain.
Collapse
Affiliation(s)
- Shohei Yaji
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Reiji Kannagi
- Advanced Medical Research Center, Aichi Medical University, Nagakutce, Japan
| | - Toru Yoshihara
- Division of Transgenic Animal Science, Advanced Science Research Center Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Masahide Asano
- Division of Transgenic Animal Science, Advanced Science Research Center
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Ashline DJ, Hanneman AJS, Zhang H, Reinhold VN. Structural documentation of glycan epitopes: sequential mass spectrometry and spectral matching. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:444-53. [PMID: 24385394 PMCID: PMC3950938 DOI: 10.1007/s13361-013-0776-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 05/27/2023]
Abstract
Documenting mass spectral data is a fundamental aspect of accepted protocols. In this report, we contrast MS(n) sequential disassembly spectra obtained from natural and synthetic glycan epitopes. The epitopes considered are clusters found on conjugate termini of lipids and N- and O-glycans of proteins. The latter are most frequently pendant through a CID-labile HexNAc glycosidic linkage. The synthetic samples were supplied by collaborating colleagues and commercial sources and usually possessed a readily released reducing-end linker, a by-product of synthesis. All samples were comparably methylated, extracted, and MS(n) disassembled to compare their linkage and branching spectral details. Both sample types provide B-ion type fragments early in a disassembly pathway and their compositions are a suggestion of structure. Further steps of disassembly are necessary to confirm the details of linkage and branching. Included in this study were various Lewis and H antigens, 3- and 6-linked sialyl-lactosamine, NeuAc-2,8-NeuAc dimer, and Galα1,3Gal. Sample infusion provided high quality spectral data whereas disassembly to small fragments generates reproducible high signal/noise spectra for spectral matching. All samples were analyzed as sodium adducted positive ions. This study includes comparability statistics and evaluations on several mass spectrometers.
Collapse
Affiliation(s)
| | | | - Hailong Zhang
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824
| | - Vernon N. Reinhold
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824
- Glycan Connections, LLC, Lee, New Hampshire, 03861
| |
Collapse
|
42
|
Itokazu Y, Yu RK. Amyloid β-peptide 1-42 modulates the proliferation of mouse neural stem cells: upregulation of fucosyltransferase IX and notch signaling. Mol Neurobiol 2014; 50:186-96. [PMID: 24436056 DOI: 10.1007/s12035-014-8634-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/02/2014] [Indexed: 12/15/2022]
Abstract
Amyloid β-peptides (Aβs) aggregate to form amyloid plaques, also known as senile plaques, which are a major pathological hallmark of Alzheimer's disease (AD). Aβs are reported to possess proliferation effects on neural stem cells (NSCs); however, this effect remains controversial. Thus, clarification of their physiological function is an important topic. We have systematically evaluated the effects of several putative bioactive Aβs (Aβ1-40, Aβ1-42, and Aβ25-35) on NSC proliferation. Treatment of NSCs with Aβ1-42 significantly increased the number of those cells (149 ± 10 %). This was not observed with Aβ1-40 which did not have any effects on the proliferative property of NSC. Aβ25-35, on the other hand, exhibited inhibitory effects on cellular proliferation. Since cell surface glycoconjugates, such as glycolipids, glycoproteins, and proteoglycans, are known to be important for maintaining cell fate determination, including cellular proliferation, in NSCs and they undergo dramatic changes during differentiation, we examined the effect of Aβs on a number of key glycoconjugate metabolizing enzymes. Significantly, we found for the first time that Aβ1-42 altered the expression of several key glycosyltransferases and glycosidases, including fucosyltransferase IX (FUT9), sialyltransferase III (ST-III), glucosylceramide ceramidase (GLCC), and mitochondrial sialidase (Neu4). FUT9 is a key enzyme for the synthesis of the Lewis X carbohydrate epitope, which is known to be expressed in stem cells. Aβ1-42 also stimulated the Notch1 intracellular domain (NICD) by upregulation of the expression of Musashi-1 and the paired box protein, Pax6. Thus, Aβ1-42 upregulates NSC proliferation by modulating the expression of several glycogenes involved in Notch signaling.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | | |
Collapse
|
43
|
Glycolipid and Glycoprotein Expression During Neural Development. ADVANCES IN NEUROBIOLOGY 2014; 9:185-222. [DOI: 10.1007/978-1-4939-1154-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Bai R, Gao G, Xing Y, Xue H. Two outward potassium current types are expressed during the neural differentiation of neural stem cells. Neural Regen Res 2013; 8:2656-65. [PMID: 25206577 PMCID: PMC4146027 DOI: 10.3969/j.issn.1673-5374.2013.28.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/08/2013] [Indexed: 01/17/2023] Open
Abstract
The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cell patch-clamp recordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat campus could be cultured and induced to differentiate into functional neurons under defined conditions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.
Collapse
Affiliation(s)
- Ruiying Bai
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Guowei Gao
- Department of Radiotherapy, Center Hospital of Xinxiang, Xinxiang 453003, Henan Province, China
| | - Ying Xing
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China ; Stem Cell Research Center, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hong Xue
- Basic Medical Sciences of Henan University of Traditional Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
45
|
Kumar A, Torii T, Ishino Y, Muraoka D, Yoshimura T, Togayachi A, Narimatsu H, Ikenaka K, Hitoshi S. The Lewis X-related α1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations. J Biol Chem 2013; 288:28859-68. [PMID: 23986452 DOI: 10.1074/jbc.m113.469403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lewis X (Le(X), Galβ1-4(Fucα1-3)GlcNAc) is a carbohydrate epitope that is present at the nonreducing terminus of sugar chains of glycoproteins and glycolipids, and is abundantly expressed in several stem cell populations. Le(X) antigen can be used in conjunction with fluorescence-activated cell sorting to isolate neurosphere-forming neural stem cells (NSCs) from embryonic mouse brains. However, its function in the maintenance and differentiation of stem cells remains largely unknown. In this study, we examined mice deficient for fucosyltransferase 9 (Fut9), which is thought to synthesize most, if not all, of the Le(X) moieties in the brain. We found that the number of NSCs was increased in the brain of Fut9(-/-) embryos, suggesting that Fut9-synthesized Le(X) is dispensable for the maintenance of NSCs. Another α1,3-fucosyltransferase gene, fucosyltransferase 10 (Fut10), is expressed in the ventricular zone of the embryonic brain. Overexpression of Fut10 enhanced the self-renewal of NSCs. Conversely, suppression of Fut10 expression induced the differentiation of NSCs and embryonic stem cells. In addition, knockdown of Fut10 expression in the cortical ventricular zone of the embryonic brain by in utero electroporation of Fut10-miRNAs impaired the radial migration of neural precursor cells. Our data suggest that Fut10 is involved in a unique α1,3-fucosyltransferase activity with stringent substrate specificity, and that this activity is required to maintain stem cells in an undifferentiated state.
Collapse
Affiliation(s)
- Akhilesh Kumar
- From the Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, and
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maury JJP, Chan KKK, Zheng L, Bardor M, Choo ABH. Excess of O-linked N-acetylglucosamine modifies human pluripotent stem cell differentiation. Stem Cell Res 2013; 11:926-37. [PMID: 23859804 DOI: 10.1016/j.scr.2013.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022] Open
Abstract
O-linked-N-acetylglucosamine (O-GlcNAc), a post translational modification, has emerged as an important cue in controlling key cell mechanisms. Here, we investigate O-GlcNAc's role in the maintenance and differentiation of human pluripotent stem cells (hPSC). We reveal that protein expression of O-GlcNAc transferase and hydrolase both decreases during hPSC differentiation. Upregulating O-GlcNAc with O-GlcNAc hydrolase inhibitors has no significant effect on either the maintenance of pluripotency in hPSC culture, or the loss of pluripotency in differentiating hPSC. However, in spontaneously differentiating hPSC, excess O-GlcNAc alters the expression of specific lineage markers: decrease of ectoderm markers (PAX6 by 53-88%, MSX1 by 26-49%) and increase of adipose-related mesoderm markers (PPARγ by 28-100%, C/EBPα by 46-135%). All other lineage markers tested (cardiac, visceral-endoderm, trophectoderm) remain minimally affected by upregulated O-GlcNAc. Interestingly, we also show that excess O-GlcNAc triggers a feedback mechanism that increases O-GlcNAc hydrolase expression by 29-91%. To the best of our knowledge, this is the first report demonstrating that excess O-GlcNAc does not affect hPSC pluripotency in undifferentiated maintenance cultures; instead, it restricts the hPSC differentiation towards specific cell lineages. These data will be useful for developing targeted differentiation protocols and aid in understanding the effects of O-GlcNAc on hPSC differentiation.
Collapse
Affiliation(s)
- Julien Jean Pierre Maury
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | | | | | | | | |
Collapse
|
47
|
Chaubey S, Wolfe JH. Transplantation of CD15-enriched murine neural stem cells increases total engraftment and shifts differentiation toward the oligodendrocyte lineage. Stem Cells Transl Med 2013; 2:444-54. [PMID: 23681951 PMCID: PMC3673756 DOI: 10.5966/sctm.2012-0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
Neural stem cell (NSC) transplantation is a promising therapeutic approach for neurological diseases. However, only a limited number of cells can be transplanted into the brain, resulting in relatively low levels of engraftment. This study investigated the potential of using a cell surface marker to enrich a primary NSC population to increase stable engraftment in the recipient brain. NSCs were enriched from the neonatal mouse forebrain using anti-CD15 (Lewis X antigen, or SSEA-1) in a "gentle" fluorescence-activated cell sorting protocol, which yielded >98% CD15-positive cells. The CD15-positive cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, after withdrawal of growth factors, demonstrating multipotentiality. CD15-positive cells were expanded in vitro and injected bilaterally into the ventricles of neonatal mice. Cells from enriched and unenriched donor populations were found throughout the neuraxis, in both neurogenic and non-neurogenic regions. Total engraftment was similar at 7 days postinjection, but by 28 days postinjection, after brain organogenesis was complete, the survival of donor cells was significantly increased in CD15-enriched grafts over the unenriched cell grafts. The engrafted cells were heterogeneous in morphology and differentiated into all three neural lineages. Furthermore, in the CD15-enriched grafts, there was a significant shift toward differentiation into oligodendrocytes. This strategy may allow better delivery of therapeutic cells to the developing central nervous system and may be particularly useful for treating diseases involving white matter lesions.
Collapse
Affiliation(s)
- Sushma Chaubey
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John H. Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Alberi L, Hoey SE, Brai E, Scotti AL, Marathe S. Notch signaling in the brain: in good and bad times. Ageing Res Rev 2013; 12:801-14. [PMID: 23570941 DOI: 10.1016/j.arr.2013.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/16/2013] [Accepted: 03/22/2013] [Indexed: 01/13/2023]
Abstract
Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.
Collapse
Affiliation(s)
- Lavinia Alberi
- Unit of Anatomy, Department of Medicine, University of Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, Poetsch A, Faissner A. A LewisX glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 2013; 288:16538-16545. [PMID: 23615909 DOI: 10.1074/jbc.m112.419812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing and adult CNS multipotent neural stem cells reside in distinct niches. Specific carbohydrates and glycoproteins are expressed in these niche microenvironments which are important regulators of stem cell maintenance and differentiation fate. LewisX (LeX), also known as stage-specific embryonic antigen-1 or CD15, is a defined carbohydrate moiety expressed in niche microenvironments of the developing and adult CNS. LeX-glycans are involved in stem cell proliferation, migration, and stemness. A few LeX carrier proteins are known, but a systematic analysis of the targets of LeX glycosylation in vivo has not been performed so far. Using LeX glycosylation as a biomarker we aimed to discover new glycoproteins with a potential functional relevance for CNS development. By immunoaffinity chromatography we enriched LeX glycoproteins from embryonic and postnatal mouse brains and used one-dimensional nLC-ESI-MS/MS for their identification. We could validate phosphacan, tenascin-C, and L1-CAM as major LeX carrier proteins present in vivo. Furthermore, we identified LRP1, a member of the LDL receptor family, as a new LeX carrier protein expressed by mouse neural stem cells. Surprisingly, little is known about LRP1 function for neural stem cells. Thus, we generated Lrp1 knock-out neural stem cells by Cre-mediated recombination and investigated their properties. Here, we provide first evidence that LRP1 is necessary for the differentiation of neural stem cells toward oligodendrocytes. However, this function is independent of LeX glycosylation.
Collapse
Affiliation(s)
- Eva Hennen
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Dina Safina
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Ute Haussmann
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philipp Wörsdörfer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Andreas Faissner
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany.
| |
Collapse
|