1
|
Biernat MM, Camp OG, Moussa DN, Awonuga AO, Abu-Soud HM. The interplay between the myeloperoxidase-hypochlorous acid system, heme oxygenase, and free iron in inflammatory diseases. J Inorg Biochem 2025; 270:112927. [PMID: 40267847 DOI: 10.1016/j.jinorgbio.2025.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Accumulated unbound free iron (Fe(II or III)) is a redox engine generating reactive oxygen species (ROS) that promote oxidative stress and inflammation. Iron is implicated in diseases with free radical pathology including cardiovascular, neurodegenerative, reproductive disorders, and some types of cancer. While many studies focus on iron overload disorders, few explore the potential link between the myeloperoxidase-hypochlorous acid (MPO-HOCl) system and localized iron accumulation through heme and iron‑sulfur (FeS) cluster protein destruction. Although inducible heme oxygenase (HO-1), the rate-limiting enzyme in heme catabolism, is frequently associated with these diseases, we hypothesize that HOCl also contributes to the generation of free iron and heme degradation products. Furthermore, HO-1 and HOCl may play a dual role in free iron accumulation by regulating the activity of key iron metabolism proteins. Enzymatic and non-enzymatic modulators, as well as scavengers of HOCl, can help prevent heme destruction and reduce the accumulation of free iron. Given iron's role in disease progression and severity, identifying the primary sources, mechanisms, and mediators involved in free iron generation is crucial for developing effective pharmacological treatments. Further investigation focusing on the specific contributions of the MPO-HOCl system and free iron is necessary to explore novel strategies to mitigate its harmful effects in biological systems.
Collapse
Affiliation(s)
- Mia M Biernat
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Arnhold J. Oxidant-Based Cytotoxic Agents During Aging: From Disturbed Energy Metabolism to Chronic Inflammation and Disease Progression. Biomolecules 2025; 15:547. [PMID: 40305309 PMCID: PMC12025200 DOI: 10.3390/biom15040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
In humans, aging is an inevitable consequence of diminished growth processes after reaching maturity. The high order of biomolecules in cells and tissues is continuously disturbed by numerous physical and chemical destructive impacts. Host-derived oxidant-based cytotoxic agents (reactive species, transition free metal ions, and free heme) contribute considerably to this damage. These agents are under the control of immediately acting antagonizing principles, which are important to ensure cell and tissue homeostasis. In this review, I apply the concept of host-derived cytotoxic agents and their interplay with antagonizing principles to the aging process. During aging, energy metabolism and the supply of tissues with dioxygen and nutrients are increasingly disturbed. In addition, a chronic inflammatory state develops, a condition known as inflammaging. The balance between oxidant-based cytotoxic agents and protective mechanisms is analyzed depending on age-based physiological alterations in ATP production. Disturbances in this balance are associated with the development of age-related diseases and comorbidities. An enhanced production of reactive species from dysfunctional mitochondria, alterations in cellular redox homeostasis, and adaptations to hypoxia are highlighted. Examples of how disturbances between oxidant-based cytotoxic agents and antagonizing principles contribute to the pathogenesis of diseases in persons of advanced age are given.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
3
|
Kaya TA, Stein KP, Schaufler A, Neyazi B, Rashidi A, Kahlert UD, Mawrin C, Sandalcioglu IE, Dumitru CA. The tumor-neutrophil interactions in the microenvironment of brain metastases with different primary sites. J Leukoc Biol 2025; 117:qiae248. [PMID: 39565891 DOI: 10.1093/jleuko/qiae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Brain metastases originating from lung and breast cancer can recruit and activate neutrophils to acquire a tumor-promoting phenotype. It is currently unclear if this phenomenon also occurs in brain metastases arising from other primary sites. Here, we investigated the effect of tumor cells isolated from melanoma, lung cancer, and gastrointestinal cancer brain metastases on neutrophil biology and functions. We found that lung and gastrointestinal but not melanoma brain metastasis cells produced CXCL8/IL-8 and promoted neutrophil recruitment. Similarly, lung and gastrointestinal but not melanoma brain metastasis cells prolonged the survival of neutrophils and stimulated them to release MMP9 and CCL4/MIP1β. In situ, lung and gastrointestinal brain metastasis tissues contained significantly higher numbers of tumor-infiltrating neutrophils compared to melanoma brain metastases. The levels of neutrophil infiltration significantly correlated with the proliferation index of these tumors. Our findings identify variabilities in the immune microenvironment of brain metastases with different primary sites, which may ultimately affect their pathophysiology and progression.
Collapse
Affiliation(s)
- Tamer A Kaya
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Anna Schaufler
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Claudia A Dumitru
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Belloli S, Monterisi C, Rainone P, Coliva A, Zanardi A, Conti A, Caricasole A, Moresco RM, Alessio M. Ceruloplasmin administration in the preclinical mouse model of aceruloplasminemia reveals a sex-related variation in biodistribution. Commun Biol 2025; 8:264. [PMID: 39972187 PMCID: PMC11839944 DOI: 10.1038/s42003-025-07714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Mutations in the ceruloplasmin (CP) gene are responsible for the rare genetic disease aceruloplasminemia characterized by iron accumulation in different organs, including the brain. We previously reported that administration of purified CP in the CP-deficient (cpKO) mouse model of the disease, was therapeutically effective. Here we evaluated the bioavailability of the therapeutic protein in different organs of the cpKO mouse. The distribution of administered radiolabelled-[64Cu]-CP was assessed in brain and peripheral tissues in vivo and ex vivo. The uptake of [64Cu]-CP in cpKO mice varied according to animal sex and age, with a higher accumulation in the cerebellum and liver of males at 6 months of age, while higher levels were observed in the same organs in females at 10 months. Sex-specific variations in the uptake of radiolabelled-CP were genotype-associated, by comparison with wild type mice. Based on these findings, we assessed sex effects on the therapeutic efficacy of the CP-replacement therapy previously performed. Multivariate analysis confirmed that the therapeutic effect was present for both sexes, and this was more pronounced in males than females. Therefore, sex-related variation in CP tissue bioavailability point to the possibility of sex-specific therapeutic regimens in the design of future CP-replacement therapies for aceruloplasminemia.
Collapse
Affiliation(s)
- Sara Belloli
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
- Institute of Bioimaging and Complex Biological Systems, CNR, Segrate, MI, Italy
| | - Cristina Monterisi
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Paolo Rainone
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
- Institute of Bioimaging and Complex Biological Systems, CNR, Segrate, MI, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, MB, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Alan Zanardi
- Proteome Biochemistry, COSR-Center for Omics Sciences, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Center for Omics Sciences, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Andrea Caricasole
- Research and Innovation, Kedrion S.p.A., Loc. Bolognana, Gallicano, LU, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Unit, IRCCS-Ospedale San Raffaele, Milano, Italy
- Institute of Bioimaging and Complex Biological Systems, CNR, Segrate, MI, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, MB, Italy
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Center for Omics Sciences, IRCCS-Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
5
|
Kim C, Tsai TH, Lopez R, McCullough A, Kasumov T. Obeticholic acid's effect on HDL function in MASH varies by diabetic status. Lipids 2024; 59:221-231. [PMID: 39014264 PMCID: PMC11560728 DOI: 10.1002/lipd.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Inflammation and oxidative stress are the key factors in the pathogenesis of both metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, improves hepatic inflammation and fibrosis in patients with MASH. However, it also reduces HDL cholesterol, suggesting that OCA may increase cardiovascular disease (CVD) risk in patients with MASH. We assessed HDL cholesterol efflux function, antioxidant (paraoxonase and ceruloplasmin activity), pro-inflammatory index, and particle sizes in a small group of patients with and without diabetes (n = 10/group) at baseline and after 18 months of OCA treatment. Patients on lipid-lowering medications (statins, fibrates) were excluded. At baseline, ferritin levels were higher in patients with MASH without diabetes (336.5 [157.0, 451.0] vs. 83 [36.0, 151.0] ng/mL, p < 0.005). Markers of HDL functions were similar in both groups. OCA therapy significantly improved liver histology and liver enzymes but increased alkaline phosphatase levels in nondiabetic patients with MASH (p < 0.05). However, it did not have any significant effect on cholesterol efflux and the antioxidant paraoxonase functions. In nondiabetics, ceruloplasmin (CP) antioxidant activity decreased (p < 0.005) and the pro-inflammatory index of HDL increased (p < 0.005) due to OCA therapy. In contrast, in diabetics, OCA increased levels of pre-β-HDL-the HDL particles enhanced protective capacity (p = 0.005) with no alteration in HDL functionality. In all patients, serum glucose levels were negatively correlated with OCA-induced change in pro-inflammatory function in HDL (p < 0.001), which was primarily due to diabetes (p = 0.05). These preliminary results suggest a distinct effect of OCA therapy on diabetic and nondiabetic patients with MASH and warrant a future large-scale study.
Collapse
Affiliation(s)
- Chunki Kim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St.Rt.44, PO Box 95, Rootstown, OH 44272
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, 1300 Lefton Esplanade, Kent, OH 44242
| | - Rocio Lopez
- Department of Quantitative Health Sciences, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Arthur McCullough
- Department of Hepatology and Gastroenterology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St.Rt.44, PO Box 95, Rootstown, OH 44272
- Department of Hepatology and Gastroenterology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| |
Collapse
|
6
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Pendolino AL, Benshetrit G, Navaratnam AV, To C, Bandino F, Scarpa B, Kwame I, Ludwig DR, McAdoo S, Kuchai R, Gane S, Saleh H, Pusey CD, Randhawa PS, Andrews PJ. The role of ANCA in the management of cocaine-induced midline destructive lesions or ENT pseudo-granulomatosis with polyangiitis: a London multicentre case series. Laryngoscope 2024; 134:2609-2616. [PMID: 38084793 DOI: 10.1002/lary.31219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 05/09/2024]
Abstract
OBJECTIVE In this multicentric study involving three London hospitals, we compared ANCA-positive and ANCA-negative cocaine-induced midline destructive lesions (CIMDL) patients to assess how presence of antineutrophil cytoplasmic antibodies (ANCA) may correlate with disease severity. Our secondary aims are to better classify etiology centered around ANCA positivity and, consequently, better disease management. METHODS A retrospective review was performed to identify patients with CIMDL seen between January 2019 and December 2022. Population data including age, sex, presentation, endoscopic findings, duration of cocaine use and active use of cocaine, type of treatment, laboratory (including ANCA serology), radiological, and histological findings were collected. RESULTS Forty CIMDL patients (25 male, median age of 42 years) were identified. The majority of them (72.5%) presented with either a septal perforation, a saddle nose deformity (22.5%), and/or a palatal fistula (20.0%). ANCA was positive in 71.1% of cases (66.7% p-ANCA). No statistically significant differences in the general characteristics, type of treatment, laboratory results, radiological or histological findings were observed when comparing ANCA-positive and ANCA-negative CIMDL patients or when comparing p-ANCA and c-ANCA patients. Similarly, no statistically significant difference was obtained when comparing the pattern of distribution of lesions between the two groups. CONCLUSIONS A large percentage of CIMDL patients showed positive ANCA test (71.1%) and in the majority of the cases a p-ANCA pattern specifically targeting PR3 (p-ANCA, PR3 + MPO-). However, ANCA positivity or presence of a specific ANCA pattern was not associated with more severe presentation or more aggressive disease. Given its similarities to granulomatosis with polyangiitis (GPA), we recommend the use of the term "cocaine-induced ENT pseudo-GPA" instead of CIMDL. LEVEL OF EVIDENCE IV Laryngoscope, 134:2609-2616, 2024.
Collapse
Affiliation(s)
- Alfonso Luca Pendolino
- Department of ENT, Royal National ENT & Eastman Dental Hospitals, London, UK
- Ear Institute, UCL, London, UK
| | - Guy Benshetrit
- Department of ENT, Imperial College Hospitals, London, UK
| | | | - Caroline To
- Department of Allergy, Royal Brompton Hospital, London, UK
- Department of Immunology and Allergy, Princess Alexandra Hospital, Brisbane, Australia
| | - Fabrizio Bandino
- Department of ENT, Royal National ENT & Eastman Dental Hospitals, London, UK
| | - Bruno Scarpa
- Department of Statistical Sciences and Department of Mathematics Tullio Levi-Civita, University of Padova, Padova, Italy
| | - Ivor Kwame
- Department of ENT, Royal National ENT & Eastman Dental Hospitals, London, UK
| | - Dalia R Ludwig
- Rheumatology Department, University College London Hospitals, London, UK
| | - Stephen McAdoo
- Department of ENT, Imperial College Hospitals, London, UK
| | - Romana Kuchai
- Department of ENT, Imperial College Hospitals, London, UK
| | - Simon Gane
- Department of ENT, Royal National ENT & Eastman Dental Hospitals, London, UK
| | - Hesham Saleh
- Department of ENT, Imperial College Hospitals, London, UK
| | - Charles D Pusey
- Department of ENT, Imperial College Hospitals, London, UK
- Renal Department, Imperial College Hospitals, London, UK
| | - Premjit S Randhawa
- Department of ENT, Royal National ENT & Eastman Dental Hospitals, London, UK
| | - Peter J Andrews
- Department of ENT, Royal National ENT & Eastman Dental Hospitals, London, UK
- Ear Institute, UCL, London, UK
| |
Collapse
|
8
|
Mannella V, Chaabane L, Canu T, Zanardi A, Raia S, Conti A, Ferrini B, Caricasole A, Musco G, Alessio M. Lipid dysmetabolism in ceruloplasmin-deficient mice revealed both in vivo and ex vivo by MRI, MRS and NMR analyses. FEBS Open Bio 2024; 14:258-275. [PMID: 37986139 PMCID: PMC10839333 DOI: 10.1002/2211-5463.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Ceruloplasmin (Cp) is a ferroxidase that plays a role in cellular iron homeostasis and is mainly expressed in the liver and secreted into the blood. Cp is also produced by adipose tissue, which releases it as an adipokine. Although a dysfunctional interaction of iron with the metabolism of lipids has been associated with several metabolic diseases, the role of Cp in adipose tissue metabolism and in the interplay between hepatocytes and adipocytes has been poorly investigated. We previously found that Cp-deficient (CpKO) mice become overweight and demonstrate adipose tissue accumulation together with liver steatosis during aging, suggestive of lipid dysmetabolism. In the present study, we investigated the lipid alterations which occur during aging in adipose tissue and liver of CpKO and wild-type mice both in vivo and ex vivo. During aging of CpKO mice, we observed adipose tissue accumulation and liver lipid deposition, both of which are associated with macrophage infiltration. Liver lipid deposition was characterized by accumulation of triglycerides, fatty acids and ω-3 fatty acids, as well as by a switch from unsaturated to saturated fatty acids, which is characteristic of lipid storage. Liver steatosis was preceded by iron deposition and macrophage infiltration, and this was observed to be already occurring in younger CpKO mice. The accumulation of ω-3 fatty acids, which can only be acquired through diet, was associated with body weight increase in CpKO mice despite food intake being equal to that of wild-type mice, thus underlining the alterations in lipid metabolism/catabolism in Cp-deficient animals.
Collapse
Affiliation(s)
- Valeria Mannella
- COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Linda Chaabane
- Preclinical Imaging, Experimental Imaging CentreIRCCS‐San Raffaele HospitalMilanoItaly
- Present address:
LC, Euro‐BioImaging ERIC, Med‐Hub section, Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
- Present address:
SR, Deloitte & Touche SpAMilanoItaly
| | - Tamara Canu
- Preclinical Imaging, Experimental Imaging CentreIRCCS‐San Raffaele HospitalMilanoItaly
| | - Alan Zanardi
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Sara Raia
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
- Present address:
LC, Euro‐BioImaging ERIC, Med‐Hub section, Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
- Present address:
SR, Deloitte & Touche SpAMilanoItaly
| | - Antonio Conti
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Barbara Ferrini
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Andrea Caricasole
- Department of Research & Innovation, Kedrion S.p.A.Loc BolognanaGallicanoItaly
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance, Division of Genetics and Cell BiologyIRCCS‐San Raffaele HospitalMilanoItaly
| | - Massimo Alessio
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| |
Collapse
|
9
|
Khramova YV, Katrukha VA, Chebanenko VV, Kostyuk AI, Gorbunov NP, Panasenko OM, Sokolov AV, Bilan DS. Reactive Halogen Species: Role in Living Systems and Current Research Approaches. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S90-S111. [PMID: 38621746 DOI: 10.1134/s0006297924140062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 04/17/2024]
Abstract
Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.
Collapse
Affiliation(s)
- Yuliya V Khramova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Veronika A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Victoria V Chebanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexey V Sokolov
- Institute of Experimental Medicine, Saint-Petersburg, 197022, Russia.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
10
|
Elizarova AY, Sokolov AV, Vasilyev VB. Ceruloplasmin Reduces the Lactoferrin/Oleic Acid Antitumor Complex-Mediated Release of Heme-Containing Proteins from Blood Cells. Int J Mol Sci 2023; 24:16711. [PMID: 38069040 PMCID: PMC10706732 DOI: 10.3390/ijms242316711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 μM) caused hemolysis, unlike LF alone or BSA/8OA (250 μM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 μM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.
Collapse
Affiliation(s)
| | - Alexey V. Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (A.Y.E.); (V.B.V.)
| | | |
Collapse
|
11
|
Arfin S, Agrawal K, Maurya S, Asthana S, Di Silvestre D, Kumar D. Lead phytochemicals and marine compounds against ceruloplasmin in cancer targeting. J Biomol Struct Dyn 2023; 42:12703-12719. [PMID: 37878121 DOI: 10.1080/07391102.2023.2272753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
In silico docking studies serve as a swift and efficient means to sift through a vast array of natural and synthetic small molecules, aiding in the identification of potential inhibitors for cancer biomarkers. One such biomarker, ceruloplasmin (CP), has been implicated in various tumor types due to its overexpression, earning it recognition as a marker of aggressive tumors. This study focused on pinpointing inhibitors for the CP -Myeloperoxidase (MPO) interaction site, a complex formation known to impede HOCl production, a crucial process for inducing apoptotic cell death in tumor cells. The initial phase of our investigation involved in silico docking studies, which screened a diverse library of phytochemicals and marine compounds. Through this process, we identified several promising drug candidates based on their binding affinities. Subsequently, these candidates underwent rigorous filtration based on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. Finally, we subjected the selected compounds to molecular dynamics (MDs) simulation to further assess their viability. Lycoperoside F, a steroidal alkaloid glycoside derived from tomatoes (Lycopersicon esculentum), stood out with notable interactions at the binding site. Another noteworthy compound was Xyloglucan (XG) oligosaccharides, predominantly found in the primary cell walls of higher plants. During the subsequent MDs simulations, these interactions were accompanied by highly stable root mean square deviation (RMSD) plots, signifying the consistency and robustness of the observed MDs behavior. XG oligosaccharides demonstrated the highest binding affinity with CP, reaffirming their potential as strong candidates. Additionally, Ardimerin digallate, known as a retroviral ribonuclease H inhibitor for HIV-1 and HIV-2, displayed favorable interactions at the MPO interaction site. Given that promising drug candidates must meet stringent criteria, including non-toxicity, effectiveness, specificity, stability and potency, these phytochemicals have the potential to progress to in vitro studies as CP inhibitors. Ultimately, this could contribute to the suppression of tumor growth, marking a significant step in cancer treatment research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saniya Arfin
- School of Health Sciences and Technology, UPES, Dehradun, India
| | - Kirti Agrawal
- School of Health Sciences and Technology, UPES, Dehradun, India
| | - Sujata Maurya
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
12
|
Cecchini Gualandi S, Di Palma T, Boni R. Analytical Validation of Two Assays for Equine Ceruloplasmin Ferroxidase Activity Assessment. Vet Sci 2023; 10:623. [PMID: 37888575 PMCID: PMC10611237 DOI: 10.3390/vetsci10100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Ceruloplasmin (Cp) assessment in biological samples exploits the oxidase activity of this enzyme against several substrates, such as p-phenylenediamine (p-P), o-dianisidine (o-D) and, most recently, ammonium iron(II) sulfate (AIS). Once developed in humans, these assays are often used in veterinary medicine without appropriately optimizing in the animal species of interest. In this study, two assays using AIS and o-D as substrates have been compared and validated for Cp oxidase activity assessment in horse's plasma. The optimization of the assays was performed mainly by varying the buffer pH as well as the buffer and the substrate molar concentration. Under the best analytical conditions obtained, the horse blood serum samples were treated with sodium azide, a potent Cp inhibitor. In the o-D assay, 500 µM sodium azide treatment completely inhibits the enzymatic activity of Cp, whereas, using the AIS assay, a residual analytical signal was still present even at the highest (2000 µM) sodium azide concentration. Even though the analytical values obtained from these methods are well correlated, the enzymatic activity values significantly differ when expressed in Units L-1. A disagreement between these assays has also been detected with the Bland-Altman plot, showing a progressive discrepancy between methods with increasing analytical values.
Collapse
Affiliation(s)
- Stefano Cecchini Gualandi
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100 Potenza, Italy; (T.D.P.); (R.B.)
| | | | | |
Collapse
|
13
|
Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, Wischnewski V, Lourenco J, Croci D, Álvarez-Prado ÁF, Marie DN, Lilja J, Marcone R, Calvo GF, Santalla Mendez R, Aubel P, Bejarano L, Wirapati P, Ballesteros I, Hidalgo A, Hottinger AF, Brouland JP, Daniel RT, Hegi ME, Joyce JA. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 2023; 186:4546-4566.e27. [PMID: 37769657 DOI: 10.1016/j.cell.2023.08.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.
Collapse
Affiliation(s)
- Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mara Kornete
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Ángel F Álvarez-Prado
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Damien N Marie
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Gabriel F Calvo
- Department of Mathematics & MOLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Rui Santalla Mendez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pauline Aubel
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pratyaksha Wirapati
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Iván Ballesteros
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne 1011, Switzerland
| | - Roy T Daniel
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Monika E Hegi
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland.
| |
Collapse
|
14
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Chen M, Li C, Peng S, Liu M, Li Y, Sun M, Sun X. Wilson disease complicated by Crohn disease: A case report and literature review. Medicine (Baltimore) 2023; 102:e33839. [PMID: 37327274 PMCID: PMC10270515 DOI: 10.1097/md.0000000000033839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023] Open
Abstract
RATIONAL Wilson disease (WD), also known as hepatolenticular degeneration, is an autosomal-recessive hereditary disease with abnormal copper metabolism. Crohn disease (CD) is a chronic inflammatory gastrointestinal disease, which belongs to inflammatory bowel disease, all segments of the gastrointestinal tract can be affected, especially the terminal ileum and colon, accompanied by extraintestinal manifestations and related immune disorders. WD complicated by ulcerative colitis has been reported before, but WD complicated by CD has not been reported so far. PATIENT CONCERNS AND DIAGNOSIS We presented the first report of a young patient with WD complicated by CD, who was admitted to the hospital because of repeated low fever, elevated C-reactive protein for 3 years, and anal fistula for 6 months. INTERVENTIONS AND OUTCOMES In this complicated disease, Ustekinumab is safe and effective. LESSONS We conclude that copper metabolism and oxidative stress play important roles in WD and CD.
Collapse
Affiliation(s)
- Minmin Chen
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyuan Liu
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
17
|
Ceruloplasmin Interferes with the Assessment of Blood Lipid Hydroperoxide Content in Small Ruminants. Antioxidants (Basel) 2023; 12:antiox12030701. [PMID: 36978949 PMCID: PMC10045310 DOI: 10.3390/antiox12030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Simple and inexpensive analytical methods for assessing redox balance in biological matrixes are widely used in animal and human diagnostics. Two of them, reactive oxygen metabolites (ROMs) and total oxidant status (TOS), evaluate the lipid hydroperoxide (LOOH) content of the sample and are based on iron-mediated mechanisms. However, these tests provide uncorrelated results. In this study, we compared these two tests in the blood serum of goat kids and lambs, together with an evaluation of ceruloplasmin (CP) oxidase activity. No significant correlation was found between ROMs and TOS, or between TOS and CP oxidase activity, in either species. Conversely, ROMs and CP oxidase activity were highly correlated in both kid and lamb samples (p < 0.001). A significant progressive reduction in the analytical signal in the ROMs assay was observed when sodium azide, an effective CP inhibitor, was added to the samples before the assay (p < 0.001). This decrease was related to sodium azide concentration (p < 0.01) and was not found when sodium azide was added at the same concentrations in the TOS assay. These findings suggest that ROMs, unlike TOS, may be affected by CP, which interferes with LOOH detection in blood samples.
Collapse
|
18
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
19
|
Parrilla Hernández S, Franck T, Munaut C, Feyereisen É, Piret J, Farnir F, Reigner F, Barrière P, Deleuze S. Characterization of Myeloperoxidase in the Healthy Equine Endometrium. Animals (Basel) 2023; 13:ani13030375. [PMID: 36766264 PMCID: PMC9913682 DOI: 10.3390/ani13030375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Myeloperoxidase (MPO), as a marker of neutrophil activation, has been associated with equine endometritis. However, in absence of inflammation, MPO is constantly detected in the uterine lumen of estrous mares. The aim of this study was to characterize MPO in the uterus of mares under physiological conditions as a first step to better understand the role of this enzyme in equine reproduction. Total and active MPO concentrations were determined, by ELISA and SIEFED assay, respectively, in low-volume lavages from mares in estrus (n = 26), diestrus (n = 18) and anestrus (n = 8) in absence of endometritis. Immunohistochemical analysis was performed on 21 endometrial biopsies randomly selected: estrus (n = 11), diestrus (n = 6) and anestrus (n = 4). MPO, although mostly enzymatically inactive, was present in highly variable concentrations in uterine lavages in all studied phases, with elevated concentrations in estrus and anestrus, while in diestrus, concentrations were much lower. Intracytoplasmic immunoexpression of MPO was detected in the endometrial epithelial cells, neutrophils and glandular secretions. Maximal expression was observed during estrus in mid and basal glands with a predominant intracytoplasmic apical reinforcement. In diestrus, immunopositive glands were sporadic. In anestrus, only the luminal epithelium showed residual MPO immunostaining. These results confirm a constant presence of MPO in the uterine lumen of mares in absence of inflammation, probably as part of the uterine mucosal immune system, and suggest that endometrial cells are a source of uterine MPO under physiological cyclic conditions.
Collapse
Affiliation(s)
- Sonia Parrilla Hernández
- Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Thierry Franck
- Center for Oxygen Research and development (CORD), University of Liège, 4000 Liège, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, 4000 Liège, Belgium
| | - Émilie Feyereisen
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, 4000 Liège, Belgium
| | - Joëlle Piret
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Frédéric Farnir
- Biostatistics and Bioinformatics Applied to Veterinary Sciences, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | | | - Stéfan Deleuze
- Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Equine and Companion Animal Reproduction, Veterinary Medicine Faculty, University of Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
20
|
Raia S, Conti A, Zanardi A, Ferrini B, Scotti GM, Gilberti E, De Palma G, David S, Alessio M. Ceruloplasmin-Deficient Mice Show Dysregulation of Lipid Metabolism in Liver and Adipose Tissue Reduced by a Protein Replacement. Int J Mol Sci 2023; 24:ijms24021150. [PMID: 36674661 PMCID: PMC9863737 DOI: 10.3390/ijms24021150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Ceruloplasmin is a ferroxidase that plays a role in iron homeostasis; its deficiency fosters inter alia iron accumulation in the liver, which expresses the soluble form of the protein secreted into the bloodstream. Ceruloplasmin is also secreted by the adipose tissue, but its role in adipocytes has been poorly investigated. We hypothesized that ceruloplasmin might have a role in iron/lipid interplay. We investigated iron/lipid dysmetabolism in the liver and adipose tissue of the ceruloplasmin-deficient mouse (CpKO) model of aceruloplasminemia and evaluated the effectiveness of ceruloplasmin replacement. We found that CpKO mice were overweight, showing adipose tissue accumulation, liver iron deposition and steatosis. In the adipose tissue of CpKO mice, iron homeostasis was not altered. Conversely, the levels of adiponectin and leptin adipokines behaved opposite to the wild-type. Increased macrophage infiltration was observed in adipose tissue and liver of CpKO mice, indicating tissue inflammation. The treatment of CpKO mice with ceruloplasmin limited liver iron accumulation and steatosis without normalizing the expression of iron homeostasis-related proteins. In the CpKO mice, the protein replacement limited macrophage infiltration in both adipose and hepatic tissues reduced the level of serum triglycerides, and partially recovered adipokines levels in the adipose tissue. These results underline the link between iron and lipid dysmetabolism in ceruloplasmin-deficient mice, suggesting that ceruloplasmin in adipose tissue has an anti-inflammatory role rather than a role in iron homeostasis. Furthermore, these data also indicate that ceruloplasmin replacement therapy may be effective at a systemic level.
Collapse
Affiliation(s)
- Sara Raia
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Barbara Ferrini
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Giulia Maria Scotti
- COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Giuseppe De Palma
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of The McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
- Correspondence:
| |
Collapse
|
21
|
Areecheewakul S, Adamcakova-Dodd A, Haque E, Jing X, Meyerholz DK, O'Shaughnessy PT, Thorne PS, Salem AK. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model. Part Fibre Toxicol 2022; 19:40. [PMID: 35698146 PMCID: PMC9195454 DOI: 10.1186/s12989-022-00480-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background It has been shown that copper oxide nanoparticles (CuO NPs) induce pulmonary toxicity after acute or sub-acute inhalation exposures. However, little is known about the biodistribution and elimination kinetics of inhaled CuO NPs from the respiratory tract. The purposes of this study were to observe the kinetics of pulmonary inflammation during and after CuO NP sub-acute inhalation exposure and to investigate copper (Cu) biodistribution and clearance rate from the exposure site and homeostasis of selected trace elements in secondary organs of BALB/c mice. Results Sub-acute inhalation exposure to CuO NPs led to pulmonary inflammation represented by increases in lactate dehydrogenase, total cell counts, neutrophils, macrophages, inflammatory cytokines, iron levels in bronchoalveolar lavage (BAL) fluid, and lung weight changes. Dosimetry analysis in lung tissues and BAL fluid showed Cu concentration increased steadily during exposure and gradually declined after exposure. Cu elimination from the lung showed first-order kinetics with a half-life of 6.5 days. Total Cu levels were significantly increased in whole blood and heart indicating that inhaled Cu could be translocated into the bloodstream and heart tissue, and potentially have adverse effects on the kidneys and spleen as there were significant changes in the weights of these organs; increase in the kidneys and decrease in the spleen. Furthermore, concentrations of selenium in kidneys and iron in spleen were decreased, pointing to disruption of trace element homeostasis. Conclusions Sub-acute inhalation exposure of CuO NPs induced pulmonary inflammation, which was correlated to Cu concentrations in the lungs and started to resolve once exposure ended. Dosimetry analysis showed that Cu in the lungs was translocated into the bloodstream and heart tissue. Secondary organs affected by CuO NPs exposure were kidneys and spleen as they showed the disruption of trace element homeostasis and organ weight changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00480-z.
Collapse
Affiliation(s)
- Sudartip Areecheewakul
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, College of Pharmacy, Iowa City, IA, 52242, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA.
| | - Ezazul Haque
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52246, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Patrick T O'Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52246, USA.
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, College of Pharmacy, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
Arnhold J, Malle E. Halogenation Activity of Mammalian Heme Peroxidases. Antioxidants (Basel) 2022; 11:antiox11050890. [PMID: 35624754 PMCID: PMC9138014 DOI: 10.3390/antiox11050890] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Mammalian heme peroxidases are fascinating due to their unique peculiarity of oxidizing (pseudo)halides under physiologically relevant conditions. These proteins are able either to incorporate oxidized halides into substrates adjacent to the active site or to generate different oxidized (pseudo)halogenated species, which can take part in multiple (pseudo)halogenation and oxidation reactions with cell and tissue constituents. The present article reviews basic biochemical and redox mechanisms of (pseudo)halogenation activity as well as the physiological role of heme peroxidases. Thyroid peroxidase and peroxidasin are key enzymes for thyroid hormone synthesis and the formation of functional cross-links in collagen IV during basement membrane formation. Special attention is directed to the properties, enzymatic mechanisms, and resulting (pseudo)halogenated products of the immunologically relevant proteins such as myeloperoxidase, eosinophil peroxidase, and lactoperoxidase. The potential role of the (pseudo)halogenated products (hypochlorous acid, hypobromous acid, hypothiocyanite, and cyanate) of these three heme peroxidases is further discussed.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
- Correspondence: (J.A.); or (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Correspondence: (J.A.); or (E.M.)
| |
Collapse
|
23
|
Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes Metab Syndr Obes 2022; 15:695-711. [PMID: 35264864 PMCID: PMC8901420 DOI: 10.2147/dmso.s346648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Ceruloplasmin (CP) is a multicopper oxidase and antioxidant that is mainly produced in the liver. CP not only plays a crucial role in the metabolic balance of copper and iron through its oxidase function but also exhibits antioxidant activity. In addition, CP is an acute-phase protein. In addition to being associated with aceruloplasminemia and neurodegenerative diseases such as Wilson's disease, Alzheimer's disease, and Parkinson's disease, CP also plays an important role in metabolic diseases, which are caused by metabolic disorders and vigorous metabolism, mainly including diabetes, obesity, hyperlipidemia, etc. Based on the physiological functions of CP, we provide an overview of the association of type 2 diabetes, obesity, hyperlipidemia, coronary heart disease, CP oxidative stress, inflammation, and metabolism of copper and iron. Studies have shown that metabolic diseases are closely related to systemic inflammation, oxidative stress, and disorders of copper and iron metabolism. Therefore, we conclude that CP, which can reduce the formation of free radicals in tissues, can be induced during inflammation and infection, and can correct the metabolic disorder of copper and iron, has protective and diagnostic effects on metabolic diseases.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shigao Zhou
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
24
|
Edwards TS, Dickerhof N, Magon NJ, Paton LN, Sly PD, Kettle AJ. Formation of Calprotectin-Derived Peptides in the Airways of Children with Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:979-990. [PMID: 35046105 DOI: 10.4049/jimmunol.2001017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.
Collapse
Affiliation(s)
- Teagan S Edwards
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand;
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Nicholas J Magon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Louise N Paton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand; and
| |
Collapse
|
25
|
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab 2021; 32:916-928. [PMID: 34483037 PMCID: PMC8516721 DOI: 10.1016/j.tem.2021.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Nutrient transition metals are required cofactors for many proteins to perform functions necessary for life. As such, the concentration of nutrient metals is carefully maintained to retain critical biological processes while limiting toxicity. During infection, invading bacterial pathogens must acquire essential metals, such as zinc, manganese, iron, and copper, from the host to colonize and cause disease. To combat this, the host exploits the essentiality and toxicity of nutrient metals by producing factors that limit metal availability, thereby starving pathogens or accumulating metals in excess to intoxicate the pathogen in a process termed 'nutritional immunity'. As a result of inflammation, a heterogeneous environment containing both metal-replete and -deplete niches is created, in which nutrient metal availability may have an underappreciated role in regulating immune cell function during infection. How the host manipulates nutrient metal availability during infection, and the downstream effects that nutrient metals and metal-sequestering proteins have on immune cell function, are discussed in this review.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
26
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
27
|
Ceruloplasmin as Redox Marker Related to Heart Failure Severity. Int J Mol Sci 2021; 22:ijms221810074. [PMID: 34576235 PMCID: PMC8467566 DOI: 10.3390/ijms221810074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
This study examined ceruloplasmin levels in patients with HFrEF, depending on cardiopulmonary exercise testing (CPET) parameters; a correlation was found between ceruloplasmin (CER) and iron and hepatic status, inflammatory and redox biomarkers. A group of 552 patients was divided according to Weber’s classification: there were 72 (13%) patients in class A (peak VO2 > 20 mL/kg/min), 116 (21%) patients in class B (peak VO2 16–20 mL/kg/min), 276 (50%) patients in class C (peak VO2 10–15.9 mL/kg/min) and 88 (16%) patients in class D (peak VO2 < 10 mL/kg/min). A higher concentration of CER was found in patients with peak VO2 < 16 mL/kg/min and VE/CO2 slope > 45 compared to patients with VE/CO2 slope < 45 (escectively CER 30.6 mg/dL and 27.5 mg/dL). A significantly positive correlation was found between ceruloplasmin and NYHA class, RV diameter, NT-proBNP, uric acid, total protein, fibrinogen and hepatic enzymes. CER was positively correlated with both total oxidant status (TOS), total antioxidant capacity (TAC) and malondialdehyde. A model constructed to predict CER concentration indicated that TOS, malondialdehyde and alkaline phosphatase were independent predictive variables (R2 0.14, p < 0.001). CER as a continuous variable was an independent predictor of pVO2 ≤ 12 mL/kg/min after adjustment for sex, age and BMI. These results provide the basis of a new classification to encourage the determination of CER as a useful biomarker in HFrEF.
Collapse
|
28
|
Trentini A, Rosta V, Spadaro S, Bellini T, Rizzo P, Vieceli Dalla Sega F, Passaro A, Zuliani G, Gentili V, Campo G, Cervellati C. Development, optimization and validation of an absolute specific assay for active myeloperoxidase (MPO) and its application in a clinical context: role of MPO specific activity in coronary artery disease. Clin Chem Lab Med 2021; 58:1749-1758. [PMID: 32031967 DOI: 10.1515/cclm-2019-0817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Background Myeloperoxidase (MPO) is an enzyme with a recognized prognostic role in coronary artery disease (CAD), which is also emerging as a promising biomarker for cardiac risk stratification. However, the lack of a consensus method for its quantification has hindered its implementation in clinical practice. The aim of our work was to optimize an absolute sensitive assay for active MPO without external standards, to validate the method in the clinical context of CAD patients, and to estimate the enzyme specific activity. Methods In order to determine the MPO concentration using fluorescence readings, this ELISA assay exploits the activity of the enzyme recognized by specific antibodies. The assay was validated in a small cohort of patients that included: healthy subjects (n=60); patients with acute myocardial infarction (AMI, n=25); patients with stable CAD (SCAD, n=25) and a concomitant chronic obstructive pulmonary disease (COPD). Then, total MPO concentration and specific activity (activity/total MPO) were determined. Results The assay showed an intra- and inter-assay coefficient of variation of 5.8% and 10.4%, respectively, with a limit of detection (LoD) of 0.074 μU. Both AMI and SCAD patients had higher active and total MPO than controls (p<0.0001 and p<0.01, respectively). The specific activity of MPO was higher in SCAD patients compared to both controls and AMI (p<0.0001). Conclusions The study presents a robust and sensitive method for assaying MPO activity in biological fluids with low variability. Moreover, the determination of the specific activity could provide novel insight into the role of MPO in cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Valentina Rosta
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care University of Ferrara, Ferrara, Italy
| | - Tiziana Bellini
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Angelina Passaro
- Department of Medical Sciences, Section of Internal and Cardio Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy.,Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv 2021; 5:1259-1272. [PMID: 33651101 DOI: 10.1182/bloodadvances.2020002949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.
Collapse
|
30
|
Cecchini S, Fazio F. Assessment of total (anti)oxidant status in goat kids. Arch Anim Breed 2021; 64:139-146. [PMID: 34084912 PMCID: PMC8131965 DOI: 10.5194/aab-64-139-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/19/2021] [Indexed: 11/11/2022] Open
Abstract
The redox potential of goat serum was assessed by different spectrophotometric assays. Among them, three methods are commonly applied for the evaluation of the oxidative (reactive oxygen metabolites, ROMs, and total oxidant status, TOS) and nitrosative (NO ⚫ metabolites, NO x ) stress, and four methods for the evaluation of the antioxidant status: the total antioxidant capacity (TAC) based on the ferric reducing ability of plasma (FRAP), the total antioxidant activity (TAA) based on the reduction of the coloured ABTS ⚫ + radical cation, the free radical scavenging activity (FRSA) based on the reduction of the purple DPPH ⚫ , and the total thiol levels (TTLs) based on their interaction with DTNB to form a highly coloured anion. Besides, myeloperoxidase (MPO) and ceruloplasmin oxidase (CP) activities were also assessed. Except for TAA, analytical data showed a great inter-individual variation for both oxidant and antioxidant assays. ROMs were strongly correlated with CP, while TOS with MPO and TAC. Furthermore, a tendency between TOS and FRSA was shown. NO x was correlated with TAC and TAA, and a tendency with TOS was shown. No correlations appeared among the antioxidant assays, even if a tendency between TAC and TAA was evidenced, but TAC was correlated with MPO activity. The observed correlation between ROMs and CP is discussed as a possible analytical interference. The absence of correlation among the antioxidant biomarkers suggests the simultaneous use of a panel of tests to verify any changes in the redox balance, mainly in livestock in which reference values for each biomarker are lacking.
Collapse
Affiliation(s)
- Stefano Cecchini
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168 Messina, Italy
| |
Collapse
|
31
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
32
|
Ramponi G, Folci M, De Santis M, Damoiseaux JGMC, Selmi C, Brunetta E. The biology, pathogenetic role, clinical implications, and open issues of serum anti-neutrophil cytoplasmic antibodies. Autoimmun Rev 2021; 20:102759. [PMID: 33476813 DOI: 10.1016/j.autrev.2021.102759] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
Anti-neutrophil cytoplasmic antibodies (ANCA) are a group of autoantibodies, predominantly IgG, involved in the pathogenesis of several autoimmune disorders, detected either through indirect immunofluorescence or enzyme-linked immunosorbent assay. By means of indirect immunofluorescence, the main patterns are C-ANCA (cytoplasmic) and P-ANCA (perinuclear), while proteinase 3 (PR3) and myeloperoxidase (MPO) represent the main autoantigens in granulomatosis with polyangiitis and microscopic polyangiitis, both belonging to the family of ANCA-associated vasculitis (AAV). While several experiments established the pathogenicity of MPO-ANCA, evidence remains elusive for PR3-ANCA and an additional target antigen, i.e. LAMP2, has been postulated with specific clinical relevance. The presence of a subset of AAV without ANCA may be explained by the presence of further target antigens or the presence of molecules in blood which make ANCA undetectable. A rise in ANCA titers is not necessarily predictive of a flare of disease in AAV if not accompanied by clinical manifestations. ANCA may develop through variable mechanisms, such as autoantigen complementarity, apoptosis impairment, neutrophil extracellular traps dysfunction and molecular mimicry. We will provide herein a comprehensive review of the available evidence on the biological mechanisms, pathogenetic role, and clinical implications of ANCA testing and disease management. Further, we will address the remaining open challenges in the field, including the role of ANCA in inflammatory bowel disease and in cocaine-induced vasculitis.
Collapse
Affiliation(s)
- Giacomo Ramponi
- Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, Milan, Italy
| | - Marco Folci
- Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, Milan, Italy
| | - Maria De Santis
- Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, Milan, Italy
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Carlo Selmi
- Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | - Enrico Brunetta
- Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, Milan, Italy
| |
Collapse
|
33
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
34
|
Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 2021; 296:100144. [PMID: 33273015 PMCID: PMC7857493 DOI: 10.1074/jbc.ra120.016342] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Ian Loke
- Cordlife Group Limited, Singapore, Singapore
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Fabian Soltermann
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
35
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
36
|
Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. Int J Mol Sci 2020; 21:E8057. [PMID: 33137905 PMCID: PMC7663354 DOI: 10.3390/ijms21218057] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany
| |
Collapse
|
37
|
Arenas de Larriva AP, Limia-Pérez L, Alcalá-Díaz JF, Alonso A, López-Miranda J, Delgado-Lista J. Ceruloplasmin and Coronary Heart Disease-A Systematic Review. Nutrients 2020; 12:nu12103219. [PMID: 33096845 PMCID: PMC7589051 DOI: 10.3390/nu12103219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Several studies indicate that oxidative stress might play a central role in the initiation and maintenance of cardiovascular diseases. It remains unclear whether ceruloplasmin acts as a passive marker of inflammation or as a causal mediator. To better understand the impact of ceruloplasmin blood levels on the risk of cardiovascular disease, and paying special attention to coronary heart disease, we conducted a search on the two most commonly used electronic databases (Medline via PubMed and EMBASE) to analyze current assessment using observational studies in the general adult population. Each study was quality rated using criteria developed by the US Preventive Services Task Force. Most of 18 eligible studies reviewed support a direct relationship between ceruloplasmin elevated levels and incidence of coronary heart disease. Our results highlight the importance of promoting clinical trials that determine the functions of ceruloplasmin as a mediator in the development of coronary heart disease and evaluate whether the treatment of elevated ceruloplasmin levels has a role in the prognosis or prevention of this condition.
Collapse
Affiliation(s)
- Antonio P. Arenas de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Limia-Pérez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Juan F. Alcalá-Díaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
38
|
Chaikijurajai T, Tang WHW. Myeloperoxidase: a potential therapeutic target for coronary artery disease. Expert Opin Ther Targets 2020; 24:695-705. [PMID: 32336171 PMCID: PMC7387188 DOI: 10.1080/14728222.2020.1762177] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/26/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronary artery disease (CAD) poses significant morbidity and mortality globally. Despite significant advances in treatment interventions, residual cardiovascular risks remain unchecked. Recent clinical trials have shed light on the potential therapeutic benefits of targeting anti-inflammatory pathways. Myeloperoxidase (MPO) plays an important role in atherosclerotic plaque formation and destabilization of the fibrous cap; both increase the risk of atherosclerotic cardiovascular disease and especially CAD. AREAS COVERED This article examines the role of MPO in the pathogenesis of atherosclerotic CAD and the mechanistic data from several key therapeutic drug targets. There have been numerous interesting studies on prototype compounds that directly or indirectly attenuate the enzymatic activities of MPO, and subsequently exhibit atheroprotective effects; these include aminobenzoic acid hydrazide, ferulic acid derivative (INV-315), thiouracil derivatives (PF-1355 and PF-06282999), 2-thioxanthines derivative (AZM198), triazolopyrimidines, acetaminophen, N-acetyl lysyltyrosylcysteine (KYC), flavonoids, and alternative substrates such as thiocyanate and nitroxide radical. EXPERT OPINION Future investigations must determine if the cardiovascular benefits of direct systemic inhibition of MPO outweigh the risk of immune dysfunction, which may be less likely to arise with alternative substrates or MPO inhibitors that selectively attenuate atherogenic effects of MPO.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - W. H. Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
39
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
40
|
Stepanova N, Korol L, Burdeyna O. Oxidative Stress in Peritoneal Dialysis Patients: Association with the Dialysis Adequacy and Technique Survival. Indian J Nephrol 2019; 29:309-316. [PMID: 31571736 PMCID: PMC6755929 DOI: 10.4103/ijn.ijn_242_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Increased oxidative stress is suggested as one of the possible mechanisms of structural and functional damage to the peritoneal membrane in peritoneal dialysis patients. But there are few available data on the association of oxidative stress with peritoneal dialysis adequacy and technique survival. The present study was undertaken to investigate the association of oxidative stress biomarkers with the peritoneal dialysis adequacy and technique survival. METHODS This prospective single-center observational study was conducted between January 2010 and May 2015. Adequacy of dialysis, malondialdehyde levels in the serum and erythrocytes (as an indicator of lipid peroxidation), the concentration of ceruloplasmin, transferrin, and sulfhydryl groups in the blood, and total peroxidase activity in erythrocyte (as indicators of antioxidant system) were determined in 44 stable ambulatory non-diabetic peritoneal dialysis patients. RESULTS The follow-up period was 3 years. We identified a negative correlation between the serum level of malondialdehyde in the patients and total weekly Kt/V. Peritoneal weekly CrCl was positively correlated with the levels of transferrin, total peroxidase activity, and SH- groups. Daily peritoneal ultrafiltration had a positive correlation with the total peroxidase activity and the serum transferrin levels. The results of the Kaplan-Meier analysis and the log-rank test also demonstrated a significant difference in the cumulative technique survival rate between the patients with ceruloplasmin level ≤0.19 g/l and ≥0.2 g/l. CONCLUSIONS The results mentioned above could be considered as one of the ways to explain better technique survival in PD patients.
Collapse
Affiliation(s)
- Natalia Stepanova
- Department of Nephrology and Dialysis, Institute of Nephrology of the National Academy of Medical Sciences, Kyiv, Ukraine
| | - Lesya Korol
- Biochemistry Laboratory, Institute of Nephrology of the National Academy of Medical Sciences, Kyiv, Ukraine
| | - Olena Burdeyna
- Department of Nephrology and Dialysis, Institute of Nephrology of the National Academy of Medical Sciences, Kyiv, Ukraine
| |
Collapse
|
41
|
Vlasova II, Sokolov AV, Kostevich VA, Mikhalchik EV, Vasilyev VB. Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines. BIOCHEMISTRY (MOSCOW) 2019; 84:652-662. [DOI: 10.1134/s0006297919060087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Liu Z, Chen L, Yu P, Zhang Y, Fang B, Wu C, Luo W, Chen X, Li C, Liang G. Discovery of 3-(Indol-5-yl)-indazole Derivatives as Novel Myeloid Differentiation Protein 2/Toll-like Receptor 4 Antagonists for Treatment of Acute Lung Injury. J Med Chem 2019; 62:5453-5469. [DOI: 10.1021/acs.jmedchem.9b00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingfeng Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Pengtian Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bo Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xianxin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenglong Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
43
|
Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals 2019; 32:195-210. [PMID: 30895493 DOI: 10.1007/s10534-019-00189-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
Ceruloplasmin (CP) is a mammalian blood plasma ferroxidase. More than 95% of the copper found in plasma is carried by this protein, which is a member of the multicopper oxidase family. Proteins from this group are able to oxidize substrates through the transfer of four electrons to oxygen. The essential role of CP in iron metabolism in humans is particularly evident in the case of loss-of-function mutations in the CP gene resulting in a neurodegenerative syndrome known as aceruloplasminaemia. However, the functions of CP are not limited to the oxidation of ferrous iron to ferric iron, which allows loading of the ferric iron into transferrin and prevents the deleterious reactions of Fenton chemistry. In recent years, a number of novel CP functions have been reported, and many of these functions depend on the ability of CP to form stable complexes with a number of proteins.
Collapse
|
44
|
Poursadegh F, Ahadi M, Vosoughinia H, Salehi M, Beheshti Namdar A, Farzanehfar MR, Memar B, Ziaolhagh R. A STROBE compliant observational study on trace elements in patients with ulcerative colitis and their relationship with disease activity. Medicine (Baltimore) 2018; 97:e13523. [PMID: 30593128 PMCID: PMC6314770 DOI: 10.1097/md.0000000000013523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022] Open
Abstract
Nutritional deficiencies and malnutrition are considered to be related to ulcerative colitis (UC); however, the association between serum levels of micronutrients and UC is not well known. This study aimed to evaluate the serum levels of micronutrients in UC patients and investigate their association with disease activity.This cross-sectional study was conducted on UC patients visiting the Department of Gastroenterology at 3 different teaching hospitals between January 2016 and January 2017. UC activity was measured based on Truelove and Witts' severity index and guidelines for colonoscopy. A healthy gender- and age-matched group was also selected. Serum levels of zinc, copper, selenium, ceruloplasmin, albumin, and total protein were compared between the 2 groups of UC patients and healthy subjects using independent-samples t test. Also, the association between serum levels of micronutrients and UC activity was assessed by using Pearson and Spearman correlation coefficient tests. The data were analyzed by SPSS version 21, considering P ≤.05 as the statistical significance level.Overall, 112 (54 male and 58 female) individuals with the mean age of 34.6 years were studied in the 2 groups of UC patients (n = 56) and healthy subjects (n = 56). The 2 groups were homogeneous in terms of age, gender, marital status, place of residence, and educational level (P >.05). The serum levels of total protein (6.41 ± 1.1 vs 7.41 ± 0.4 g/dL; P = .0001), albumin (4.72 ± 1.1 vs 5.19 ± 0.28 g/dL; P = .0001), zinc (679 ± 62 vs 1055 ± 156 μg/L; P = .0001), and selenium (81.85 ± 6.4 vs 108.4 ± 12.98 micg/L; P = .0001) were significantly lower in the UC patients. The serum level of copper did not differ significantly between the 2 groups (P = .1).Considering the simultaneous reduction in nutritional criteria in the UC patient group, malnutrition appears to be a factor affecting micronutrient deficiency in patients with UC.
Collapse
Affiliation(s)
| | - Mitra Ahadi
- Gastroenterology and Hepatology Research Center
| | | | | | | | | | - Bahram Memar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences
| | | |
Collapse
|
45
|
Quidim AV, Bruno TC, Lacerda Leocádio PC, Dos Reis Menta PL, Alvarez-Leite JI, Santos IS, Lotufo PA, Benseñor IM, Goulart AC. Myeloperoxidase activity and acute coronary syndrome survival: long-term evaluation in the ERICO study. Biomark Med 2018; 12:1219-1229. [PMID: 30456985 DOI: 10.2217/bmm-2018-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We aimed to analyze the influence of myeloperoxidase (MPO) activity on mortality in the Acute Coronary Syndrome Registry Strategy (ERICO) study. METHODS MPO activity levels were evaluated in 342 patients. We performed survival analyses using Kaplan-Meier curves and Cox regression with respective hazard ratios, 95% CI, according to MPO tertiles distribution up to 7 years of follow-up. RESULTS Higher MPO activity levels were seen in men, smokers, diabetics and those who were taking aspirin. MPO activity levels were neither significant in relation to mortality nor to survival rates up to seven years. CONCLUSION We found no relationship between elevated levels of MPO activity post-acute coronary syndrome and mortality up to 7-years of follow-up in the ERICO study.
Collapse
Affiliation(s)
- Alessandra Vl Quidim
- Center for Clinical & Epidemiological Research, Internal Medicine Department, Hospital Universitário, Universidade de Sao Paulo, Brazil
| | - Tatiana C Bruno
- Center for Clinical & Epidemiological Research, Internal Medicine Department, Hospital Universitário, Universidade de Sao Paulo, Brazil
| | | | | | | | - Itamar S Santos
- Center for Clinical & Epidemiological Research, Internal Medicine Department, Hospital Universitário, Universidade de Sao Paulo, Brazil.,Internal Medicine Department, School of Medicine, Universidade de Sao Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical & Epidemiological Research, Internal Medicine Department, Hospital Universitário, Universidade de Sao Paulo, Brazil.,Internal Medicine Department, School of Medicine, Universidade de Sao Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical & Epidemiological Research, Internal Medicine Department, Hospital Universitário, Universidade de Sao Paulo, Brazil.,Internal Medicine Department, School of Medicine, Universidade de Sao Paulo, Brazil
| | - Alessandra C Goulart
- Center for Clinical & Epidemiological Research, Internal Medicine Department, Hospital Universitário, Universidade de Sao Paulo, Brazil
| |
Collapse
|
46
|
Das S, Sahoo PK. Ceruloplasmin, a moonlighting protein in fish. FISH & SHELLFISH IMMUNOLOGY 2018; 82:460-468. [PMID: 30144565 DOI: 10.1016/j.fsi.2018.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Ceruloplasmin is an ancient multicopper oxidase evolved to insure a safe handling of oxygen in some metabolic pathways of vertebrates. The current knowledge of its structure provides a glimpse of its plasticity, revealing a multitude of binding sites that point to an elaborate mechanism of multifunctional activity. Ceruloplasmin is highly conserved throughout the vertebrate evolution. Cupredoxin, a multi-cupper blue protein is believed to be the evolutionary precursor of ceruloplasmin with three trinuclear and three mononuclear copper binding sites. There are 20 copper-binding residues in ceruloplasmin gene out of which 16 residues are conserved in fish. This ceruloplasmin gene is being characterized in zebrafish (Danio rerio), rohu (Labeo rohita), Indian medaka (Oryzias melastigama), catfish (Ictalurus punctatus), icefish (Chionodraco rastrospinosus), goldfish (Carassius auratus) and yellow perch (Perca flaviscens). The complete coding sequence of fish ceruloplasmin gene is around 3.2 kb which codes for 1000 to 1100 amino acid residues. The size of ceruloplasmin gene sequence in fish ranges around 13 kb containing 20 exons and 19 introns. Liver is the major site of synthesis in fish. Increased expression of this gene during bacterial infection in channel catfish and rohu suggested its potential involvement in bacterial disease response in fish. It has been found to serve as an indirect marker for selection against Aeromonas hydrophila resistance in rohu carp. Ceruloplasmin expression is also evident during parasitic infection in few fish species. The role of this gene is well studied during inflammatory response to hormonal, drug and heavy metal mediated toxicity in fish. Overall, ceruloplasmin represents an example of a 'moonlighting' protein that overcomes the one gene-one structure-one function concept to follow the changes of the organism in its physiological and pathological conditions.
Collapse
Affiliation(s)
- Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi 682 018, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India.
| |
Collapse
|
47
|
Chandler JD, Margaroli C, Horati H, Kilgore MB, Veltman M, Liu HK, Taurone AJ, Peng L, Guglani L, Uppal K, Go YM, Tiddens HAWM, Scholte BJ, Tirouvanziam R, Jones DP, Janssens HM. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur Respir J 2018; 52:13993003.01118-2018. [PMID: 30190273 DOI: 10.1183/13993003.01118-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.
Collapse
Affiliation(s)
- Joshua D Chandler
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Camilla Margaroli
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Matthew B Kilgore
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Mieke Veltman
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - H Ken Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander J Taurone
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Limin Peng
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Harm A W M Tiddens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Bob J Scholte
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Hettie M Janssens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands.,These authors are joint senior authors
| |
Collapse
|
48
|
Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018; 23:E2561. [PMID: 30297621 PMCID: PMC6222727 DOI: 10.3390/molecules23102561] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Department of Biophysics, Malaya Pirogovskaya, 1a, Moscow 119435, Russia.
- Institute for Regenerative Medicine, Laboratory of Navigational Redox Lipidomics, Sechenov University, 8-2 Trubetskaya St., Moscow 119991, Russia.
| |
Collapse
|
49
|
Oxidation of cysteine by ceruloplasmin leads to formation of hydrogen peroxide, which can be utilized by myeloperoxidase. Biochem Biophys Res Commun 2018; 503:2146-2151. [DOI: 10.1016/j.bbrc.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023]
|
50
|
Maes M, Carvalho AF. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol Neurobiol 2018; 55:8885-8903. [DOI: 10.1007/s12035-018-1016-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|