1
|
Zhang E, Wang Y, Zhang H, Li X, Su Y, Cui J, Xu R, Mao X, Sang M, Lin Z, Zhou X. Resveratrol induces ferroptosis in triple-negative breast cancer through NEDD4L-mediated GPX4 ubiquitination and degradation. Free Radic Biol Med 2025; 235:231-247. [PMID: 40316059 DOI: 10.1016/j.freeradbiomed.2025.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
Triple-negative breast cancer (TNBC) has no expression on estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), resulting in an ineffective treatment using current therapeutic therapies. As a heterogeneous disease, the notable refractory, high recurrence rate and unfavorable prognosis facilitate some researches to further elaborate novel insights into the biology of TNBC and formulate the precision treatment. Ferroptosis is a unique regulated-cell-death modality characterized by the excessive accumulation of the lipid peroxides on cellular membranes in an iron-dependent manner. Resveratrol (RES), a natural antioxidant that possesses biological activities, has various potential benefits for many diseases through regulating the cell activity. RES has been reported to markedly inhibit the tumor progression, yet its role in ferroptosis pathway of TNBC and the underlying mechanism remain unclear. In this study, we found that RES suppressed cell viabilities, consisting of cell migration, cell colony formation, and induced the cell apoptosis, along with mitochondrial structure damage, intracellular iron overload, increasing reactive oxygen species (ROS) and lipid peroxidation accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion, interestingly, which was reversed by ferroptosis inhibitors. Next, the protein level of GPX4 was significantly suppressed in RES-treated TNBC cells in vitro and in vivo, facilitating the cancer cell ferroptosis. Our data confirm that RES suppresses GPX4 protein by increasing the NEDD4L-mediated ubiquitination attributed from the enhanced interactions between NEDD4L and GPX4 through the inhibition of the ERK1/2/SGK1/NEDD4L/GPX4 pathway in vitro and in vivo. In conclusion, our study identified the mechanism by which RES could exert ferroptosis in TNBC, finally providing a novel strategy for TNBC treatment.
Collapse
Affiliation(s)
- Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China.
| | - Yichao Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Hongli Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Xiaomin Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Yijing Su
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Jianan Cui
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Rui Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Xue Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Zenghua Lin
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, PR China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China.
| |
Collapse
|
2
|
Moon S, Ito Y. A simplified in vitro disease-mimicking culture system can determine the angiogenic effect of medicines on vascular diseases. Cytotechnology 2025; 77:75. [PMID: 40062227 PMCID: PMC11889311 DOI: 10.1007/s10616-025-00736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/27/2025] [Indexed: 03/21/2025] Open
Abstract
Many patients undergoing clinical regenerative treatments experience severe conditions arising from endothelial disruption. In chronic cardiac and perivascular diseases, deficiencies in vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), and heparin, which are essential for maintaining and activating endothelial cells, can lead to angiogenic dysregulation. Endothelial disruption caused by ischemic hypoxia and a deficiency in these factors is associated with many vascular diseases. However, their pathogenic processes remain unclear at the cellular level. Therefore, the present study aimed to develop a culture system that mimics the disease environment to test the effectiveness of drug candidates in restoring damaged blood vessels in chronic vascular diseases, including coronary artery disease and peripheral vascular disease. This study focused on VEGF, IGF, and heparin and developed a pseudo-disease culture system by pre-treating human umbilical vein endothelial cells (HUVECs) with a starvation medium (EGM-2™ medium lacking VEGF, IGF, and heparin) to examine the ability of HUVECs to form a traditional 2D vascular network. The results indicated that a deficiency in these proteins results in disruptions in tube morphogenesis. Moreover, the results suggested that dysregulation of the PI3K/AKT pathway plays a key role for in vascular disruption in HUVECs. The proposed pseudo-disease starvation system provides a simple way to visualize pathological disruptions to blood vessels and assess the efficacy of drugs for vascular regeneration. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00736-4.
Collapse
Affiliation(s)
- SongHo Moon
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yuzuru Ito
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
- Life Science Development Department, CHIYODA Corporation, Yokohama, Kanagawa Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Japan
| |
Collapse
|
3
|
Lu D, Zhang Y, Zhu P, Wu J, Yuan C, Ni L. The roles of the ubiquitin-proteasome system in renal disease. Int J Med Sci 2025; 22:1791-1810. [PMID: 40225869 PMCID: PMC11983301 DOI: 10.7150/ijms.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major pathway of specific intracellular protein degradation through proteasome degradation of ubiquitin-labeled substrates. Numerous biological processes, including the cell cycle, transcription, translation, apoptosis, receptor activity, and intracellular signaling, are regulated by UPS. Alterations of the UPS, which render them more or less susceptible to degradation, are responsible for disorders of renal diseases. This review aims to summarize the mechanism of UPS in renal diseases. Besides, this review explores the relationship among UPS, autophagy, and deubiquitination in the development of renal disease. The specific molecular linkages among these systems and pathogenesis, on the other hand, are unknown and controversial. In addition, we briefly describe some anti-renal disease agents targeting UPS components. This review emphasizes UPS as a promising therapeutic modality for the treatment of kidney disease. Our work, though still basic and limited, could provide options to future potential therapeutic targets for renal diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Danqin Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingying Zhang
- Department of Nephrology, Tongii Hospital of Tongji University, Shanghai, China
| | - Ping Zhu
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Jiao Wu
- Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Cheng Yuan
- Department of Oncology, Yichang Central People's Hospital and The First College of Clinical Medical Science, China Three Gorges University Yichang, Hubei, China
- Tumor Prevention and Treatment Center of Three Gorges University and Cancer Research Institute of Three Gorges University Yichang, Hubei, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Hu S, Gao X, Zhu Y, Shi F, Huang L. PMEPA1 Binds NEDD4L to Inhibit the Malignant Progression of Multiple Myeloma by Inactivating Wnt/β-Catenin Signaling. Cell Biochem Biophys 2025:10.1007/s12013-025-01674-w. [PMID: 40035958 DOI: 10.1007/s12013-025-01674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy with increasing prevalence. Prostate transmembrane androgen inducible protein 1 (PMEPA1) is positively associated with overall survival in MM patients, but the exact functions and mechanisms of PMEPA1 in MM have yet to be elucidated. PMEPA1 and neural precursor cell-expressed developmentally downregulated gene 4L (NEDD4L) levels in MM cells were examined. In RPMI-8226 cells with PMEPA1 overexpression or/and NEDD4L knockdown, cell proliferation, cycle distribution and apoptosis were evaluated with the application of CCK-8, EDU staining and flow cytometry. The BioGrid website and HDOCK SERVER were applied for predicting the binding between PMEPA1 and NEDD4L, which was checked by co-immunoprecipitation. Besides, the levels of proteins associated with proliferation (Ki67 and PCNA), apoptosis (Bcl-2, Bax and cleaved caspase3) and Wnt/β-catenin signaling (β-catenin, c-Myc and cyclin D1) was detected with immunoblotting. Finally, LiCl, an activator of Wnt/β-catenin pathway, was employed to treat RPMI-8226 cells to analyze the proliferation, cycle distribution and apoptosis of MM cells. As a result, PMEPA1 and NEDD4L were expressed at low levels in MM cells. PMEPA1 upregulation repressed proliferation induced cycle arrest and facilitated apoptosis of MM cells. Moreover, PMEPA1 bound to NEDD4L and upregulated NEDD4L expression in RPMI-8226 cells. Functionally, NEDD4L knockdown attenuated the influences of PMEPA1 overexpression on the proliferation, cycle distribution and apoptosis of RPMI-8226 cells. Additionally, PMEPA1 notably downregulated β-catenin, c-Myc and cyclin D1 expression in RPMI-8226 cells, which was abrogated by NEDD4L silencing. Further adding LiCl in RPMI-8226 cells led to the enhanced malignant biological behaviors. Collectively, PMEPA1 damaged MM progression through binding NEDD4L to inactivate Wnt/β-catenin signaling, which may be helpful to develop promising targets for MM treatment.
Collapse
Affiliation(s)
- Shanshan Hu
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Xinfang Gao
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Yan Zhu
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Fangjing Shi
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China
| | - Li Huang
- Department of Hematology, Jinhua People's Hospital, Jinhua City, Zhejiang Province, 321000, China.
| |
Collapse
|
5
|
Wang L, Zhu R, Wen Z, Fan HJS, Norwood-Jackson T, Jathan D, Lee HJ. Structural and Functional Insights into Dishevelled-Mediated Wnt Signaling. Cells 2024; 13:1870. [PMID: 39594618 PMCID: PMC11592973 DOI: 10.3390/cells13221870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Dishevelled (DVL) proteins precisely control Wnt signaling pathways with many effectors. While substantial research has advanced our understanding of DVL's role in Wnt pathways, key questions regarding its regulatory mechanisms and interactions remain unresolved. Herein, we present the recent advances and perspectives on how DVL regulates signaling. The experimentally determined conserved domain structures of DVL in conjunction with AlphaFold-predicted structures are used to understand the DVL's role in Wnt signaling regulation. We also summarize the role of DVL in various diseases and provide insights into further directions for research on the DVL-mediated signaling mechanisms. These findings underscore the importance of DVL as a pharmaceutical target or biological marker in diseases, offering exciting potential for future biomedical applications.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Rui Zhu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Teresa Norwood-Jackson
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| | - Danielle Jathan
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| | - Ho-Jin Lee
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| |
Collapse
|
6
|
Qi M, Tu J, He R, Fei X, Zhao Y. NEDD4L Suppresses Proliferation and Promotes Apoptosis by Ubiquitinating RAC2 Expression and Acts as a Prognostic Biomarker in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2024; 25:11933. [PMID: 39596003 PMCID: PMC11594477 DOI: 10.3390/ijms252211933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is an HECT (homologous to E6AP C terminus)-type E3 ubiquitin ligase. As previously documented, bioinformatics analysis revealed NEDD4L is downregulated in clear cell renal cell carcinoma (ccRCC). However, the target substrate regulated by NEDD4L in ccRCC remains unknown. Here, we assessed whether NEDD4L regulates Ras-related C3 botulinum toxin substrate 2 (RAC2) expression in ccRCC. In our study, integrated bioinformatics analysis indicated that low expression of NEDD4L and high expression of RAC2 were both associated with poor prognosis of ccRCC, pro-tumorigenic immunity, and multiple tumor-associated pathways. Our data confirmed the hypothesis indicated in the previous studies related to the downregulation of NEDD4L in ccRCC. NEDD4L was identified to target the RAC2 threonine 108-proline motif, and RAC2 overexpression rescued NEDD4L-mediated cell apoptosis and inhibition of cell growth and migration. Therefore, RAC2 is a novel and first identified target of NEDD4L in ccRCC, and the aberrant less expression of NEDD4L and consequent RAC2 upregulation may contribute to renal carcinogenesis. Our study offers insight into NEDD4L as a potential future therapeutic target for renal cell carcinoma or as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Manlong Qi
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Jianqiao Tu
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Rong He
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Xiang Fei
- Department of Urology, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China;
| | - Yanyan Zhao
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| |
Collapse
|
7
|
Chen Y, Dai R, Cheng M, Wang W, Liu C, Cao Z, Ge Y, Wang Y, Zhang L. Status and role of the ubiquitin-proteasome system in renal fibrosis. Biomed Pharmacother 2024; 178:117210. [PMID: 39059348 DOI: 10.1016/j.biopha.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanjiao Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zeping Cao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Ge
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
8
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
9
|
Rong Z, Zheng K, Chen J, Jin X. The cross talk of ubiquitination and chemotherapy tolerance in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:154. [PMID: 38521878 PMCID: PMC10960765 DOI: 10.1007/s00432-024-05659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Ubiquitination, a highly adaptable post-translational modification, plays a pivotal role in maintaining cellular protein homeostasis, encompassing cancer chemoresistance-associated proteins. Recent findings have indicated a potential correlation between perturbations in the ubiquitination process and the emergence of drug resistance in CRC cancer. Consequently, numerous studies have spurred the advancement of compounds specifically designed to target ubiquitinates, offering promising prospects for cancer therapy. In this review, we highlight the role of ubiquitination enzymes associated with chemoresistance to chemotherapy via the Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT), and cell cycle perturbation. In addition, we summarize the application and role of small compounds that target ubiquitination enzymes for CRC treatment, along with the significance of targeting ubiquitination enzymes as potential cancer therapies.
Collapse
Affiliation(s)
- Ze Rong
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo, 315211, China.
| |
Collapse
|
10
|
Lu D, Liu Y, Kang L, Zhang X, Hu J, Ye H, Huang B, Wu Y, Zhao J, Dai Z, Wang J, Han D. Maternal fiber-rich diet promotes early-life intestinal development in offspring through milk-derived extracellular vesicles carrying miR-146a-5p. J Nanobiotechnology 2024; 22:65. [PMID: 38365722 PMCID: PMC10870446 DOI: 10.1186/s12951-024-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUNDS The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-β-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Bingxu Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
13
|
Oh KY, Hong SD, Yoon HJ. Adenoid Ameloblastoma Shares Clinical, Histologic, and Molecular Features With Dentinogenic Ghost Cell Tumor: The Histologic Spectrum of WNT Pathway-Altered Benign Odontogenic Tumors. Mod Pathol 2023; 36:100051. [PMID: 36788106 DOI: 10.1016/j.modpat.2022.100051] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 01/11/2023]
Abstract
An epithelial odontogenic tumor called adenoid ameloblastoma (AA) has recently been included in the new WHO classification. However, AA has considerable overlapping features with a preexisting entity, dentinogenic ghost cell tumor (DGCT). This study compared the clinical, histologic, and molecular characteristics of AA and DGCT. Eight cases of odontogenic tumors initially diagnosed as AA or DGCT were included in this study. Quantitative histologic analysis, β-catenin immunohistochemistry, and molecular profiling using next generation sequencing were performed. Additionally, accumulated clinical data of AA and DGCT were statistically analyzed. Nuclear β-catenin accumulation was detected in all cases in common, although the tumors studied histologically consisted of varying combinations of the AA-like phenotype, ghost cells, and dentinoid. However, CTNNB1 hotspot mutations were not found in any case. Instead, loss-of-function mutations in tumor suppressor genes involved in the WNT pathway, including the APC, SMURF1, and NEDD4L genes, were found regardless of histologic type. In addition, KRT13 mutations were detected in 2 cases with a high proportion of ghost cells. Finally, a literature analysis revealed clinical similarities between the previously reported cases of AA and DGCT. These findings suggest that from a clinical and molecular point of view, AA and DGCT represent a histologic spectrum of WNT pathway-altered benign odontogenic tumors rather than 2 distinct tumors. Moreover, previously unidentified keratin mutations may be associated with ghost cell formation found in specific types of odontogenic lesions.
Collapse
Affiliation(s)
- Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, Korea; Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
Sun A, Tian X, Chen Y, Yang W, Lin Q. Emerging roles of the HECT E3 ubiquitin ligases in gastric cancer. Pathol Oncol Res 2023; 29:1610931. [PMID: 36825281 PMCID: PMC9941164 DOI: 10.3389/pore.2023.1610931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is one of the most pernicious gastrointestinal tumors with extraordinarily high incidence and mortality. Ubiquitination modification of cellular signaling proteins has been shown to play important roles in GC tumorigenesis, progression, and prognosis. The E3 ubiquitin ligase is the crucial enzyme in the ubiquitination reaction and determines the specificity of ubiquitination substrates, and thus, the cellular effects. The HECT E3 ligases are the second largest E3 ubiquitin ligase family characterized by containing a HECT domain that has E3 ubiquitin ligase activity. The HECT E3 ubiquitin ligases have been found to engage in GC progression. However, whether HECT E3 ligases function as tumor promoters or tumor suppressors in GC remains controversial. In this review, we will focus on recent discoveries about the role of the HECT E3 ubiquitin ligases, especially members of the NEDD4 and other HECT E3 ligase subfamilies, in GC.
Collapse
Affiliation(s)
- Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang, China,Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China,*Correspondence: Aiqin Sun, ; Qiong Lin,
| | - Xianyan Tian
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China,*Correspondence: Aiqin Sun, ; Qiong Lin,
| |
Collapse
|
16
|
Loh KWZ, Liu C, Soong TW, Hu Z. β subunits of voltage-gated calcium channels in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1119729. [PMID: 36818347 PMCID: PMC9931737 DOI: 10.3389/fcvm.2023.1119729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Calcium signaling is required in bodily functions essential for survival, such as muscle contractions and neuronal communications. Of note, the voltage-gated calcium channels (VGCCs) expressed on muscle and neuronal cells, as well as some endocrine cells, are transmembrane protein complexes that allow for the selective entry of calcium ions into the cells. The α1 subunit constitutes the main pore-forming subunit that opens in response to membrane depolarization, and its biophysical functions are regulated by various auxiliary subunits-β, α2δ, and γ subunits. Within the cardiovascular system, the γ-subunit is not expressed and is therefore not discussed in this review. Because the α1 subunit is the pore-forming subunit, it is a prominent druggable target and the focus of many studies investigating potential therapeutic interventions for cardiovascular diseases. While this may be true, it should be noted that the direct inhibition of the α1 subunit may result in limited long-term cardiovascular benefits coupled with undesirable side effects, and that its expression and biophysical properties may depend largely on its auxiliary subunits. Indeed, the α2δ subunit has been reported to be essential for the membrane trafficking and expression of the α1 subunit. Furthermore, the β subunit not only prevents proteasomal degradation of the α1 subunit, but also directly modulates the biophysical properties of the α1 subunit, such as its voltage-dependent activities and open probabilities. More importantly, various isoforms of the β subunit have been found to differentially modulate the α1 subunit, and post-translational modifications of the β subunits further add to this complexity. These data suggest the possibility of the β subunit as a therapeutic target in cardiovascular diseases. However, emerging studies have reported the presence of cardiomyocyte membrane α1 subunit trafficking and expression in a β subunit-independent manner, which would undermine the efficacy of β subunit-targeting drugs. Nevertheless, a better understanding of the auxiliary β subunit would provide a more holistic approach when targeting the calcium channel complexes in treating cardiovascular diseases. Therefore, this review focuses on the post-translational modifications of the β subunit, as well as its role as an auxiliary subunit in modulating the calcium channel complexes.
Collapse
Affiliation(s)
- Kelvin Wei Zhern Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cong Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Tuck Wah Soong,
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Zhenyu Hu,
| |
Collapse
|
17
|
Wang J, Ding Y, Li D, Zhu N, Nishiyama A, Yuan Y. (Pro)renin receptor promotes colorectal cancer progression through inhibiting the NEDD4L-mediated Wnt3 ubiquitination and modulating gut microbiota. Cell Commun Signal 2023; 21:2. [PMID: 36597142 PMCID: PMC9809055 DOI: 10.1186/s12964-022-01015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/11/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We previously found that (pro)renin receptor ((P)RR) augments Wnt3 protein without affecting Wnt3 gene transcription in colorectal cancer (CRC) cells, thus contributes to CRC initiation. The present study aims to investigate whether (P)RR further promotes CRC progression following oncogenesis and the related mechanisms. Notably, we deeply elaborate how (P)RR affects Wnt3 protein level and the key enzyme that mediates this process. METHODS Immunohistochemistry, western blotting and immunofluorescence were performed to detect protein expression status. A kind of gastrointestinal epithelium-specific ATP6AP2 ((P)RR encoding gene) knock-in mice were generated using Crispr/Cas9 system. RESULTS We found that increased (P)RR expression in primary CRC lesions is positively associated with higher Wnt3 protein level and disease progression. Progressive CRC presents less colocalization of Wnt3 and an E3 ubiquitin ligase NEDD4L in primary lesions than non-progressive CRC. In colon cancer cells, (P)RR dramatically inhibits the NEDD4L-mediated Wnt3 protein ubiquitination. ATP6AP2 knock-in mice show more diminished Wnt3-NEDD4L colocalization in their gut epithelium in comparison to wildtype mice. They also have abnormal gut bacterial flora distribution. Especially, Lachnospiraceae_NK4A136 and Bacteroides genus, which are generally protective against CRC, are suppressed in guts of ATP6AP2 knock-in mice. CONCLUSIONS Collectively, (P)RR promotes CRC progression through inhibiting the NEDD4L-mediated Wnt3 ubiquitination and modulating gut microbiota. Video Abstract.
Collapse
Affiliation(s)
- Juan Wang
- grid.412465.0Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer Center of Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yuwei Ding
- grid.412465.0Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer Center of Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dan Li
- grid.412465.0Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer Center of Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Ning Zhu
- grid.412465.0Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer Center of Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Akira Nishiyama
- grid.258331.e0000 0000 8662 309XDepartment of Pharmacology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761-0793 Japan
| | - Ying Yuan
- grid.412465.0Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China ,Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer Center of Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
18
|
Sato K, Takayama KI, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1157818. [PMID: 37207075 PMCID: PMC10191213 DOI: 10.3389/fnagi.2023.1157818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by neuronal loss and dysfunction. Despite remarkable improvements in our understanding of these pathogeneses, serious worldwide problems with significant public health burdens are remained. Therefore, new efficient diagnostic and therapeutic strategies are urgently required. PIWI-interacting RNAs (piRNAs) are a major class of small non-coding RNAs that silence gene expression through transcriptional and post-transcriptional processes. Recent studies have demonstrated that piRNAs, originally found in the germ line, are also produced in non-gonadal somatic cells, including neurons, and further revealed the emerging roles of piRNAs, including their roles in neurodevelopment, aging, and neurodegenerative diseases. In this review, we aimed to summarize the current knowledge regarding the piRNA roles in the pathophysiology of neurodegenerative diseases. In this context, we first reviewed on recent updates on neuronal piRNA functions, including biogenesis, axon regeneration, behavior, and memory formation, in humans and mice. We also discuss the aberrant expression and dysregulation of neuronal piRNAs in neurodegenerative diseases, such as AD, PD, and ALS. Moreover, we review pioneering preclinical studies on piRNAs as biomarkers and therapeutic targets. Elucidation of the mechanisms underlying piRNA biogenesis and their functions in the brain would provide new perspectives for the clinical diagnosis and treatment of AD and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
19
|
Paeoniflorin Regulates NEDD4L/STAT3 Pathway to Induce Ferroptosis in Human Glioma Cells. JOURNAL OF ONCOLOGY 2022; 2022:6093216. [PMID: 36618071 PMCID: PMC9812627 DOI: 10.1155/2022/6093216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/04/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
Background Paeoniflorin is an active component of a widely used traditional Chinese medicine with antitumor activity through ferroptosis induction. It has been reported recently that ferroptosis is emerging in certain types of cancer; however, its relevance in glioma is still not well studied. Methods CCK8 assay was performed for cell proliferation. Expression of mRNA and protein was tested by qPCR and western blot, respectively. Clinical section samples were detected by IHC. The relationship between NEDD4L and STAT3 was validated by a coimmunoprecipitation assay. Apoptosis was identified by TUNEL assay. A xenograft mouse model was utilized to validate the potential of paeoniflorin toward glioma cancer cells. Results The data suggested that paeoniflorin could increase NEDD4L expression in glioma cells. The NEDD4L expression level was lower in glioma cancer tissues compared to adjacent normal tissues, and it correlates with poor prognosis. Meanwhile, NEDD4L mediates the ubiquitination of STAT3. Furthermore, increased NEDD4L significantly inhibited cell viability and induced accumulation of intracellular ROS levels, accompanied by decreased expression of key ferroptosis factors Nrl2 and GPX4, while NEDD4L knockdown had a reverse effect, suggesting that ferroptosis could be involved. NEDD4L-induced ferroptosis could be rescued by forced expression of STAT3. A xenograft nude mouse model showed that paeoniflorin inhibits tumor growth and further sensitizes glioma cells to RSL3, another well-known ferroptosis inducer. Conclusions In summary, this study demonstrated that paeoniflorin might function as an effective drug for glioma by inducing ferroptosis via upregulation of NEDD4L and repression of Nrl2, GPX4, and STAT3.
Collapse
|
20
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
21
|
Boligala GP, Yang MV, van Wunnik JC, Pruitt K. Nuclear Dishevelled: An enigmatic role in governing cell fate and Wnt signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119305. [PMID: 35688346 DOI: 10.1016/j.bbamcr.2022.119305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity and subsequent work has now demonstrated its importance in critical and diverse aspects of biology. Since those early discoveries, Dishevelled has been shown to coordinate a plethora of developmental and cellular processes that range from controlling cell polarity during gastrulation to partnering with chromatin modifying enzymes to regulate histone methylation at genomic loci. While the role of DVL in development is well-respected and the cytosolic function of DVL has been studied more extensively, its nuclear role continues to remain murky. In this review we highlight some of the seminal discoveries that have contributed to the field, but the primary focus is to discuss recent advances with respect to the nuclear role of Dishevelled. This nuclear function of Dishevelled is a dimension which is proving to be increasingly important yet remains enigmatic.
Collapse
Affiliation(s)
- Geetha Priya Boligala
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mingxiao V Yang
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jenna C van Wunnik
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
22
|
Liu J, Chen T, Li S, Liu W, Wang P, Shang G. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 2022; 86:259-268. [PMID: 35724822 DOI: 10.1016/j.semcancer.2022.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Wenjun Liu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China
| | - Peter Wang
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
23
|
Yu Z, Li H, Zhu J, Wang H, Jin X. The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res 2022; 12:1179-1214. [PMID: 35411231 PMCID: PMC8984888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep biological process involving genetic and epigenetic alterations that are accompanied by activation of oncoproteins and inactivation of tumor suppressors, which in turn results in Hepatocellular carcinoma (HCC), one of the common tumors with high morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) is the key to protein degradation and regulation of physiological and pathological processes, and E3 ligases are key enzymes in the UPS that contain a variety of subfamily proteins involved in the regulation of some common signal pathways in HCC. There is growing evidence that many structural or functional dysfunctions of E3 are engaged in the development and progression of HCC. Herein, we review recent research advances in HCC-associated E3 ligases, describe their structure, classification, functional roles, and discuss some mechanisms of the abnormal activation or inactivation of the HCC-associated signal pathway due to the binding of E3 to known substrates. In addition, given the success of proteasome inhibitors in the treatment of malignant cancers, we characterize the current knowledge and future prospects for targeted therapies against aberrant E3 in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Jie Zhu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| |
Collapse
|
24
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
25
|
Xie S, Xia L, Song Y, Liu H, Wang ZW, Zhu X. Insights Into the Biological Role of NEDD4L E3 Ubiquitin Ligase in Human Cancers. Front Oncol 2021; 11:774648. [PMID: 34869021 PMCID: PMC8634104 DOI: 10.3389/fonc.2021.774648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is an E3 ubiquitin ligase that has been reported to participate in multiple cellular procedures by regulating of substrate ubiquitination and subsequent protein degradation. A great amount of evidence has demonstrated that NEDD4L mainly functions as a tumor suppressor in most cancer types, while it also acts as an oncogene in a few cancers. In this review, we summarize the potential role of NEDD4L in carcinogenesis and the related underlying molecular mechanism to improve our understanding of its functions in the tumorigenesis of human malignancies. Developing clinical drugs targeting NEDD4L could be a potential therapeutic strategy for cancer therapy in the future.
Collapse
Affiliation(s)
- Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Timofeeva AV, Fedorov IS, Shamina MA, Chagovets VV, Makarova NP, Kalinina EA, Nazarenko TA, Sukhikh GT. Clinical Relevance of Secreted Small Noncoding RNAs in an Embryo Implantation Potential Prediction at Morula and Blastocyst Development Stages. Life (Basel) 2021; 11:life11121328. [PMID: 34947859 PMCID: PMC8706231 DOI: 10.3390/life11121328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the improvements in biotechnological approaches and the selection of controlled ovarian hyperstimulation protocols, the resulting pregnancy rate from in vitro fertilization (IVF) protocols still does not exceed 30-40%. In this connection, there is an acute question of the development of a non-invasive, sensitive, and specific method for assessing the implantation potential of an embryo. A total of 110 subfertile couples were included in the study to undergo the IVF/ICSI program. Obtained embryos for transfer into the uterine cavity of patient cohort 1 (n = 60) and cohort 2 (n = 50) were excellent/good-quality blastocysts, and small noncoding RNA (sncRNA) content in the corresponding spent culture medium samples at the morula stage (n = 43) or at the blastocyst stage (n = 31) was analyzed by deep sequencing followed by qRT-PCR in real time. Two logistic regression models were developed to predict the implantation potential of the embryo with 100% sensitivity and 100% specificity: model 1 at the morula stage, using various combinations of hsa_piR_022258, hsa-let-7i-5p, hsa_piR_000765, hsa_piR_015249, hsa_piR_019122, and hsa_piR_008112, and model 2 at the blastocyst stage, using various combinations of hsa_piR_020497, hsa_piR_008113, hsa-miR-381-3p, hsa_piR_022258, and hsa-let-7a-5p. Protein products of sncRNA potential target genes participate in the selective turnover of proteins through the ubiquitination system and in the organization of the various cell cytoskeleton and nucleoskeleton structures, regulating the activity of the Hippo signaling pathway, which determines the fate specification of the blastomers.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- Laboratory of Applied Transcriptomics, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia;
- Correspondence: or
| | - Ivan S. Fedorov
- Laboratory of Applied Transcriptomics, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia;
| | - Maria A. Shamina
- Department of Assisted Reproductive Technologies, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (M.A.S.); (N.P.M.); (E.A.K.)
| | - Vitaliy V. Chagovets
- Laboratory of Proteomics and Metabolomics of Human Reproduction, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia;
| | - Nataliya P. Makarova
- Department of Assisted Reproductive Technologies, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (M.A.S.); (N.P.M.); (E.A.K.)
| | - Elena A. Kalinina
- Department of Assisted Reproductive Technologies, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (M.A.S.); (N.P.M.); (E.A.K.)
| | - Tatiana A. Nazarenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (T.A.N.); (G.T.S.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia; (T.A.N.); (G.T.S.)
| |
Collapse
|
27
|
Chen Y, Hong H, Wang Q, Li J, Zhang W, Chen T, Li P. NEDD4L-induced ubiquitination mediating UBE2T degradation inhibits progression of lung adenocarcinoma via PI3K-AKT signaling. Cancer Cell Int 2021; 21:631. [PMID: 34838005 PMCID: PMC8626996 DOI: 10.1186/s12935-021-02341-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background A number of studies have indicated that Ubiquitin-conjugating enzyme E2T (UBE2T), as an oncogene, promotes progression and metastasis of lung cancer, including lung adenocarcinoma (LUAD), but it is completely unknown whether and how UBE2T is ubiquitylated and degraded, and by which E3 ligase. NEDD4L plays a critical role in the regulation of cellular processes of various cancers, most of which is attributed to its E3 ubiquitin ligase function. However, the relationship between NEDD4L and UBE2T in LUAD has not been elucidated. Methods The relationship between NEDD4L and UBE2T in LUAD tissues and cells was found by bioinformatic analyses and immunoblotting. Cell counting kit-8, colony formation assay, half-life analysis and the in vivo ubiquitylation assay, generation of xenograft model were performed to determine how NEDD4L regulates UBE2T and its downstream signaling pathway in vitro and in vivo. Results Bioinformatic analyses found that NEDD4L, as a potential correlation E3 ligase of UBE2T, was negatively correlated with UBE2T in LUAD. Consistently, UBE2T protein half-life was shortened or extended by NEDD4L overexpression or depletion, respectively. NEDD4L inhibited LUAD cell progression in vitro and in vivo via inducing the ubiquitination-mediated UBE2T degradation, which repressed PI3K-AKT signaling. Similarly, NEDD4L predicted a better patient survival, whereas UBE2T predicted a worse survival. Conclusions Collectively, our results reveal that NEDD4L is a novel E3 ligase of UBE2T, which can inhibit PI3K-AKT signaling by targeting for UBE2T ubiquitination and degradation, resulting in repression of LUAD cell progression.
Collapse
Affiliation(s)
- Yongbing Chen
- Department of Respiratory Medicine, Beilun Branch, Zhejiang University School of Medicine First Affiliated Hospital, Ningbo, 315800, China
| | - Haihua Hong
- Department of Respiratory Medicine, Beilun Branch, Zhejiang University School of Medicine First Affiliated Hospital, Ningbo, 315800, China
| | - Qingqing Wang
- Department of Respiratory Medicine, Beilun Branch, Zhejiang University School of Medicine First Affiliated Hospital, Ningbo, 315800, China
| | - Junqiang Li
- Department of Pathology, Beilun Branch, Zhejiang University School of Medicine First Affiliated Hospital, Ningbo, 315800, China
| | - Wenfeng Zhang
- Department of Infectious Disease, The First Affiliated Hospital, Nanchang University, Nanchang, 330052, China.
| | - Tingting Chen
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| | - Pu Li
- State Drug Clinical Trial Agency, The First Affiliated Hospital, Nanchang University, Nanchang, 330052, China.
| |
Collapse
|
28
|
Tian Q, Sun Y, Gao T, Li J, Fang H, Zhang S. Djnedd4L Is Required for Head Regeneration by Regulating Stem Cell Maintenance in Planarians. Int J Mol Sci 2021; 22:ijms222111707. [PMID: 34769140 PMCID: PMC8583885 DOI: 10.3390/ijms222111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
SUMOylation and ubiquitylation are homologous processes catalyzed by homologous enzymes, and they are involved in nearly all aspects of eukaryotic biology. Planarians, which have the remarkable ability to regenerate their central nervous system (CNS), provide an excellent opportunity to investigate the molecular processes of CNS regeneration in vivo. In this study, we analyzed gene expression profiles during head regeneration with an RNA-seq-based screening approach and found that Djnedd4L and Djubc9 were required for head regeneration in planarians. RNA interference targeting of Djubc9 caused the phospho-H3 mitotic cells to decrease in quantity, or even become absent as a part of the Djubc9 RNAi phenotype, which also showed the collapse of the stem cell lineage along with the reduced expression of epidermal differentiation markers. Furthermore, we found that Djnedd4L RNAi induced increased cell division and promoted the premature differentiation during regeneration. Taken together, our findings show that Djubc9 and Djnedd4L are required for stem cell maintenance in the planarian Dugesia japonica, which helps to elucidate the role of SUMOylation and ubiquitylation in regulating the regeneration process.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Correspondence: (H.F.); (S.Z.)
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou 450001, China
- Correspondence: (H.F.); (S.Z.)
| |
Collapse
|
29
|
Sharma M, Castro-Piedras I, Rasha F, Ramachandran S, Sennoune SR, Furr K, Almodovar S, Ganapathy V, Grisham MB, Rahman RL, Pruitt K. Dishevelled-1 DIX and PDZ domain lysine residues regulate oncogenic Wnt signaling. Oncotarget 2021; 12:2234-2251. [PMID: 34733415 PMCID: PMC8555683 DOI: 10.18632/oncotarget.28089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of β-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sabarish Ramachandran
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R. Sennoune
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kathryn Furr
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Matthew B. Grisham
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
30
|
Cristea I, Bruland O, Aukrust I, Rødahl E, Bredrup C. Pellino-2 in nonimmune cells: novel interaction partners and intracellular localization. FEBS Lett 2021; 595:2909-2921. [PMID: 34674267 DOI: 10.1002/1873-3468.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023]
Abstract
Pellino-2 is an E3 ubiquitin ligase that mediates intracellular signaling in innate immune pathways. Most studies of endogenous Pellino-2 have been performed in macrophages, but none in nonimmune cells. Using yeast two-hybrid screening and co-immunoprecipitation, we identified six novel interaction partners of Pellino-2, with various localizations: insulin receptor substrate 1, NIMA-related kinase 9, tumor necrosis factor receptor-associated factor 7, cyclin-F, roundabout homolog 1, and disheveled homolog 2. Pellino-2 showed cytoplasmic localization in a wide range of nonimmune cells under physiological potassium concentrations. Treatment with the potassium ionophore nigericin resulted in nuclear localization of Pellino-2, which was reversed by the potassium channel blocker tetraethylammonium. Live-cell imaging revealed intracellular migration of GFP-tagged Pellino-2. In summary, Pellino-2 interacts with proteins at different cellular locations, taking part in dynamic processes that change its intracellular localization influenced by potassium efflux.
Collapse
Affiliation(s)
- Ileana Cristea
- Department of Clinical Medicine, University of Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Norway.,Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, Norway.,Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
31
|
Dong H, Zhu L, Sun J, Zhang Y, Cui Q, Wu L, Chen S, Lu J. Pan-cancer Analysis of NEDD4L and Its Tumor Suppressor Effects in Clear Cell Renal Cell Carcinoma. J Cancer 2021; 12:6242-6253. [PMID: 34539897 PMCID: PMC8425189 DOI: 10.7150/jca.58004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
The expression level of NEDD4L, an E3 ubiquitin ligase, has changed significantly in human cancers. In this study, we aimed to study the expression of NEDD4L in pan-carcinoma and its function in malignant tumors. We analyzed the gene expression level of NEDD4L in pan-cancer from The Cancer Genome Atlas (TCGA) microarray data set, the correlation between gene expression and overall survival, disease-specific survival, and tumor immune microenvironment changes. NEDD4L expression changes in half of the cancer types. Low expression of NEDD4L gene predicts poor overall survival and disease-specific survival (DSS) in renal clear cell carcinoma (KIRC) and renal chromophobe cell carcinoma (KIRP). NEDD4L is negatively related to interstitial cell infiltration and immune cell infiltration in most common cancers. Furthermore, the low expression of NEDD4L was verified in our clear cell renal cell carcinoma (ccRCC) clinical tissues. In ccRCC cells, NEDD4L overexpression significantly reduced cell proliferation and migration. In the functional analysis, we proved that NEDD4L could inhibit ERBB3 and MAPK signaling pathways. When cells are deficient in nutrition, NEDD4L promoted the degradation of the autophagy regulatory protein ULK1. Our study provides novel insights into the role of NEDD4L in pan-cancer. NEDD4L may play a tumor suppressor effect in ccRCC, through tumor immune regulation and ubiquitination of key intracellular kinases.
Collapse
Affiliation(s)
- Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, China.,Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Ling Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, China.,Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Jingjing Sun
- Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Yi Zhang
- Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Qiang Cui
- Nephrology and Urology Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lin Wu
- Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| | - Shushang Chen
- Department of Urology, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, Fujian, China
| | - Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou 350025, China.,Laboratory of Basic Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), Xiamen University, Fuzhou 350025, China
| |
Collapse
|
32
|
Tril dampens Nodal signaling through Pellino2- and Traf6-mediated activation of Nedd4l. Proc Natl Acad Sci U S A 2021; 118:2104661118. [PMID: 34475212 DOI: 10.1073/pnas.2104661118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 4 (Tlr) interactor with leucine-rich repeats (Tril) functions as a Tlr coreceptor to mediate innate immunity in adults. In Xenopus embryos, Tril triggers degradation of the transforming growth factor β (Tgf-ß) family inhibitor, Smad7. This enhances bone morphogenetic protein (Bmp) signaling to enable ventral mesoderm to commit to a blood fate. Here, we show that Tril simultaneously dampens Nodal signaling by catalytically activating the ubiquitin ligase NEDD4 Like (Nedd4l). Nedd4l then targets Nodal receptors for degradation. How Tril signals are transduced in a nonimmune context is unknown. We identify the ubiquitin ligase Pellino2 as a protein that binds to the cytoplasmic tail of Tril and subsequently forms a complex with Nedd4l and another E3 ligase, TNF-receptor associated factor 6 (Traf6). Pellino2 and Traf6 are essential for catalytic activation of Nedd4l, both in Xenopus and in mammalian cells. Traf6 ubiquitinates Nedd4l, which is then recruited to membrane compartments where activation occurs. Collectively, our findings reveal that Tril initiates a noncanonical Tlr-like signaling cascade to activate Nedd4l, thereby coordinately regulating the Bmp and Nodal arms of the Tgf-ß superfamily during vertebrate development.
Collapse
|
33
|
Zhao D, Zhong G, Li J, Pan J, Zhao Y, Song H, Sun W, Jin X, Li Y, Du R, Nie J, Liu T, Zheng J, Jia Y, Liu Z, Liu W, Yuan X, Liu Z, Song J, Kan G, Li Y, Liu C, Gao X, Xing W, Chang YZ, Li Y, Ling S. Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation 2021; 144:694-711. [PMID: 34139860 DOI: 10.1161/circulationaha.121.054827] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.
Collapse
Affiliation(s)
- Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, China (G.Z.)
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Junjie Pan
- Medical College of Soochow University, Suzhou, China (J.P.)
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.)
| | - Hailin Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.)
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Jielin Nie
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Tong Liu
- Department of Cardiology (T.L., W.L.), Beijing AnZhen Hospital, Capital Medical University, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (J.Z.)
| | - Yixin Jia
- Heart Transplantation and Valve Surgery Center (Y.J.), Beijing AnZhen Hospital, Capital Medical University, China
| | - Zifan Liu
- Department of Cardiovascular Medicine, Chinese People's Liberation Army (PLA) General Hospital & Chinese PLA Medical School, Beijing (Z.L.)
| | - Wei Liu
- Department of Cardiology (T.L., W.L.), Beijing AnZhen Hospital, Capital Medical University, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Xingcheng Gao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.)
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| |
Collapse
|
34
|
Shi Q, Chen YG. Regulation of Dishevelled protein activity and stability by post-translational modifications and autophagy. Trends Biochem Sci 2021; 46:1003-1016. [PMID: 34433516 DOI: 10.1016/j.tibs.2021.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) plays essential roles in development processes and adult tissue homeostasis in multicellular organisms, and its deregulation results in human development disorders and other diseases. Dvl integrates and relays complex Wnt signals by acting as a branch-point of β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. It dynamically interacts with multiple proteins to modulate Wnt signaling, while its activity and stability are tightly controlled by other proteins. This Review summarizes the current understanding of regulation of Dvl activity, localization, and stability by post-translational modifications, aggregation, and autophagy, and the impacts on Dvl function in both Wnt signaling and biological processes.
Collapse
Affiliation(s)
- Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
35
|
Micka M, Bryja V. Can We Pharmacologically Target Dishevelled: The Key Signal Transducer in the Wnt Pathways? Handb Exp Pharmacol 2021; 269:117-135. [PMID: 34382124 DOI: 10.1007/164_2021_527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dishevelled (DVL) is the central signal transducer in both Wnt/β-catenin-dependent and independent signalling pathways. DVL is required to connect receptor complexes and downstream effectors. Since proximal Wnt pathway components and DVL itself are upregulated in many types of cancer, DVL represents an attractive therapeutic target in the Wnt-addicted cancers and other disorders caused by aberrant Wnt signalling. Here, we discuss progress in several approaches for the modulation of DVL function and hence inhibition of the Wnt signalling. Namely, we sum up the potential of modulation of enzymes that control post-translational modification of DVL - such as inhibition of DVL kinases or promotion of DVL ubiquitination and degradation. In addition, we discuss research directions that can take advantage of direct interaction with the protein domains essential for DVL function: the inhibition of DIX- and DEP-domain mediated polymerization and interaction of DVL PDZ domain with its ligands.
Collapse
Affiliation(s)
- Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
36
|
Zhang W, Zhang R, Zeng Y, Li Y, Chen Y, Zhou J, Zhang Y, Wang A, Zhu J, Liu Z, Yan Z, Huang JA. ALCAP2 inhibits lung adenocarcinoma cell proliferation, migration and invasion via the ubiquitination of β-catenin by upregulating the E3 ligase NEDD4L. Cell Death Dis 2021; 12:755. [PMID: 34330894 PMCID: PMC8324825 DOI: 10.1038/s41419-021-04043-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer is recognized as the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) being the predominant subtype, accounting for approximately 85% of lung cancer cases. Although great efforts have been made to treat lung cancer, no proven method has been found thus far. Considering β, β-dimethyl-acryl-alkannin (ALCAP2), a natural small-molecule compound isolated from the root of Lithospermum erythrorhizon. We found that lung adenocarcinoma (LUAD) cell proliferation and metastasis can be significantly inhibited after treatment with ALCAP2 in vitro, as it can induce cell apoptosis and arrest the cell cycle. ALCAP2 also significantly suppressed the volume of tumours in mice without inducing obvious toxicity in vivo. Mechanistically, we revealed that ALCAP2-treated cells can suppress the nuclear translocation of β-catenin by upregulating the E3 ligase NEDD4L, facilitating the binding of ubiquitin to β-catenin and eventually affecting the wnt-triggered transcription of genes such as survivin, cyclin D1, and MMP9. As a result, our findings suggest that targeting the oncogene β-catenin with ALCAP2 can inhibit the proliferation and metastasis of LUAD cells, and therefore, ALCAP2 may be a new drug candidate for use in LUAD therapeutics.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Ruochen Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yikun Chen
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jieqi Zhou
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Zhaowei Yan
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
37
|
Zhu B, McBride JW. Alpha Enolase 1 Ubiquitination and Degradation Mediated by Ehrlichia chaffeensis TRP120 Disrupts Glycolytic Flux and Promotes Infection. Pathogens 2021; 10:962. [PMID: 34451426 PMCID: PMC8400980 DOI: 10.3390/pathogens10080962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Ehrlichia chaffeensis modulates numerous host cell processes, including gene transcription to promote infection of the mononuclear phagocyte. Modulation of these host cell processes is directed through E. chaffeensis effectors, including TRP120. We previously reported that TRP120 moonlights as a HECT E3 Ub ligase that ubiquitinates host cell transcription and fate regulators (PCGF5 and FBW7) to promote infection. In this study, we identified a novel TRP120 substrate and examined the relationship between TRP120 and α-enolase (ENO1), a metalloenzyme that catalyzes glycolytic pathway substrate dehydration. Immunofluorescence microscopy and coimmunoprecipitation demonstrated interaction between ENO1 and TRP120, and ubiquitination of ENO-1 by TRP120 was detected in vivo and in vitro. Further, ENO-1 degradation was observed during infection and was inhibited by the proteasomal inhibitor bortezomib. A direct role of TRP120 Ub ligase activity in ENO-1 degradation was demonstrated and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. siRNA knockdown of ENO-1 coincided with increased E. chaffeensis infection and ENO-1 knockdown disrupted glycolytic flux by decreasing the levels of pyruvate and lactate that may contribute to changes in host cell metabolism that promote infection. In addition, we elucidated a functional role of TRP120 auto-ubiquitination as an activating event that facilitates the recruitment of the UbcH5 E2 ubiquitin-conjugating enzyme. This investigation further expands the repertoire of TRP120 substrates and extends the potential role of TRP120 Ub ligase in infection to include metabolic reprogramming.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
38
|
Cullin 1 (CUL1) Promotes Primary Ciliogenesis through the Induction of Ubiquitin-Proteasome-Dependent Dvl2 Degradation. Int J Mol Sci 2021; 22:ijms22147572. [PMID: 34299191 PMCID: PMC8307194 DOI: 10.3390/ijms22147572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are nonmotile cellular signal-sensing antenna-like structures composed of microtubule-based structures that distinguish them from motile cilia in structure and function. Primary ciliogenesis is regulated by various cellular signals, such as Wnt, hedgehog (Hh), and platelet-derived growth factor (PDGF). The abnormal regulation of ciliogenesis is closely related to developing various human diseases, including ciliopathies and cancer. This study identified a novel primary ciliogenesis factor Cullin 1 (CUL1), a core component of Skp1-Cullin-F-box (SCF) E3 ubiquitin ligase complex, which regulates the proteolysis of dishevelled 2 (Dvl2) through the ubiquitin-proteasome system. Through immunoprecipitation-tandem mass spectrometry analysis, 176 Dvl2 interacting candidates were identified, of which CUL1 is a novel Dvl2 modulator that induces Dvl2 ubiquitination-dependent degradation. Neddylation-dependent CUL1 activity at the centrosomes was essential for centrosomal Dvl2 degradation and primary ciliogenesis. Therefore, this study provides a new mechanism of Dvl2 degradation by CUL1, which ultimately leads to primary ciliogenesis, and suggest a novel target for primary cilia-related human diseases.
Collapse
|
39
|
Wang H, Zhao B, Bian E, Zong G, He J, Wang Y, Ma C, Wan J. Ubiquitination Destabilizes Protein Sphingosine Kinase 2 to Regulate Glioma Malignancy. Front Cell Neurosci 2021; 15:660354. [PMID: 34305532 PMCID: PMC8292629 DOI: 10.3389/fncel.2021.660354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Gliomas are the most common and lethal malignant tumor in the central nervous system. The tumor oncogene sphingosine kinase 2 (SphK2) was previously found to be upregulated in glioma tissues and enhance glioma cell epithelial-to-mesenchymal transition through the AKT/β-catenin pathway. Nevertheless, ubiquitination of SphK2 protein has yet to be well elucidated. In this study, mass spectrometry analysis was performed to identify proteins that interacted with SphK2 protein. Co-immunoprecipitation (co-IP) and immunoblotting (IB) were used to prove the specific interaction between SphK2 protein and the neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L) protein. Fluorescence microscopy was used for detecting the distribution of related proteins. Ubiquitylation assay was utilized to characterize that SphK2 was ubiquitylated by NEDD4L. Cell viability assay, flow cytometry assay, and transwell invasion assay were performed to illustrate the roles of NEDD4L-mediated SphK2 ubiquitination in glioma viability, apoptosis, and invasion, respectively. We found that NEDD4L directly interacted with SphK2 and ubiquinated it for degradation. Ubiquitination of SphK2 mediated by NEDD4L overexpression suppressed glioma cell viability and invasion but promoted glioma apoptosis. Knockdown of NEDD4L presented opposite results. Moreover, further results suggested that ubiquitination of SphK2 regulated glioma malignancy via the AKT/β-catenin pathway. in vivo assay also supported the above findings. This study reveals that NEDD4L mediates SphK2 ubiquitination to regulate glioma malignancy and may provide some meaningful suggestions for glioma treatment.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Gang Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Jie He
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yuyang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Chunchun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Jinghai Wan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
41
|
Feng D, Wang J, Yang W, Li J, Lin X, Zha F, Wang X, Ma L, Choi NT, Mii Y, Takada S, Huen MSY, Guo Y, Zhang L, Gao B. Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and endoplasmic reticulum-associated degradation. SCIENCE ADVANCES 2021; 7:7/20/eabg2099. [PMID: 33990333 PMCID: PMC8121430 DOI: 10.1126/sciadv.abg2099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
The four-pass transmembrane proteins Vangl1 and Vangl2 are dedicated core components of Wnt/planar cell polarity (Wnt/PCP) signaling that critically regulate polarized cell behaviors in many morphological and physiological processes. Here, we found that the abundance of Vangl proteins is tightly controlled by the ubiquitin-proteasome system through endoplasmic reticulum-associated degradation (ERAD). The key ERAD component p97/VCP directly binds to Vangl at a highly conserved VCP-interacting motif and recruits the E3 ligase KBTBD7 via its UBA-UBX adaptors to promote Vangl ubiquitination and ERAD. We found that Wnt5a/CK1 prevents Vangl ubiquitination and ERAD by inducing Vangl phosphorylation, which facilitates Vangl export from the ER to the plasma membrane. We also provide in vivo evidence that KBTBD7 regulates convergent extension during zebrafish gastrulation and functions as a tumor suppressor in breast cancer by promoting Vangl degradation. Our findings reveal a previously unknown regulatory mechanism of Wnt/PCP signaling through the p97/VCP-KBTBD7-mediated ERAD pathway.
Collapse
Affiliation(s)
- Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jingyu Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fangzi Zha
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Luyao Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nga Ting Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
42
|
Shami Shah A, Cao X, White AC, Baskin JM. PLEKHA4 Promotes Wnt/β-Catenin Signaling-Mediated G 1-S Transition and Proliferation in Melanoma. Cancer Res 2021; 81:2029-2043. [PMID: 33574086 PMCID: PMC8137570 DOI: 10.1158/0008-5472.can-20-2584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Despite recent promising advances in targeted therapies and immunotherapies, patients with melanoma incur substantial mortality. In particular, inhibitors targeting BRAF-mutant melanoma can lead to resistance, and no targeted therapies exist for NRAS-mutant melanoma, motivating the search for additional therapeutic targets and vulnerable pathways. Here we identify a regulator of Wnt/β-catenin signaling, PLEKHA4, as a factor required for melanoma proliferation and survival. PLEKHA4 knockdown in vitro decreased Dishevelled levels, attenuated Wnt/β-catenin signaling, and blocked progression through the G1-S cell-cycle transition. In mouse xenograft and allograft models, inducible PLEKHA4 knockdown attenuated tumor growth in BRAF- and NRAS-mutant melanomas and exhibited an additive effect with the clinically used inhibitor encorafenib in a BRAF-mutant model. As an E3 ubiquitin ligase regulator with both lipid- and protein-binding partners, PLEKHA4 presents several opportunities for targeting with small molecules. Our work identifies PLEKHA4 as a promising drug target for melanoma and clarifies a controversial role for Wnt/β-catenin signaling in the control of melanoma proliferation. SIGNIFICANCE: This study establishes that melanoma cell proliferation requires the protein PLEKHA4 to promote pathologic Wnt signaling for proliferation, highlighting PLEKHA4 inhibition as a new avenue for the development of targeted therapies.
Collapse
Affiliation(s)
- Adnan Shami Shah
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| |
Collapse
|
43
|
Manning JA, Shah SS, Nikolic A, Henshall TL, Khew-Goodall Y, Kumar S. The ubiquitin ligase NEDD4-2/NEDD4L regulates both sodium homeostasis and fibrotic signaling to prevent end-stage renal disease. Cell Death Dis 2021; 12:398. [PMID: 33854040 PMCID: PMC8046789 DOI: 10.1038/s41419-021-03688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Kidney disease progression can be affected by Na+ abundance. A key regulator of Na+ homeostasis is the ubiquitin ligase NEDD4-2 and its deficiency leads to increased Na+ transport activity and salt-sensitive progressive kidney damage. However, the mechanisms responsible for high Na+ induced damage remain poorly understood. Here we show that a high Na+ diet compromised kidney function in Nedd4-2-deficient mice, indicative of progression toward end-stage renal disease. Injury was characterized by enhanced tubule dilation and extracellular matrix accumulation, together with sustained activation of both Wnt/β-catenin and TGF-β signaling. Nedd4-2 knockout in cortical collecting duct cells also activated these pathways and led to epithelial-mesenchymal transition. Furthermore, low dietary Na+ rescued kidney disease in Nedd4-2-deficient mice and silenced Wnt/β-catenin and TGF-β signaling. Our study reveals the important role of NEDD4-2-dependent ubiquitination in Na+ homeostasis and protecting against aberrant Wnt/β-catenin/TGF-β signaling in progressive kidney disease.
Collapse
Affiliation(s)
- Jantina A. Manning
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Sonia S. Shah
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Andrej Nikolic
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Tanya L. Henshall
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Yeesim Khew-Goodall
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| | - Sharad Kumar
- grid.1026.50000 0000 8994 5086Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5001 Australia
| |
Collapse
|
44
|
Cui YH, Yang S, Wei J, Shea CR, Zhong W, Wang F, Shah P, Kibriya MG, Cui X, Ahsan H, He C, He YY. Autophagy of the m 6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun 2021; 12:2183. [PMID: 33846348 PMCID: PMC8041927 DOI: 10.1038/s41467-021-22469-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Here we show that FTO as an N6-methyladenosine (m6A) RNA demethylase is degraded by selective autophagy, which is impaired by low-level arsenic exposure to promote tumorigenesis. We found that in arsenic-associated human skin lesions, FTO is upregulated, while m6A RNA methylation is downregulated. In keratinocytes, chronic relevant low-level arsenic exposure upregulated FTO, downregulated m6A RNA methylation, and induced malignant transformation and tumorigenesis. FTO deletion inhibited arsenic-induced tumorigenesis. Moreover, in mice, epidermis-specific FTO deletion prevented skin tumorigenesis induced by arsenic and UVB irradiation. Targeting FTO genetically or pharmacologically inhibits the tumorigenicity of arsenic-transformed tumor cells. We identified NEDD4L as the m6A-modified gene target of FTO. Finally, arsenic stabilizes FTO protein through inhibiting p62-mediated selective autophagy. FTO upregulation can in turn inhibit autophagy, leading to a positive feedback loop to maintain FTO accumulation. Our study reveals FTO-mediated dysregulation of mRNA m6A methylation as an epitranscriptomic mechanism to promote arsenic tumorigenicity.
Collapse
Affiliation(s)
- Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Jiangbo Wei
- Departments of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Christopher R Shea
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Wen Zhong
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Department of Radiation Oncology, 4th Affiliated Hospital, China Medical University, Shenyang, China
| | - Fang Wang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Xiaolong Cui
- Departments of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Departments of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Liu H, Lin W, Liu Z, Song Y, Cheng H, An H, Wang X. E3 ubiquitin ligase NEDD4L negatively regulates keratinocyte hyperplasia by promoting GP130 degradation. EMBO Rep 2021; 22:e52063. [PMID: 33769697 DOI: 10.15252/embr.202052063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is mainly characterized by abnormal hyperplasia of keratinocytes and immune cells infiltrating into the dermis and epidermis. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is a highly conserved HECT type E3 ligase that plays an important role in regulating physiological and pathological processes. Here, we identify NEDD4L as a negative regulator of psoriasis. Nedd4l significantly inhibits imiquimod (IMQ)-induced skin hyperplasia, and this effect is attributed to the inhibitory effect of NEDD4L on IL-6/GP130 signaling in keratinocytes. Mechanistically, NEDD4L directly interacts with GP130 and mediates its Lys-27-linked ubiquitination and proteasomal degradation. Moreover, the expression of NEDD4L is downregulated in the epidermis from IMQ-treated mice and psoriasis patients and negatively correlates with the protein levels of GP130 and p-STAT3 in clinical samples. Collectively, we uncover an inhibitory role of NEDD4L in the pathogenesis of psoriasis and suggest a new therapeutic strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Huan Liu
- Institute of Immunology and Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology and Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhiyong Liu
- Institute of Immunology and Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Huazhang An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Sun M, Gao J, Meng T, Liu S, Chen H, Liu Q, Xing X, Zhao C, Luo Y. Cyclin G2 upregulation impairs migration, invasion, and network formation through RNF123/Dvl2/JNK signaling in the trophoblast cell line HTR8/SVneo, a possible role in preeclampsia. FASEB J 2020; 35:e21169. [PMID: 33205477 DOI: 10.1096/fj.202001559rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Disruption of extravillous trophoblast (EVT) migration and invasion is considered to be responsible for pathological placentation in preeclampsia (PE). Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression. However, its biological function and underlying molecular mechanism in PE are poorly understood. In this study, clinical data demonstrated that CCNG2 was significantly upregulated in PE placenta and associated with invasive EVT dysfunction. Additionally, Ccng2 knockout led to an attenuation of PE-like symptoms in the PE mouse model produced via treatment with NG-nitro-L-arginine methyl ester (L-NAME). In vitro, CCNG2 inhibited the migration, invasion, and endothelial-like network formation of human trophoblast cell line HTR8/SVneo. Mechanically, CCNG2 suppressed JNK-dependent Wnt/PCP signaling and its downstream indicators including epithelial-to-mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs) via promoting the polyubiquitination degradation of dishevelled 2 (Dvl2) protein in HTR8/SVneo cells. We also discovered that the E3 ligase Ring finger protein 123 (RNF123), as a novel CCNG2 target among HTR8/SVneo cells, interacted with Dvl2 and participated in CCNG2-induced polyubiquitination degradation of Dvl2. Moreover, we verified that the treatment of HTR8/SVneo cells with RNF123-specific siRNA improved polyubiquitination-induced degradation of Dvl2 and the activity of Wnt/PCP-JNK signaling mediated by CCNG2. Taken together, our results reveal that the CCNG2/RNF123/Dvl2/JNK axis may be involved in the pathogenesis and progression of PE through trophoblastic cell function modulation, thus probably providing us with new therapeutic strategies for PE treatment.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| |
Collapse
|
47
|
Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Watanabe M. HECT (Homologous to the E6-AP Carboxyl Terminus)-Type Ubiquitin E3 Ligase ITCH Attenuates Cardiac Hypertrophy by Suppressing the Wnt/β-Catenin Signaling Pathway. Hypertension 2020; 76:1868-1878. [PMID: 33131309 DOI: 10.1161/hypertensionaha.120.15487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The HECT (homologous to the E6-AP carboxyl terminus)-type ubiquitin E3 ligase ITCH is an enzyme that plays an important role in ubiquitin-proteasomal protein degradation. Disheveled proteins (Dvl1 [disheveled protein 1], Dvl2, and Dvl3) are the main components of the Wnt/β-catenin signaling pathway, which is involved in cardiac hypertrophy. The aim of this study was to examine the role of ITCH during development of cardiac hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type mice. Cardiac hypertrophy after TAC was attenuated in ITCH-Tg mice, and the survival rate was higher for ITCH-Tg mice than for wild-type mice. Protein interaction between ITCH and Dvls was confirmed with immunoprecipitation in vivo and in vitro. Expression of key molecules of the Wnt/β-catenin signaling pathway (Dvl1, Dvl2, GSK3β [glycogen synthase kinase 3β], and β-catenin) was inhibited in ITCH-Tg mice compared with wild-type mice. Notably, the ubiquitination level of Dvl proteins increased in ITCH-Tg mice. Protein and mRNA expression levels of ITCH increased in response to Wnt3a stimulation in neonatal rat cardiomyocytes. Knockdown of ITCH using small-interfering RNA increased cardiomyocyte size and augmented protein expression levels of Dvl proteins, phospho-GSK3β, and β-catenin after Wnt3a stimulation in cardiomyocytes. Conversely, overexpression of ITCH attenuated cardiomyocyte hypertrophy and decreased protein expression levels of Dvl proteins, phospho-GSK3β and β-catenin. In conclusion, ITCH targets Dvl proteins for ubiquitin-proteasome degradation in cardiomyocytes and attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jun Goto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoichiro Otaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsu Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yuta Kobayashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tomonori Aono
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Ken Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masahiro Wanezaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Daisuke Kutsuzawa
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shigehiko Kato
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Harutoshi Tamura
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Satoshi Nishiyama
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takanori Arimoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Hiroki Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsuro Shishido
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masafumi Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| |
Collapse
|
48
|
Lescouzères L, Bomont P. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy. Front Physiol 2020; 11:1022. [PMID: 33192535 PMCID: PMC7642974 DOI: 10.3389/fphys.2020.01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
Collapse
Affiliation(s)
- Léa Lescouzères
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
49
|
Nielsen CP, Jernigan KK, Diggins NL, Webb DJ, MacGurn JA. USP9X Deubiquitylates DVL2 to Regulate WNT Pathway Specification. Cell Rep 2020; 28:1074-1089.e5. [PMID: 31340145 PMCID: PMC6884140 DOI: 10.1016/j.celrep.2019.06.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer. DVL2 is a signal transducing protein that participates in canonical and noncanonical WNT signaling relays. Here, Nielsen et al. report that the deubiquitylase USP9X and the E3 ubiquitin ligase WWP1 operate on DVL2 to establish a ubiquitin rheostat that contributes to WNT pathway specification in human breast cancer cells.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
50
|
Cui J, Shu C, Xu J, Chen D, Li J, Ding K, Chen M, Li A, He J, Shu Y, Yang L, Zhang R, Zhou J. JP1 suppresses proliferation and metastasis of melanoma through MEK1/2 mediated NEDD4L-SP1-Integrin αvβ3 signaling. Theranostics 2020; 10:8036-8050. [PMID: 32724456 PMCID: PMC7381750 DOI: 10.7150/thno.45843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: JWA gene is known to down-regulate SP1 and reduces the expression level of Integrin αvβ3. Here, we identified a functional polypeptide (JP1) based on the active fragment of the JWA protein to suppress melanoma growth and metastasis by inhibiting the Integrin αvβ3. Methods: We conducted a series of melanoma growth and metastasis mouse models to evaluate anti-melanoma effect of JP1 peptide. 18F-labeled JP1 (18F-NFP-JP1) was detected by Micro-PET assay to demonstrate drug biodistribution. Toxicity test in cynomolgus monkeys and pharmacokinetic studies in rats were done to assess the druggability. The expression of MEK1/2, NEDD4L, SP1 and Integrin αvβ3 were detected in vitro and vivo models. Results: The peptide JP1 with the best anticancer effect was obtained. Micro-PET assay showed that JP1 specifically targeting to melanoma cells in vivo. JP1 inhibited melanoma growth, metastasis, and prolonged the survival of mouse. JP1 reduced the dosage and toxicity in combination with DTIC in melanoma xenograft and allograft mouse models. Cynomolgus monkey toxicity test showed no observed adverse effect level (NOAEL) of JP1 was 150 mg/kg. Mechanistically, JP1 was shown to activate p-MEK1/2 and triggered SP1 ubiquitination in melanoma cells. NEDD4L, an E3 ubiquitin ligase, was activated by p-MEK1/2 and to ubiquitinate SP1 at K685 site, resulting in subsequent degradation. Conclusions: JP1 was developed as a novel peptide that indicated therapeutic roles on proliferation and metastasis of melanoma through the NEDD4L-SP1-Integrin αvβ3 signaling.
Collapse
Affiliation(s)
- Jiahua Cui
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Li
- Department of Oncology, the Affiliated No. 1 Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Minjuan Chen
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jingdong He
- Department of Oncology, the Affiliated No. 1 Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yongqian Shu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|